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ABSTRACT
The popularity of racket sports (e.g., tennis and table tennis) leads
to high demands for data analysis, such as notational analysis, on
player performance. While sports videos offer many benefits for
such analysis, retrieving accurate information from sports videos
could be challenging. In this paper, we propose EventAnchor, a data
analysis framework to facilitate interactive annotation of racket
sports video with the support of computer vision algorithms. Our
approach uses machine learning models in computer vision to
help users acquire essential events from videos (e.g., serve, the ball
bouncing on the court) and offers users a set of interactive tools for
data annotation. An evaluation study on a table tennis annotation
system built on this framework shows significant improvement of
user performances in simple annotation tasks on objects of interest
and complex annotation tasks requiring domain knowledge.

CCS CONCEPTS
•Human-centered computing→ Interaction techniques; In-
teractive systems and tools.
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1 INTRODUCTION
Racket sports are popular over the world. For example, tennis, often
regarded as the top 1 racket sport, has more than 87 million players
in 2019 [2], and ATP (the Association of Tennis Professionals) events
have attracted 1 billion cumulative viewers [12]. Such popularity
leads to high demands for data analysis on player performance by
both amateurs and professional analysts [27, 54]. One widely used
analytical method for racket sports is notational analysis [1, 27],
which focuses on the movements of players in a match. Video
recordings of matches are often used for such analysis because of
the availability of rich source information, such as the position and
action of players, action time, and action result. Manually retrieving
massive source information from long match videos could be very
challenging for users, so computer vision algorithms have been
applied to data extraction from sports videos.

Existing data acquisition systems based on computer vision have
several limitations. First, many systems cannot accurately track
data from low-quality videos, such as broadcasting videos [45]. For
example, the low frame rate in broadcasting videos cannot exhibit
the fast motion of players and ball/shuttlecock well. In elite table
tennis matches, where the average duration between two strokes
can be as fast as just half a second [27, 31], the image of the ball in a
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single frame may be a semi-transparent tail to show a series of ball
positions. Most computer vision models cannot accurately recog-
nize the ball position from the tail. Similarly, other characteristics
in racket sports videos, including but not limited to the frequent
shot transformation, inconsistent scene appearances, and severe
occlusion of the ball/shuttlecock by players, also pose challenges
for robust object recognition. Second, existing systems largely fo-
cus on low-level object recognition, such as human action [64],
and are weak to identify and retrieve high-level event information,
such as the outcomes of the actions [10]. This limitation is still an
open problem in computer vision [21, 45], because automatically
extracting contextual information in sports requires the integration
of domain knowledge into algorithms.

Interactive data acquisition systems have been developed to im-
prove the accuracy and quality of data extraction from videos. Such
systems allow user involvement in the data processing, such as
manually validating the tracking result of the ball or labeling the
outcome of a serve. One of the challenges such systems face is the
scalability. When having a large number of annotations to process,
existing systems often rely on crowdsourcing [23, 34, 48]. Another
challenge is annotation efficiency for individual users. Some re-
search attempted to reduce human interaction in data annotation
from sports videos, such as baseball videos[33], but their methods
cannot be applied to racket sports, which with faster and more dy-
namics rhythms, require different approaches for data annotation.

In this paper, we propose EventAnchor, an analytical framework
to support data annotation for racket sports videos. Our framework
integrates computer vision models for scene detection and object
tracking, and uses the model outputs to create a series of anchor
points, which are potential events of interest. Interacting with these
anchors, users can quickly find desired information, analyze rele-
vant events, and eventually create annotations on simple events or
complex player actions. Based on the framework, we implement
an annotation system for table tennis. The results of our evalua-
tion study on the system show significant improvement of user
performances in data annotation with our method.

The major contribution of this paper lies in the novel frame-
work, EventAnchor, that we propose for multiple-level video data
annotations based on our empirical work in understanding the re-
quirements of data annotation by expert analysts. This framework
integrates rich information and supports efficient video content
exploration.

2 RELATEDWORK
Our research focuses on interactive video annotation enhanced
with machine learning techniques in computer vision. Thus, in this
section, we review the methods for video annotation, particularly
those relying on machine-learning or crowdsourcing to scale up an-
notation. We also discuss research on interaction design to support
video annotation.

2.1 Model-assisted Video Annotation
The advance of machine learning has provided new opportunities
to reduce the cognitive and interaction burdens of users in video
annotation[14, 28, 43, 49]. Models have been incorporated into
video annotation systems for various purposes, such as predicting

annotations based on user interaction activities [14, 28, 49], and
propagating the annotation of keyframes to other frames [26, 50].
Many different models have been considered. For example, the
models to predict annotation include those based on continuous
relevance [26], particle filtering[56, 57], and bayesian inference [50].
One common approach in model-based video annotation is to pre-
process data with models pre-trained with other datasets. This
practice can improve the efficiency of data annotation by removing
non-interesting data. For example, when constructing the NCAA
Basketball Dataset, Ramanathan et al. [38] used a pre-trained clas-
sifier to filter video clips first, so that those non-profile shots can
be eliminated before distributing the data and tasks to crowd work-
ers. This approach can significantly reduce the amount of data for
annotation, as well as the burdens of users in annotation.

Motivated by these methods, this research uses computer vision
models to extract essential entities and objects from racket sports
videos, such as key frames, ball trajectories, and player positions.
Despite the inevitable errors accompanied with such models, these
entities and objects lay the foundations for further data process-
ing (e.g., event recognition), and user interaction (e.g., searching
and evaluating events of interest), therefore potentially improving
annotation efficiency.

