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ABSTRACT
Homomorphic encryption, secure multi-party computation, and dif-
ferential privacy are part of an emerging class of Privacy Enhancing
Technologies which share a common promise: to preserve privacy
whilst also obtaining the benefits of computational analysis. Due to
their relative novelty, complexity, and opacity, these technologies
provoke a variety of novel questions for design and governance. We
interviewed researchers, developers, industry leaders, policymak-
ers, and designers involved in their deployment to explore motiva-
tions, expectations, perceived opportunities and barriers to adop-
tion. This provided insight into several pertinent challenges facing
the adoption of these technologies, including: how they might make
a nebulous concept like privacy computationally tractable; how to
make them more usable by developers; and how they could be ex-
plained and made accountable to stakeholders and wider society.
We conclude with implications for the development, deployment,
and responsible governance of these privacy-preserving computa-
tion techniques.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy;
Social aspects of security and privacy; Privacy protections.
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1 INTRODUCTION
HCI research on privacy has traditionally focused on end-users:
understanding their privacy attitudes and mental models, studying
their privacy-related behaviours, and designing tools to help them
manage data disclosure according to their preferences. While impor-
tant, this paradigm of end-user privacy also has limitations. First,
individuals may have their data processed in remote and opaque
ways by dint of being taxpayers, credit risks, or suspected terrorists
— not ‘end users’ as traditionally conceived. In such cases we still
need to understand how privacy as a human right and public good
can be reflected and governed in such systems. Second, the end-user
privacy paradigm neglects the many other entities who play an
important role in articulating, navigating, and embedding privacy
in a range of contexts. If HCI is about reflecting human values in
computer systems more broadly [99], it is equally important to
study those people, whether they are developers [10], designers,
risk managers, or policy makers. Finally, addressing privacy as a
problem of end-user interaction often yields depressing results due
to the sheer complexity of personal data processing making it diffi-
cult for end-users to comprehend the choices and tools available.
This is perhaps especially true when such complexity is the result
of modern cryptographic techniques designed to protect privacy
[115].

These three limitations are particularly salient in the context
of this paper, which addresses technologies for privacy-preserving
computation. These are a subset of Privacy Enhancing Technologies
(PETs) which have emerged in recent years. These include Homo-
morphic encryption (HE), secure multi-party computation (SMPC),
and differential privacy (DP). These foundational technologies share
a common promise: to preserve privacy while also obtaining the
benefits of computational analysis. HE enables computation on
encrypted data, making it possible to outsource computation to
another entity without them ever having access to the input data
in the clear. SMPC allows multiple parties to jointly perform a
computation based on multiple respective inputs without revealing
those inputs to each other. DP refers to a way of measuring the
extent to which the output of a computation reveals information
about an individual, and a range of associated techniques for re-
ducing it. While these technologies have been available in some
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form for years, and to some extent already are in deployment, re-
cent progress in their foundational techniques and computational
tractability has led some to anticipate their imminent adoption.1

Compared to systems and contexts typically studied in privacy-
related HCI research, these privacy-preserving computation tech-
niques may be far removed — conceptually, operationally and expe-
rientially — from the entities whose privacy they purport to protect.
While HE, SMPC, and DP are sometimes touted in the marketing
campaigns of some device makers,2 for the most part these tech-
nologies are deployed as invisible infrastructure rather than being
positioned as features which end-users are expected to value, let
alone understand or control themselves. In many other (actual or
envisioned) deployment contexts, the data being kept private may
relate to individual data subjects who are not informed or engaged
with its processing; and even if they were aware, they may have
no ability to distinguish between whether such processing was
genuinely ‘privacy-enhancing’ or not. Furthermore, the mathemat-
ical and computational complexity underpinning these techniques
raises particular challenges to explaining them to various stakehold-
ers; not only end users and/or data subjects, but also developers,
investors, product managers, and policymakers.

These differences make privacy-preserving computation tech-
nologies a prime case study for an expanded understanding of
privacy within HCI beyond traditional paradigms of user attitudes
and behaviours[41], to consider developers[3], managers, policy-
makers and others [86], and the roles they play in defining and
operationalising goals like security and privacy. For better or worse,
the development and adoption of these technologies, and the po-
litical values and consequences they reflect may ultimately have
relatively little to do with ‘end users’ as traditionally conceived.
With these considerations in mind, this paper aims to explore the
following:

(1) What challenges are associated with the adoption of privacy-
preserving computation techniques for different stakehold-
ers?

(2) What are the motivations for adopting them?
(3) Why and how should privacy-preserving computation tech-

nologies be explained, governed, and made accountable to
data subjects and wider society?

