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Electrical signals produced by muscle contractions are found to be effective in controlling accurately artificial limbs. 

Myoelectric-powered can be more functional and advantageous compared to passive or body-powered prostheses, however 

extensive training is required to take full advantage of the myoelectric prosthesis’ usability. In recent years, computer 

technology has brought new opportunities for improving patients’ training, resulting in more usable and functional solutions. 

Virtual Reality (VR) is a representative example of this type of technology. These preliminary findings suggested that 

myoelectric-powered training enhanced with VR can simulate a pain-free, natural, enjoyable, and realistic experience for the 

patient. It was also suggested that VR can complement prosthesis training, by improving the functionality of the missing body 

part. Finally, it was shown that VR can resolve one of the most common challenges for a new prosthesis user, which is to 

accept the fitting of the prosthetic device to their own body. 
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1 INTRODUCTION 

There is an estimated of ten million people living with amputation worldwide, of which more than the one-third 

are suffering from upper limb amputation, which is linked to body image dissatisfaction and low levels of body 

ownership (i.e., how well one is aware of bodily sensations) which presents difficulties in accepting the artificial 

limb as part of the body [29] and in most cases results in neglecting the prosthetic device [13, 34]. More 

specifically, 71.43% of prosthetic wearers reported difficulties in using the artificial limb [12], and the 

abandonment rate of transhumeral prosthetic devices is up to 60%, the most frequent reasons were “residual 

limbs were too short” (30%), pain (20%), the weight of the device (20%), or inability to control the device (10%) 

[28, 51]. Prosthetic wearers who reported to be satisfied with the artificial limb reported limited improved mobility 

and quality of life since they were also encountered difficulties with the prosthetic arm control [30, 32]. As a 

result, adjustment to prosthesis use and prosthetics satisfaction of an artificial limb in people with limb 

amputation has been a complex and sensitive process because of the physiological (e.g., presence of physical 

pain and sensations related to the missing body part) and psychological (e.g., depressive and anxiety episodes 

emerging from body image dissatisfaction) boundaries it encompasses [10, 23, 26].  

The necessity of comprehensive patient training is required to increase artificial limb acceptance by 

influencing positively the prosthetic fitting and the patient’s satisfaction, which will improve the movement 

capacity and promote early return to functional activities and abilities of daily living [6, 26, 48]. However, this 

type of training is considered to be expensive since it needs high-end technologies (e.g., myoelectric 

prostheses) and substantial monitoring by medical and paramedical staff [31]. To date, myoelectric technologies, 

have been considered to be a low-cost solution, widely and successfully available to act as an input to control 

the prosthetic limb based on myoelectric signals [2, 16, 20, 25, 38, 41], which are electrical impulses that occur 

naturally during muscle contraction and have been the most common and efficient technique for controlling 

accurately artificial prosthetic limbs through the use of electromyographic sensor [35, 49, 50]. 

Research has examined various uses of technology to aid and assist people with amputations or congenital 

limb deficiency. Such research is mostly aimed at providing interventions for relieving pain (e.g., transcutaneous 

electrical nerve stimulation units) [8, 17], reducing thermal discomfort (e.g., a helical cooling channel within the 

prosthetic socket) [14], clarifying the heat produced by metabolic reactions in the enclosed socket during the 

swing phase of human gait (e.g., air-conditioned socket to determine adequate air velocity by a general heat 

balance equation) [59], improved training, rehabilitation and increased functionality of the missing body part 

(e.g., game-based training tools/augmented reality) [2, 3, 29, 38, 41, 49, 50] and finally, decreased time and 

increased accuracy of task performance (e.g., vibrotactile feedback to myoelectric prosthesis) [19, 39, 40, 46, 

47] to promote a more natural and intuitive control and, consequently, improve the acceptance of the prosthesis 

in the activity of daily life [7]. 

Virtual Reality (VR) has also been examined in the research field of amputees’ care. Specifically, in the past 

VR has been used with positive results for the treatment of pain arising from an amputation, suggesting that VR 

can offer a neurorehabilitation platform regimen [1, 22, 27, 33, 36, 43, 44, 45, 58]. It was found that VR can 

increase hand control operation in amputees [31, 37, 61]. A preliminary study with healthy right-handed 

participants wearing a body-powered prosthesis simulator on their non-dominant hands revealed that VR 

training improved bilateral manual dexterity in the prosthetic control skills bowknot task (BKT) and significantly 

improved short-term prosthetic control acquisition. Additionally, it appeared that the higher the immersion score 
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was, the shorter the execution time of the BKT task [61]. While it can also improve the procedure and 

acceptance of the prosthetic device prior [42] and during the fitting process [21]. 