2.2 Interaction Design to Support Video
Annotation

Researchers have also explored ways to help people annotate video
data through interaction designs. One research direction is to ex-
plore new interactive approaches to facilitate important annotation
tasks, such as an adaptive video playback tool to assist quick re-
view of long video clips [3, 15, 18], a mobile application to support
real-time, precise emotion annotation [63], an interaction pipeline
for the annotation of objects and their relations [41], and a novel
method to acquire tracking data for sports videos [33]. These de-
signs, which largely target single users, can improve the efficiency
and accuracy of video annotation from different perspectives. Our
proposed method is different from the aforementioned works from
two perspectives. First, our method allows users to locate events of
interest by integrating not only essential information at the object
level (e.g., ball position), which existing designs [15, 18] largely
focused on, but also more advanced information at the event (e.g.,
stroke type) and context (e.g., tactical style) levels, which we pro-
pose to enable more comprehensive and in-depth data analysis.
Second, our method supports a more efficient and scalable explo-
ration of events with computer vision algorithms and an improved
timeline tool. Our algorithms can remove useless contents and keep
the key events to better support fast and dynamic video review. Our
fine-grained timeline, which visualizes the events at the frame level
and is controlled by a calibration hotbox, allows users to quickly
examine frames back and forth, even in very long videos.

Another research direction focuses on designs to support crowd
workers. Crowdsourcing has been considered as a way to scale up
interactive annotation [32, 60]. While some work studied general
design issues, such as user interface design guidelines for crowd-
based video data annotation [22], most research in this direction
explored designs to combine annotations from the crowd to gen-
erate better results. For example, Kaspar et al. [19] developed an
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Figure 1: The snapshots of the broadcast videos and the scoreboards of tennis, table tennis, and badminton, respectively.

ensemble method to improve the quality of video segmentation,
and Song et al. [43] proposed an intelligent, human-machine hybrid
method to combine crowd annotations for 3D reconstruction. In
addition to these works from a technical design perspective, some
research also investigated non-technical issues in the design of
crowdsourcing tools, such as the skills and motivation of crowd
workers [48], and workflow for crowd workers [20]. For sports
videos, while most work used crowdsourcing to enhance data anal-
ysis [35, 47] or model training [38], Tang et al. [44] developed a
crowdsourcing method to construct annotation for video highlights
based on social media data from sports fans. In this work, we focus
on improving the efficiency of single workers.

2.3 Video Annotation Software
Various tools [5, 6, 11, 48, 59] have been developed for video data
annotation. Early work largely focused on object recognition and
annotation. For example, ViPER [11] can annotate the bounding
boxes of objects and texts frame by frame, and LabelMe [59] sup-
ports the annotation of the same object across different frames. As
the demands for video annotation dramatically increased, efforts
were made to reduce the burdens in the annotation. VATIC [48],
for example, was designed to leverage crowdsourcing for video
annotation; iVAT [5] combined automatic label generation with
user manipulation to improve annotation efficiency; ViTBAT [6]
supported the annotation of individual and group behaviors across
different frames.

These projects laid the foundations for the design of video an-
notation systems. Some methods, such as the bounding box in
ViPER and frame interpolation in LabelMe, have become common
practices supported by many annotation tools. Basic functions like
geometry drawing (e.g., lines, rectangles, polygons) and video op-
eration (e.g., pause, speed control, skip back or forward) have been
widely adopted. However, these tools only support basic annotation
tasks, such as labeling objects from general videos, with limited
support for annotation tasks involving multiple fast moving objects
across space and temporal dimensions, as what racket sports videos
usually have.

3 RACKET SPORTS AND RELATED
ANALYTICAL PROBLEMS

In this section, we first explain the major rules of racket sports and
some characteristics of broadcasting videos that may affect data

acquisition. Although a match in racket sports can be single or
double competition, we use single matches as examples. Also, we
focus on those typical racket sports with a net to separate players,
such as tennis, table tennis, and badminton. Those sports in which
players are not separated by a net and can have direct body contacts,
such as racquetball and squash, are not considered because of the
different video scene structures. We will also introduce our two
studies to learn about the tasks and data in video annotation. The
first study is an interview study with three domain experts. The
second study is a survey investigation to collect information on the
interests of sports fans.

3.1 Racket Sports and Match Broadcasting
Videos

The match structures of racket sports are similar. A match is a
competition between two players. A match is usually played in the
best of N (e.g., 3, 5, 7) games, and each game is played in the best
of N rallies (or points). The only exception is tennis, where there
is another layer called set above the game. Tennis is played in the
best of N sets (Fig. 1). When playing a rally, two players hit the
ball (or shuttlecock) in turns until one fails to send the ball to the
court on the other side and loses one point [27]. Each hit is called
a stroke, and the first stroke in a rally is called the serve.

Broadcasting videos of racket sports include different types of
contents. The central piece is the rallies, which are shown without
interruption and often with a fixed camera angle to ensure the cov-
erage of the whole court, as shown in Fig. 1. Before a rally, videos
usually capture how players prepare for the rally (e.g., resting, chat-
ting with coaches). After a rally, audience reactions often appear,
and a rally replay in slow motion may also be provided. What are
essential to data annotation are those rally segments, and the values
of other contents are minimal. The duration of a rally varies from
sport to sport, ranging from seconds to minutes [27], but a match
can last hours, as often seen in tennis.

3.2 Studies on Interests of People in Racket
Sports

We designed two studies to learn about how amatch is analyzed and
what data is used in the analysis. Considering the diverse interests
of people and possible vast design space, we first conducted an
interview study with domain experts to identify the essential tasks
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Table 1: The common analytical tasks based on interview data.