To gain insight into these questions, we undertook a series of
interviews with a variety of stakeholders involved in various ways
in the development and adoption of privacy-preserving compu-
tation technologies (PPCTs). These included cryptographers and
theoretical computer scientists working on foundational PPC tech-
niques, developers of practical tools and libraries for non-expert
developers, senior managers and policymakers assessing and iden-
tifying real-world use cases, practitioners building PPC products,
and designers working with PPCs as a design material. Our aim
was to draw out implications for HCI and design raised by this new
class of technologies.

1Recent industry analyst reports have suggested that PETs are ‘experiencing a
renaissance’[25], and that 2020 was the ‘the year of PETs’[29]
2See e.g. Apple https://www.apple.com/privacy/docs/Differential_Privacy_Overview.
pd and Google’s [38] DP initiatives

2 BACKGROUND
We begin by briefly introducing emerging privacy-preserving com-
putation techniques. We then situate our approach to studying
them in relation to prior related work in HCI.

2.1 Overview of Privacy-Preserving
Computation Technologies

Privacy-preserving computation is a subset of Privacy-Enhancing
Technologies (PETs). PETs are a broad category which could include
everything from a sticker placed over a webcam [78] to advanced
cryptographic techniques [82]. Existing and well-established exam-
ples include encryption schemes used to secure data at rest, end-to-
end encryption protecting data over the network, and anonymous
routing protocols to prevent interactions between identities from be-
ing revealed. Such technologies are already widespread, embedded
in products and as part of the global internet infrastructure. While
they each have different underlying approaches and motivations,
these technologies are primarily concerned with the protection of
data, at rest and in transit. They generally assume that once data
is safely transferred to a secure endpoint, it can be decrypted and
computed on in the clear; that a single entity performs the com-
putation; and that whether or not the result of the computation is
‘private’ has a binary answer.

A more recent wave of PETs — including homomorphic encryp-
tion, secure multi-party computation, and differential privacy —
allow these assumptions to be relaxed or even abandoned altogether.
We briefly introduce them here.

2.1.1 Homomorphic Encryption. Informally, homomorphic en-
cryption (HE) enables computation over encrypted data without
ever ‘seeing’ the input or the output. This is realized through a
specific encryption and decryption scheme. In effect, a user could
send their encrypted data to a service provider who could then per-
form the desired computation and send back the output to the user,
while remaining oblivious to both the input and the output. More
formally, homomorphic encryption is an encryption primitive that
enables secure evaluation of an arbitrary circuit 𝑓 on an encryp-
tion 𝐶 (𝑥) of a plaintext 𝑥 , without decrypting 𝐶 (𝑥) in the process,
and without requiring any information about the private key. Such
an encrypted evaluation results in an encryption 𝐶 (𝑓 (𝑥)) [45, 94],
which can at a later point be decrypted by the owner of the private
key, to reveal the result 𝑓 (𝑥), as if 𝑓 had been evaluated on the
plaintext data. In principle, homomorphic encryption can be used
to evaluate any circuit on encrypted data, but often a weaker func-
tionality called leveled homomorphic encryption is used instead,
which allows only circuits of a predetermined (but arbitrarily high)
depth to be evaluated on encrypted data. In practice, the encryption
scheme must be parameterised according to a desired depth bound
of some interesting class of circuits. Homomorphic encryption, and
often leveled homomorphic encryption, has found its application
in problems such as secure data retrieval [6, 7, 21, 119], outsourced
computation [12, 66] and secure machine learning as a service for
sensitive data [46, 53, 97], amongst others.
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2.1.2 SecureMulti-PartyComputation. SecureMulti-Party Com-
putation (SMPC) is a class of cryptographic primitives which en-
ables secure evaluation of a function over data shared across multi-
ple parties. It was formally introduced in 1982 as a 2 party protocol
for the Millionaire’s problem [118]. Informally, SMPC primitives
allow multiple parties to come together and jointly compute a func-
tion on their combined inputs while remaining oblivious to each
other’s inputs; the Millionaire’s problem involves two parties learn-
ing which has greater wealth without revealing their respective
fortunes. Formally, in an 𝑛−party setting, party 𝑃𝑖 possess an input
𝑥𝑖 and gets an output 𝑦𝑖 upon computation of function 𝑓 over the
combined set of 𝑥𝑖𝑠 (𝑖 ∈ {1...𝑛}). The secure computation guar-
antees privacy of the individual inputs 𝑥𝑖𝑠 . Most SMPC protocols
could be defined by the choice of the circuit for computing a partic-
ular function and the type of secret sharing scheme. Use cases for
SMPC include secure operations over distributed sensitive data such
machine learning [5, 44, 59, 84, 93], genomic comparison [39, 61]
and private set operations [55, 56].

