
acmqueue | may-june 2020 1

data

R
ecently, there has been a lot of interest in
services. These can be microservices or just
services. In each case, the service provides a
function with its own code and data, and operates
independently of partners. This article argues

that there are a number of seminal differences between
data encapsulated inside a service and data sent into the
space outside of the service boundary.

SQL data is encapsulated within a service to ensure it is
protected by application code. When sending data across
services, it is outside that trust boundary.

The first question this article asks is what trust means
to a service and its encapsulated data. This is answered by
looking at transactions and boundaries, data kept inside
versus data kept outside of services. Also to be considered

Data kept
outside SQL

has different
characteristics
from data kept

inside.

PAT HELLAND

1 of 28 TEXT
ONLY

Data on the
Outside
 versus
Data on the
Inside

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3411757.3415014&domain=pdf&date_stamp=2020-08-02

acmqueue | may-june 2020 2

data

is how services compose using operators (requesting
stuff) and operands (refining those requests). Then the
article looks at time and service boundaries. When data
in a database is unlocked, it impacts notions of time. This
leads to an examination of the use of immutability in the
composition of services with messages, schema, and data
flowing between these boundaries.

The article then looks at data on the outside of these
trust boundaries called services. How do you structure that
data so it is meaningful across both space and time as it
flows in a world not inside a service? What about data inside
a service? How does it relate to stuff coming in and out?

Finally, the characteristics of SQL and JSON
(JavaScript Object Notation), and other semi-structured
representations, are considered. What are their strengths
and weaknesses? Why do the solutions seem to use both of
them for part of the job?

ESSENTIAL SERVICES
Services are essential to building large applications
today. While there are many examples of large enterprise
solutions that leverage services, the industry is still
learning about services as a design paradigm. This section
describes how the term service is used and introduces
the notions of data residing inside services and outside
services.

Services
Big and complex systems are typically collections of
independent and autonomous services. Each service
consists of a chunk of code and data that is private to that

2 of 28

acmqueue | may-june 2020 3

data

service. Services are different from the classic application
living in application silos, in that services are primarily
designed to interact with other services via messaging.
Indeed, that interaction, its data, and how it all works is an
interesting topic.

Services communicate with each other exclusively
through messages. No knowledge of the partner service
is shared other than the message formats and the
sequences of the expected messages. It is explicitly
allowed (and, indeed, expected) that the partner service
may be implemented with heterogeneous technology at all
levels of the stack including hardware, operating system,
database, middleware, programming language, and/or
application vendor or implementation team.

The essence of a service lies in its independence and
how it encapsulates (and protects) its data.

Bounding trust via encapsulation
Services interact with a collection of messages whose
formats (schema) and business semantics are well
defined. Each service will do only limited things for its
partner services based upon well-defined messages. The
act of defining a limited set of behaviors provides a firm
encapsulation of the service. An important part of trust is
limiting the things you’ll do for outsiders.

To interact with a service, you have to follow its rules
and constraints. Each message you send fits a prescribed
role. The only way to interact with data in another service
is through its rules and business logic. Data is, in general,
never allowed out of a service unless it is processed by
application logic.

3 of 28

acmqueue | may-june 2020 4

data

For example, when using your bank’ s ATM, you expect to
have only a few supported operations such as withdrawal,
deposit, etc. Banks do not allow direct access to database
connections via ATMs. The only way to change the bank’s
database is through the bank’s application logic in the ATM
and the back-end system. This is how a service protects its
data.

Encapsulating both changes and reads
Services encapsulate changes to their data with their
application logic. The app logic ensures the integrity of
the service’s data and work. Only the service’s trusted
application logic can change the data.

Services encapsulate access to read their data. This
controls the privacy of what is exported. While this
autonomy is powerful, it can also cause some challenges.

Before your business separated its work into
independent services, all of its data was in a big database.
Now you have a bunch of services, and they have a bunch of
databases running on a bunch of computers with a bunch
of different operating systems. This is awesome for the
independent development, support, and evolution of the
different services, but it’s a royal hassle when you want to
do analytics across all your data.

Frequently each service will choose to export
carefully sanitized subsets of data for consumption by
partner services. Of course, this requires some work
ensuring proper authorization to see this data (as well
as authenticating the curious service). Still, the ability to
sanitize and control the data being exposed is crucial.