T TT B Tasks Level
✓ ✓ ✓ T1. Who served? (server) Object
✓ ✓ ✓ T2. What was the type of serve? (serve type) Context
✓ ✓ ✓ T3. What was the effect of serve? (serve effect) Context
✓ ✓ ✓ T4. Where did the ball fall on the court? (ball position) Event
✓ ✓ T5. What was the speed of the ball (shuttlecock)? (ball speed) Object
✓ ✓ T6. What was the spin type of the ball? (ball spin) Context
✓ ✓ ✓ T7. How was the ball received? (receive type) Context
✓ ✓ ✓ T8. What was the effect of receiving? (receive effect) Context
✓ ✓ ✓ T9. Where was the server/receiver? (player position) Event
✓ ✓ ✓ T10. How did the server/receiver move before/after hitting the ball? (player movement) Event
✓ ✓ ✓ T11. Who won this rally? (rally winner) Object
✓ ✓ ✓ T12. What was the tactic of the player in this rally? (rally tactic) Context
Note: T—Tennis, TT—Table Tennis, B—Badminton.

in analysis, data required by analysis, and common challenges in
data acquisition. Based on the information collected from this study,
we designed a survey to investigate what ordinary sports fans may
be interested in, and what kinds of problems they may have had if
they have been involved in data annotation.

3.2.1 Expert Interview. Our interview study is a semi-structured
investigation involving three domain experts: E1, E2, and E3. E1, a
professor of sports science, is interested in table tennis analysis. E2
is a badminton analyst and also a professor at a top sports university.
Both E1 and E2 have experience in data analysis for more than
twenty years. E3 is a Ph.D. candidate of sports science, and as a
former professional tennis player, has conducted research on tennis
data analysis for more than three years. Our interviews with E1
and E3 were in a face-to-face manner, and the meetings with E2
was through a real-time, video conference call.

Three interviews followed the same structure. Each interview
had two sessions. The questions in the first session were the same
for all three experts, and focused on the understanding of their
analytical tasks and relevant data in their own domain. The conver-
sations in the second session were based on the information gained
from the first session, and aimed at deepening the understanding of
the challenges in analysis and current approaches to address them.
Each interview lasted about 90 minutes: roughly 60 minutes for the
first session, and 30 minutes for the second.

In the first session, we learned about the commonality and
uniqueness of analytical tasks in these sports. The interests of the
three experts were almost the same at a high-level. They were all
interested in analyzing the movement of the ball (shuttlecock), the
movement of players, their tactics in a rally (e.g., the type and effect
of a serve), and the outcome of each rally. However, for certain tasks,
their focuses differ. For example, in the analysis of ball movement,
ball speed is a major factor to tennis and badminton, not to table
tennis, and ball spin type is very crucial to table tennis or tennis,
not at all to badminton. What distinguishes their analyses most are
their strategies. In table tennis, where a rally is usually very short,
the analysis often focuses on the scoring rates of players in different
stages of a rally [53, 62] and the tactics used by a player (e.g., the
stroke position of a player, the landing location of the ball, and the

stroke type [51, 55]). In comparison, in badminton, the strategy
centers on the three-dimensional trajectory of the shuttlecock[58],
because it can fundamentally affect the tactics in both offense and
defense. In tennis, which has a much larger court and a larger ball
than table tennis and badminton, managing the physical energy
by predicting the ball position and moving in advance is critical
to tennis players. Therefore, the analysis often emphasizes player
movement and its correlation with ball position [17], in order to un-
derstand the spatio-temporal shot patterns [36, 37] and how players
use various techniques [61] to mobilize their opponents to move.

In the second session, we gathered information about how these
experts conducted their analysis. They all used certain software.
However, their tools are usually very basic, largely limited to con-
trolling video playback, capturing video images, and extracting
video segments from a long video clip, and cannot support more
advanced tasks, such as identifying important events, relating dif-
ferent events, and constructing annotations. For example, in table
tennis analysis, E1 usually needed to first specify the start time and
end time of all rallies, and then drilled down into them to label ball
position, player position, stroke type, and spin type of each stroke.
However, searching the starts and ends of rallies through a long
video is a tedious process, and manually clipping individual rallies
out of the whole video is exhaustive. In addition, no tool is available
for accurately specifying ball and player position. As a compromise,
a common practice is to use a 3× 6 grid on the virtual table to label
the rough position of the ball, and four cells on each end of the
table to indicate the area of player location. Similar challenges also
exist in tennis. E3 usually used a virtual court with a dense grid
for the position of the ball and players. In badminton, the three-
dimensional trajectory of the shuttlecock is estimated by a physical
motion model [9]. To specify the three-dimensional start and end
positions of the ball, E2 used a tool with a vertical view of the court
for (x, y) coordinates and an end view for the z coordinate. These
tools were mostly developed in-house by their supporting staff, not
commercially available.

In addition, the experts encountered more challenges in those
advanced tasks that require domain knowledge, such as identifying
a stroke type in table tennis, which has to be inferred based on ball
position and player position. The video annotation tools help the
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Figure 2: Tasks that sports fans are interested in when watching racket sports videos.

experts to conduct opponent analysis and prepare players for their
future matches. For example, knowing the tactics and strategies
at different levels, players can take appropriate actions, such as
avoiding those situations where the opponents have high winning
rates. This group of users is the primary users of this research.

Based on the data collected from the interview study, we sum-
marized the primary tasks that are commonly seen in three sports,
as shown in Table 1. Each task reflects a question that experts tend
to ask in analysis. We use a simple term, which is inside the paren-
theses after each question, as a reference for each task. All tasks,
except two, are interesting to all three. These two tasks are ball
speed, which is not a concern in table tennis, and ball spin, which
is not applicable to badminton. We still consider these two tasks in
this research because they are very critical to other two sports.

3.2.2 Survey Study. We conducted a survey to learn what general
sports fans may be interested in. The backgrounds and interests of
sports fans could be very diverse. To keep our focus, we designed
a questionnaire based on those tasks developed in the interview
study.