2.1.3 Differential Privacy. : Differential Privacy (DP) [33] is a
framework for sharing information based on a dataset while sta-
tistically limiting information exposure about the individuals in
the dataset. More broadly, the idea of differential privacy is to de-
ploy a mechanism where the effect of a single substitution in a
dataset is very small. In effect, a query on a dataset with such a
mechanism in place does not reveal anything substantial about a
single individual. Differential privacy may not always be consid-
ered a privacy-enhancing technology per se, but rather a theory for
measuring privacy in a particular way. However there are several
techniques which are closely associated with differential privacy, all
of which involve adding noise to results according to differentially
private constraints; we therefore refer to this family of techniques
loosely as differential privacy technologies. Formally, a randomized
function 𝑓 gives (𝜖, 𝛿)-differential privacy for all databases 𝐷 and
𝐷 ′, non-negative values 𝜖 , 𝛿 and ∀𝑆 ⊆ range of 𝑓 , where 𝐷 and 𝐷 ′

differs by at most one record iff,

𝑃𝑟 [𝑓 (𝐷) ∈ 𝑆] ≤ 𝛿 + 𝑒𝜖𝑃𝑟 [𝑓 (𝐷 ′) ∈ 𝑆]
Here 𝛿 and 𝜖 are the privacy parameters. Differential privacy is
one of the more widely deployed privacy-preserving computation
technologies. It can be applied to querying databases[62], building
differentially private machine learning models [2, 114] and per-
forming statistical analysis [34, 35] with privacy guarantees. More
recently, the US census used DP in 20203, Apple has deployed local
DP for a number of features4 and Google has been using DP for col-
lecting data over its Chrome browser [38] in a privacy preserving
manner.

2.1.4 ‘Privacy-preserving computation’. Despite their differences,
these technologies have all been classed as ‘tools for privacy-preserving
computation’[108], which enable ‘the derivation of useful results
from data without giving other people access’ to such data [102].
These privacy-preserving computation technologies are still an
emerging technology. While significant theoretical progress has
been made, this has yet to be translated into widespread adoption.
3https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_
the_confi.html
4https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

However, numerous libraries exist for HE, SMPC and DP5, the num-
ber of government-funded PPC projects is increasing [108], and
various industry and policymaking forums have publicly heralded
their potential. Recent reports and working papers have catalogued
actual or potential use-cases, as well as noting possible usability bar-
riers including programming complexity, computational overhead,
and parameter selection [20, 108].

2.2 Related work on PETs in HCI
Much research on privacy in HCI is concerned with how end-users
value, negotiate, and manage privacy in the context of their inter-
actions with computers. Work in this vein involves: understanding
the attitudes [67, 69, 101, 109, 110], expectations [9, 75] and mental
models [64] of end-users regarding how their data is collected and
used; studying privacy-related behaviours such as willingness to
share data [4, 74] and use of protective measures [14]; and evaluat-
ing and designing tools for privacy management such as permission
settings [73, 76], privacy notices [11, 98], and privacy assistants
[77]. Related research in usable privacy and security addresses the
usability of various end-user PETs tools. These include privacy and
security aspects of ubiquitous tools e.g. web browsers [26, 57], as
well as more advanced specialist tools, such as end-to-end encryp-
tion [115] and anonymous communication and routing tools [22].
Such work is highly relevant to contexts in which end users directly
interact with systems in ways that may affect their privacy, and
where there are opportunities to (re)design tools and interfaces
to give them more control. Such work is premised on the ideal of
individual users being able to understand at least some aspects of
how their data is processed, and having the potential to exert some
meaningful choices over it.