4 of 28

acmqueue | may-june 2020 5

data

Trust and transactions
Participating in an ACID (atomicity, consistency, isolation,
durability) transaction means one system can be locked up
waiting for another system to decide to commit or abort
the transaction. If you are stuck holding locks waiting for
another system, that can really cause trouble for your
availability. With rare exceptions, services don’t trust other
services like that.

In the late 1990s, there were efforts to formalize
standards for transaction coordination across trust
boundaries. Fortunately, these standards died a horrible
death.

Data inside and outside services
The premise of this article is that data residing inside
a service is different in many essential ways from data
residing outside or between services:
3 Data on the inside refers to the encapsulated private
data contained within the service itself. As a sweeping
statement, this is the data that has always been considered
“normal”—at least in your database class in college. The
classic data contained in a SQL database and manipulated
by a typical application is inside data.
3 Data on the outside refers to the information that
flows between these independent services. This includes
messages, files, and events. It’s not your classic SQL data.

Operators and operands
Messages flowing between services contain operators,
which correspond to the intended purpose of the message.
Frequently the operator reflects a business function in the

5 of 28

acmqueue | may-june 2020 6

data

domain of the service. For example, a service implementing
a banking application may have operators in its messages
for deposits, withdrawals, and other banking functions.
Sometimes operators reflect more mundane reasons for
sending messages, such as “Here’s Tuesday’s price list.”

Messages may contain operands to the operators,
shown in figure 1. The operands are additional stuff needed
by the operator message to qualify the intent of the
message fully. Operands may be obtained from reference
data, published to describe those operands. A message
requesting a purchase from an e-commerce site may
include product IDs, requested numbers to be purchased,
expected price, customer ID, and more. This is covered in
more detail later.

DATA: THEN AND NOW
This section examines the temporal implications of not
sharing ACID transactions across services and examines

6 of 28

operands

reference
data message

operator

service

deposit

FIGURE 1: Operands

acmqueue | may-june 2020 7

data

the nature of work inside the boundaries of an ACID
transaction. This provides a crisp sense of “now” for
operations against inside data.

The situation for data on the outside of the service,
however, is different. The fact that it is unlocked means
that the data is no longer in the now. Furthermore,
operators are requests for operations that have not yet
occurred and actually live in the future (assuming they
come to fruition).

Different services live in their own private temporal
domains. This is an intrinsic part of using distrusting
services. Trust and time carry implications about how to
think about applications.

Transactions, inside data and now
Transactions have been historically defined using ACID
properties.1 These properties reflect the semantics of
the transaction. Much work has been done to describe
transaction serializability, in which transactions executing
on a system or set of related systems perceive their work
as applied in a serial order even in the face of concurrent
execution.2 Transactional serializability makes you
feel alone. A rephrasing of serializability is that each
transaction sees all other transactions to be in one of
three categories:
3 Those whose work preceded this one.
3 Those whose work follows this one.
3 Those whose work is completely independent of this one.

This looks just like the executing transaction is all alone.
ACID transactions live in the now. As time marches

forward and transactions commit, each new transaction

7 of 28

acmqueue | may-june 2020 8

data

perceives the impact of the transactions that preceded
it. The executing logic of the service lives with a clear and
crisp sense of now.

Blast from the past
Messages may contain data extracted from the local
service’s database. The sending application logic may look
in its belly to extract that data from its database. By the
time the message leaves the service, that data will be
unlocked.

The destination service sees the message; the data
on the sender’s service may be changed by subsequent
transactions. It is no longer known to be the same as it was
when the message was sent. The contents of a message
are always from the past, never from now.

There is no simultaneity at a distance. Similar to the
speed of light bounding information, by the time you see a
distant object, it may have changed. Likewise, by the time
you see a message, the data may have changed.

Services, transactions, and locks bound simultaneity:
3 Inside a transaction, things are simultaneous.
3 Simultaneity exists only inside a transaction.
3 Simultaneity exists only inside a service.

All data seen from a distant service is from the “past.”
By the time you see data from a distant service, it has
been unlocked and may change. Each service has its own
perspective. Its inside data provides its framework of
“now.” Its outside data provides its framework of the “past.”
My inside is not your inside, just as my outside is not your
outside.

Using services rather than a single centralized database

8 of 28

acmqueue | may-june 2020 9

data

is like going from Newton’s physics to Einstein’s physics:
3 Newton’s time marched forward uniformly with instant
knowledge at a distance.
3 Before services, distributed computing strove to make
many systems look like one, with RPC (remote procedure
call), two-phase commit, etc.
3 In Einstein’s universe, everything is relative to one’s
perspective.
3 Within each service, there is a “now” inside, and the “past”
arriving in messages.