The questionnaire includes demographic questions, task interest
questions, and data annotation questions. Demographic questions
sought some basic information from respondents related to their
familiarity with and involvement in tennis, table tennis, and bad-
minton, as well as their experiences in watching racket sports
videos. Task interest questions were developed by drawing on the
tasks in Table 1, and asked respondents which tasks they are inter-
ested in when watching match videos. In addition to these tasks,
respondents could also choose none of these tasks and provide
other tasks. Data annotation related questions asked whether re-
spondents have been involved in data annotation for sports videos,
and if so, what challenges they may have had.

We distributed the survey to two online communities in China.
The total number of members in the two communities are more
than 600. We got answers from 109 respondents. Among them, 51
(46.8%) said they had watched tennis match videos, 86 (78.9%) table
tennis videos, and 85 (77.1%) badminton videos.

Most respondents indicated that they were interested in some
of the tasks on the list (Figure 2). Only a small portion of them

showed no interest in any of them: 11.8% in tennis responses, 14%
in table tennis, and 9.5% in badminton. For tennis, the top three
tasks are ball position (54.9%), ball speed (47.1%), and serve effect
(47.1%), and the least favourite tasks are two tied choices—player
tactic (19.6%) and player position (19.6%). The top three tasks in
table tennis are rally winner (54.7%), receive effect (45.3%), and ball
position (41.9%), and the bottom one is player position (21.0%). The
top three tasks in badminton are shuttlecock position (54.8%), serve
effect (46.4%), and player position (46.4%), and the least concern is
who the server is in a rally (25%).

Only a few respondents had been involved in video data annota-
tion. There are 10 people indicating experience in annotating table
tennis videos, 2 in badminton, and 1 on tennis. One person had
experience in all three. For table tennis annotation, two challenges
stand out: accurately finding the times of important events (70%)
and locating a specific rally in a long video (60%). Two challenges
mentioned in annotating badminton videos are estimating shut-
tlecock location (100%) and finding the times of important events
(50%). The only challenge given in tennis is locating a specific rally
in a long video.

Novice users use video annotation tools differently from experts
(Section 3.2.1). As our survey data shows that fans are more in-
terested in events like who won a rally, where a ball landed, and
how fast a fall was. We can speculate some application scenarios
of our design by this group of users, such as using it to help the
creation of highlight videos of a match or tutorial videos based on
matches. The proposed method allows them to quickly identify and
understand those key events in a match and choose their desirable
video segments.

4 EVENTANCHOR: SUPPORTING
MULTI-LEVEL VIDEO ANNOTATION

EventAnchor was developed based on literature on sports data
analysis and what we learned from the interview and survey studies.
It has been argued [42] that tasks in video analysis can involve
information at different levels, ranging from raw objects (e.g., ball,
court, player) at the bottom level to advanced inference or semantic
analysis at the top level (e.g., player tactic). The primary tasks shown
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Figure 3: The EventAnchor framework. Data at the object level includes objects recognized by computer vision algorithms.
The event-level data is obtained through event detection algorithms based on the object-level data. The context-level data is
results of user-machine collaboration, where users apply domain knowledge to select and integrate information from lower
levels and and video.

in Table 1 actually include tasks at different levels. For example,
some tasks like ball position, ball speed, and player position are
low-level tasks that concern object recognition, while tasks like
serve type, serve effect, and rally tactic are high-level semantic
tasks that require domain knowledge to relate various aspects of
spatial and temporal information about the ball and players.

In-depth analysis of these tasks indicates that they are all related
to a few key events: ball (shuttlecock)-racket contact and ball-court
contact. For example, such tasks as server, serve type, receive type,
and player position are all about situations before or after the event
of ball-racket contact; and tasks like serve effect and receive effect
are related to the ball-count contact event. Other advanced semantic
tasks require the integration of information related to a series of
such events.

Based on this understanding, we develop a three-level frame-
work, which has an event level in the middle to connect an object
level below and a context level above (Fig. 3). At the bottom is the
object level. The data at this level is the foundation of the whole
framework, and includes essential objects recognized by computer-
vision algorithms from videos, such as the positions of the ball, the
player, and the court. Data at this level can be represented as a tuple,
(𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑, 𝑥,𝑦, 𝑡), where 𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑 is the identity of a recognized ob-
ject, 𝑥 and 𝑦 are the coordinates of the object in a video frame, and
𝑡 represents the timestamp of the frame where the object is.

The center level of the framework is the event level. Data at
this level concerns the interaction between essential objects from
the object level, such as a stroke, which is the result of the ball
contacting a racket, and the aggregation of them (e.g., a rally with
multiple strokes). Data at this level comes from the information at
the object level, such as the moving direction of the ball, or machine
learning models that recognize events. The data can be represented
as a tuple, (𝑒𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒, 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ), where 𝑒𝑣𝑒𝑛𝑡𝑇𝑦𝑝𝑒 represents
the type of events, and 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are the timestamps of the
start and end of the event, respectively.

Data at the context level summarizes information from the
event level, and can include the technical attributes of strokes (e.g.,
stroke type, spin type) and the tactical style of a player. Retrieving
data at this level requires extensive annotation by domain experts,

because of the required domain knowledge. For example, to deter-
mine the type of a stroke in table tennis demands skills to recognize
a sequence of micro-actions of the hand and wrist. Only analysts
with extensive knowledge canmake a right call. Similarly, obtaining
the contextual information of some events, such as what player
tactics a rally is based on, also requires domain knowledge. Data
structure at this level can also be a tuple, (𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑇𝑦𝑝𝑒, 𝑒𝑣𝑒𝑛𝑡𝐼𝑑),
where 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑇𝑦𝑝𝑒 represents the type of context information and
the 𝑒𝑣𝑒𝑛𝑡𝐼𝑑 the identity of the event. We provide a mapping from
the analytical tasks to the data level in Table 1.