VR seems to be a conceivable solution for complementing myoelectric-powered prosthesis training since it 

can recreate the fundamental aspects of self and body ownership which are responsible for the acceptance of 

the artificial limb as part of the body [29, 55, 11]. Via VR, the user can increase the predictable control over the 

missing body part through the virtual embodiment. Previous research suggested that situations where direct 

control over a virtual hand was possible, an increased perception of ownership over the virtual limbs occurred 

for the participant. When the same experiments altered the hands to become immobile or unpredictable, the 

participants did not associate the limbs with the self [56]. The above findings were further enhanced by a study 

that proved that a virtual hand can be embodied by the user and perceived as a real part of the body [52]. 

The therapeutic power of immersive VR is based on the principles of brain plasticity and the sensory-motor 

learning approach, suggesting that the neural networks can change through growth and reorganisation [9, 15, 

24]. Visual feedback (e.g., naturally reaching out and grabbing a virtual object with an amputated limb) activates 

the neuron networks in the brain that are involved in sensorimotor learning, called mirror neurons [54, 55]. Mirror 

neurons can be activated through the reproduction or observation of movements [5, 18, 53]. 

With this study, we aim to understand how VR could be used to complement traditional training of prosthetics 

based on the restrictions it possesses through a user-centred designed approach. Through this study, we aimed 

to contribute to the research in the design community by examining the opportunities VR could offer to this 

patient group and further explore the design to capitalise on the effective use of VR to increase patients’ 

acceptance of the prosthetic fitting and satisfaction of the artificial limb. 

2 METHODS 

2.1 Ethics  

Ethical approvals were sought from NRES Committee London - Riverside (14/LO/11). All participants signed a 

consent form before the study. The study was performed under the Declaration of Helsinki [54]. 

2.2 Participants 

Seven patients with trans-radial (amputation occurring between the wrist and the elbow) (n = 6 unilateral and  

n = 1 bilateral) upper limb amputees (n = 5 males and n = 2 females), aged between 30 to 68 years (M = 52.29, 

SD = 13.23) were recruited from the National Health Service (NHS) Foundation Trust hospital. All participants 

had normal or corrected to normal vision and no history of mental health disorders. 

2.3 Instruments 

Semi-structured interviews were conducted to reflect on patients’ experience using VR to complement 

traditional training of prosthesis. Acceptance of the prosthetic fitting and satisfaction of the artificial myoelectric-

powered prosthetic limb was the main focus. The interviews were audio-recorded and transcribed. 

Observation notes were taken in detail to classify the interactions and behavioural responses towards the 

VR myoelectric-powered prosthetic training. We focused on identifying the aspects, challenges, design, and 

deployment issues prosthesis users encountered. 
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2.4 Apparatus 

VR System: An HTC VIVE VR1 Head Mounted Display (HMD) system was used to stream the audial and visual 

content. The VR system was developed using the Unity Engine2. The 3D models of the virtual environment 

were created in Autodesk 3DS Max3 (Figure 1). The 3D model of the Bebionic prosthetic arm was supplied by 

the prosthetic maker Steeper4 to match the actual appearance of the prosthetic device (Figure 2). The VR 

content was displayed on a laptop screen, mirroring the user’s real-time virtual interactions. 

Myoelectric Control System: A Myo Armband by Thalmic Labs5, which is a consumer-grade EMG sensing 

armband and an affordable, reliable, accurate and effective input device for medical training [41, 50, 60], was 

adjusted to the amputee limb to allow the user to interact with the virtual features. 

 

Figure 1: Representation of the Virtual Environment. 

     

Figure 2: To the right, the real Bebionic prosthetic arm. To the left, the VR Bebionic 3D model of the prosthetic arm. 