Hope for the future
Messages contain operators that define requests for
work from a service, shown in figure 2. If Service A sends
a message with an operator request to Service B, it is

9 of 28

request

response

service
A

service
B

hopeful for the
future...

decides to issue
request

hopes fulfilled,
the future is

now

minding own
business

future altered
by doing
request

FIGURE 2: Requests for work

acmqueue | may-june 2020 10

data

hopeful that Service B will do the requested operation.
In other words, it is hopeful for the future. If Service B
complies and performs the work, that work becomes part
of Service B’s future, and its state is forever changed. Once
Service A receives a reply describing either success or
failure of the operation, Service A’s future is changed.

Life in the “then”
Operands may live in either the past or the future,
depending on their usage pattern. They live in the past if
they have copies of unlocked information from a distant
service. They live in the future if they contain proposed
values that hopefully will be used if the operator is
successfully completed.

Between the services, life is in the world of “then.”
Operators live in the future. Operands live in either the
past or the future. Life is always in the then when you are
outside the confines of a service. This means that data on
the outside lives in the world of then. It is past or future,
but it is not now.

Each separate service has its own separate “now,”
illustrated in figure 3. The domains of transaction
serializability are disjoint, and each has its own temporal
environment. The only way they interact is through data on
the outside, which lives in the world of then.

Dealing with now and then
Services must cope with making the now meet the then.
Each service lives in its own now and interacts with
incoming and outgoing notions of then. The application
logic for the service must reconcile these.

10 of 28

acmqueue | may-june 2020 11

data

Consider, for example, what’s involved when a business
accepts an order: The business may publish daily prices, but
it probably wants to accept yesterday’s prices for a while
after midnight. Therefore, the service’s application logic
must manually cope with the differences in prices during
the overlap.

Similarly, a business that says its product “usually ships
in 24 hours” must consider the following: Order processing
has old information; the available inventory is deliberately
fuzzy; both sides must cope with different time domains.

service
#1

service
#2

service
#3

service
#4

no notion of “now” in between services

FIGURE 3: Services with different “now”s

11 of 28

acmqueue | may-june 2020 12

data

The world is no longer flat:
3 Services with private data support more than one
computer working together.
3 Services and their service boundaries mean multiple
trust domains and different transaction domains.
3 Multiple transaction domains mean multiple time
domains.
3 Multiple time domains force you to cope with ambiguity
to allow coexistence, cooperation, and joint work.

DATA ON THE OUTSIDE: IMMUTABILITY
This section discusses properties of data on the outside.
First, each data item needs to be uniquely identified and
have immutable contents that do not change as copies
of it move around. Next, anomalies can be caused in
the interpretation of data in different locations and at
different times; the notion of “stable” data avoids these
anomalies. The section also discusses schemas and the
messages they describe. This leads to the mechanisms by
which one piece of outside data can refer to another piece
of data and the implications of immutability. Finally, what
does outside data look like when it is being created by a
collection of independent services, each living in its own
temporal domain?

Immutable and/or versioned data
Data may be immutable. Once immutable data is written
and given an identifier, its contents will remain the same
for that identifier. Once it is written, it cannot be changed.
In many environments, the immutable data may be deleted
and the identifier will subsequently be mapped to an

12 of 28

acmqueue | may-june 2020 13

data

indication of “no present data,” but it will never return data
other than the original contents. Immutable data is the
same no matter when or where it is referenced. Versioned
data is immutable. If you specify a specific version of some
collection of data, you will always get the same contents.

In many cases, a version-independent identifier is used
to refer to a collection of data. An example is the New
York Times. A new version of the newspaper is produced
each day (and, indeed, because of regional editions,
multiple versions are produced each day). To bind a
version-independent identifier to the underlying data,
it is necessary first to convert to a version-dependent
identifier. For example, the request for a recent New York
Times is converted into a request for the New York Times
on January 4, 2005, California edition.

This is a version-dependent identifier that yields the
immutable contents of that region’s edition of that day’s
paper. The contents of this edition for that day will never
change no matter when or where you request it. Either the
information about the contents of that specific newspaper
is available or it is not. If it is available, the answer is always
the same.

