
Integrated Visualization Editing via
Parameterized Declarative Templates

Andrew McNutt
University of Chicago

Chicago, IL

Ravi Chugh
University of Chicago

Chicago, IL

ABSTRACT
Interfaces for creating visualizations typically embrace one of sev-
eral common forms. Textual specification enables fine-grained con-
trol, shelf building facilitates rapid exploration, while chart choosing
promotes immediacy and simplicity. Ideally these approaches could
be unified to integrate the user- and usage-dependent benefits found
in each modality, yet these forms remain distinct.

We propose parameterized declarative templates, a simple ab-
straction mechanism over JSON-based visualization grammars,
as a foundation for multimodal visualization editors. We demon-
strate how templates can facilitate organization and reuse by fac-
toring the more than 160 charts that constitute Vega-Lite’s example
gallery into approximately 40 templates. We exemplify the pliabil-
ity of abstracting over charting grammars by implementing—as a
template—the functionality of the shelf builder Polestar (a simu-
lacra of Tableau) and a set of templates that emulate the Google
Sheets chart chooser. We show how templates support multimodal
visualization editing by implementing a prototype and evaluating
it through an approachability study.

CCS CONCEPTS
• Human-centered computing → Visualization systems and
tools; Graphical user interfaces.

KEYWORDS
Information Visualization, Declarative Grammars, Templates, User
Interfaces, Ivy, Systems
ACM Reference Format:
Andrew McNutt and Ravi Chugh. 2021. Integrated Visualization Editing via
Parameterized Declarative Templates. In CHI Conference on Human Factors
in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3411764.3445356

1 INTRODUCTION
Every user interface design involves compromise. Which tasks
should be made easy at the expense of making other tasks cumber-
some or even impossible?

There are several common user interface modalities for creating
visualizations, each with distinct trade-offs [20]. Chart choosers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445356

(as in Excel) allow users to rapidly construct familiar visualizations
at the expense of flexibility. Shelf builders (as in Tableau) facilitate
dynamic exploration but can obstruct the construction of specific
chart forms or the addition of visual nuances. Textual program-
ming is highly expressive but can impede rapid exploration.

Amodality whichmay be well suited to the initial stages of a task,
may become cumbersome in subsequent phases. For example, while
a low-configuration approach for rapid data exploration might suf-
fice at the beginning of their work, the user might subsequently
require a more flexible—even if higher friction—interface that al-
lows them to tune specific details of their chart. Graphical user
interface (GUI) systems, such as chart choosers and shelf builders,
can leave experts wanting more precise control over the chart cre-
ation process, while textual systems can leave novices in need of
assistance. Without the ability to move between modalities, users
are stuck with each interface’s shortcomings. None of the existing
single-mode interfaces simultaneously achieve each of several goals
(as in Fig. 2): ease of use (G1), explorability (G2), flexibility (G3),
and ease of reuse (G4). These deficits can force users to switch tools
across their analysis [32], or compel proficient users to seek ad hoc
solutions that are difficult to repeat in different contexts.

Ideally, interfaces of varying complexity could be integrated
such that both novice users (for whom chart choosers are often
best suited [21]) and experts (whose most profitable interface will
vary) obtain the benefits of each modality as their tasks require. Un-
fortunately this territory remains under-explored, as visualization
systems tend to prefer one-size-fits-all designs. Declarative visu-
alization grammars are an enticing starting point as they provide
significant flexibility for specifying visualizations as text (G3). How-
ever, they lack the abstraction mechanisms found in full-featured
programming languages. This paper considers the question:

Can we extend declarative grammars with abstraction mechanisms
for reuse (G4), in a way that facilitates explorability (G2) as in shelf
builders and ease of use (G1) as in chart choosers?

To answer to this question, we propose an abstraction mecha-
nism called parameterized declarative templates, or simply tem-
plates, which extend textual, declarative grammars—specifically,
those inwhich specifications are defined using JavaScript Object No-
tation (JSON) [15]—with mechanisms for reusing chart definitions.
As depicted in Fig. 1h, templates abstract “raw” declarative specifica-
tions with parameters that specify data fields for a visual encoding
(e.g. Color) and design parameters (e.g. height and width), making
themmore easily reused (G4). Templates can be rapidly instantiated
for different data sets, shared among communities, and modified to
taste—alleviating barriers to opportunistically [8] leveraging the
rich body of grammar-based charts found online. Templates, which
are essentially functions in a simple programming language with
variables and conditionals, are described formally in Sec. 4.2.

ar
X

iv
:2

10
1.

07
90

2v
2

 [
cs

.H
C

]
 2

6
Ja

n
20

21

https://doi.org/10.1145/3411764.3445356
https://doi.org/10.1145/3411764.3445356

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

 Views RibbonG

Data Fields

Data Filters

Code Pane

Template Parameter ControlsD

Code Example

A

B

C

Related ViewsE

Chart AreaF

Generalizes to

GeneratesH λ(Color: DataTarget, height: Num, width: Num,...) =
 {"height": "[height]", "width": "[width]", ...,
 "encoding": {"color": {"field": "[Color]", ...}, ...}}

Ivy Template

{"height": 757, "width": 940, ...,
 "encoding": {"color": {"field": "Race", ...}, ...}}

Vega-Lite Specification

Figure 1: The Ivy visualization editor combines textual specification with GUI-based shelf building and chart choosing. Here,
an “Isotype Waffle” template is used visualize the people executed in the USA under the death penalty by race since 1977 [9].
Templates are functions with typed parameters that abstract JSON specifications in declarative visualization grammars.

We systematically apply this idea in a prototype visualization
editor, called Ivy, in which templates are created and instantiated
through text- and GUI-based manipulation (G1). Templates abstract
over arbitrary JSON-based visualization grammars—our implemen-
tation currently supports Vega, Vega-Lite, Atom [62], and a toy data
table language—allowing users to easily move between them (G3).
We implemented an Ivy template that recreates the functionality
of the shelf builder system Polestar [97, 98], that serves as the de-
fault view of the system, facilitating explorability (G2). Our user
interface design is described in Sec. 4.3.

The systematic application of templates furthermore enables two
notable interaction features beneficial to exploration (G2). Catalog
search utilizes standard type-based compatibility checks to imple-
ment an extensible—if simple—recommendation system. Fan out
facilitates rapid exploration within a template by juxtaposing mul-
tiple chart configurations on demand. These features are described
in Sec. 4.4.

To evaluate how templates may serve as a foundation for multi-
modal visualization editing, we performed two investigations. We
considered how they might usefully reproduce and compress extant
families of charts, first by factoring the 166 unique examples that
constitute the Vega-Lite gallery into 43 templates, and then by re-
constructing the 32 charts of the Google Sheets chart chooser as 16
templates. We then conducted a small approachability study of our
prototype Ivy system which demonstrated that, with some training
and guidance, users are able to create and instantiate templates by
mixing the available modalities. We present these results in Sec. 5.

Although the main ideas regarding templates—abstraction over
value definitions—and their instantiations are familiar concepts,
the contribution of this paper is to explore and evaluate how these
ideas may help integrate what are currently disparate approaches
for creating visualizations. The result of this exploration is our
Ivy prototype, which exhibits the promise of this approach. This
composition of modalities provides several potential opportunities,
including borrowing and adapting external examples (which many
shelf builders lack), rapid exploration of parameter combinations
(which programmatic interfaces often lack) and self-service chart
creation (which chart choosers typically lack). Compared to textual
programming in existing declarative grammars, the abstraction
layer provided by templates simplifies the process of chart reuse and
therein reduces code clones (as in our chart gallery reproductions).

Our prototype is available at https://ivy-vis.netlify.app/. The
appendix further details our evaluation and implementation, while
other supplementary materials can be found at https://osf.io/cture/.

2 RELATEDWORK
Software systems for creating visualizations can be classified into a
variety of interaction modalities [20, 59]. Among these, we aim to
bridge three of the most common: chart choosing, shelf building,
and textual programming. We now discuss declarative grammars
and visualization editors, as they relate to the key ideas in this
paper: (1) to endow declarative visualization grammars with basic
abstraction mechanisms, and (2) to design a multimodal UI based
on templates for creating and editing visualizations.

https://ivy-vis.netlify.app/
https://osf.io/cture/

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

G1
Ease of Use
🙂

☹

😫

😐

☹

☹

😫

🤩

G2
Explorability

☹

🙂

🤩

😐

G3
Flexibility

n/a

😐

🤩

☹

G4
Ease of Reuse

Chart choosers

Text (declarative)

Text (procedural)

Shelf builders

😫 ☹ 🙂 🤩😐

Figure 2: Chart making modalities have distinct strengths
and weaknesses. Using parameterized declarative templates,
Ivy strives to combine the strengths of several common
modalities in this design space.

2.1 Declarative Visualization Grammars
Declarative grammars of graphics have proven extremely popular
[23, 24, 42, 45, 49, 53, 62, 64, 66, 76–78, 80, 81, 83, 91, 92, 94, 95], with
different approaches providing more expressiveness than others
for particular tasks. Compared to full-featured, procedural visual-
ization programming languages [6, 7, 35], declarative visualization
languages trade fine-grained control over how to render a view
for concise, expressive means to specify what to render. The idea
behind parameterized declarative templates is to tilt these specifi-
cation languages slightly back towards the full-featured languages,
by adding some basic programming abstraction mechanisms.

Many declarative grammars [42, 45, 49, 62, 76–78, 81] adopt
JSON as their specification format, which allows chart definitions
to be easily consumed by various environments and tools. Vega and
its surrounding ecosystem exemplify these benefits, which we seek
to amplify by making JSON-based grammar specifications easier
to reuse and explore. A related effort is Harper et al.’s [25] system
for converting D3 charts [7] into reusable Vega-Lite specifications,
which they also dub templates. Their templates provide abstractions
related to ours, but are restricted to a limited subset of D3 charts. Ivy
templates abstract arbitrary JSON and thus support any JSON-based
visualization grammar.

2.2 User Interfaces for Visualization
2.2.1 Chart Choosers. This prevalent technique starts with select-
ing a desired chart form from a (potentially large) set of chart types,
and then customizing it through a (usually limited) set of options.
They are ubiquitous among analytics tools, such as spreadsheets,
and are often found in visual analysis (VA) environments [2, 13, 60,
82]. This workflow facilitates an approach to charting held by many
novices [21], but can also lead to premature commitment [22].

Ivy provides a gallery of templates, some of which constitute
single distinct chart forms, as in conventional chart choosers. Some
systems, like Ivy, provide APIs for extending the selection of charts
[17, 56], but, unlike Ivy, they tend not to allow these changes from
within the tool. Some systems [13, 56, 90] provide social features,
wherein users can create, share, and modify charts. Ivy users can
publish, fork, and remix templates through a shared template server.

2.2.2 Shelf Builders. In shelf builders, users map data columns to
visual attributes, typically in a manner that is motivated by a princi-
pled visualization framework, such as VizQL [24] or the Grammar

of Graphics [95]. Tableau [80] and Charticulator [67] are prominent
examples of this paradigm. Data fields of the current dataset are of-
ten represented as draggable “pills" that can be placed onto “shelves,”
each of which denotes different aspects of the visualization (such
as horizontal position or color).

We designed the GUI controls in Ivy for choosing arguments
for template parameters to resemble the visual conventions of
Polestar [97, 98], itself a facsimile of Tableau [80]. Shelf builders
support a range of tasks, including presentation [30, 34, 73, 74] and
exploration [80, 97, 98]. We facilitate the latter by constructing an
Ivy template—IvyPolestar—that emulates and expands upon the
Polestar application. This “default” template provides a familiar
shelf builder interface upon application startup.

Many VA tools are backed by JSON-based declarative grammars
(such as Lyra [74, 102] or Voyager [97, 98]), yet do not allow users
to modify the underlying specifications. Restricting modifications
to what can be created within such tools misses a significant op-
portunity, as there is a wealth of online knowledge and examples
that ought to be utilized [8]. In commercial VA environments (such
as Tableau), the disconnect from the underlying specification can
cause fine-grained editing capabilities to be relegated to deeply-
nested drop-down menus, which can preclude feature utilization.
We address these issues by making our templates malleable, so that
users can adapt the interface to their needs.

2.2.3 View Exploration in Shelf Builders. Shelf builders often promi-
nently feature affordances for rapid data exploration, often in the
form of recommendation systems [97, 98]. Lee describes the current
state of the art of these subsystems [46]. Our template-based archi-
tecture gives rise to simplified analogs to these “smart” features,
but which still facilitate view exploration goals.

Our catalog search is an extensible variation of Tableau’s Show
Me feature [54], enabling users to create examples that are available
for subsequent recommendation. Like ShowMe, catalog search uses
data-role based matching to identify potential alternatives. Unlike
Show Me, however, catalog search does not internalize domain-
specific knowledge of the underlying grammars—the recommenda-
tions do not consider, for example, known relationships between
human perception and chart configuration.