In some cases, privacy-preserving computation technologies
might be usefully studied from this end-user perspective. Bullek et
al. [19] studied people’s comprehension of the randomized response
method for local differential privacy [113]. Participants were asked
a series of questions, the answers to which were perturbed with
noise to provide privacy. In response to a final question about a
particularly sensitive topic, they were able to choose how much
perturbation to add (i.e. the value of 𝜖). While most participants
selected the lowest (most privacy-preserving) value for 𝜖 , surpris-
ingly, 20% chose the highest (least privacy-preserving) value for 𝜖 .
Some participants explained this was because adding more noise
felt like lying. Xiong et al. [117] also studied participants’ willing-
ness to share data with a hypothetical differentially private system.
They examined the effect of different descriptions of differential
privacy (including real descriptions provided by technology compa-
nies and the U.S. Census bureau) on willingness to share, and their
findings suggest that certain descriptions (in particular, implication
descriptions) are more understandable and increase willingness to
share data as a result. Finally, Qin et al. explored usability and un-
derstanding in the context of privacy-preserving data aggregation
initiatives based on MPC, finding that using various analogies to

5For HE: Microsoft SEAL [1], HElib (https://github.com/homenc/HElib), PAL-
ISADE (https://palisade-crypto.org); for SMPC: Crypten (https://crypten.ai), emp-
toolkit [112], SPDZ (https://github.com/bristolcrypto/SPDZ-2); for DP: Google’s DP
framework (https://github.com/google/differential-privacy), Diffprivlib (https://github.
com/IBM/differential-privacy-library), Pysyft [96].
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explain the process of additive secret sharing increased participants’
confidence in the scheme [92].

However, inmany contexts, the ‘data subjects’ are not co-extensive
with the ‘users’. In the case of the PPCTs mentioned above, there
may be several primary users (which may include developers and
others) and many wider ‘stakeholders’ (e.g. commercial and govern-
ment partners, the wider public). Rather than studying end users
who are also data subjects, then, we might instead follow previous
HCI research on privacy and security which focuses instead on
other actors, such as developers (e.g. [3, 8, 10, 48]). Balebako et al.
note that while users may be concerned about privacy, they are
generally not ‘empowered to protect themselves’; by contrast ‘the
decisions made by app developers have great impact’ [10]. Study-
ing developers, designers, and others can reveal both practical and
organisational challenges hindering the deployment of privacy and
security technologies [3, 42], highlight discrepancies between pri-
vacy research and privacy engineering [51, 68], as well as elucidate
the moral dimensions of design. While some studies of software
developers suggest that they may ‘not have sufficient knowledge
and understanding of the concept of informational privacy’ [52],
others do explicitly engage with the ethical and political ramifi-
cations of their work; e.g. Rogaway [95] who acknowledges how
the field of cryptographic privacy technologies has ‘an intrinsically
moral dimension’.

This kind of reflexivity on the part of developers and designers
is something acknowledged and addressed in approaches like Value
Sensitive Design (VSD), which aim to ‘illuminate the ethical and
moral responsibility on the part of the designer rather than the
user’ [41]. To understand how particular technologies are imag-
ined as solutions to problems [60], we may need to study a wide
variety of actors involved in their development, not only engineers
but also those involved in the business of marketing them [86].
By encompassing the full breadth of different actors involved in
creating and deploying these systems, we are also able to grapple in
different ways with the trade-offs and tensions inherent in the field
of privacy-preserving computation, and ask questions like ‘“Who
is making the design decision?”, “Who is paying for it?”, “What is
this saying about the user?”’ [54].

Finally, there is also work which critically addresses Privacy-
Enhancing Technologies from a philosophical and conceptual per-
spective. For instance, Tavani and Moor [107] assess how earlier
PETs such as PGP and anonymity tools may address privacy as
individual control, but do not provide ‘external’ control beyond
the user, which they argue is necessary to protect privacy in the
round. Gurses and Berendt point to the limitations of PETs that
stem from understanding privacy solely in terms of confidential-
ity [50]. Stalder points to the ways that PETs designed for individual
use may occlude broader social meanings of privacy [104], while
Phillips notes how PETs designed to assist businesses with automat-
ing compliance with privacy laws reinforce a restricted notion of
privacy as unwanted intrusion [89].

3 RESEARCH APPROACH
Given that the technologies being addressed here are still emerging,
and the broad and exploratory nature of our research questions,
we chose to undertake in-depth semi-structured interviews with a

select range of experts from a range of backgrounds and roles [15].
All had direct experience of working on projects relating to privacy-
preserving computation, and occupied different strategic positions
in the developing ecosystem. They included: researchers working
across HE, SMPC and DP research; industry practitioners and de-
signers with experience delivering practical applications of these
technologies; as well policy experts with experience in PETs. We
deliberately selected some experts whose careers and roles bridged
between the domains of research, industry, or policy, some having
moved from one to the other over the course of a career, while
others maintaining feet in multiple domains simultaneously. These
participants can be seen as ‘boundary workers’, working between
the boundaries of science and policy to facilitate the co-production
of knowledge and innovation [58] and ‘knowledge brokers’ who
facilitate connections between scientific and other audiences [83].
Including a variety of different roles also reflects the nature of these
technologies as ‘use-inspired basic research’[87] operating between
‘basic’ and ‘applied’ research paradigms [106]. This enabled us to
not only understand how the knowledge surrounding these tech-
nologies is made in specific places (e.g. research labs, technology
companies, government) but also ‘how transactions occur between
places’[100].