Immutability, messages, and outside data
One reality of messaging is that messages sometimes
get lost. To ensure delivery, the message must be retried.
It is essential that retries have the same contents. The
message itself must be immutable. Once a message is
sent, it cannot be unsent any more than a politician can
unsay something on television. It is best to consider each
message as uniquely identified, and that identifier must

13 of 28

acmqueue | may-june 2020 14

data

yield immutable contents for the message. This means the
same bits are always returned for the message.

Stability of data
Immutability isn’t enough to ensure a lack of confusion.
The interpretation of the contents of the data must
be unambiguous. Stable data has an unambiguous and
unchanging interpretation across space and time.

For example, a monthly bank statement is stable data.
Its interpretation is invariant across space and time. On
the other hand, the words President Bush had a different
meaning in 2005 than they did in 1990. These words are
not stable in the absence of additional qualifying data.
Similarly, anything called current (e.g., current inventory) is
not stable.

To ensure the stability of data, it is important to design
for values that are unambiguous across space and time.
One excellent technique for the creation of stable data
is the use of time-stamping and/or versioning. Another
important technique is to ensure that important identifiers
such as customer IDs are never reused.

Immutable schema and immutable messages
As discussed previously, when a message is sent, it must be
immutable and stable to ensure its correct interpretation.
In addition, the schema for the message must be
immutable. For this reason, it is recommended that all
message schemas be versioned and each message use
the version-dependent identifier of the precise definition
of the message format. Alternatively, the schema can be
embedded in the message. This is popular when using JSON

14 of 28

acmqueue | may-june 2020 15

data

or other semi-structured formats.

References to data, immutability, and DAGs
Sometimes it is essential to refer to other data. When
referencing from outside data, the identifier used for the
reference must specify data that is immutable.

If you find an immutable document that tells you to
read today’s New York Times to find out more details, that
doesn’t do you any good without more details (specifically
the date and region of the paper).

As new data is generated, it may have references to
complex graphs of other data items, each of which is
immutable and uniquely identified. This creates a DAG
(directed acyclic graph) of referenced data items. Note
that this model allows for each data item to refer to its
schema using simply another arc in the DAG.

Over time, independent services, each within its own
temporal domain, will generate new data items blithely
ignorant of the recent contributions of other services. The
creation of new immutable data items that are interrelated
by membership in this DAG is what gives outside data its
special charm.

DATA ON THE OUTSIDE: REFERENCE DATA
Reference data refers to a type of information that is
created and/or managed by a single service and published
to other services for their use. Each piece of reference
data has both a version-independent identifier and multiple
versions, each of which is labeled with a version-dependent
identifier. For each piece, there is exactly one publishing
service.

15 of 28

acmqueue | may-june 2020 16

data

This section discusses the publication of versions, then
moves on to the various uses of reference data.

Publishing versioned reference data
The idea here is quite simple. A version-independent
identifier is created for some data. One service is the
owner of that data and periodically publishes a new
version that is labeled with a version-dependent identifier.
It is important that the version’s identifier is known to be
increasing as subsequent versions are transmitted.

When a version of the reference data is transmitted,
it must be assumed to be somewhat out of date. The
information is clearly from the past and not now. It is
reasonable to consider these versions as snapshots.

Uses of reference data
There are three broad usage categories for reference
data, at least so far:
3 Operands contain information published by a service in
anticipation that another service will submit an operator
using these values.
3 Historic artifacts describe what happened in the past
within the confines of the sending service.
3 Shared collections contain information that is held in
common across a set of related services that evolves
over time. One service is the custodian and manages
the application of changes to a part of the collection.
The other services use somewhat older versions of the
information.

16 of 28

acmqueue | may-june 2020 17

data

Operands
As previously discussed, messages contain operators
that map to the functions provided by the service. These
operators frequently require operands as additional data
describing the details of the requested work. Operands
are gleaned from reference data that is typically published
by the service being invoked. A department store catalog,
for example, is reference data used to fill out the order
form. An online retailer’s price list, product catalog, and
shipping-cost list are operands.

Historic Artifacts
Historic artifacts report on what happened in the past.
Sometimes these snapshots of history need to be sent
from one service to another. Serious privacy issues can
result unless proper care is exercised in the disclosure
of historic artifacts from one service to another. For this
reason, this usage pattern is often seen across services
that have some form of trust relationship, such as
quarterly results of sales, a monthly bank statement, or
inventory status at the end of the quarter.