Our fan out enables users to rapidly search across both data and
design space by simultaneously juxtaposing parameter selections
of interest. Similarly to catalog search, this feature is simple but
achieves many of the same goals as additional prior systems [1, 11,
52] that often include sophisticated domain-specific knowledge, by
enabling users to rapidly explore alternatives in a low cost manner
(i.e. in a simple design gallery [55]) and to manipulate collections of
examples simultaneously (à la Juxtapose [26]). This technique most
closely resembles René’s [18] combinatorial design exploration,
although extended to encompass data-based variations.

2.2.4 Text-Based Editors. There is a long history of UIs that com-
bine textual chart programming with a system for rendering those
charts. Computational notebooks, such as Jupyter Notebook [44],
facilitate chart construction through tight feedback loops between
code and rendered charts. In a similar manner to Ivy templates,
papermill [61] allows analysts to parameterize computational note-
books which can then be run in a non-notebook environment. Ob-
servable [5] provides a reactive-programming platform for creating

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

rich web-based visualizations, which users are encouraged to fork
and remix. Wood et al. [99] take a literate programming approach
to the visualization design process by enabling authors to build
Vega and Vega-Lite charts in a Markdown document.

Most closely related to our work is the Vega-IDE [86], which
augments textual specification of Vega and Vega-Lite charts with
debugging tools [31], and Chart Builder [12], which allows users to
edit Vega-Lite charts through a GUI or text, but not both. We bor-
row much of Vega-IDE interface design in the text-editing portion
of our system; for instance, we make use of Microsoft Monaco’s
JSON-Schema [63] based support for JSON grammars as a way to
provide linting and validation. Beyond standard text-editing fea-
tures, we also implement extensible heuristic rewrite rules that
(automatically) suggest abstractions of JSON values into parame-
ters. This eases the flow of converting a declarative specification
into a reusable template.

2.2.5 Multimodal Editors. Several prior works have explored com-
binations of user interface modalities for creating visualizations.
Liger [72] mixes together shelf-based chart specification and visu-
alization by demonstration. Hanpuku [4], Data-Driven Guides [41],
and Data Illustrator [50] combine visual editor-style manipula-
tion with visual chart specification or textual programming. Vic-
tor [89] explored a prototype that combined a spreadsheet with
direct manipulation and manual view specification. His system
enabled highly expressive visualization construction, whereas we
focus on supporting analytic tasks.

Tools such as Jupyter Widgets [38] and Shiny [70] provide mech-
anisms for parameterizing analysis code in an ad hoc manner, how-
ever these lack many of the graphical affordances for exploration
found in many visual analytics systems.

Systems including mage [40], Wrex [14], and B2 [100] expand
on these ideas by intermingling text and graphical specification
in computational notebooks. Sketch-n-Sketch [28] takes a bidirec-
tional approach to combining (non data-driven) visual editing with
textual programming (in a full-featured, procedural language). Re-
Vize [32] seeks to support multiple modalities by chaining together
analysis tools though a Vega-Lite-based API.

Our investigation in this paper—to integrate chart choosing,
shelf building, and textual specification—is complementary to these
efforts. This combination of modalities offers a rich feature-space
(such as our catalog search and fan out features), enables educational
opportunities (by presenting a synchronized view between GUI
and perhaps unfamiliar textual grammars), and supports a variety
of data exploration tasks.

3 MOTIVATING USE CASES
Here we describe how two hypothetical users—Axel, a novice user
of visual analytics systems, and Tabitha, a visual analytics power
user—carry out two example workflows in Ivy. A motivation for
our work is to allow users like Axel and Tabitha to collaborate
and benefit from each other’s efforts by working within a common
system—aiming to supplant single-modality tooling that contributes
to designer-developer breakdowns [48].

3.1 Axel: A Novice User
Axel wants to make a chart showing death penalty executions in the
USA for a report he is writing. After loading a relevant dataset, Axel
browses templates that have been created by others. Axel benefits
from how other members of his team can easily grow the collection
of templates to adapt to the team’s changing visualization needs.

Unsure of what values are in the dataset, he selects a univariate
bar chart template and uses fan out (Sec. 4.4.2) to view all of the
dimension fields simultaneously. As he views these summaries,
he gradually removes fan out options that are not interesting or
do not serve his task. He eventually selects the option to display
"race". He notices that there are 16 related templates (Sec. 4.4.1)
that he could use. The “Isotype Waffle” catches his eye. He selects
it to view a fully formed Isotype colored by "race". The chart
does not have quite the right dimensions so he adds width and
height variables to the template, which allows him to make small
incremental adjustments from the GUI to produce the final version
(Fig. 1f). He takes a screenshot and adds it to his report.

3.2 Tabitha: An Expert User
Tabitha is interested in exploring the Gapminder dataset [69], so she
loads the data and selects the IvyPolestar template. She explores the
data using the familiar row and column abstractions (as in Fig. 5) to
investigate iterative hypotheses. After viewing several scatter plots
and bar charts, Tabitha wants to see a hierarchical representation
of the part-to-whole relationships between region, country, and
GDP; a Sunburst chart comes to mind.

Unable to find a satisfactory chart in the Ivy gallery, she browses
the Vega gallery and finds one, but the way that it works with data
does not quite match her intended usage. She creates a blank tem-
plate in Ivy and pastes in the example from the Vega gallery. She is
then presented with a series of automatically generated suggestions
(Sec. 4.3.3) on how she might templatize her chart—clicking through
these creates new shelves as appropriate. She text-edits the data
transformation logic to accommodate her desired functionality. She
uses the built-in debugging tools to view the results of the current
data state, iteratively developing her transformations. She adds
parameters for controlling width, height, color scheme, and other
aesthetic values, at which point she is happy with the template
and decides to share it. She clicks the publish button to make the
template available on the community server, ensuring that she and
others can reuse her work in the future. Finally, she instantiates
the Sunburst for her dataset and takes a screenshot.

4 SYSTEM DESIGN
We now describe the design and implementation of Ivy. First, in
Sec. 4.1, we introduce to the components of our system with a nar-
rative walkthrough. Next, in Sec. 4.2, we present a rigorous formu-
lation of parameterized declarative templates—a grammar-agnostic
mechanism for abstracting JSON-based specifications—in a small
programming language. Then, in Sec. 4.3, we describe our UI design
for selecting and instantiating templates, designed to obtain the
benefits and familiar aesthetics of chart choosing and shelf building.
Finally, in Sec. 4.4, we describe how the systematic application of
templates enables beneficial forms of view exploration.

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

{
 "templateAuthor": "Ivy Authors",
 "templateName": "Aggregate Bar Chart",
 "templateDescription": "An aggregating bar chart that can by sorted.",
 "templateLanguage": "vega-lite",
 "parameters": [
 {"name": "yDim", "type": "DataTarget", "config": {"allowedTypes": ["DIMENSION"], "required": true}},
 {"name": “sort", "type": "Switch", "config": {"active": "true", "inactive": "false", "defaultsToActive": true}},
 {"name": “year", "type": "List",
 "config": {
 "allowedValues": ["2000", "1990", "1980", "1970", "1960", "1950", "1940", "1930", "1920", "1910", "1900", "1890"]
 }},
 {"name": "xDim", "type": "DataTarget", "config": {"allowedTypes": ["MEASURE"], "required": true}},
 {"name": “color", "type": "List", "config": {"allowedValues": ["\"purple\"", "\"steelblue\"", "\"coral\""]}}
],
 "body": "{
 '$schema': 'https://vega.github.io/schema/vega-lite/v4.json',
 'height': { 'step': 17 },
 'data': { 'name': 'myData' },
 'transform': [{ 'filter': 'datum.year == [year]' }],
 'mark': { 'type': 'bar', 'color': ‘[color]' },
 'encoding': {
 'y': {'field': '[yDim]', 'type': 'ordinal', 'sort': {'$if': 'sort.includes(`true`)'', 'true': '-x'}},
 'x': {'aggregate': 'sum', 'field': '[xDim]', 'type': 'quantitative'}
 }
 }"
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

{
 "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
 "height": {"step": 17},
 "data": {"url": "data/population.json"},
 "transform": [{"filter": "datum.year == 2000"}],
 "mark": "bar",
 "encoding": {
 "y": {"field": "age", "type": "ordinal", "sort": "-x"},
 "x": {

 "aggregate": "sum", "field": "people", "title": "population"
}

 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

B The corresponding Vega-Lite spec
for generating that chart.

A conditional which consists of a JavaScript predicate
($if), as well as (optional) true and false branches.

A reference to the xDim parameter.

Parameter declaration for variable "xDim",
including type and configuration options.

C Ivy template for an optionally sortable aggregate bar chart.

A fan out across a subset of the allowed years.E

age

people

Fan out control,
the darked icon
indicates that
there is a fan
out across that
variable.

This color shows the data roles specified by the template designer
for this data target. This specification enables typed-based matching,
but can be overridden or ignored by the user, as here in xDim.

Color indicates the automatically inferred, or
manually set, data role for this data column.

D The resulting user interface for the template.

A The original chart of interest gathered
from the Vega-Lite documentation.

year

xDim

yDim

color

sort

Figure 3: Users can transform example chart specifications into reusable templates. Here we show the process of taking (A) a
bar chart of interest and (B) its corresponding Vega-Lite spec, and transforming it into (C) an Ivy template. Using (D) the
corresponding GUI shelf builder pane, the user can (E) fan out across parameters of interest to see alternatives simultaneously.

4.1 Narrative Walkthrough
We now introduce the technical components of our system with a
narrative description of our hypothetical user Tabitha constructing
a reusable template from an example.

She begins by loading a population dataset in Ivy. She then copies
in the “Aggregate Bar Chart” [84] from the Vega-Lite documentation
(Figure 3b). Figure 3a shows the output visualization.

After pasting in the code into the template body (via the Body
tab of Fig. 1c), several automated suggestions are provided on how
the data fields could be abstracted as template parameters. Clicking
through the suggestions replaces the "age" and "people" data
fields (Figure 3b, lines 8,10) with two new DataTarget parameters
(Figure 3c, lines 7,13). Tabitha renames the generated parameters to
xDim and yDim which automatically replaces their uses (enclosed
by “escape” brackets) with [xDim] and [yDim] (Figure 3c, lines 23-
24). She uses the settings popover (Fig. 6) to specify their allowed
data roles—she could have also done so using the Params text box
(Fig. 1c). These configurations result in a shelf builder style user
interface which she uses to explore her data set. She then uses
these shelves to specify values for the xDim and yDim parameters
(Figure 3d). These value settings are then applied to the template
body to produce a JSON specification, which is then transformed
into a visualization by a language-specific rendering function, in
this case, by Vega-Lite.

Next, she wants to chart populations for different years, so she
replaces the constant value 2000 (Figure 3b, line 5) with [year]

(Figure 3c, line 20), referring to a new template parameter that
abstracts over the choice of year (lines 9-12). Intending to apply this
template only to datasets with decennial measurements, Tabitha
specifies that year should be chosen from among a new Enum type,
called "allowedValues", comprising census years (Figure 3c, line
11). (She chooses not to abstract the filtering predicate, which would
have resulted in a both more general and more complex template.)

Then, Tabitha considers whether and how to sort the bars. Know-
ing the appropriate Vega-Lite option, she adds a "sort" field with
a conditional to the template body (Figure 3c, line 23). She then
creates a new template parameter, sort (line 8), and configures
it such that if sort is set to true, then the "sort" value in the
resulting Vega-Lite specification is set to "-x", which, in rendered
Vega-Lite, sorts the bars in order of increasing value. If sort is set
to false, then the resulting spec contains no "sort" field—as in
the original specification (Figure 3b).

Lastly, Tabitha wants to enable control of the color of the bars in
her chart. To do so, she first defines a color parameter (Figure 3c,
line 14), and then adds a reference to this parameter on line (Fig-
ure 3c, line 21). This allows her, or other users of this template, to
pick between colors preferred by her organization.

Her template now satisfactorily prepared, she is ready to explore
her dataset by specifying parameter values through the GUI (as
in Figure 3d). In addition to specifying individual value settings,
she can explore multiple options simultaneously using fan out (Fig-
ure 3e), which juxtaposes multiple views to consider (Sec. 4.4.2).

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

Templates 𝑡 ::=

{ func = 𝜆(𝑥1:𝑇1,. . .). 𝑒
lang = L,metadata = · · · ,
symbols = [𝑦1,. . .],

Atomic Values 𝑎 ::= 𝑠 | 𝑛 | 𝑏

JSON Values 𝑗 ::= 𝑎 | { 𝑠1: 𝑗1,. . .} | [𝑗1,. . .]
Expressions 𝑒 ::= 𝑎 | { 𝑠1:𝑒1,. . .} | [𝑒1,. . .]

Variables | 𝑥 | 𝑦

Conditionals | if 𝑝 then 𝑒1 (else 𝑒2)
Predicates 𝑝 ::= 𝑠 (where ⟦𝑠⟧ JS = 𝑏)

Settings 𝑆 ::= 𝑥1 ↦→ 𝑎1, . . .