The event level plays an important role in this framework. Rec-
ognized events at this level are the anchors for analytical tasks.
Knowing the locations of these events in a video, analysts can ex-
amine the images around them, find relevant video segments, and
create corresponding annotations. For example, table tennis players
prefer to launch an attack as early as possible in a rally, so analysts
often want to examine those rallies in which a player launches an
attack immediately after the serve and gains a point. To identify
such rallies, users can rely on event information to select those
short rallies as candidates and then apply domain knowledge to
determine what rallies are of interest. Because of the essential role
of the event level to link analytical tasks, we call the framework
EventAnchor.

5 IMPLEMENTATION OF EVENTANCHOR
FOR TABLE TENNIS

Based on our framework, we implemented a system, EventAnchor
for Table Tennis (ETT), to support annotation on table tennis videos.
We chose table tennis because annotation on table tennis videos is
often regarded as one of the most challenging tasks among racket
sports. First, we used computer vision models, such as object detec-
tion [39, 40], object tracking [4, 16, 52], and pose estimation [7, 46]
models, to identify the player, the ball, the court, and relevant tra-
jectories (object-level) (Fig. 4A). Second, based on the motion of the
ball and the player, as well as their relative position, we obtained
events. The positions and timestamps of the events are used as
anchors (event-level) (Fig. 4B). For example, a sudden change of
the moving direction of the ball implies the event that a player hits
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Figure 4: Pipeline of EventAnchor for Table Tennis. (A) exhibits the extraction of essential objects by computer vision models,
such as score (A1), scene (A2), ball (A3), and player pose (A4); (B) describes the methods to obtain events by estimating the
moment of score changing (B1) or scene changing (B2), or identifying the moments of ball hitting and ball bouncing (B3); and
(C) shows two interactive tools for calibrating an event (C1) and annotating the event with contextual information (C2).

the ball or the ball bounces on the table. Anchors can help the user
quickly locate individual events in videos. Third, through visual
interaction, the user can add contextual information (context-level),
such as the technical characteristics of a stroke and the tactical
style of a rally to each anchor, or calibrate the spatial and temporal
information of an anchor (Fig. 4C).

5.1 Acquiring Object-level Information
To acquire object-level data from videos, we adopted a series of
computer vision models [8, 13, 16, 30]. Video processing had three
steps: score detection, scene detection, and ball and pose recognition.
First, we used FOTS [30], an optical character recognition model,
to process the scoreboard in video (Fig. 4A1). We sampled 5,000
images from videos and annotated the location of the digits through
crowdsourcing. The retrieved images were separated into a training
set (70% of the whole data set) and a test set (30% of the data set)
for model training and test. On the test set, the FOTS obtained
a precision of 92.1% and a recall of 95.4%. Second, we classified
the frames according to the scenes (Fig. 4A2). Each frame was
pre-processed with ResNet-50 [13] that was pre-trained on the
ImageNet [24], and an embedding vector with a length of 2,048 was
obtained. Given the embeddings, we conducted binary classification
with support vector machine and obtained the frames of “in-play.”
Third, to recognize the ball and player posture (Fig. 4A3, 4A4). we
used TrackNet [16], a ball tracking model for tennis and badminton,
to extract ball trajectory. By stacking three consecutive frames as
the model input, the TrackNet can resolve the problems of noisy
objects (e.g., white dots in the billboard or headband of the player
being recognized as the ball), transparent tails, and invisible or
severely blurred ball. To apply TrackNet in table tennis, we sampled
over 60,000 frames from different videos to annotate ball positions.
After training, the TrackNet achieved an accuracy of 88.6%. For
pose recognition, we used Openpose [8] trained on the COCO
dataset [29].

5.2 Acquiring Event-level Information.
We used the object-level information to obtain anchors at the event
level. First, we segmented a video into a set of rallies by detecting
the timestamps of score changes (Fig. 4B1).With the scores detected,
we adopted the longest increasing sub-sequence algorithm to model
score change and obtained the match structure. The accuracy of
rally segmentation is 98.5% in the test set. Second, based on the
scene detection results, we derived the start and end frame of each
rally (Fig. 4B2). Third, combining the ball trajectory and player
poses, we recognized the events such as the ball hitting a racket
and the ball bouncing on the table (Fig. 4B3). For example, for the
events of ball hitting, we computed the ball velocity and the dis-
tance between the ball and the players’ hands. To correctly obtain
the poses of the players, we adopted Faster R-CNN for player detec-
tion, and filtered and clustered the bounding boxes using k-means
for player tracking from both sides. In the computation of the dis-
tance between the ball and the players, sometimes the hand nodes
were missed by Openpose because of the occlusion. To resolve this
problem, we additionally considered the neck nodes, which have
never been missed by the model during testing. We regarded the
ball hitting time as the time when the ball velocity changes the
direction, and the distance reaches a bottom. These potential mo-
ments are regarded as anchors, which can help to precisely locate
events occurring in a long video.

5.3 Acquiring Context-level Information.
For the context-level information, we designed a user interface to
support the calibration of the temporal and spatial attributes of
anchors, and the creation of contextual information on the events
according to different analytical goals.

The user interface has three major components: the anchors
(Fig. 5B, 5D), a calibration box (Fig. 5A), and an annotation box
(Fig. 5C). Anchors visually present when and where an event occurs.
The calibration box and annotation box support interactive control
of anchors, and creation of annotation, respectively.
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Figure 5: User interface of EventAnchor for Table Tennis. The interface includes three major components: anchors (B, D), a
calibration box (A), and an annotation box (C). The figure shows a scenario where a user is correcting the timestamp of the
second anchor with the calibration box.