Additional tracking devices: Initially Microsoft’s Kinect was used to track the amputee’s body using a depth 

sensor to enable the amputee to walk around the virtual environment. However, an initial trial with the patients 

 
1 https://www.vive.com/ 
2 https://store.unity.com/ 
3 https://www.autodesk.com/education/free-software/3ds-max 
4 http://rslsteeper.com/ 
5 https://developerblog.myo.com/author/thalmic-labs/ 

 

https://www.vive.com/
https://store.unity.com/
https://www.autodesk.com/education/free-software/3ds-max
https://developerblog.myo.com/author/thalmic-labs/
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proved Microsoft’s Kinect to be unsuitable for effective body tracking because of the missing body part. Later, 

Microsoft’s Kinect was replaced by HTC VIVE Controllers6. A custom band was created using a 3D printer to 

secure the controller around the missing limb. The controller was placed upside down to make it more 

comfortable to wear. Alterations to code and the model were made to compensate for its incorrect position and 

orientation (Figure 3). 

 

 

Figure 3: Representation of the system’s use. 

2.5 Study Design and Procedure 

The study design emerged from rigorous discussions with experts (n = 5) in the field of medical consultation (n 

= 1), occupational (n = 1) and physical (n =1) therapy (e.g., responsible to employ training activities to improve 

patients’ muscle activation skills, helping them to learn how to operate and adapt to a myoelectric-powered 

prosthetic [4]), and HCI in healthcare professions in computer science/game development (n = 1) and health 

psychology (n = 1). The interventions were carefully designed based on the successful completion of traditional 

medical training. 

People with trans-radial upper limb amputees were invited to use the VR and the Myo Armband for a 

prosthesis training in a familiar room of the hospital. The VR intervention was described to them and five-minute 

navigation of the virtual environment was offered, to reduce the potential risk of nausea from the HMD. The 

patient then was instructed to perform daily living activities into a virtual kitchen. The activities replicated the 

tasks which were routinely used during the traditional occupational therapy training and the activities assessed 

whether an amputee was able to control the prosthetic device adequately. Observational notes were made by 

an HCI researcher. The VR myoelectric-powered prosthetic training lasted approximately 15 minutes. The 

training was followed by semi-structured interviews. Overall, each session lasted approximately one hour. 

 
6 https://www.vive.com/eu/accessory/controller/ 
 

https://www.vive.com/eu/accessory/controller/
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3 FINDINGS, CHALLENGES AND DISCUSSION 

3.1 Acceptance of the Myoelectric-Powered Prosthetic Device 

One of the most common challenges for new prosthesis users is for the patients to accept the fitting of any kind 

of prosthetic device to their own body. Many of the patients reject the prosthesis because of the unfamiliarity of 

the artificial limb on their arm [26, 23, 32]. The rejection rate is even higher for congenital deficiency patients 

[2]. Most of our patients expressed no concern about the Myo armband fitting, since the tight strap of the Myo 

Armband, offered to the patient a sense of security. This was further supported by a patient with a congenital 

deficiency. 

3.2 Myoelectric Signals, Prosthetics Limb Activation and Virtual Interactions 

A crucial factor that can help to overcome patients’ concerns is the patient’s ability to activate the muscles of 

the affected limb [21, 60]. It is equally important for the myoelectric device to detect those electrical impulses 

that occur naturally during muscle contraction to respond accurately to the muscle commands and control the 

artificial limb [2]. 

This study is not the only one to report connectivity issues [2, 20]. Myoelectric signal recognition is especially 

challenging for amputees since the residual limb is usually linked either to a congenital deficiency or muscle 

atrophy which arises from lack of use. To overcome these issues, we secured tightly the Myo armband around 

the patient's stump and left it in place for five minutes, for the sensors to make a good connection with the skin 

(Figure 4). Also, we pre-installed the Myo testing software to determine that the Myo armband was set up 

correctly before exposing the amputee patient into the VR. Finally, to improve pairing time and accuracy, the 

Myo armband construction code was altered to specify what arm was to be used instead of using the calibration 

system. This is because the calibration process of the system requires hand gestures which are limited to 

amputees. 

Difficulties were also presented in terms of body asymmetry and Microsoft’s Kinect reliability. Similarly, to 

previous studies, boundaries were faced in response to effective body tracking because of the missing body 

part. However, previous research indicated that by registering the position and orientation in the frame of 

reference of Microsoft’s Kinect, the hand can accurately interact with virtual objects [40]. 