Data Roles 𝑅 ::= Measure u
| Dimension u | Time u

Param. Types 𝑇 ::= DataTarget args
| MultiDataTarget args
| String args | Number args
| Boolean args | Enum args
| Text args | Section args

Spec. Lang. L ::= Vega | Vega-Lite | Atom

| Table | · · ·

Views 𝑣 ::= (L-language specific rendering)

Template Application 𝑡 (𝑆) = 𝑣

𝑡 .lang = L 𝑡 .func = 𝜆(𝑥1:𝑇1,. . .). 𝑒 𝑆 = 𝑥1 ↦→ 𝑎1, . . .
A. Substitute Arguments︷ ︸︸ ︷

𝑆𝑒 = 𝑒 ′

B. Evaluate Conditionals︷ ︸︸ ︷
⟦𝑒 ′⟧ Ivy = 𝑗

C. Render Visualization︷ ︸︸ ︷
⟦ 𝑗⟧L = 𝑣

Evaluation of JSON Expressions ⟦𝑒⟧ Ivy = 𝑗

Atomics ⟦𝑎⟧ Ivy = 𝑎 (1)
Objects ⟦{ 𝑠1:𝑒1,. . .,𝑠𝑛:𝑒𝑛}⟧ Ivy = ∪𝑖 ⟦(𝑠𝑖:⟦𝑒𝑖⟧ Ivy)⟧ Ivy (2)

Lists ⟦[𝑒1,. . ., 𝑒𝑛]⟧ Ivy = [⟦𝑒1⟧ Ivy,. . ., ⟦𝑒𝑛⟧ Ivy] (3)

Evaluation of Conditionals ⟦𝑒⟧ Ivy = 𝑗 or ⊥

⟦if 𝑝 then 𝑒1 (else 𝑒2)⟧ Ivy = ⟦𝑒1⟧ Ivy if ⟦𝑝⟧ JS = true (4)
⟦if 𝑝 (then 𝑒1) else 𝑒2⟧ Ivy = ⟦𝑒2⟧ Ivy if ⟦𝑝⟧ JS = false (5)

⟦if 𝑝 then 𝑒1⟧ Ivy = ⊥ if ⟦𝑝⟧ JS = false (6)

Evaluation of Conditional Fields ⟦(𝑠:𝑒)⟧ Ivy = { 𝑠:𝑒 ′ } or ∅

⟦(𝑠:𝑒)⟧ Ivy = ∅ if ⟦𝑒⟧ Ivy = ⊥ (7)
⟦(𝑠:𝑒)⟧ Ivy = { 𝑠:⟦𝑒⟧ Ivy } otherwise (8)

Figure 4: The Ivy template language is composed of an abstract syntax grammar (left) and evaluation rules (right).

4.2 Template Language Design
Templates provide a simple set of abstractions over JSON-based
grammars. Put simply, a template is a function specified in a su-
perset of JSON, which includes variables and simple control flow
operators, that when applied to arguments produces a chart in a
particular visualization grammar. Templates are grammar-agnostic
as they abstract arbitrary JSON specifications. We provide a full
description of templates to highlight exactly how they make declar-
ative grammar specifications reusable (G4)—by combining multiple
specifications into a single template—and easier to use (G1)—by
demarcating the arguments for manipulation.

Formally, we define a template 𝑡 as a function that applies a set
of 𝑁 template parameters, 𝑥𝑖 with type 𝑇𝑖 , to a template body 𝑒

to generate a view 𝑣 . In addition to the function itself, a template is
a record that defines: the output JSON specification language L of
the template body, metadata, and a list of zero or more template-
specific constant symbols that the body may refer to (Sec. 4.2.2). Our
simplified model of JSON [15] values 𝑗 comprises atomic values 𝑎—
literal strings 𝑠 of type String, numbers 𝑛 of Number, and booleans
𝑏 of type Boolean—records of string-value pairs, and lists of values.
The abstract syntax of templates is defined in Fig. 4.

4.2.1 Template Bodies. Beyond JSON literals, a template body, or
expression 𝑒 , may employ two basic programming constructs. A
variable refers to a template function parameter 𝑥 or a template
symbol 𝑦, wherever a JSON literal value might normally appear. A
conditional expression, written if 𝑝 then 𝑒1 (else 𝑒2), is dependent
on the result of predicate expression 𝑝 , which is a “raw” JavaScript

code string that evaluates to a boolean value. The else-branch is
optional, which supports optionally-defined fields, per Sec. 4.2.3.

Fig. 3c shows the concrete syntax for variables and conditionals
in Ivy, which implements the abstract syntax of Fig. 4. Variables are
“escaped” with square brackets (e.g. “[year]”). Following similar
support in other tools [36], conditionals are written as shown in
Fig. 3c line 23. Full-featured languages typically provide more exten-
sive abstraction mechanisms, but—as we show in Sec. 5—even just
variables and conditionals suffice for a wide variety of use cases.

4.2.2 Template Parameters. The 𝑁 parameter declarations 𝑥𝑖 with
types 𝑇𝑖 serve two purposes: to abstract over data fields and stylis-
tic choices in the definition of a visualization and to define GUI
elements that allow users to specify argument values for these
parameters. For example, a “switch” widget is drawn for each pa-
rameter of type Boolean, a dropdown menu for each Enum, and
a Tableau-style “shelf” for each DataTarget (Fig. 3d). Fig. 4 de-
fines several parameter types 𝑇 . The data target types DataTarget
and MultiDataTarget range over data columns (identified with
strings) in the current dataset as well as template-specific symbols
(also encoded with strings in our implementation). Symbols are
template-specific values that can be used to instantiate parameters.
For example, IvyPolestar defines a count symbol that induces a
targeted channel to take on a count aggregation.

Each type𝑇𝑖 contains type-specific arguments args𝑖 , for example,
the minimum and maximum allowed values for a Number or the
values comprising an Enum. The data parameter types—DataTarget
and MultiDataTarget—carry a configuration field to define a data
role 𝑅, discussed further in Sec. 4.3. Each type 𝑇𝑖 also contains an

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

optional boolean expression 𝑝𝑖 that determines whether the GUI
should display controls for that parameter 𝑥𝑖—for example, display-
ing a sort direction widget only when a boolean sort parameter is
set to true. Fig. 4 elides details of these type-specific arguments.

As parameters are arguments to a function, they must also have
values. We refer to a user’s choice of argument values 𝑎𝑖 as settings
𝑆 . Settings are typically set using the GUI, but can also be specified
as text (Fig. 1c, “Settings” tab).

4.2.3 Evaluating Templates to Visualizations. Finally, we produce
visualizations by applying the function described by template 𝑡
to the parameter settings 𝑆 , following the three steps found in
Fig. 4 A-C. First (Fig. 4A), the argument values 𝑎𝑖 are substituted
for the parameters 𝑥𝑖 in the template body 𝑒 using straightfor-
ward substitution. For example, this transforms a snippet of the
body in Fig. 3c, {"y": {"field": "[yDim]"}, ...}with settings
{"yDim": "age", ...} to be {"y": {"field": "age", ...}}.

Second (Fig. 4B), the resulting expression is evaluated to produce
a JSON value, transforming any conditionals into JSON values. This
is done by a straightforward recursive traversal, following Eqns
(1)-(3). Whenever a conditional is encountered, it is executed by
evaluating the JS-based predicate (⟦·⟧ JS referring to JS evaluation),
and then replacing the conditional with either the corresponding
then- or else-branch as appropriate. Eqns (4) and (5) handle the two
usual cases for conditionals. Eqn (6) handles the case when the pred-
icate evaluates to false but no else-branch is provided; returning
a ⊥ value, indicating that the conditional is to be deleted. Eqns (7)
and (8) explicitly provide a mechanism to delete conditionals that
return ⊥ in record values. This is how, for example, Fig. 3c line 23
optionally defines a "sort" field. Our implementation generalizes
this rule to arrays by viewing them as numerically indexed records.

The third (Fig. 4C) and final step is to use the generated JSON to
render a visualization. This is done by, for a specific visualization
language L, using the corresponding rendering function ⟦ 𝑗⟧L to
interpret the JSON value and render the resulting view—typically
as an HTML Canvas or SVG. Our current implementation supports
four languages L, namely, Vega, Vega-Lite, Park et al.’s Atom [62],
and a simple table language. However, as we discuss in Sec. 6.1.1,
Ivy’s language support is designed to be extensible.

4.3 User Interface Design
Equipped with the notion of templates, we next describe the user
interface design of Ivy. As shown in Fig. 1, the application consists of
two panes, one for chart editing and another for chart viewing. The
chart editing pane contains a data column filled with Tableau-style
“pills” representing data columns, and an encoding column with
“shelves” for those pills to be placed upon. This encoding column can
be used to instantiate (i.e. provide arguments for) the parameters of
the template, or to edit the GUI of the current template. The editing
pane also includes a code editor which can manipulate the current
template and UI state textually. Per Saket et al. [72], we facilitate
multimodal interaction by tightly synchronizing these views, such
that changes in one modality are instantly reflected in the other.

Below, we describe how Ivy supports the creation, selection, and
application of templates to produce charts.

4.3.1 Template Selection as Chart Choosing. The root of Ivy is a
template gallery, which aims to achieve Satyanarayan et al.’s [78]
vision for a system “allowing users to browse through designs for
inspiration, or adapt them for their own visualizations.” This avoids
the blank canvas problem [75] and supports ease of use (G1).

The gallery is populated with a library of system-provided tem-
plates, as well as templates created by Ivy users (stored on a com-
munal server). Simpler templates allow users to jump quickly to
familiar visual forms (such as line charts or bar charts), while more
sophisticated templates privilege thinking with their data [68] (as
in IvyPolestar). The gallery is present both as a homepage for the
application, independent from the visualization editor, as well as
an intermediate view while creating new view tabs.

Each template is accompanied by a set of user-defined examples,
namely, settings chosen by users to instantiate the template, with
data bindings and output renderings with respect to a collection of
predefined datasets. These examples serve as “crowd-sourced docu-
mentation” for how individual templates operate. Furthermore, this
adds an element of opportunistic programming: to create templates,
users can borrow small snippets—such as a well-formatted list of
color schemes—and use them in their own creations.

4.3.2 Template Application via Shelf Building. After selecting a
template and uploading a dataset of interest, the user is presented
with a shelf builder-style GUI for setting the template parameters
and specifying basic data filters. We choose this GUI design seeking
to exploit the same affordances that drive the explorability (G2) of
shelf builders. Specifically, our design closely follows that of the
Polestar shelf builder system, whichWongsuphasawat et al. [97, 98]
constructed as a simulacra of Tableau to serve as a baseline compari-
son in the development of their recommendation-based exploration
systems. While emulating Polestar is a relatively small threshold
to overcome in the context of visualization systems in general, it
demonstrates the promise of our template-based approach. Systems
such as Tableau or PowerBI possess features that—although sub-
stantially larger and more complex—are not substantially different
than those in Polestar.

To select data parameters (i.e. DataTarget or MultiDataTarget)
of interest, users drag-and-drop from a list of data fields, color-
coded according to their data roles, onto encoding shelves, as in
Fig. 1a, d. Following prior work [1, 80, 97] roles include Measure u
(quantitative fields), Dimension u(nominal or ordinal fields), and
Time u(temporal fields). When a dataset is loaded, we make heuris-
tic guesses about the role for each column, which the user can
later modify. We use roles in Ivy to construct a naive automatic
Add to Shelf feature (akin to Tableau’s Add to Sheet [54]), except
ours is simply based on order and data role. If a template has three
DataTargets, the first of which allows only a Measure uwhile the
latter two allow anything, clicking Add to Shelf on a Dimension u
will add it to the second parameter.

In addition to the visual aesthetics of Polestar (and hence that
of Tableau), we also emulate the functionality of its shelf-building
interface through a “default” library template called IvyPolestar
(shown in Fig. 5). The only features not replicated are the Automatic
Mark Type—implementation of which, though possible in Ivy, was
beyond the scope of the paper—and the chart bookmarks—which
we replaced with a notion of view tabs.

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

Template defined symbols. This
enables both the Polestar-style
COUNT field, as well more
advanced features, such as row
and column shown here, which
enable a Tableau-style multi-shelf.

Figure 5: Our IvyPolestar template reproduces and extends
the functionality of the Polestar shelf builder. Here tem-
plate specific symbols are used to make a SPLOM.

The config of each parameter
can be modified through a type
specific popover (here a slider).

Automatically generated
suggestions for
templatizing the current
specification.

Users can edit the
template metadata here,
including the name and
template language.

Parameters can be reordered by dragging. Their display
status in view mode is shown here as SHOWN or
HIDDEN based on the current param settings.

Figure 6: In edit mode, users can modify templates both
through the shelf builder GUI and the textual code pane.

A notable feature in Polestar is a count symbol that is visu-
ally similar to normal data fields and induces count aggregations
on channels without a selected data column. To model this fea-
ture, we define a template-specific symbol (cf. Sec. 4.2.2), count,
which IvyPolestar uses to implement the corresponding functional-
ity. IvyPolestar introduces two additional symbols, row and column,
that enable faceting by data columns in the manner of Tableau’s
multi-shelves. Placing row or column symbols on any shelf creates
a MultiDataTarget which acts as a wrapper around Vega-Lite’s
juxtaposition operators [76]. Fig. 5 highlights this feature.