Anchors An anchor contains the temporal and spatial informa-
tion of an event. We visualized the spatial attribute (𝑥,𝑦) directly
on the video frame and the temporal information (𝑡 ) on a timeline.
Fig. 5 illustrates an anchor on an event where the ball hit the table.
The red point on the table (Fig. 5B) shows where the event hap-
pened, for example, where the ball bounced on the table. For the
temporal information, we used a highlighted mark on a timeline
to show where the event is on the video clip (Fig. 5D). Different
colors of marks on the timeline indicate different mark types. Blacks
marks are those that have not been calibrated, and green ones are
those that have been calibrated. The red mark is the one that is
currently being examined.

Calibration Box Anchors are automatically detected by algo-
rithms and inevitably contain errors. The calibration box is used to
calibrate the time of an anchor. The design of the calibration box is
inspired by "Hotbox" [25], a menu widget that arranges menu items
in a circular manner. We divided the circular box into four func-
tional areas: the left and right areas for correcting the timestamp
of an anchor, and the top and bottom areas for adding or removing
an anchor (Fig. 5A). When the user clicks the mouse button on a
video, the calibration box appears and centered at the cursor. To
correct a timestamp, the user can hold the mouse button and drag
the cursor left or right to move timestamp backward or forward. If
an anchor is useless, the user can delete it by dragging down to the
delete area (with a minus symbol). To add a moment as an anchor,

the user can invoke the calibration box and drag up to the addition
area (with a plus symbol).

Annotation BoxWith the annotation box, the user can inter-
actively create and modify the annotation of an event. Similarly,
the annotation box is also a customized "Hotbox". The number of
functional areas is determined by the number of annotation data
types. Fig. 5C illustrates a scenario where the annotation box is
used to annotate the tactics in a rally.

6 EVALUATION
We conducted two experiments to evaluate how EventAnchor for
Table Tennis (ETT) can assist the annotation of table tennis match
videos. The first experiment focused on a task concerning event-
level information, and the second on a semantic task at the contex-
tual level.

6.1 Experiment 1: Annotating Event-Level
Information

The experiment is a within-subjects design. Two treatments are
ETT and a baseline system.

6.1.1 Participants. We recruited 8 (male: 6, female: 2) participants.
They all played table tennis regularly (at least twice a week), and
knew the sport well. We paid each $10 for their participation.
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Figure 6: Results of Experiment 1. The bar depicts the mean value and the error bars represent the 95% confidence interval.

6.1.2 Task. In this experiment, we asked the participants to find
one of the most frequent events: the ball hitting the table in a rally.
They were asked to record when and where the ball hit the table
in a given video. We chose the final of the ITTF World Tour 2019
between Ito Mima and Chen Meng. There are 10 rallies in the video,
and the length of each rally is between 94 to 175 seconds. The
number of the target events in each rally ranges from 5 to 9.

6.1.3 Apparatus. ETT and a baseline system were used. ETT pre-
sented the anchors on the timeline, and visualized the spatial posi-
tion as a highlighted mark overlaying video image. When a video
was played, the video slowed down when approaching an anchor,
and paused at it. Participants could use the calibration box to ad-
just its timestamp. The baseline system had a structure and an
appearance similar to ETT, but with some functions of ETT dis-
abled, including the automatic slowing down and pausing at event
timestamp, the calibration box, and the anchor visualization on
the timelines. To ensure its usability, the baseline system had a
video playback tool for participants to watch and control video
with a keyboard. When seeing the ball hitting the table, partici-
pants could click the position where the ball hit. The system can
record mouse-clicking time and location on the video.

6.1.4 Procedure. Participants were required to annotate all ten
rallies with ETT and the baseline system. Half of the participants
used ETT first, and then the baseline. The other half reversed the
order. In each condition, participants went through three steps:
training, test, and post interview. In the training step, they were
introduced to the task and the system, and practiced annotation on
five rallies different from those used in the test. They could ask any
questions about the task and the user interface.

After being familiar with the task and the system, participants
took the test. Participants were requested to finish each annotation
as fast as they could while ensuring annotation accuracy on time
and location. Annotation data was recorded automatically by the
system in both conditions.

After finishing all tasks, they were interviewed for their feedback
on tasks and systems. The whole experiment lasted for 30 minutes,
15 minutes for each condition.

6.1.5 Results. In total, we collected 461 valid annotations in ETT,
and 466 in the baseline condition. We compared the task time and
errors between two conditions (Fig. 6).

Task Time Task time in this experiment was computed as the
time difference between annotating two consecutive events. The
mean times in two treatments are 6.72 seconds (𝑆𝐷 = 4.40) for ETT
and 7.69 seconds (𝑆𝐷 = 4.49) for the baseline (Fig. 6A), respectively.
The result of a t-test shows that ETT is significantly more efficient
than the baseline system in completing the task (𝑡 = 2.49, 𝑝 = .013).

Task Errors We analyzed two types of errors in annotation:
temporal and spatial errors. Temporal error was measured as the
difference between the frame where a participant annotated and the
correct frame, and spatial error was the pixel difference between
where a participant clicked and where the ball really hit. The aver-
age temporal errors in two treatments are 0.50 frame (𝑆𝐷 = 0.86)
for ETT and 0.85 frame (𝑆𝐷 = 1.41) for the baseline (Fig 6B). A t-test
shows the difference is significant (𝑡 = 2.52, 𝑝 = .01). For the spatial
error, the averages are 8.42 pixels (𝑆𝐷 = 7.9) for ETT and 8.18 pixels
(𝑆𝐷 = 7.04) for the baseline (Fig 6C), and no significant difference
was found between them (𝑡 = 0.13, 𝑝 = .90). These results indicate
that ETT outperforms the baseline in temporal accuracy, and is
comparable in spatial accuracy.