Because these technologies are still emerging, we inevitably
could only draw from a small class of professionals, whose roles in
the production of these technologies are to some extent ill-defined.
As is typical with expert interviews, there was no comprehensive
list of relevant experts to sample from; we therefore built a ‘sample
frame’ based on publicly available materials from a wide variety
of sources including research papers, industry and policymaking
fora, and press [47], to identify potentially relevant experts, and
also used snowball sampling. As a result of the variety of roles and
experiences of our 9 experts (see Table 1), we used a semi-structured
interview format slightly tailored to four different roles (research,
industry, policy, design). We invited participants to discuss their
experiences, motivations, perceived opportunities and barriers, re-
lating to this space. Open ended questions allowed us to have rela-
tively free reign to explore these issues [88]. The interviews were
conducted over video chat during Spring and Summer 2020. The 9
interviews varied in length between 35-75 minutes, with the aver-
age taking 55 minutes, producing 8.3 hours of audio recordings in
total, which were transcribed. All parts of the study were approved
by our institution’s ethics review committee. We used thematic
analysis [17] to identify key themes and ideas discussed by experts.
Two of the authors independently developed a set of codes based
on close reading of disjoint subsets of the interview transcripts,
using an open coding process. The two authors then discussed and
consolidated their codes to derive a common set, which was then
applied by both authors to all the interview transcripts, and memo
notes were taken to record observations about the codes and their
relation to one another [72]. A final round of discussion based on
this data resulted in a set of themes and sub-themes, presented in
the following section.

4 FINDINGS
We divide the findings from our interviews into twomain areas. The
first addresses the technical challenges and opportunities around
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Participants Description (& years experience in PETs)

P1[R] Cryptography Researcher and an industrial PETs li-
brary developer (20-30y experience)

P2[R] Cryptography Researcher at company specialising in
privacy preserving computation (5-10y experience)

P3[R] Cryptography Researcher and an industrial PETs li-
brary developer (5-10y experience)

P4[P] Law and Policy professional working on industrial
adoption of privacy-preserving ML (4-6y experience)

P5[P] Senior government adviser on technology, with
strong interest in PETs and their applications (5-10y
experience)

P6[I] Security and Privacy Researcher working in execu-
tive role at large tech company (2-5y experience)

P7[I] Data Scientist working on privacy at a ‘big four’ ac-
counting firm (5-10y experience)

P8[I] Researcher at consultancy specialising in privacy pre-
serving computation as a service (2-5y experience)

P9[D] Designer at a tech and design agency specialising in
ethical use of data & AI (2-5y experience)

Table 1: A summary table of the total participant sample
from Research (R), Policy (P), Industry (I) and Design (D).

the adoption of privacy-preserving computation techniques - pri-
marily concerning their transition from theoretical research into
practical application. The second concerns the motivations and
goals for deploying these techniques to address commercial and
societal goals, and how the institutions that deploy them might
explain and be held accountable for their use.

4.1 Technical challenges and opportunities
4.1.1 From Theory to Practice. Many participants brought up how
advances in the theoretical grounding on which privacy-preserving
computation techniques are based may not translate straightfor-
wardly into specific real-world applications. This was acknowl-
edged by both research scientists working on those foundations,
and practitioners attempting to deploy the technologies in partic-
ular contexts. Many participants expressed confidence that those
theoretical advances would translate into practice in time. P3, a
researcher, argued that while it is ‘early stages, from the business
development perspective of homomorphic encryption’, he was never-
theless ‘confident that [the] technology is useful, practical’ (P3[R]).

It was generally accepted that much of the research had only
reached the stage of proofs-of-concept rather than deployments;
while ‘doable in principle’, ‘there is a lot of work to do before that
bigger picture potential can be realized’ (P1[R]). Similarly, P9[D] ex-
plained that as a designer she was ‘trying to make them more widely
understood within the design and tech community ... There’s lots of
research in academia at the moment, but not very many examples of
them being used in practice’.

The policy experts we interviewed were optimistic that the tech-
nology was already nearly ready for practical deployment. For
P4[P] ‘the technology has scaled to the point that ... it’s definitely
commercially deployable’. For P5[P], while practical deployment
would require a series of ‘reasonable engineering and architectural
compromises’, he was still optimistic that ‘existing approaches to
homomorphic encryption are tractable’.