4.3.3 Template Creation and Text Editing. Templates can be created
or modified in two ways, either by modifying the textual representa-
tion (Fig. 3c) or through GUI interactions (Fig. 6). The textual repre-
sentation facilitates both small tweaks (Sec. 3.1), as well as creating
new templates. For instance, users may copy code snippets found
online—such as in language documentation or Stack Overflow—and
templatize them to suit their task (Sec. 3.2). Templates can also

be created by “freezing” and refining the GUI state when interact-
ing with an existing template. For example, a user might apply a
full-featured template, such as IvyPolestar, to construct something
resembling their desired chart, fork the text output as a new tem-
plate (as in Fig. 1d), and then provide fine textual grained updates.
As discussed previously, exposing textual representation to the end
user furthers our flexibility (G3) and reusability (G4) goals.

To ease the construction of templates, Ivy uses domain-specific
pattern matching and rewrite rules to suggest potential transforma-
tions to users. For instance, if a user were to find a chart in the Vega
documentation that they wanted to copy, they would simply start
a new template and paste the code into Ivy. The code pane then
suggests ways to transform the code. For example, if a value in a
Vega-Lite spec (such as in Fig. 3b) is used where a data reference is
expected (e.g. "field": "age"), then Ivy suggests swapping "age"
with a reference to a new parameter. Fig. 6 shows an example of
such rules. Rules are defined by Ivy developers, rather than Ivy
users. We implemented rewrite rules for Vega-Lite, Vega, and Atom.

4.4 Template-Based View Search
The systematic formulation and application of templates allows us
to emulate recommendation and exploration (G2) features found
in a variety of existing charting systems as a consequence of our
design. Here we highlight two such features that follow naturally
from the use of templates: one arises by fixing the arguments and
varying the template, and the other by fixing the choice of template
and varying the arguments.

4.4.1 Extensible Recommendation with Catalog Search. The het-
erogeneity of user needs is often addressed in chart choosers by
offering large and often diverse sets of charting options [54], which
can be intimidating or difficult to utilize due to their volume.

The gallery in Ivy is equipped with catalog search, which allows
users to search across the set of available templates based on com-
patibility with a set of specified columns of interest—specifically,
by using a simple type-compatibility algorithm that compares tem-
plate parameter types with the data roles of selected columns. This
feature exists both in the gallery—where it acts as a type-based
search mechanism—as well as ambiently throughout the system
in the related templates tab (Fig. 1f)—where it acts as a simple
alternative recommendation system. The current template is com-
pared with each other template, yielding a partial match, a complete
match, or no match. A partial match occurs when the selected data
columns can be mapped to a template’s parameters. A match is
complete if all required parameters are mapped. A complete match
can translate the current selection without additional specification.
This heuristic is further detailed in the appendix. When a match is
selected, the current columns are mapped onto the new template,
using a similar mechanism as our Add to Shelf, and the resulting
chart is shown immediately.

4.4.2 Exploring Encoding Variation through Fan Outs. Comparisons
in visual analytics are often made temporally, requiring the analyst
to hold mental reference to each of the values under consideration.
To reduce this cognitive burden, Ivy users can fan out a template
by applying multiple settings and rendering their output simulta-
neously. Fig. 3e and Fig. 7 display examples of this interaction.

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

End the fan out and
use this value.

Remove this value
from the fan out.

D
es

ig
n

Va
ri

at
io

n

B

Fan out across the yDim of a horizon chart exploring the happiness dataset from our user study

Fan out across projections in a time-zone choropleth showing the distribution of students in a
socially-distanced course.

Fan out suggestions are
inferred based on data
role. Just as with other
data role inferences
these can be ignored as
the user wishes.

D
at

a V
ar

ia
tio

n

A

Figure 7: Users rapidly explore design and data alternatives
via fan outs. After selecting parameter values of interest,
they are shown all variations simultaneously.

To begin a fan out a user specifies sets of values that they wish
to compare for each parameter of concern. This can be applied to
both design and data parameters. For data parameters we provide
suggestions of appropriate values based on the inferred data role
and specified parameter role (Fig. 7a). We then compute a cartesian
product of these sets and render a separate instance of the current
template for each combination of values. Users then browse the
resulting gallery, and can modify all of the combinations at once
through the shelf-building UI, as well as remove values or select a
combination to view in isolation (thus collapsing the fan out).

This approach allows users a low-stakes way to consider alterna-
tive chart configurations and rapidly explore the space of available
design and data parameters.

5 EVALUATION
In the previous section, we discussed how our system design in-
tegrates and augments UI capabilities provided by existing chart
choosers, shelf builders, and text-based editors. Here, we assess how
well our template-based approach may work in practice by consid-
ering two questions: Do templates facilitate organization and
reuse of existing visualizations? (Sec. 5.1), and Is Ivy’s multi-
modal UI approachable by real users? (Sec. 5.2)

0

5

10

15

20

25

Wrapped Time Series
Waterfall Template
Time Series with Halos
Temporal Bar Chart
Sinusoidal Waves
Series-based Time Series
Scatterplot Mini Dashboard

Rank over time
Pre-Calculated Box Plot
Parallel Coordinates
Multi Layer Histogram

Heatmap Dashboard

Dumbbell Chart
Diverging Stacked Bar Chart
Discretizing scales
Connected Scatterplot
Column-based Line Chart
Candlestick Chart
Brushable Histogram
Bar Chart With Minimap

SPLOM

Mosaic Plot
Isotype Waffle
Horizon Chart

Gantt Chart

Some examples fell
outside our data model
and had to be skipped

Template Name Skipped Examples

Co
un

t o
f u

niq
ue

 e
xa

m
pl

es
 c

ov
er

ed
 b

y
te

m
pl

at
e

Ba
r

C
ha

rt

Sc
at

te
rp

lo
t

Li
ne

 C
ha

rt
Sm

al
l M

ul
tip

le
s

U
ni

va
ri

at
e

Su
m

m
ar

y

H
ea

tm
ap

A
re

a
C

ha
rt

C
al

cu
la

tin
g

Ba
r

C
ha

rt

Pi
e

C
ha

rt
A

dv
an

ce
d

U
I S

ca
tt

er
pl

ot

Sc
at

te
r

M
ap

C
at

eg
or

ic
al

 E
rr

or
 C

ha
rt

D
ot

 P
lo

t
C

om
bi

ne
d

Pl
ot

C
ho

ro
pl

et
h

A
dv

an
ce

d
U

I T
im

es
er

ie
s

Po
pu

la
tio

n
Py

ra
m

id

C
ro

ss
fil

te
r

Si
ng

le
 E

xa
m

pl
e

Te
m

pl
at

es
 (

O
rp

ha
ns

)

wheat_wages
lookup
layer_line_window
layer_likert
layer_falkensee
layer_bar_annotations
interactive_query_widgets
interactive_multi_line_pivot_tooltip
geo_rule
geo_line
geo_layer_line_london
facet_bullet
concat_layer_voyager_result
bar_layered_weather
airport_connections

Figure 8:We reproduced the 166 examples found in the Vega-
Lite gallery using 43 templates. Some examples had to be
excluded (right) as they fell outside our data model, usually
because they utilize multiple data sources, which Ivy does
not currently support.

5.1 Templates for Existing Visualizations
We considered two chart corpora, the example gallery of Vega-
Lite [88] and the chart chooser found in Google Sheets [19], look-
ing for opportunities to factor related visualizations into templates,
which yielded 3.5x and 1.8x compression ratios, respectively. Com-
pression is the number of examples constructible by a given tem-
plate. The reported average compression are computed by

|Examples| − |Excluded by Data Model|
|Templates| (9)

In an example gallery, a larger ratio means less duplicated code
(text) among examples. In a chart chooser, it means fewer chart
forms with possibly more parameters. These results demonstrate
that the simple template abstraction mechanisms enhance the flexi-
bility (G3) of existing declarative grammars while improving their
reusability (G4) by serving a variety of use cases.

While even just the basic abstraction mechanisms in templates—
namely, variables and conditionals—are sufficient for merging all
examples of each corpus into single templates, we strove to con-
struct templates that are factored in reasonable ways, for example,
by not depending on datasets having particular columns or fea-
tures, and by considering what might plausibly be found in a chart
chooser. This process prompted a number of minor system improve-
ments, such as simplifying the conditional syntax and improving
error handling, and suggested directions for future work on Ivy,
such as a more sophisticated data model. Additional details of this
analysis can be found in the appendix.

5.1.1 Vega-Lite Example Gallery. This gallery consists of 166 dis-
tinct specifications, reflecting years of iterative refinement and
development by the Vega-Lite community. These examples high-
light a breadth and depth of features exposed by the library, thus
forming an ideal testbed for the utility of templates. We recreated
this corpus with 43 templates, skipping 14 examples due to incom-
patibility with our data model (a single, flat input data table) for a
3.5x compression. Fig. 8 reports the frequency of each template.

We aimed to capture both the core content of each example (the
major feature being demonstrated) as well as the resulting image.
However, this was not always possible. We allowed minor text mod-
ifications and the inclusion of properties not present in the original
example, as long as they did not affect the core of the example

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

(such as styling). It was sometimes necessary to forgo or modify
some examples to accommodate our current implementation. For
instance, a scatter-map of zip-code centroids colored by their first
digit [87] needed to be modified because Ivy currently lacks a cus-
tom calculation feature. As a way to guide this design, we strove to
maximize the concatenation ratio, or the ratio between the size of a
template body and that of the concatenated examples it captures,
which is computed for a particular measure of size 𝛾 ,∑

𝑥 ∈covered examples 𝛾 (𝑥)
𝛾 (template) (10)

The resulting templates have an average lines of code concatenation
ratio of 1.48x (a proxy for simplification) and an average abstract
syntax tree concatenation ratio of 1.80x (a proxy for UI complexity
minimization). In conjunction with the average example compres-
sion ratio of 3.5x, this suggests that our templatizations are better
than merely concatenating the examples.

5.1.2 Google Sheets Chart Chooser. The set of charts found in this
chooser consists of 32 distinct chart forms. We focused on Google
Sheets as a representative chart chooser because it possesses a
similar set of chart options as other choosers, such as Excel and
LibreOffice. We reproduced 29 of these charts through 16 templates
for a 1.8x compression factor. We skipped 3 examples for the fol-
lowing reasons: “3D Pie” charts require a 3D visualization grammar,
“Org. Charts” fall outside of our tabular data model, and “Timelines”
require annotations, and therein modifications to the underlying
dataset, which is not currently supported in Ivy.

5.2 Approachability Study
We conducted a study in order to evaluate whether the multimodal
user interface in Ivy is approachable by real users. During pre-
study pilot sessions, we found that users who were more familiar
with Vega-Lite learned more quickly how to integrate Ivy’s full
capabilities to address tasks than those unfamiliar with Vega-Lite.
Therefore, we aimed to recruit users familiar with these paradigms
in order to evaluate the approachability of interacting with multiple
charting modalities, rather than that of the underlying grammars.
The target expertise for our study can be characterized roughly as
between that of the hypothetical users from Sec. 3.

5.2.1 Participants. We solicited 5 participants from a recent vi-
sualization course in a computational public policy masters pro-
gram, all of whom are now employed as professional data analysts.
Based on their participation in the course, we were confident that
these now-graduated students were familiar with Vega-Lite and
Tableau. Participants, denoted P1 through P5, self-reported a mean
familiarity with Vega/Vega-Lite of 𝜇 = 2.4 on 5-point Likert scale,
and 𝜇 = 3.2 with visual analytics tools (5 indicating high famil-
iarity). Participants were students at the same institution as the
experimenters—specifically, in the context of a student-instructor
relationship—thus constituting a source of potential bias.

5.2.2 Methods. Following a brief introduction to Ivy through in-
application documentation, participants completed a series of 8
tasks that covered data exploration, chart specification, and tem-
plate construction problems (additional details in the appendix).
For instance, one task asked participants to templatize a particular

Vega-Lite-based box plot [85], while another asked them to find the
number of countries in a multi-year version of theWorld Happiness
Report [27]. We focused on these tasks because they are similar
to tasks supported in related systems and (with the exception of
template building) were addressable with any of the modalities indi-
vidually or in conjunction. Correctness was judged by comparison
with a solution set prepared prior to the study. We engaged subjects
in an informal think-aloud protocol during the session, which led to
a number of the reported observations in the next section. Subjects
were then asked to fill out an exit survey on the usability of Ivy and
templates. Sessions were held over video conference software and
lasted a mean of 𝜇 = 95 minutes, although 2 hours were allotted.
Participants received a $50 Amazon gift certificate for their work.

5.2.3 Results. All participants were able to complete all tasks
within the allotted time, although all users required some assis-
tance at various stages, typically due to implementation bugs or
learnability hurdles. A variety of strategies were used to accomplish
the data exploration tasks, some using only shelf building, some
only chart choosing, or a mixture of both. All users were able to
complete the template construction tasks and then use the tem-
plates to address data exploration tasks. We believe this indicates
that real users, once acclimated, are able to produce non-trivial
templates to accomplish varying goals.