Shared Collections
The most challenging usage pattern for reference data is
the shared collection. In this case, many different services
need to have a recent view of some interesting data.
Frequently cited examples include the employee database
and the customer database. In each of these, lots of
separate services want both to examine and to change the
contents of the data in these collections.

Many large enterprises experience this problem writ

17 of 28

acmqueue | may-june 2020 18

data

large. Lots of different applications think they can change
the customer database, and now that these applications
are running on many servers, there are many replicas of
the customer database (frequently with incompatible
schemas). Changes made to one replica gradually
percolate to the others with information loss caused
by schema transformations and conflicting changes. A
shared collection offers a mechanism for rationalizing the
desire to have multiple updaters and allowing controlling
business logic to enforce policies on the data. A shared
collection has one special service that actually owns the
authoritative perspective of the collection. It enforces
business rules that ensure the integrity of the data.
The owning service periodically publishes versions of
the collection and supports incoming requests whose
operators request changes.

Note that this is not optimistic concurrency control. The
owning service has complete control over the changes to
be made to the data. Some fields may be updatable, and
others may not. Business constraints may be applied as
each requested change is considered.

Consider changes to a customer’s address. This is not
just a simple update but complex business logic:
3 You don’t simply update an address. You append the new
address while remembering that the old address was in
effect for a range of dates.
3 Changing the address may affect the tax location.
3 Changing the address may affect the sales district.
3 Shipments may need to be rerouted.

18 of 28

acmqueue | may-june 2020 19

data

DATA ON THE INSIDE
As previously described, inside data is encapsulated behind
the application logic of the service. This means that the
only way to modify the data is via the service’s application
logic. Sometimes a service will export a subset of its inside
data for use on the outside as reference data.

This section examines the following facets of data on
the inside: (1) the temporal environment in which SQL’s
schema definition language operates; (2) how outside
data is handled as it arrives into a service; and (3) the
extensibility seen in data on the outside and the challenges
inherent in storing copies of that data inside in a shredded
fashion to facilitate its use in relational form.

SQL, DDL, and serializability
SQL’ s DDL (Data Definition Language) is transactional.
Like other operations in SQL, updates to the schema via
DDL occur under the protection of a transaction and are
atomically applied. These schema changes may make a
significant difference in the ways that data stored within
the database is interpreted.

It is essential that transactions preceding a DDL
operation be based on the existing schema, and those
that follow the DDL operation be based on the schema as
changed by the operation. In other words, changes to the
schema participate in the serializable semantics of the
database.

Both SQL and DDL live in the now. Each transaction is
meaningful only within the context of the schema defined
by the preceding transactions. This notion of now is the
temporal domain of the service consisting of the service’s

19 of 28

acmqueue | may-june 2020 20

data

logic and its data contained in this database.

Storing incoming data
When data arrives from the outside, most services copy it
inside their local SQL database. Although inside data is not,
in general, immutable, most services choose to implement
a convention by which they immutably retain the data. It
is not uncommon to see the incoming data syntactically
converted to a more convenient form for the service. This
is called shredding (figure 4).

Many times, an incoming message is kept as an exact
binary copy for auditing and non-repudiation while still
converting the contents to a form easier to use within the
service itself.

Extensibility versus shredding
Frequently the outside data is kept in a semi-structured

incoming
data

inside data

service

FIGURE 4: Shredding

20 of 28

acmqueue | may-june 2020 21

data

representation such as JSON, which has a number of
wonderful qualities for this, including extensibility. JSON’s
extensibility allows other services to add information to
a message that was not declared in the schema for the
message. Basically, the sender of the message has added
stuff that you didn’t expect when the schema was defined.
Extensibility is in many ways like scribbling on the margins
of a paper form. It frequently gets the desired results, but
there are no guarantees.

As incoming outside data is copied into the SQL
database, there are advantages to shredding it.
Shredding is the process of converting the hierarchical
semi-structured data into a relational representation.
Normalizing the incoming outside data is not a priority.
Normalization is designed to eliminate or reduce update
anomalies. Even though you’re stuffing the data into a SQL
database, you’re not going to update it. You are capturing
the outside data in a fashion that’s easier to use inside
SQL. Shredding is, however, of great interest for business
analytics. The better the relational mapping, the better you
will be able to analyze the data.

It is interesting that extensibility fights shredding.
Mapping unplanned extensions to planned tables is
difficult. Many times, partial shredding is performed
wherein the incoming information that does comply
with well-known and regular schema representations is
cleanly shredded into a relational representation, and
the remaining data (including extensions) is kept without
shredding.