While both research scientists and policy experts were optimistic
about the big picture, those trying to bridge theory and practice
on the ground expressed frustration that much of the research was
not directly relevant. In some cases, this was because the scientific
work made simplifying assumptions that were rarely satisfied in
real use cases. In the context of trying to apply differential privacy
techniques to a project involving time series data, P7[I] admitted
that he ‘really struggled, you know, seeing the value in all those
techniques that academia likes to talk about ... how am I going to use
that with time series?’.

Similarly, several participants pointed to the variety of messy
underlying data and software issues that exist on the ground that
hamper deployment. P7[I] explained that the initial challenges are
around ‘how do we list data assets, andmanage access, at an enterprise
scale?’; while P8[I] spoke of clients with various custom systems
and data formats, so ‘while we’re solving the security aspect of the
communication between counterparties ... we still haven’t fixed this
engineering problem - it’s not going away’.

P2[R], a research scientist who had worked on both foundational
theory and engineering, explained how applying techniques in prac-
tice involved moving carefully between theory and engineering:

‘Engineers do need to learn a lot to deploy these kind
of technologies and what makes the whole thing com-
plicated is that they need to acquire a kind of knowl-
edge that is not something that the university pro-
fessor knows ... a lot of low level optimizations make
a huge difference, and yeah, from theory to practice
they need to somehow be invented.’

In P2’s opinion, such work would not come from a ‘linear trans-
mission of knowledge’, but rather through continuous iteration and
‘course correction’ between theoreticians and engineers.

4.1.2 Interdisciplinarity and translation between roles. As well as
theoreticians and engineers to bridge the gap between theory and
practice, several participants discussed the need for people with
different skills, backgrounds and motivations to work together. This
included not only the combinations of different expertise involved
in foundational privacy-preserving computation research such as
math, statistics, and cryptography, but also specialists in specific ap-
plication domains. As P2[R] noted, successful deployment depends
on a ‘component of multidisciplinarity’:

‘In my experience this is very hard to get the right peo-
ple and crucially, with the right incentives in the same
room ... You not only need data scientists, but also
security engineers, mathematicians and then experts
in the application domain.’

The differing motivations and cultures of these different com-
munities was seen by some as as a problem as it leads to certain
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important problems being neglected. Commenting on the misalign-
ment between incentives of academic researchers and industry,
P3(R), who had worked in both sectors, lamented how research is
‘driven by the need to get published; it favors more ... performance
breakthroughs, functional breakthroughs’, meanwhile, topics like
usability are ‘not so interesting for the basic core research community’.

The need for an even broader range of disciplinary expertise
and professional skills was articulated by P4[P], who described her
role as ‘to bridge the lexical gap between technologists, lawyers, and
policymakers to defragment the current initiatives in PETs’. Drawing
from previous experience working on AI in government, where
‘insulated development’ led by technologists failed to account for the
‘constitutional implications’ of these technologies, she warned that
‘the same could happen for PETs without this sort of ... interdisciplinary
discourse’.

4.1.3 Usability for Developers. A common theme among both re-
searchers and industry practitioners was the complexity of apply-
ing privacy-preserving PETs from a software engineering perspec-
tive. They discussed a set of inherent challenges facing developers
around flexibility, performance, and specifying appropriate param-
eters.

Several participants described how PPCTs, in particular homo-
morphic encryption, can be very ‘brittle’ (P1[R]): small changes in
parameters can result in drastic reductions in performance, security,
or privacy guarantees. Such sensitivity can be hard for developers
to anticipate and manage, especially as there are many different
parameters to tune. This was contrasted against other PETs, like
public key cryptoschemes, where there is one main parameter —
key size— which has a fairly predictable relationship with security
guarantees and computational overheads:

‘I mean RSA, you have the bit length and that’s pretty
much it. These things [homomorphic encryption ap-
plications] you have a ton of decisions to make when
it comes to how to instantiate it, and they have im-
plications for both speed and for the actual function
that you will need to compute.’ (P1[R])

This results in problems for developers not just in the initial
implementation of a privacy-preserving technique, but also as they
inevitably need to update a system to ‘evolve when you need to
change various details ... performance and tractability can be so highly
dependent on small details’ (P1[R]).