Ths system was generally seen as usable. Participants mostly
agreed with the statement “I think that I would like to use this
system frequently" (𝜇 = 4.4 on a 5-point Likert scale), and gave
a mean system usability score of 𝜇 = 68.0—describable as being
between “OK” and “Good” [3]. More critical than users’ perception
of the usability, which may have been positively biased, is the
demonstration they were able to navigate the system and use the
interlocking modalities to achieve various tasks. While our study
did not cover some concepts in our system—such as conditionals
and catalog search—it demonstrated that users can approach and
utilize the various UI modalities in Ivy. Participants sometimes
had to be directed to use certain unfamiliar features, such as the
templatization suggestions and fan outs. However, once familiar,
users tended to continue to use those features.

Participants were enthusiastic about mixing code and graphi-
cal specification. P5 commented that the combination “feels more
useful than just coding”. P4 noted that their organization had re-
cently switched a major Tableau-based dashboard to a Shiny-based
dashboard because of a lack of precise data controls in Tableau. In
contrast to the push for visual analytics tools to completely shed
ties to text (embracing a “no-code” approach), we believe this sug-
gests that systems that straddle the boundary between code and
GUI specification can offer a valuable mixture of affordances that
support real use cases.

5.2.4 Limitations. We observed that Ivy held some challenges for
participants. Participants sometimes struggled to understand what
the templatization suggestions would do, indicating a closeness of
mapping [22] failure. P1 and P2 suggested that visual design could
be improved to aid in feature discovery. While some participants
(P2, P4) agreed that templates are good for creating rapidly reusable
charts, P2 noted that templates are “not very portable.” This could be
addressed by embedding Ivy in tools like Shiny [70] or Jupyter [38].

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

The learnability of the system and mixed-modality remained a
primary difficulty. Users typically struggled to figure out how to
bridge the gap between text and GUI at first, however, by the end of
the session, all users were competent in both regimes. For instance,
most subjects iteratively refined their solutions to the box plot
task, modifying both code and GUI values to address developing
hypotheses. P3 noted that the system required a non-trivial level of
computational and visualization literacy. Fortunately, users could
seemingly bootstrap their knowledge to overcome these hurdles. P4
noted that the integration between the “code body and the point-and-
clickable GUI is really tight and also good for reinforcing learning”
and that “If you know how to do something in one form, you can do
it and watch how it changes the other side of the tool.”

The scope of this study was small. We merely sought to demon-
strate that real users of similar systems could approach the mixed-
modality UI found in Ivy. While these results suggest that this
combination is promising, further investigation is required to un-
derstand its utility in the context of more developed interfaces.
Once our system reaches maturity, we intend to conduct a study
comparing it with standard analytics tools, such as Tableau or Excel.

6 DISCUSSION
In this paper, we described how parameterized declarative tem-
plates—a typed abstraction layer over JSON specifications—can
serve as a basis for a multimodal UI to create and explore visu-
alizations. Ivy-style templates may help in the organization and
reuse (G4) of existing visualization corpora (per Sec. 5.1). Vega and
Vega-Lite have garnered ample popularity, and new declarative
visualization grammars are being actively developed [42, 49, 96].
As the availability and use of these grammars continues to prolifer-
ate, there is opportunity for shared platforms and tooling between
languages, which we explore in our grammar-agnostic templates.

The integration of features in our prototype appears to be accessi-
ble to users with modest experience in both visual analytics systems
and Vega/Vega-Lite (per Sec. 5.2). Users were able to make effective
use of affordances for exploration found in our shelf building UI
and fan out (G2), and were able to utilize the capability of templates
to improve the ease of use (G1) and reuse (G4) of declarative chart
specifications while maintaining their flexibility (G3).

We believe that this multimodal approach has value for a variety
of use cases. Exposing a connection between GUI and programmatic
API may enable analysts to self-serve their chart creation needs.
If a particular chart form is not available (but is constructible by
one of the supported grammars) then they can create it for them-
selves, rather than requiring reliance on engineering resources.
This connection between text and GUI appears to help users learn
and comprehend JSON-based charting grammars, which may be
unfamiliar or difficult to understand. The repeatable customization
found in templates might also, for example, enable practitioners
(e.g. data journalists) to explore designs in a structured manner that
does not violate their organization’s visual identity.

6.1 Limitations and Future Work
The version of multimodal visual analytics found in our prototype
has its share of limitations. The strength of each modality in Ivy
is only as good as its implementation, which can render artificial

barriers between what users expect and what is supported (e.g. P3
expected a pivot table). And while Ivy encompasses chart choosing,
shelf building, and textual specification, it does so at the cost of an
increased learning curve. However, we believe that this difficulty
is not endemic to multimodal systems, and that through attentive
design the experience of using the system can be made easier.

In making our template-based approach more viable for practical
use, it is easy to imagine a variety of system improvements—such
as additional template parameter types (e.g. color schemes or inline
data fields), drag-and-drop interactions for refactoring and abstract-
ing specifications (e.g. [29, 47]), as well as enriching the ways in
which changes made in one modality are reflected and explained
in the others. Beyond these, we highlight below several avenues
for future research.

6.1.1 Language Extensibility. Ivy is designed to be extensible: sup-
port for each specification language is defined through a standard-
ized interface, which includes a JSON Schema describing the syntax,
a JavaScript rendering function for the language, and rewrite rules
to help users abstract specifications. Our implementation currently
supports a small set of languages (Vega, Vega-Lite, Atom1, and a
simple table language), which, in future work, we would like to
increase so as to support a greater variety of tasks.

Our grammar-agnostic template framework provides a standard
set of abstraction and data manipulation mechanisms—which may
reduce the need for grammar designers to define their own—and
novel UI features for exploring candidate templates (catalog search)
and encodings (fan outs)—which may facilitate more efficient and
consistent exploration. Our system, furthermore, hoists the burden
of data transformation out of the rendering grammar (albeit with
a currently-limited set of transforms), which would otherwise re-
quire each grammar to implement its own data manipulation logic.
As users move between templates (specified in possibly different
grammars), their settings (including filters) are mapped from one
template to the next via role and order-based heuristics. Future
work could enable translation between supported grammars, which
could yield opportunities for education and portability.

Despite the benefits of language-independent functionality, there
are also benefits to taking domain-specific knowledge into account.
Language-specific rewrite rules—part of the extension interface,
described above—are one such example. Language-specific knowl-
edge could further be used for recommendation, as well as data
manipulation and presentation concerns. For instance, when a data
field is dragged to a drop zone in Lyra [74] the appropriate type of
scale is automatically inferred [75]. Lyra is able to offer this func-
tionality because it has a model of the grammar being manipulated,
a functionality which our approach currently lacks.

A lack of context and content-aware automated guidance is a
key limitation of our design. Yet, it should be possible to identify a
richer extensibility API, while still allowing each language to benefit
from the abstraction and UI concerns shared by all. Such an API
would enable us to combine domain-specific chart recommendation
(Sec. 2.2.3) with Ivy’s domain-independent type-based exploration
(Sec. 4.4), as well as embrace new interaction modalities.

1While implementing support for Atom we extracted the language in the original
application into a standalone library: https://www.npmjs.com/package/unit-vis

https://www.npmjs.com/package/unit-vis

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

6.1.2 Validation in Visual Analytics. An important question for
system designers is how to help users conduct safe visual analy-
sis [101]. Analysts can deceive themselves with statistical traps [65],
visualization hallucinations [43], or false graphical inferences [93].

We believe that our type-based template search will dovetail with
a metamorphic testing [58] based validation approach: by varying
the parameters of a template and comparing the resulting images,
a validation system could automatically identify errors at the inter-
section of data and encoding. Similarly, we suggest that templates
likely offer an opportune medium for applying visualization lint-
ing [33, 57] to a visual analytics context, as the types expose the
specific arguments over which analysis could be conducted. Fur-
thermore, the fan out interaction could be extended to allow not
only juxtaposition of variants, but also their layering [51], enabling
visual sanity checks to the robustness of parameter selections [10].

6.1.3 Integrated Visualization Editors. A primary focus in this pa-
per has been supporting data exploration tasks, but there are a
constellation of other tasks that users perform in visualization
tools. Users must carry out tasks “before” exploration (such as
model building and data cleaning) and “after” exploration (such as
annotation and presentation). Although the designs of many visual
analytics systems assume that data has been cleaned and processed
prior to analysis [75], in practice these tasks are often interleaved
and iterated.

Integrating these tasks within a unified system may thus reap
potential benefits. Data manipulation tasks, for instance, might be
better facilitated by the incorporation of ideas from dataflow pro-
gramming and spreadsheets, as well as programming-by-example
techniques to help with data wrangling [16, 37, 39]. To more fully
support presentation tasks, it would be fruitful to extend our com-
bination of modalities to include visual builders [20]—which offer a
variety of direct manipulation features [71, 79] for creating charts—
and visualization by demonstration [72, 73, 91, 102].

For each of these tasks, developing rich graphical interactions—
while maintaining a “bidirectional” connection to the underlying
textual representation—is an exciting research challenge: to inte-
grate what is typically a vast divide between text and GUI based
analytics systems. The approach pursued in this paper provides a
step in this longer-term direction.

7 ACKNOWLEDGMENTS
We thank our anonymous reviewers for their helpful comments, as
well as our study participants for their participation and invaluable
insights. We also thank Will Brackenbury, Michael Correll, Galen
Harrison, Brian Hempel, Gordon Kindlmann, and Katy Koenig for
their commentary and support.

REFERENCES
[1] Mallika Agarwal, Arjun Srinivasan, and John T. Stasko. 2019. VisWall: Vi-

sual Data Exploration Using Direct Combination on Large Touch Displays. In
30th IEEE Visualization Conference, IEEE VIS 2019 - Short Papers, Vancouver, BC,
Canada, October 20-25, 2019. IEEE, 26–30. https://doi.org/10.1109/VISUAL.2019.
8933673

[2] Christopher Ahlberg. 1996. Spotfire: an Information Exploration Environment.
ACM SIGMOD Record 25, 4 (1996), 25–29.

[3] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what indi-
vidual SUS scores mean: Adding an adjective rating scale. Journal of usability
studies 4, 3 (2009), 114–123.

[4] Alex Bigelow, Steven Drucker, Danyel Fisher, and Miriah Meyer. 2016. Iterating
Between Tools to Create and Edit Visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics (2016). https://doi.org/10.1109/TVCG.2016.2598609

[5] Mike Bostock. 2018. A Better Way to Code. https://medium.com/@mbostock/a-
better-way-to-code-2b1d2876a3a0

[6] Michael Bostock and Jeffrey Heer. 2009. Protovis: A Graphical Toolkit for
Visualization. IEEE Transactions on Visualization and Computer Graphics 15, 6
(2009), 1121–1128. https://doi.org/10.1109/TVCG.2009.174

[7] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185

[8] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R.
Klemmer. 2009. Two Studies of Opportunistic Programming: Interleaving
Web Foraging, Learning, and Writing Code. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM, 1589–1598. https:
//doi.org/10.1145/1518701.1518944

[9] Seth J. Chandler. 2018. Executions in the United States. https:
//datarepository.wolframcloud.com/resources/Seth-J.-Chandler_Executions-
in-the-United-States Wolfram Data Repository.

[10] Michael Correll, Mingwei Li, Gordon Kindlmann, and Carlos Scheidegger. 2018.
Looks Good to Me: Visualizations as Sanity Checks. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2018), 830–839. https://doi.org/10.
1109/TVCG.2018.2864907

[11] datavized. 2018. Morph. https://morph.graphics/ https://morph.graphics/.
[12] data.world. 2020. Chart Builder. https://github.com/datadotworld/chart-builder

https://chart-builder.data.world/.
[13] Datawrapper. 2020. Datawrapper. https://www.datawrapper.de/index.html

www.datawrapper.de.
[14] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani.

2020. Wrex: A Unified Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. In CHI ’20: CHI Conference on Human Factors
in Computing Systems. ACM, 1–12. https://doi.org/10.1145/3313831.3376442

[15] ECMA. 2017. The JSON Data Interchange Syntax, ECMA-404 (2nd ed. ed.).
https://www.json.org/json-en.html.

[16] Sara Evensen, Chang Ge, and Cagatay Demiralp. 2020. Ruler: Data Programming
by Demonstration for Document Labeling. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: Findings. 1996–2005.

[17] Flourish. 2020. Flourish | Data Visualization & Storytelling. https://flourish.
studio/ https://flourish.studio/.

[18] Jon Gold. 2016. Declarative Design Tools. https://jon.gold/2016/06/declarative-
design-tools/ Accessed December 16, 2020.

[19] Google. 2020. Types of charts & graphs in Google Sheets. https://support.
google.com/docs/answer/190718 Accessed August 19, 2020.

[20] Lars Grammel, Chris Bennett, Melanie Tory, and Margaret-Anne D. Storey. 2013.
A Survey of Visualization Construction User Interfaces. In EuroVis (Short Papers).
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023

[21] Lars Grammel, Melanie Tory, andMargaret-Anne Storey. 2010. How Information
Visualization Novices Construct Visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics (2010). https://doi.org/10.1109/TVCG.2010.164

[22] Thomas RG Green. 1989. Cognitive dimensions of notations. People and com-
puters V (1989), 443–460.