21 of 28

acmqueue | may-june 2020 22

data

REPRESENTATIONS OF DATA
Let’s consider the characteristics of these two prominent
representations of data: JSON and SQL.

Representing data in JSON
JSON is a standard for representing semi-structured data.
It is an interchange format with a human-readable text for
storing and transmitting attribute-value pairs. Sometimes
a schema for the data is kept outside the JSON document.
Sometimes the metadata is embedded (as attribute-value
pairs) into the hierarchical structure of the document.
JSON documents are frequently identified with a URL
(universal resource locator), which gives the document a
unique identity and allows references to it.

It is this combination of human readability, self-
describing attribute-value pairs, and global identity
through URLs that make JSON so popular. Of course, its
excellent and easy-to-use libraries in multiple languages
help too.

Representing data in SQL
SQL represents relationships by values contained in cells
within rows and tables. Being value-based allows it to
“relate” different records to each other by their value.
This is the essence of the relational backbone of SQL. It is
precisely this value-based nature of the representation
that enables the amazing query technology that has
emerged over the past few decades. SQL is clearly the
leader as a representation for inside data.

22 of 28

acmqueue | may-june 2020 23

data

Bounded and unbounded
Let’s contrast SQL’s value-based mechanism with JSON’s
identity- and reference-based mechanism.

Relational representations must be bounded. For
the value-based comparisons to work correctly, there
must be both temporal and spatial bounds. Value-based
comparisons are meaningful only if the contents of both
records are defined within the same schema. Multiple
schemas can have well-defined meaning only when they
can be (and are) updated within the same temporal scope
(i.e., with ACID semantics in the same database). This
effectively yields a single schema. SQL is semantically
based on a centrally managed single schema.

Attempts over the past 20 years to create distributed
SQL databases are fine but must include a single
transactional scope and a single DDL schema. If not, the
semantics of relational algebra are placed under pressure.
SQL only works inside a single database.

JSON is unbounded. In JSON, data is referenced using
URIs (uniform resource identifiers) and not values. These
URIs are universally defined and unique. Of course, every
URL is a legitimate URI so they’re cool, too. URIs can be
used on any machine to uniquely identify the referenced
data. When used with the proper discipline, this can result
in the creation of DAGs of JSON documents, each of
which may be created by independent services living in
independent temporal (and schema) domains.

Characteristics of inside and outside data
Let’s consider the various characteristics discussed so far
for inside and outside data, as shown in figure 5.

23 of 28

acmqueue | may-june 2020 24

data

Immutability, identity-based references, open schema,
and JSON representation apply to outside data, not to
inside data. This is all part of a package deal in the form
of the representation of the data, and it suits the needs
of outside data well. The immutable data items can be
copied throughout the network and new ones generated
by any service. Indeed, the open and independent schema
mechanisms allow independent definition of new formats
for messages, further empowering the independence of
separate services.

Next, consider encapsulation and realize that outside
data is not protected by code. There is no formalized notion
of ensuring that access to the data is mediated by a body
of code. Rather, there is a design point that says if you have
access to the raw contents of a message, you should be
able to understand it. Inside data is always encapsulated by
the service and its application logic.

Consider data and its relationship to its schema. Outside
data is immutable, and each data item’s schema remains

FIGURE 5: Inside and outside data

Outside Data Inside Data

Immutable? yes no

Identity based references yes no

Open schema? yes no

Represent in JSON or other semi-structured fashion yes no

Encapsulation useful? no yes

Long-lived evolving data with evolving schema? no yes

Business intelligence desirable over data? yes yes

Durable storage in SQL inside the service? yes yes

24 of 28

acmqueue | may-june 2020 25

data

immutable. Note that the schema may be versioned and
the new version applied to subsequent similar data items,
but that does not change the fact that once a specific
immutable item is created, its schema remains immutable.
This is in stark contrast to the mechanisms employed
by SQL for inside data. SQL’s DDL is designed to allow
powerful transformations to existing schema while the
database is populated.

Finally, let’s consider the desirability of performing
business intelligence analysis over the data. Experience
shows that those analysis folks want to slice and dice
anything they can get their hands on. Existing analytics
operate largely over inside data, which will certainly
continue as fodder for analysis. But there is little doubt
about the utility of analyzing outside data as well.