Our solution, to reduce the erratic tracking due to the missing limb, was for the patient to perform a 

workaround with reduced movements of the upper limb and to increase the time to extrapolate the patient’s 

movements from the Microsoft’s Kinect device. In addition to that, we increased the smoothing of the tracking 

of Microsoft’s Kinect which gave a very slight delay to the movement and reduced the tracking noise. Even 

though the above developments resolved the asymmetry issues, this resulted in spending important training 

time in positioning the arm instead of focusing on generating the correct muscle activity. We, therefore, used 

HTC VIVE Controllers with a custom band to track accurately the rotational movement of both hands (see 

Apparatus). It worth mentioning that HTC VIVE has now launched VIVE trackers which are easy to attach to 

any limb. Therefore, VIVE trackers are of consideration for future deployments. 
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Figure 4: VR myoelectric-powered prosthetic training: To the left: An actual picture of an amputee patient using the system. 

To the right: Representation of the task performed by the amputee patient -Picking a virtual apple with the missing limb. 

3.3 Attitudes and Effective Responses of the VR Myoelectric-Powered Prosthetic Training 

Our findings suggested that a myoelectric-powered training which is enhanced with VR can simulate a natural, 

enjoyable, and realistic experience for the patient with amputation through a high degree of presence. 

Specifically, it was stated that during the VR exposure the environment felt “real” as if they were at that particular 

space. 

 “It felt like it was my arm in my kitchen. The kitchen setup was the same as my kitchen. So, once I 

saw the [virtual] apples I wanted to grab them, so I reached out to the apples in the fruit bowl and 

picked up one with my [virtual - amputated] arm. It was like I was picking up things with my real arm.” 

[Patient 1] 

 

“It was reasonably easy and straight forward [referring to the VR interactions]. It wasn’t complicated or 

intrusive for me. I enjoyed using a hand for the first time in my life.” [Patient 7] 

The immersive experience the VR offered to the patient demonstrates improvements to the performance of 

tasks and functional abilities of the patient due to brain plasticity [15, 24, 52]. The above finding can be explained 

based on brain imaging approaches and how the perceived visual feedback activates the mirror neurons 

reaching an improvement on prosthetics control ability [5, 18, 62]. Therefore, the ability to correctly perform a 

grabbing task with the missing limb through the embodied virtual arm ensured it is perceived by the patient as 

a real part of the body. Note that none of the patients reported pain during the trial. Our findings suggested that 

VR can empower myoelectric training with natural and immediate responses. 

Finally, the Bebionic model of the virtual arm was found to be aesthetically pleasing for the patients, since it 

corresponded to the actual Bebionic prosthetic device the patients owned. Explicitly, a patient mentioned that 

the virtual arm appearance was the same as the Bebionic prosthetic device the patient was wearing. 
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“It felt like a Bebionic, if I took that off [referring to the Bebionic prosthetic device] and I put that on 

[referring to the VR device], I ‘ll say yeah that’s a fairly good comparison.” [Patient 5] 

4 CONCLUSIONS AND FUTURE WORK 

The key motivation for this study was to investigate the potential for using VR to enhance traditional myoelectric-

powered prosthetic training. Our results showed that VR myoelectric-powered prosthetic training can be 

effective in providing amputees with quality training. It has the potential to reduce rejection rates and increase 

the ability for them to control the prosthetic arm [30, 32]. The patients reacted positively to the VR training and 

identified how it could provide a greater opportunity for amputees to learn from experience before a fitting [10, 

23, 26]. 

It should be mentioned that the study had some limitations that we aim to overcome in future research. There 

was limited data available to investigate the effectiveness of the immersive VR scenarios for training. The 

number of trans-radial amputees in the population was low compared to other amputations, which made it 

difficult to get a larger sample size. A future study would look at involving multiple clinical sites to get a more 

substantial number of amputees to better determine the effectiveness of the system. Also, in a future study, the 

outcomes should be measured with quantitative data as well, such as pain scales, OptiTrack data, etc.  

Future work would aim to improve and add functionality to the system. Advancements in 3D printed 

prosthetics are making myoelectric prosthetics more obtainable because of reduced costs; alterations to the 

system would look to incorporate future 3D printed prosthetics [28, 51]. Adapting to the extra weight has been 

one of the primary reasons for the rejection of a prosthetic. This absence of weight of a prosthetic would be 

addressed in an updated system. Along with providing further scenarios such as driving and office use, the 

additional focus would be on delivering advanced functionality training to register degrees of muscle activity. 

Finally, further discussion on the relevance of embodiment and its importance for successful training of 

myoelectric prosthetics requires additional research. 
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