[23] Li Guozheng, Min Tian, Qinmei Xu, Michael McGuffin, and Xiaoru Yuan. 2020.
GoTree: A Grammar of Tree Visualizations. Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems (2020). https://doi.org/10.1145/
3313831.3376297

[24] Pat Hanrahan. 2006. VizQL: A Language for Query, Analysis and Visualization.
In Proceedings of the 2006 ACM SIGMOD international conference on Management
of data. ACM, 721–721.

[25] Jonathan Harper and Maneesh Agrawala. 2018. Converting Basic D3 Charts
into Reusable Style Templates. IEEE Transactions on Visualization and Computer
Graphics 24, 3 (2018), 1274–1286. https://doi.org/10.1109/TVCG.2017.2659744

[26] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klem-
mer. 2008. Design as Exploration: Creating Interface Alternatives Through
Parallel Authoring and Runtime Tuning. In Proceedings of the 21st annual
ACM symposium on User interface software and technology. 91–100. https:
//doi.org/10.1145/1449715.1449732

[27] John F Helliwell, Richard Layard, and Jeffrey Sachs. 2012. World happiness
report. (2012).

[28] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology. 281–292. https://doi.org/10.
1145/3332165.3347925

[29] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Light-
weight User Interface for Structured Editing. In International Conference on
Software Engineering (ICSE). https://doi.org/10.1145/3180155.3180165

[30] Jane Hoffswell, Wilmot Li, and Zhicheng Liu. 2020. Techniques for Flexible
Responsive Visualization Design. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (2020). https://doi.org/10.1145/3313831.

https://doi.org/10.1109/VISUAL.2019.8933673
https://doi.org/10.1109/VISUAL.2019.8933673
https://doi.org/10.1109/TVCG.2016.2598609
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://datarepository.wolframcloud.com/resources/Seth-J.-Chandler_Executions-in-the-United-States
https://datarepository.wolframcloud.com/resources/Seth-J.-Chandler_Executions-in-the-United-States
https://datarepository.wolframcloud.com/resources/Seth-J.-Chandler_Executions-in-the-United-States
https://doi.org/10.1109/TVCG.2018.2864907
https://doi.org/10.1109/TVCG.2018.2864907
https://morph.graphics/
https://github.com/datadotworld/chart-builder
https://chart-builder.data.world/
https://www.datawrapper.de/index.html
https://doi.org/10.1145/3313831.3376442
https://flourish.studio/
https://flourish.studio/
https://jon.gold/2016/06/declarative-design-tools/
https://jon.gold/2016/06/declarative-design-tools/
https://support.google.com/docs/answer/190718
https://support.google.com/docs/answer/190718
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1145/3313831.3376297
https://doi.org/10.1145/3313831.3376297
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/3313831.3376777

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

3376777
[31] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting

Code with In Situ Visualizations to Aid Program Understanding. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/3173574.3174106

[32] Marius Hogräfer and Hans-Jörg Schulz. 2019. ReVize: A Library for Visualization
Toolchaining with Vega-Lite. Eurographics. https://doi.org/handle/10.2312/
stag20191375 ISSN: 2617-4855.

[33] Aspen K Hopkins, Michael Correll, and Arvind Satyanarayan. 2020. VisuaLint:
Sketchy In Situ Annotations of Chart Construction Errors. In Computer Graphics
Forum. https://doi.org/10.1111/cgf.13975

[34] Kevin Hu, Diana Orghian, and César Hidalgo. 2018. DIVE: A Mixed-Initiative
System Supporting Integrated Data Exploration Workflows. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics. ACM, 1–7. https://doi.org/
10.1145/3209900.3209910

[35] John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science & Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

[36] MongoDB Inc. 2020. MongoDB. https://www.mongodb.com
[37] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish.

2017. Foofah: Transforming Data By Example. In Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD ’17). Association for
Computing Machinery, New York, NY, USA, 683–698. https://doi.org/10.1145/
3035918.3064034

[38] jupyter. [n.d.]. Interactive Widgets. https://jupyter.org/widgets Accessed
December 16, 2020.

[39] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive Visual Specification of Data Transformation Scripts. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems.
3363–3372. https://doi.org/10.1145/1978942.1979444

[40] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. ACM.

[41] Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira Dontcheva, Wilmot Li,
Jovan Popovic, and Hanspeter Pfister. 2016. Data-Driven Guides: Supporting
Expressive Design for Information Graphics. IEEE Transactions on Visualization
and Computer Graphics 23, 1 (2016), 491–500. https://doi.org/10.1109/TVCG.
2016.2598620

[42] Younghoon Kim and Jeffrey Heer. 2021. Gemini: A Grammar and Recommender
System for AnimatedTransitions in Statistical Graphics. IEEE Transactions on
Visualization and Computer Graphics (2021).

[43] Gordon Kindlmann and Carlos Scheidegger. 2014. An Algebraic Process for
Visualization Design. IEEE Transactions on Visualization and Computer Graphics
20, 12 (2014), 2181–2190. https://doi.org/10.1109/TVCG.2014.2346325

[44] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason
Grout, and Sylvain Corlay. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87–90. https://doi.org/10.
3233/978-1-61499-649-1-87

[45] Kari Lavikka, Jaana Oikkonen, Rainer Lehtonen, Johanna Hynninen, Sakari Hi-
etanen, and Sampsa Hautaniemi. 2020. GenomeSpy: Grammar-Based Interactive
Genome Visualization. (2020).

[46] Doris Jung-Lin Lee. 2020. Insight Machines: The Past, Present, and Future
of Visualization Recommendation. https://medium.com/multiple-views-
visualization-research-explained/insight-machines-the-past-present-and-
future-of-visualization-recommendation-2185c33a09aa Multiple Views
Visualization Research Explained.

[47] Yun Young Lee, Nicholas Chen, and Ralph E. Johnson. 2013. Drag-and-Drop
Refactoring: Intuitive and Efficient Program Transformation. In International
Conference on Software Engineering (ICSE). https://doi.org/10.1109/ICSE.2013.
6606548

[48] Germán Leiva, Nolwenn Maudet, Wendy Mackay, and Michel Beaudouin-Lafon.
2019. Enact: Reducing Designer-Developer Breakdowns When Prototyping
Custom Interactions. ACMTransactions on Computer-Human Interaction (TOCHI)
26, 3, Article 19 (May 2019), 48 pages. https://doi.org/10.1145/3310276

[49] Jianping Kelvin Li and Kwan-Liu Ma. 2021. P6: A Declarative Language for Inte-
gratingMachine Learning in Visual Analytics. IEEE Transactions on Visualization
and Computer Graphics (2021).

[50] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey,
Sam Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting
Vector Design Tools with Lazy Data Binding for Expressive Visualization Author-
ing. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, 1–13. https://doi.org/10.1145/3173574.3173697

[51] Aran Lunzer, Amelia McNamara, and Robert Krahn. 2014. LivelyR: Making R
charts livelier. In useR! Conference.

[52] Kwan-Liu Ma. 2000. Visualizing visualizations. User interfaces for managing and
exploring scientific visualization data. IEEE Computer Graphics and Applications
20, 5 (2000), 16–19.

[53] Jock Mackinlay. 1986. Automating the Design of Graphical Presentations of
Relational Information. ACM Trans. Graph. 5, 2 (1986), 110–141. https://doi.
org/10.1145/22949.22950

[54] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic Pre-
sentation for Visual Analysis. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1137–1144.

[55] Joe Marks, Brad Andalman, Paul A Beardsley, William Freeman, Sarah Gibson,
Jessica Hodgins, Thomas Kang, Brian Mirtich, Hanspeter Pfister, Wheeler Ruml,
et al. 1997. Design galleries: A general approach to setting parameters for
computer graphics and animation. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. 389–400.

[56] Michele Mauri, Tommaso Elli, Giorgio Caviglia, Giorgio Uboldi, and Matteo
Azzi. 2017. RAWGraphs: A Visualisation Platform to Create Open Outputs. In
Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. ACM.
https://doi.org/10.1145/3125571.3125585

[57] Andrew McNutt and Gordon Kindlmann. 2018. Linting for Visualization: To-
wards a Practical Automated Visualization Guidance System. In VisGuides: 2nd
Workshop on the Creation, Curation, Critique and Conditioning of Principles and
Guidelines in Visualization.

[58] Andrew McNutt, Gordon Kindlmann, and Michael Correll. 2020. Surfacing
Visualization Mirages. Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (2020). https://doi.org/10.1145/3313831.3376420

[59] Honghui Mei, Yuxin Ma, Yating Wei, and Wei Chen. 2018. The design space of
construction tools for information visualization: A survey. Journal of Visual
Languages & Computing 44 (2018), 120–132. https://doi.org/10.1016/j.jvlc.2017.
10.001

[60] nteract. 2020. data-explorer. https://github.com/nteract/data-explorer
[61] nteract. 2020. papermill. https://github.com/nteract/papermill
[62] Deokgun Park, Steven M. Drucker, Roland Fernandez, and Niklas Elmqvist. 2018.

Atom: A Grammar for Unit Visualizations. IEEE Transactions on Visualization
and Computer Graphics 24, 12 (2018), 3032–3043. https://doi.org/10.1109/TVCG.
2017.2785807

[63] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. 2016. Foundations of JSON Schema. In Proceedings of the 25th International
Conference on World Wide Web. https://doi.org/10.1145/2872427.2883029

[64] Ate Poorthuis, Lucas van der Zee, Grace Guo, Jo Hsi Keong, and Bianchi Dy. 2020.
Florence: a Web-based Grammar of Graphics for Making Maps and Learning
Cartography. Cartographic Perspectives (2020).

[65] Xiaoying Pu and Matthew Kay. 2018. The Garden of Forking Paths in Visu-
alization: A Design Space for Reliable Exploratory Visual Analytics. In 2018
IEEE Evaluation and Beyond-Methodological Approaches for Visualization (BELIV).
IEEE, 37–45. https://doi.org/10.1109/BELIV.2018.8634103

[66] Xiaoying Pu and Matthew Kay. 2020. A Probabilistic Grammar of Graphics. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3313831.3376466

[67] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2018. Charticulator: Inter-
active construction of bespoke chart layouts. IEEE transactions on visualization
and computer graphics 25, 1 (2018), 789–799.

[68] Hugo Romat, Nathalie Henry Riche, Ken Hinckley, Bongshin Lee, Caroline
Appert, Emmanuel Pietriga, and Christopher Collins. 2019. ActiveInk: (Th)
Inking with Data. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. 1–13. https://doi.org/10.1145/3290605.3300272

[69] Hans Rosling and Zhongxing Zhang. 2011. Health advocacy with Gapminder
animated statistics. Journal of Epidemiology and Global Health 1, 1 (2011), 11–14.
https://doi.org/10.1016/j.jegh.2011.07.001

[70] RStudio. [n.d.]. Shiny. https://shiny.rstudio.com/ Accessed December 16, 2020.
[71] Bahador Saket, Samuel Huron, Charles Perin, and Alex Endert. 2019. Inves-

tigating Direct Manipulation of Graphical Encodings as a Method for User
Interaction. IEEE Transactions on Visualization and Computer Graphics (2019).
https://doi.org/10.1109/TVCG.2019.2934534

[72] Bahador Saket, Lei Jiang, Charles Perin, and Alex Endert. 2019. Liger: Combining
Interaction Paradigms for Visual Analysis. arXiv (July 2019), arXiv:1907.08345.
https://ui.adsabs.harvard.edu/abs/2019arXiv190708345S/abstract

[73] Bahador Saket, Hannah Kim, Eli T. Brown, and Alex Endert. 2016. Visualization
by Demonstration: An Interaction Paradigm for Visual Data Exploration. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (2016), 331–340.
https://doi.org/10.1109/TVCG.2016.259883

[74] Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An Interactive Visualization
Design Environment. In Eurographics Conference on Visualization, Vol. 33. 10.
https://doi.org/10.1111/cgf.12391

[75] Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer, John Stasko,
John Thompson, Matthew Brehmer, and Zhicheng Liu. 2020. Critical Reflections
on Visualization Authoring Systems. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (2020), 461–471. https://doi.org/10.1109/TVCG.2019.
2934281

[76] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. 2016. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions
on Visualization and Computer Graphics (2016). https://doi.org/10.1109/TVCG.

https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/3173574.3174106
https://doi.org/handle/10.2312/stag20191375
https://doi.org/handle/10.2312/stag20191375
https://doi.org/10.1111/cgf.13975
https://doi.org/10.1145/3209900.3209910
https://doi.org/10.1145/3209900.3209910
https://doi.org/10.1109/MCSE.2007.55
https://www.mongodb.com
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034
https://jupyter.org/widgets
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2014.2346325
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://medium.com/multiple-views-visualization-research-explained/insight-machines-the-past-present-and-future-of-visualization-recommendation-2185c33a09aa
https://medium.com/multiple-views-visualization-research-explained/insight-machines-the-past-present-and-future-of-visualization-recommendation-2185c33a09aa
https://medium.com/multiple-views-visualization-research-explained/insight-machines-the-past-present-and-future-of-visualization-recommendation-2185c33a09aa
https://doi.org/10.1109/ICSE.2013.6606548
https://doi.org/10.1109/ICSE.2013.6606548
https://doi.org/10.1145/3310276
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/3125571.3125585
https://doi.org/10.1145/3313831.3376420
https://doi.org/10.1016/j.jvlc.2017.10.001
https://doi.org/10.1016/j.jvlc.2017.10.001
https://github.com/nteract/data-explorer
https://github.com/nteract/papermill
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1109/BELIV.2018.8634103
https://doi.org/10.1145/3313831.3376466
https://doi.org/10.1145/3290605.3300272
https://doi.org/10.1016/j.jegh.2011.07.001
https://shiny.rstudio.com/
https://doi.org/10.1109/TVCG.2019.2934534
https://ui.adsabs.harvard.edu/abs/2019arXiv190708345S/abstract
https://doi.org/10.1109/TVCG.2016.259883
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

2016.2599030
[77] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016.