The dynamic duo of data representations
Now, let’s compare the strengths and weaknesses of these
two representations of data, SQL and JSON:
3 SQL, with its bounded schema, is fantastic for comparing
anything with anything (but only within bounds).
3 JSON, with its unbounded schema, supports independent
definitions of schema and data. Extensibility is cool too.

25 of 28

Arbitrary queries Independent definition of shared data

SQL Outstanding! Impossible.

SQL data definition is centralized,

not independent

JSON Problematic Outstanding!

acmqueue | may-june 2020 26

data

Consider what it takes to perform arbitrary queries:
SQL is outstanding because of its value-based nature and
tightly controlled schema, which ensure alignment of the
values, hence facilitating the comparison semantics that
underlie queries.

JSON is problematic because of schema inconsistency.
It is precisely the independence of the definition that
poses the challenges of alignment of the values. Also,
the hierarchical shape and forms of the data may also be
a headache. Still, you can project consistent schema in a
form easily queried. It might be a lossy projection where
not all the knowledge is available to be queried.

Next, consider independent definition of shared data:
SQL is impossible because it has centralized schema. As
already discussed, this is intrinsic to its ability to support
value-based querying in a tightly controlled environment.
JSON is outstanding. It specializes in independent definition
of schema and independent generation of documents
containing the data. That is a huge strength of JSON and
other semi-structured data representations.

Each model’s strength is simultaneously its weakness.
What makes SQL exceptional for querying makes it
dreadful for independent definition of shared data. JSON
is wonderful for the independent definition, but it stinks
for querying. You cannot add features to either of these
models to address its weaknesses without undermining its
strengths.

26 of 28

acmqueue | may-june 2020 27

data

CONCLUSION
This article describes the
impact of services and trust
on the treatment of data. It
introduces the notions of inside
data as distinct from outside
data. After discussing the
temporal implications of not
sharing transactions across
the boundaries of services,
the article considers the need
for immutability and stability
in outside data. This leads to
a depiction of outside data
as a DAG of data items being
independently generated by
disparate services.

The article then examines
the notion of reference data

and its usage patterns in facilitating the interoperation
of services. It presents a brief sketch of inside data with a
discussion of the challenges of shredding incoming data in
the face of extensibility.

Finally, JSON and SQL are seen as representations of
data, and their strengths are compared and contrasted.
This leads to the conclusion that each of these models has
strength in one usage that complements its weakness in
another usage. It is common practice today to use JSON to
represent data on the outside and SQL to store the data
on the inside. Both of these representations are used in a
fashion that plays to their respective strengths.

Related articles

3 Beyond Relational Databases
There is more to data access than SQL.
Margo Seltzer
https://queue.acm.org/detail.cfm?id=1059807

3 The Singular Success of SQL
SQL has a brilliant future as a major figure
in the pantheon of data representations.
Pat Helland
https://queue.acm.org/detail.cfm?id=2983199

3 A co-Relational Model of Data for Large
Shared Data Banks
Erik Meijer and Gavin Bierman
Contrary to popular belief, SQL and noSQL
are really just two sides of the same coin.
https://queue.acm.org/detail.cfm?id=1961297

27 of 28

acmqueue | may-june 2020 28

data

This is an update to the original paper by the same name
presented at CIDR 2005 (Conference on Innovative
Data Systems Research). At that time, XML was more
commonly used than JSON. Similarly, SOA (service-oriented
architecture) was used more then, while today, it’s more
common to say simply, “service.” In this article, “service”
is used to mean a database encapsulated by its service or
application code. It does not mean a microservice. That’s for a
separate paper. Nomenclature aside, not much has changed.

References
1. Bernstein, P. A., Hadzilacos, V., Goodman, N. 1987.

Concurrency Control and Recovery In Database Systems.
Addison-Wesley (http://sigmod.org/publications/dblp/db/
books/dbtext/bernstein87.html).

2. Gray, J., Reuter, A. 1993. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann.

Pat Helland has been implementing transaction systems,
databases, application platforms, distributed systems,
fault-tolerant systems, and messaging systems since 1978.
For recreation, he occasionally writes technical papers. He
currently works at Salesforce.
Copyright © 2020 held by owner/author. Publication rights licensed to ACM.

28 of 28

http://sigmod.org/publications/dblp/db/books/dbtext/bernstein87.html
http://sigmod.org/publications/dblp/db/books/dbtext/bernstein87.html