Participants articulated this as a trade off between approaches to
building PPCTs that either work out-of-the-box but have poor and
unpredictable performance, or that have reasonable performance,
but require fine-tuning by engineers. For instance, while the in-
vention of fully homomorphic encryption enables both addition
and multiplication and therefore arbitrary computation, specific
applications still need to be converted into those arithmetic opera-
tions and may incur great computational costs depending on how
that is implemented. While it may be possible to ‘come up with a
system with adequate performance for your application’, this often
requires having an application which is ‘fully specified and well
defined in mind, and you have a team of experts working for you’
(P1[R]).

Several participants spoke about the development of privacy-
preserving computation software libraries for developers (see 2.1.4),

often contrasting two approaches which reflect the trade-off articu-
lated above: on the one hand, libraries which create an abstraction
layer which obscures the underlying complexity; and on the other,
libraries which expose all of that complexity so that the developers
still need to create bespoke solutions for their application context.
P1[R] noted that many developers expect a library to provide ‘ab-
stractions that are convenient’; otherwise ‘It’s like telling people: OK,
I’ll give you transistors and you’ll build from them ... people don’t
think this way and for good reason’. P2[R] made a comparison to
machine learning frameworks (e.g. Tensorflow and Scipy):

They have a very nice abstraction layer that allows
them to say "OK, here’s my function over the re-
als: optimize it, under the hood"... We will have wor-
ried about implementing matrix multiplication super
quickly over floating point numbers so that the data
scientists can assume [it’s] like doingmath on their on
their notebook, right? This level of abstraction doesn’t
exist yet [for privacy-preserving computation]

However, P2[R] cautioned against such an approach for privacy-
preserving computation libraries, because it would preclude ‘a lot of
optimizations that come from understanding the underlying protocol’.
P1 echoed this, stating that:

‘The only way that we know now of making the com-
putation go reasonably fast is to use a lot of tricks and
the developer needs to know about those tricks’

As a result, P2[R] felt that ‘general purpose tools’ would inevitably
fail to meet developer’s performance expectations and thus give
them a mistaken impression about the true potential of PETs.

While many participants were in favor of some form of stan-
dardisation via libraries, P8[I] explained that the prospects for a
standard platform depends on where the technologies are being
deployed to. In the context of SMPC, because smartphone operat-
ing system providers ‘control the platform, they can decide ... this is
how it’s going to work’; whereas P8[I]’s work involved deploying
SMPC into a wide range of different clients’ environments where
‘we can’t really dictate to them how they store their data’; as a result
the possibility for standardisation was small.

4.2 Motivating, explaining and governing
privacy-preserving computation

Our participants also raised various insights relating to the motiva-
tions for adopting PPCTs, and challenges relating to explanation
and accountability.

4.2.1 Motivations. Unsurprisingly, ‘privacy’ was often cited as the
motivation for developing and deploying privacy-preserving com-
putation technologies. However, some subtly different articulations
and understandings of privacy emerged from our interviews, as well
as some other motivations which went beyond privacy altogether.

Some very directly motivated the adoption of privacy-preserving
computation by reference to the interests of individuals in privacy
and the protection of their personal data: ‘it’s individual privacy
- it’s human rights’ (P6[I]). In comparison to the push for similar
technologies in other markets, privacy-preserving computation was
more a response to individual privacy:
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‘People do understand when their privacy is violated.
So ... the push for these technologies is very different
to the push the semiconductor industries have had
... So I give a lot of time on the examples that are
user-centric’ (P6[I]).

However, appeals to individual privacy were often mediated via
other pressures. First, organisations deploying PETs may not have a
direct relationship with those individuals, but are instead concerned
with third-parties affected through business-to-business relations:

‘You have customers: these may be business to busi-
ness customers, but that also extends to customers of
customers and therefore it boils down to individuals’
(P6[I])

Second, some cited the existence of privacy and data protection
regulation as an incentive to provide and deploy PETs: ‘because
of GDPR [the E.U. General Data Protection Regulation]... all the
regulatory environment is ... very favorable for providers’ (P7[I]).
This regulatory pressure meant that investment in PPC could be
accounted for in terms of corporate risk management: ‘to have com-
pliance at least formally speaking with GDPR ... it’s really protecting
assets of a company’ (P6[I]).6

Third, P9[D] argued that rather than just enabling existing data
processing to be done in a more privacy-preserving way, these tech-
nologies could enable new insights which ‘you might not have been
able to gain before because of the sensitivities around the data that
you are using’. P4[P] highlighted a range of ‘missed opportunities’
for privacy-preserving computation ‘for a good purpose’. These in-
cluded cases such as the Boston Women’s Workforce Council who
‘used secure multiparty computation to confidentially analyze gender
wage gaps without ... disclosing who the salary belonged to’.7 P5[P]
noted the opportunities for government national security services
to use HE techniques like private set intersection to identify sus-
pects without combining certain databases in the clear, something
that might not otherwise be undertaken due to the ‘intrusiveness’
of sharing data of large numbers of innocent citizens between de-
partments.8