Reactive Vega: A Streaming Dataflow Architecture for Declarative Interactive
Visualization. IEEE Transactions on Visualization and Computer Graphics 22, 1
(2016), 659–668. https://doi.org/10.1109/TVCG.2015.2467091

[78] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declar-
ative Interaction Design for Data Visualization. In Proceedings of the 27th an-
nual ACM symposium on User interface software and technology. ACM, 669–678.
https://doi.org/10.1145/2642918.2647360

[79] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming
Languages. Proceedings of the Joint Conference on Easier and More Productive
Use of Computer Systems.(Part-II): Human Interface and the User Interface-Volume
1981 (1983).

[80] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Relational Databases. IEEE
Transactions on Visualization and Computer Graphics 8, 1 (2002), 52–65.

[81] Wenbo Tao, Xinli Hou, Adam Sah, Leilani Battle, Remco Chang, and Michael
Stonebraker. 2020. Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big
Data. IEEE Transactions on Visualization and Computer Graphics (2020).

[82] TIBCO. 2020. Spotfire. https://www.tibco.com/products/tibco-spotfire
[83] Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wong-

suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and
Scott Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. Jour-
nal of Open Source Software 3, 32 (2018), 1057. https://doi.org/10.21105/joss.01057

[84] Vega. 2020. Aggregate Bar Chart. https://vega.github.io/vega-lite/examples/
bar_aggregate.html

[85] Vega. 2020. Box Plot with Min/Max Whiskers. https://vega.github.io/vega-
lite/examples/boxplot_minmax_2D_vertical.html

[86] Vega. 2020. Editor/IDE for Vega and Vega-Lite. https://vega.github.io/editor/.
[87] Vega. 2020. One Dot per Zipcode in the U.S. https://vega.github.io/vega-

lite/examples/geo_circle.html
[88] Vega. 2020. Vega-Lite Documentation. https://vega.github.io/vega-lite Accessed

August 19, 2020.
[89] Bret Victor. 2013. Drawing Dynamic Visualizations. https://vimeo.com/

66085662
[90] Fernanda B. Viegas, Martin Wattenberg, Frank Van Ham, Jesse Kriss, and Matt

McKeon. 2007. Many Eyes: A Site for Visualization at Internet Scale. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (2007), 1121–1128.
https://doi.org/10.1109/TVCG.2007.70577

[91] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2019.
Visualization by Example. Proceedings of the ACM on Programming Languages
4, POPL (Dec. 2019), 49:1–49:28. https://doi.org/10.1145/3371117

[92] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Computa-
tional and Graphical Statistics 19, 1 (2010), 3–28. https://doi.org/10.1198/jcgs.
2009.07098

[93] Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja. 2010.
Graphical Inference for Infovis. IEEE Transactions on Visualization and Computer
Graphics 16, 6 (2010), 973–979. https://doi.org/10.1109/TVCG.2010.161

[94] Hadley Wickham and Heike Hofmann. 2011. Product Plots. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (2011), 2223–2230. https://doi.
org/10.1109/TVCG.2011.227

[95] Leland Wilkinson. 2013. The Grammar of Graphics. Springer.
[96] Krist Wongsuphasawat. 2020. Encodable: Configurable Grammar for Visualiza-

tion Components. IEEE Transactions on Visualization and Computer Graphics
(2020).

[97] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay,
Bill Howe, and Jeffrey Heer. 2015. Voyager: Exploratory Analysis via Faceted
Browsing of Visualization Recommendations. IEEE Transactions on Visualization
and Computer Graphics 22, 1 (2015), 649–658. https://doi.org/10.1109/TVCG.
2015.2467191

[98] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:
Augmenting Visual Analysis with Partial View Specifications. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. ACM,
2648–2659. https://doi.org/10.1145/3025453.3025768

[99] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2019. Design Exposition with
Literate Visualization. IEEE Transactions on Visualization and Computer Graphics
25, 1 (2019), 759–768. https://doi.org/10.1109/TVCG.2018.2864836

[100] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In UIST ’20:
The 33rd Annual ACM Symposium on User Interface Software and Technology.
ACM, 152–165. https://doi.org/10.1145/3379337.3415851

[101] Zheguang Zhao, Emanuel Zgraggen, Lorenzo De Stefani, Carsten Binnig, Eli
Upfal, and Tim Kraska. 2017. Safe Visual Data Exploration. In Proceedings of the
2017 ACM International Conference on Management of Data - SIGMOD ’17. ACM,
1671–1674. https://doi.org/10.1145/3035918.3058749

[102] Jonathan Zong, Dhiraj Barnwal, Rupayan Neogy, and Arvind Satyanarayan.
2021. Lyra 2: Designing Interactive Visualizations by Demonstration. IEEE

Transactions on Visualization and Computer Graphics (2021).

https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2642918.2647360
https://www.tibco.com/products/tibco-spotfire
https://doi.org/10.21105/joss.01057
https://vega.github.io/vega-lite/examples/bar_aggregate.html
https://vega.github.io/vega-lite/examples/bar_aggregate.html
https://vega.github.io/vega-lite/examples/boxplot_minmax_2D_vertical.html
https://vega.github.io/vega-lite/examples/boxplot_minmax_2D_vertical.html
https://vega.github.io/vega-lite/examples/geo_circle.html
https://vega.github.io/vega-lite/examples/geo_circle.html
https://vega.github.io/vega-lite
https://vimeo.com/66085662
https://vimeo.com/66085662
https://doi.org/10.1109/TVCG.2007.70577
https://doi.org/10.1145/3371117
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1109/TVCG.2010.161
https://doi.org/10.1109/TVCG.2011.227
https://doi.org/10.1109/TVCG.2011.227
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3035918.3058749

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

Users can search the
gallery for templates
that are compatible
with a list of data fields
specified in this multi-
data parameter.

They can organize
the templates by a
variety of schemes.

Each card gives a minimal
description it’s the template.

Figure 9: Users can search for templates via text or catalog search in the gallery, which is a set of user created templates (hosted
on a communal server) and system templates.

Q
ue

ry Complete Match

Complete Match

No Match

None selected

Dimension
Measure
Time

Partial Match

Complete Match

Complete Match

Partial Match

No Match

No Match

Partial Match

Partial Match

Complete Match

1

1 1

Templates

Figure 10: Catalog search (Sec. 4.4.1) compares templates to a set of data fields, which can yield a partial match (no conflict but
unrenderable), a complete match (renderable), or no match (conflict).

A APPENDIX
In this appendix we expand upon several elements of the design,
implementation, and evaluation of Ivy discussed in the main paper.

A.1 Catalog Search Matching Heuristic
Fig. 9 shows the gallery of Ivy templates in our current implemen-
tation. Here we provide a more precise description of the heuristic
used to perform the template matching in our catalog search.

For a template 𝑡 (among the set of templates𝑇) with a set of data
parameters 𝑑 , (where each parameter has a set of allowed types
𝑑𝑖𝜏), and a search 𝑆 consisting of a set of data columns {𝑐𝑖 } which
each have a single type 𝑐𝑖𝜏 , then 𝑆 is a partial match for 𝑡 if there is
an injective mapping𝑚 between them such that

(∃𝑚) (∀𝑐𝑖 ∈ 𝑆) (∃𝑑 𝑗 ∈ 𝑑) (𝑚 : 𝑐𝑖 → 𝑑 𝑗 : 𝑐𝑖𝜏 ∈ 𝑑 𝑗𝜏) (11)

Correspondingly 𝑆 is a full match for 𝑡 if

(∃𝑚) (∀𝑟𝑑𝑖 ∈ 𝑟𝑑) (∃𝑐 𝑗 ∈ 𝑆) (𝑚 : 𝑐𝑖 → 𝑑 𝑗 : 𝑐𝑖𝜏 ∈ 𝑟𝑑 𝑗𝜏) (12)

where we define the required set of data param in 𝑡 as 𝑟𝑑 ⊆ 𝑑 . This
check is bounded by the size of 𝑆 and 𝑇 , so a search across the
templates will take O(|𝑆 | |𝑇 |). We illustrate this in Fig. 10.

A.2 Implementation Details
Ivy is a TypeScript React-Redux application. We were motivated
to use React as the basis of our application as it provides an opin-
ionated approach on how to build additional renderers, which is
important for our approach to extensibility. Our template server is
a cloud-based node.js server backed by PostgreSQL.

As described in Sec. 6.1.1 our system is designed to be extensi-
ble: support for each specification language is defined through an
extension interface comprising metadata (such as a JSON Schema
describing the syntax), a React component [105] that exposes the
rendering function of the language, and rewrite rule definitions
that help users abstract specifications into templates. While Ivy
currently supports a relatively limited class of rewrite rules, fu-
ture work could extend the approach with more expressive lan-
guages for transforming structured data (such as in CDuce [103]
and XDuce [107]).

Our current implementation supports four languages—Vega,
Vega-Lite, Atom, and a toy data table language—which serves as a
limited demonstration of the validity of our extensible approach. As

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

JSON-mediated visualization grammars continue to gain popular-
ity, additional languages will inevitably emerge to solve problems
unaddressed in prior efforts. Future languages could support more
complex rendering schemes, focusing on particular domains such
as geospatial analytics [106], 3D visual analytics, pivot tables (per-
haps simplifying the language of VizQL [24]), or even on the chart
recommendation language CompassQL [111]—which would enable
task-specific variations of Voyager [98].

A.3 Templates for Vega-Lite Gallery
As described in Sec. 5.1.1, we aimed to factor the Vega-Lite examples
into templates in reasonable ways, a heuristic which was guided
by the minimization of complexity and the maximization of sim-
plification. We illustrate these metrics in Fig. 11. The metrics in
this figure are computed following Equation 10. Most templates
exhibit a compression greater than 1, indicating that the template
is better than simply concatenating the examples together. Those
that do worse tend to have particular affordances to the template
usable and also tend to only cover a single example, limiting their
compression. See https://osf.io/cture/ for further details.

A.4 Templates to Reproduce Chart Choosers
We describe here in greater detail our templatization of the Google
Sheets chart chooser (described in Sec. 5.1.2), as well as an additional
chart corpus provided by Russell [109]. The latter fell outside the
narrative in the main body of the paper, but we include it here as an
example of the chart making culture in one particular organization.
Table 1 summarizes the resulting templates described below.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
LOCCompression

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
ST

C
om

pr
es

si
on

R²: 0.69

5
10

15

Count

0 – 5
5 – 10

10 – 15

15 – 20

Count

Improvement over
concatenation

Diverging
Stacked Bar

Chart

Dot Plot

Smaller (34)

Partially smaller (4)

Larger (6)

Out of 43

Figure 11: The concatenation ratios across our reproduction
of the Vega-Lite gallery between the compression of the Ab-
stract Syntax Tree (a stand-in for complexity minimization)
and Line of Code Compression (a stand-in simplification).
Higher is better in both cases.

A.4.1 Google Sheets. The Sheets chart chooser consists of 32 op-
tions. We reproduce 29 of these through 16 templates, as summa-
rized in Fig. 12. We skipped “3D Pie” charts because there is not
yet a dominant grammar for browser-based non-VR 3D visual ana-
lytics, although several recent works have put forward interesting
approaches [104, 110]. We skipped “Org. Charts” because they fall
outside of our tabular data model, requiring a hierarchical one. Fi-
nally, we skipped “Timelines” because we do not currently support
the data manipulations required to support textual annotations as
required by this chart form. Each of these deficiencies could be ad-
dressed in future work, such as by extending the range of languages
supported.

A.4.2 Russell Survey. This survey[109] of internal presentations at
Google included approximately 1,300 charts, which were grouped
into 15 distinct visual forms. We reproduce 10 of these through 11
templates. There are more templates than charts because, follow-
ing Sheets, we split Russell’s “Map” into two templates, “Country
Choropleth” and “Scatter Map”. Of the 5 charts from this survey
we skipped, 3 involve a non-tabular data model, 1 requires domain-
specific data (Lam et al.’s SessionViewer [108]), and 1 uses annota-
tions. Among the 16 plus 11 templates described, 18 are distinct.