User Feedback In the post interview, all participants, except
one, preferred ETT. They mentioned that the anchors in ETT were
very helpful, and assisted them to locate the target events more
easily, as one participant said: “automatically pausing around the
events prevents me from missing the event, because the match is at a
fast pace.”

Although the user interface of ETT is slightly more complicated
than that of the baseline and includes the hotbox design that is less
common, most participants were positive about the user interface
in general. Two participants indicated that showing the locations of
anchors on a timeline helped to improve the efficiency in annotation.
One participant commented: “this allows me to know in advance
how many ball positions need to be labelled, and roughly when to
be marked.” Some participants were enthusiastic about the hotbox
design actually, as three participants indicated that this design was
efficient for controlling the video time in annotation.

One participant expressed a concern with errors of annotation
in ETT. With the baseline system, participants had to check the
video frame by frame to find a specific event. With the suggestions
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Figure 7: Results of Experiment 2. The bar depicts the mean value and the error bars represent the 95% confidence interval.

in ETT, however, participants could accept the suggestions from
the algorithms without checking whether there was any error in
the suggestion. This concern is legitimate, considering the possible
errors of computer vision algorithms.

6.2 Experiment 2: Annotating Context-Level
Information

The second experiment is also a within-subjects design, with two
treatments of ETT and a baseline system. The overall design of this
experiment is the same as the first experiment.

6.2.1 Participants. We recruited 8 table tennis analysts (male: 5,
female: 3) for this experiment. They were all former professional
players, and had extensive knowledge of the sport. We paid each
participant $15 for their participation.

6.2.2 Task. We asked participants to identify high-level tactics
occurring in the final of the ITTF World Tour 2019 between Ito
Mima and Chen Meng. The task was to find the rallies where Ito
used the tactic of “serve and attack" and won the rally. This tactic
refers to an approach that the server launches an attack at the
third stroke immediately after the opponent receives the ball. We
chose two games (G1, G2) from the match. Both games contained
24 rallies: one lasted 11 minutes with 2 qualified rallies, and the
other 8 minutes with 2 qualified rallies.

6.2.3 Apparatus. We used ETT and a baseline system used by
professional table tennis analysts. ETT generated a series of anchors
of potential rallies, and participants needed to locate and verify
these anchors. They needed to explore all rallies and annotate “serve
and attack” with an annotation hotbox. The rule to generate the
anchors is that a qualified rally was served and won by Ito and
the total strokes by two players were more than 2. The baseline
system had a structure and an appearance similar to ETT, but with
the annotation box and the anchor visualization on the timeline
disabled. Alternatively, there is a confirm button in the baseline
system to specify the qualified rally. Similar to the baseline system
in Experiment 1, the features of basic video control as other video
players were preserved here. To annotate a video, participants
needed to manually check all rallies one by one, and to click the
confirm button for qualified rallies.

6.2.4 Procedure. Participants were required to identify qualified
rallies from two games, G1 with ETT and G2 with the baseline
system. We could not use the same game in two treatments because
participants, as professional analysts, could remember the results
from a previous treatment easily. Two games were chosen carefully
to make sure the task difficulties on them were comparable. We
could not find two games with exactly the same time length, so
between G1 (11 minutes) and G2 (8 minutes) we chose G1 for ETT
and G2 for the baseline to give the baseline an edge. Half of the
participants annotated G1 with ETT first, and then G2 with the
baseline. The other half reversed the order.

All participants went through the training, testing, and post
interview steps. Videos used in training differed from those in test.
The experiment lasted about 20 minutes, 10 for each treatment.

6.2.5 Results. In total, we collected 16 annotated results: eight in
ETT, and eight in the baseline. We analyzed task time and error in
two conditions (Fig. 7).

Task Time The task time on annotating rally tactics was com-
puted as the time between the start and the end of verifying all
rallies in a game. The average times for completing the tasks in
two conditions are 56.4 seconds (𝑆𝐷 = 21.4) per game for ETT
and 144.5 seconds (𝑆𝐷 = 26.7) per game for the baseline (Fig. 7A).
The result of a t-test shows a significant difference between the
means (𝑡 = 7.30, 𝑝 < .001), implying a better efficiency of ETT in
support of this complex annotation task, despite the fact that the
video annotated in ETT is longer than that in the baseline.

Task Errors We examined the precision and recall of the an-
notated results. Precision was computed as the ratio of correct
annotations to the total submitted annotations, and recall was the
ratio of the correct annotations to the ground-truth. The ground-
truth was produced by one of the domain experts we interviewed
(E1) (Section 3.2.1). The average precision is 0.854 (𝑆𝐷 = 0.194) for
ETT, slightly higher than that for the baseline, 0.792 (𝑆𝐷 = 0.217)
(Fig. 7B). The average recall is the same for both treatments, 0.813
(𝑆𝐷 = 0.242) (Fig. 7C).

User Feedback In the post interview, all participants preferred
ETT. They liked the way that anchors help them efficiently locate
the potential rallies. They also enjoyed the user experience in inter-
acting with anchors, as one participant commented: “the anchors
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have indicated when Ito will serve and win the rallies, so that I do not
have to remember this condition, and just need to focus on the tactic
analysis.” Another participant added: “with the help of anchors, I
can confirm the tactic type of a rally by only watching the first three
strokes.”

7 DISCUSSION
The results of our evaluation show that the interaction system based
on the proposed EventAnchor framework can improve the work
on annotating table tennis videos. For ordinary users, who may be
interested in important movements in a match, this method can
help them more quickly identify those events and achieve slightly
better annotation accuracy. For experienced analysts, who care
more about complex techniques used in a match, the system can
improve the efficiency in their work significantly, with similar task
accuracy. These results indicate the reliability of our framework in
support of such annotation activities, the robust of our computer
vision algorithms, and the good usability of our system.