While informative, this selection covers one particular analytic
culture and one family of tool’s designs. For instance, Russell’s
review found SessionViewer [108], a system for understanding web
search usage behaviors, made up 2.1% of the review corpus. A re-
view of a different corpus would likely yield a different selection of
charts. Furthermore, this selection of charts is also a symptom of
software availability. To wit: unit visualizations tend to be uncom-
mon because few systems tend to support them [62].

3D Pie

Org.
Chart

Timeline

Skipped

Dual
Y-axis

Combo

Histogram

Histogram

Big
Number

Scorecard

Box Plot

Candle
stick

Scatter
Map

Scatter
Map

Choropleth
Choropleth

Line
Chart

Area
Chart

Column Chart

Radar

Waterfall

Gauge

Table

Scatter
plot

Pie
Chart

Mosaic
Plot

Waterfall

Radar

Gauge

Table

Line Smooth
line

Area Stacked
Area

100%
Stacked

Area

Stepped
Area

Stacked
Stepped

Area

100%
Stacked
Stepped

Area

Column Stacked
Column

100%
Stacked
Column

Bar
Chart

Stacked
Bar

100%
Stacked

Bar

Pie Doughnut

Scatter Bubble

Tree map

Ivy
Template

Name

Template language

Sheets
Chart
Name

Template language
Vega (8)
Vega-Lite (20)
Data Table (1)
Skip (3)

Figure 12: We created 16 Ivy templates that reconstruct the
functionality of 29 of the 32 charts in the Google Sheets
chart chooser, a 1.8x compression.

https://osf.io/cture/

Integrated Visualization Editing via Parameterized Declarative Templates CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 1:We now give additional detail regarding the overlap between our coverage of the Google Sheets Chart Chooser Options
and the charts described in Russell’s survey. Options that are unsupported under the current set of grammars are marked as
Skip . Each template was created by starting from a blank template, from using Polestar to approximate the right behavior,
or by abstracting an example found online.

Russel Chart Sheets Chart Ivy Template Russell Sheets Language Creation Method

line graph Smooth Line Chart Line Chart ✓ ✓ Vega-lite Polestar
line graph Line Chart Line Chart ✓ ✓ Vega-lite Polestar
histogram Histogram chart Histogram ✓ ✓ Vega-lite Polestar
table Table chart Table ✓ ✓ Data table Blank
pie Pie chart Pie chart ✓ ✓ Vega Example
pie Doughnut chart Pie chart ✓ ✓ Vega Example
stack histogram Column chart Column Chart ✓ ✓ Vega-lite Polestar
stack histogram Stacked column chart Column Chart ✓ ✓ Vega-lite Polestar
stack histogram 100% stacked column chart Column Chart ✓ ✓ Vega-lite Polestar
stack histogram Bar chart Column Chart ✓ ✓ Vega-lite Polestar
stack histogram Stacked bar chart Column Chart ✓ ✓ Vega-lite Polestar
stack histogram 100% stacked bar chart Column Chart ✓ ✓ Vega-lite Polestar
box plot Candlestick chart Candle stick ✓ ✓ Vega Example
scatterplot Scatter chart Scatterplot ✓ ✓ Vega-lite Blank
scatterplot Bubble chart Scatterplot ✓ ✓ Vega-lite Blank
map Geo chart Country Choropleth ✓ ✓ Vega Example
map Geo chart with markers Scatter Map ✓ ✓ Vega Blank
timeline Timeline chart Skip ✓ ✓ N/A N/A
pie 3D pie chart Skip ✓ ✓ N/A N/A
heatmap N/A Heatmap ✓ × Vega-lite Example
sunburst N/A Sunburst ✓ × Vega Example
arc/node graph N/A Skip ✓ × N/A N/A
SessionView N/A Skip ✓ × N/A N/A
Sankey N/A Skip ✓ × N/A N/A
force vector N/A Skip ✓ × N/A N/A
N/A Organizational chart Skip × ✓ N/A N/A
N/A Combo chart Dual Y-axis × ✓ Vega-lite Example
N/A Waterfall chart Waterfall × ✓ Vega-lite Example
N/A Radar chart Radar × ✓ Vega Example
N/A Gauge chart Gauge × ✓ Vega Example
N/A Scorecard chart BigNumber × ✓ Vega Blank
N/A Tree map chart Mosaic Plot × ✓ Vega-lite Example
N/A Area chart Area chart × ✓ Vega-lite Polestar
N/A Stacked area chart Area chart × ✓ Vega-lite Polestar
N/A 100% stacked area chart Area chart × ✓ Vega-lite Polestar
N/A Stepped area chart Area chart × ✓ Vega-lite Polestar
N/A Stacked stepped area chart Area chart × ✓ Vega-lite Polestar
N/A 100% stacked stepped area chart Area chart × ✓ Vega-lite Polestar

CHI ’21, May 8–13, 2021, Yokohama, Japan Andrew McNutt and Ravi Chugh

A.5 User Study Prompts
Here we provide the text of the tasks involved in the user study. The
full study instrument can be found in the supplementary materials.
These questions were divided into two sections, Tutorial, which
involved substantial guidance, and Independent, which were more
freeform. These tasks were selected because they were similar to
tasks that one might address in similar systems.

A.5.1 Tutorial Tasks.

(1) In this task you will make a small multiple log-log scatter plot of
happiness vs population for 2015 colored and faceted by region
(such as by row or column) where tooltipping shows (among
other data) the name of the country. To do so you make use
of the Polestar template. Start by finding the Polestar template
in the gallery, navigate to it. Now fill in the appropriate fields
for X and Y. To make the tooltip reveal useful information,
place the Country field onto the detail target. Set the Region
to Column as well. Don’t forget to filter the appropriate year.
What correlation can you see? Give your answer in plain text.

(2) In this task we will make a SPLOM (scatter plot matrix) for
our dataset. Start by creating a new view, and navigate to the
Polestar template. Place the row and column cards on the x and
y data targets respectively. Next, select 3 measures of interest
(you decide!), place each of them in both of the “row” and
“column” multi targets which are under the “meta columns
section”. Now click the lighting bolt next the Color field and
select 3 dimensions of interest (you decide!). Just as before it
might be helpful to place Country into Detail. What correlations
can you find? Give your answer in plain text.

(3) Next you will make use of a particular template from the gallery.
Specifically, you will make a radial scatterplot. This task is a
little different in that you will use a different dataset. Open the
gallery in a new tab and find the template that will allow you
to make a radial scatterplot. Once there select the penguins
dataset. What is the most interesting combination of variables
you can find? Can you use fanout to effectively move through
these options? These plots are a little big. Why don’t you try to
navigate to the code body and change their height and width
to be something a little more reasonable? Copy the code from
the output into the below box.

(4) Next youwill try out making a template, specifically let’s make a
heatmap. Load up the happiness dataset once again. Once again
we will start with Polestar. Start by placing the CountryType
and GovernmentType variables on to the X and Y targets. Then
place the happiness field onto the Color Field. Feel free to adjust
the heatmap as you like. You should probably change the mark
type to make it more heatmap like! When you are ready, click
the “Fork” button and select “Just output”. Click the suggestion
for CountryType that creates and configures a new field, this
will create a new datatarget for this field while keeping the
current graphic in place. Select the gear to the right of this new
field and give it an informative field name, and select only the
appropriate field data type. Do the same for GovernmentType.
Next, let’s make our heatmap be better able to describe various
aggregates. Create a new List widget and add options for each
of the aggregation types (the ones that make the most sense are
probably count and distinct, but you are welcome to use others,

see https://vega.github.io/vega-lite/docs/). Give the widget a
descriptive name (no spaces though!) and replace the word
“count” in the Body with your new name wrapped in brackets,
like so “[YOURNEWNAME]”. You should now be able to switch
through various aggregations (or fan across them). Finally, give
your template a name and description, and then publish it!

A.5.2 Independent Tasks.

(1) How many rows are in this dataset? How many countries are
represented in this dataset? How many countries are in each
region? Please give you answers in plain text. (You can answer
the last question using the JSON output.)

(2) Create a new template by adapting https://vega.github.io/vega-
lite/examples/boxplot_minmax_2D_vertical.html to this dataset
in a useful manner. The choice of columns is up to you. Try
adding height and width sliders. Try enabling switching be-
tween types of box plot e.g. https://vega.github.io/vega-lite/
examples/boxplot_2D_vertical.html). Copy the body of your
template into the space below.

(3) Please make charts that answer the following questions. What
is the global trend in corruption? Do bigger countries tend to
be happier? Use code from the output for your answers.

(4) Please combine the following examples drawn from the Vega-
Lite gallery into an Ivy template: 1. https://vega.github.io/vega-
lite/examples/bar_aggregate.html 2.https://vega.github.io/vega-
lite/examples/bar_aggregate_sort_by_encoding.html. The par-
ticular choice of columns and features is up to you. Hint: the
big difference is that one is sorted and the other is not! If you
are having trouble with this task it may be helpful to check out
the documentation of the template language found on the web
page. Answer this question by giving the body of the template
you’ve created.

APPENDIX REFERENCES
[103] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: An

XML-Centric General-Purpose Language. ACM SIGPLAN Notices (2003). https:
//doi.org/10.1145/944746.944711

[104] Peter WS Butcher, Nigel W. John, and Panagiotis D. Ritsos. 2019. VRIA-A
Framework for Immersive Analytics on the Web. In Extended Abstracts of the
2019 CHI Conference on Human Factors in Computing Systems. 1–6. https:
//doi.org/10.1145/3290607

[105] Facebook. 2020. React – A JavaScript library for building user interfaces. https:
//reactjs.org/

[106] Shan He. 2020. Kepler.gl: Large-scale WebGL-powered Geospatial Data Vis.
http://kepler.gl/

[107] Haruo Hosoya and Benjamin C. Pierce. 2003. XDuce: A Statically Typed XML
Processing Language. ACM Transactions on Internet Technology (2003). https:
//doi.org/10.1145/767193.767195

[108] Heidi Lam, Daniel Russell, Diane Tang, and Tamara Munzner. 2007. Session
Viewer: Visual Exploratory Analysis of Web Session Logs. In 2007 IEEE Sym-
posium on Visual Analytics Science and Technology. IEEE, 147–154. https:
//doi.org/10.1109/VAST.2007.4389008

[109] Daniel M. Russell. 2016. Simple is Good: Observations of Visualization Use
Amongst the Big Data Digerati. In Proceedings of the International Working
Conference on Advanced Visual Interfaces. 7–12. https://doi.org/10.1145/2909132.
2933287

[110] Ronell Sicat, Jiabao Li, JunYoung Choi, Maxime Cordeil, Won-Ki Jeong, Benjamin
Bach, and Hanspeter Pfister. 2018. DXR: A Toolkit for Building Immersive Data
Visualizations. IEEE Transactions on Visualization and Computer Graphics 25, 1
(2018), 715–725. https://doi.org/10.1109/TVCG.2018.2865152

[111] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2016. Towards A General-Purpose Query Language for
Visualization Recommendation. In Proceedings of the Workshop on Human-In-
the-Loop Data Analytics. ACM, 4. https://doi.org/10.1145/2939502.2939506

https://vega.github.io/vega-lite/docs/
https://vega.github.io/vega-lite/examples/boxplot_minmax_2D_vertical.html
https://vega.github.io/vega-lite/examples/boxplot_minmax_2D_vertical.html
https://vega.github.io/vega-lite/examples/boxplot_2D_vertical.html)
https://vega.github.io/vega-lite/examples/boxplot_2D_vertical.html)
https://vega.github.io/vega-lite/examples/bar_aggregate.html
https://vega.github.io/vega-lite/examples/bar_aggregate.html
https://vega.github.io/vega-lite/examples/bar_aggregate_sort_by_encoding.html
https://vega.github.io/vega-lite/examples/bar_aggregate_sort_by_encoding.html
https://doi.org/10.1145/944746.944711
https://doi.org/10.1145/944746.944711
https://doi.org/10.1145/3290607
https://doi.org/10.1145/3290607
https://reactjs.org/
https://reactjs.org/
http://kepler.gl/
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/767193.767195
https://doi.org/10.1109/VAST.2007.4389008
https://doi.org/10.1109/VAST.2007.4389008
https://doi.org/10.1145/2909132.2933287
https://doi.org/10.1145/2909132.2933287
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1145/2939502.2939506

	Abstract
	1 Introduction
	2 Related Work
	2.1 Declarative Visualization Grammars
	2.2 User Interfaces for Visualization

	3 Motivating Use Cases
	3.1 Axel: A Novice User
	3.2 Tabitha: An Expert User

	4 System Design
	4.1 Narrative Walkthrough
	4.2 Template Language Design
	4.3 User Interface Design
	4.4 Template-Based View Search

	5 Evaluation
	5.1 Templates for Existing Visualizations
	5.2 Approachability Study

	6 Discussion
	6.1 Limitations and Future Work

	7 Acknowledgments
	References
	A Appendix
	A.1 Catalog Search Matching Heuristic
	A.2 Implementation Details
	A.3 Templates for Vega-Lite Gallery
	A.4 Templates to Reproduce Chart Choosers
	A.5 User Study Prompts

	Appendix References