By observing the use of EventAnchor for annotation, we found
that our method can help users overcome some barriers they faced
under their old practices. First, from the perspective of interactions,
EventAnchor allows users to focus more on important analytical
tasks by freeing them from repetitive interaction tasks. With their
old tools, experts have to interact with the keyboard frequently to
locate the timestamps of the events before they analyze and anno-
tate them. With our tool, experts have learned that they can trust
the pre-computed and filtered timestamps of these events, and can
directly focus on judging and recognizing the events. Second, Even-
tAnchor provides better support for the integration of necessary
data with analytic goals. With their old tools, the expert usually
divides their whole workflow into two stages, the annotation stage
and the analysis stage. The focus of the first stage is on filing video
clips and recording such detailed data as stroke type and stroke
position. After the completion of such data preparation work, they
then shift to the second stage and use different types of data for var-
ious analytical tasks. After using EventAnchor, experts discovered a
new annotation-on-demand approach. For example, in Experiment
2, the candidates of the required rally can be filtered and retrieved
quickly with the basic information provided by computer vision
models. The experts can annotate the detailed attributes of the
strokes when necessary. Third, our method can help to reduce the
cognition load and shorten interaction processes. Under their old
practices, experts have to annotate the stroke attributes at the rally
level, because the whole match is clipped into rallies manually in
advance. To be efficient, they often try to memorize the attributes
of several consecutive strokes and record the results at the same
time when watching the rally video. After annotation, they also
need to replay and review the whole rally for validation. Sometimes,
missing a stroke can lead to several extra replays to discover and
correct the errors. Our tool uses computer vision models to provide
them with the fine-grained information, so that they quickly and
accurately see and obtain required data attributes, such as the times-
tamps of the strokes. Consequently, they can reserve their valuable
cognitive resources for analytical tasks, rather than the memoriza-
tion of supporting data, and potentially avoid the mistakes caused
memory errors and resulting task repetitions.

Our EventAnchor can support various statistical and decision-
making tasks. Here we provide two scenarios based on the tasks
seen in our evaluation study. One scenario concerns the use of
our EventAnchor for accurate statistical analysis by leveraging
crowdsourcing. In table tennis, analyzing ball positions in a full
match statistically requires a dedicated analyst to mark the exact
positions of the ball on the table. It usually takes 30 to 40 minutes
to complete the task. With the help of our system, this task can
be accomplished by distributing individual video segments of ball
landing, which are generated by computer vision algorithms, to
crowd workers. Verifying and calibrating a ball position is an ideal
crowdsourcing task, because of the short time required to do it,
about 6.72 seconds, as we learned from our study (Fig. 6A), and no
requirement for domain knowledge. Another scenario is related
to quick decision-making that involves domain experts. In real
matches, coaches and players often need to adjust their tactics or
strategies based on the performance of the opponent. Our system
can help them quickly search through videos to find the tactics of
the opponent and make the necessary adjustments on tactics or
strategies. As our experiment results show that the average time to
discover the rallies with a specific condition is less than a minute
(56.4 seconds) for domain experts (Fig. 7A), our system can provide
real-time support for coaches and players during a break between
rallies. Thus, our system can potentially change the ways people
conduct video analysis by reducing the requirement on domain
knowledge, or by allowing the use of video data for decision-making
in fast-paced situations.

Although the effectiveness of our framework is demonstrated
through a system for table tennis annotation, this approach can be
applied to video annotation in other racket sports. For racket sports
like tennis and badminton, with similar image setups and structures
in broadcasting videos, our framework can be directly applied,
with proper algorithm training. For other racket sports, such as
racquetball and squash, more work is needed to refine computer
vision algorithms to adapt to the different image structures and
player movement patterns in videos, but our framework to anchor
analysis to events can still be used, because many rules of these
sports, such as those concerning ball hitting a racket and the court,
are similar to those of tennis, table tennis, and badminton.

There are some limitations in our work. First, our work could be
more flexible on the definition of events. Our current definition of
events as ball-object contact works well for table tennis analysis, but
people may be interested in other events, such as sudden movement
changes of a player. One approach to expand the definition of
events is to develop an event syntax that includes essential elements
(e.g., ball, player, court, net, racket, etc.), their attributes, and the
spatial and temporal relationships among them, and then let users
interactively define a new event type under the syntax.

The second limitation is insufficient use of audio from videos.
Audio information could be used for event recognition by detecting
the sound of ball contact(e.g., stroke detection [33]), and by adding
information from another sensory channel, provide users with
additional information for annotation and make data annotation
more engaging.

Furthermore, we need better mechanisms to motivate users to
carefully examine and calibrate the results suggested by algorithms.
As shown in Fig. 6C, the spatial error in annotating ball position
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with ETT is slightly larger than that with the baseline system, al-
though the difference is not found significant. New designs are
needed to encourage user engagement with algorithms and compu-
tational results.

8 CONCLUSION
This paper proposed EventAnchor, a framework to support data
annotation of racket sports videos. This framework uses events
recognized by computer vision algorithms as anchors to help users
locate, analyze, and annotate objects more efficiently. Based on this
framework, we implemented a system for table tennis annotation,
and the results from our evaluation study on the system show
significant improvement of user performances in simple annotation
tasks (e.g., labeling ball position) and in complex tasks requiring
domain knowledge (e.g., labeling rallies with specific tactics).

Our method can guide the design of systems for video annota-
tion in other racket sports, such as tennis and badminton. With
improvements on algorithms and interaction designs, its applica-
tion domain can be extended. We will explore designs that allow
users to define new event types, so that the system can recognize
and process more complex events and support annotation on fast
and dynamic videos in other domains. In addition, we will improve
interaction design to make users more engaged with computational
results, further strengthening the collaboration between human
brain powers and machine computation powers.
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