While individual privacy was cited by all participants as an im-
portant motivator, it was often an indirect motivator, and in some
cases perhaps insufficient on its own (e.g. without being coupled
with new opportunities to extract value from data). Other par-
ticipants articulated motivations for pursuing privacy-preserving
computation which had nothing to do with individual privacy as
such. For example, for some researchers (e.g. P1, P2), it was basic
intellectual curiosity (‘somebody thinks of something that ... looks
interesting to them’ (P1)). Other cases included where competing
businesses would have a mutual interest in the output of some com-
putation on their respective data, but would not otherwise share
that data out of ‘fear of losing a competitive edge’ (P6[I]). Intellectual
property protection was also frequently cited as a key motivation
for many business applications.

Privacy-preserving computation techniques were also seen by
some as offering the possibility to navigate regulatory obligations
and trade-offs in different ways. First, they have the potential to

6A sentiment echoed in [20]
7https://thebwwc.org/mpc
8A use case discussed in [27].

fulfill obligations to protect data in new, more ‘technological’ ways,
offering ‘technological safeguards that can’t be easilly overridden’, the
kind of protection that ‘paper safeguards, like contractual guarantees
and policies, just can’t provide’ (P4[P]). They were seen as especially
promising in cases where different regulatory obligations might
appear to be in conflict, as P4[P] explained:

‘Anti money laundering regulations are very data
maximalist; they want you to collect more data [to
prevent] financial crimes. But in the meantime the
GDPR is quite the opposite; it wants you to minimize
data, ... and this really conflicts with the regime of
AML. I think that PETs could actually cut through
these legal conflicts and really provide a practical so-
lution ... it’s not actually transferring PII, but it still
allows for banks to prepare for AML protocols’

Similarly, for P5[P], privacy-preservingmethods had the capacity
to change what is possible without sharing data and thereby shift
the scales in legal balancing tests [18] that might otherwise make
certain data analysis unlawful:

‘ UK law ... sets out a test for those of us in national
security which is necessity and proportionality. So if
you can shift the proportionality, then you’re in a
better position so you can avoid intruding, you can
avoid privacy risk’.

In these ways, such techniques were envisioned by P4[P] and
P5[P] as enabling organisations in the public and private sector to
break free of what P4[P] called ‘legal gridlocks’ that currently are
(or are perceived to) exist around data use and enable new kinds of
analysis.9

4.2.2 Explanation. Our participants discussed various facets relat-
ing to explaining privacy-preserving computation, including how
they go about explaining it to different audiences (and in some
cases, why they don’t even try).

The researchers described a variety of contexts in which they
had had to explain underlying techniques and their strategies for
doing so. For a general audience, P2’s strategy was to explain simpli-
fied versions of protocols, such as simulating a secure multi-party
computation for dating using playing cards (see [80]). While these
were ‘fun to explain’, P2[R] was unsure about the effectiveness of
such explanations:

‘Then in the future, [the audience] will be like: ”Oh
yeah, multi-party computation, the thing with the
cards.” That doesn’t mean that my explanation was
effective... My feeling is that people tend to end up
amused and satisfied.’ (P2[R])

Such explanations were offered as a starting point to encourage
people ‘who are attracted by that kind of magic’ and would ‘go into
Wikipedia immediately after’ (P2[R]). However, P3[I] felt that there
was a lack of accessible educational material: ‘there is certainly not
enough material and the classical crypto papers are essentially useless
for someone who is not an encryption expert’; they suggested that

9While a legal analysis of potential conflicts between these two areas of law is beyond
the scope of this paper, we note that data protection and financial services regulators
have, at least in the UK, affirmed their compatibility in general terms: see https:
//www.fca.org.uk/news/statements/fca-and-ico-publish-joint-update-gdpr.

https://www.fca.org.uk/news/statements/fca-and-ico-publish-joint-update-gdpr
https://www.fca.org.uk/news/statements/fca-and-ico-publish-joint-update-gdpr
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explanations of core concepts might be more effective if tackled as
part of a standardisation process and included within libraries.

Several participants also cautioned that the kind of explanations
offered (if any) need to be tailored to the audience. On the one hand,
explanations could be too technical: ‘If you start with equations
... you lose 99 percent of the audience right away’ (P7[I]). On the
other hand, short intuitive explanations might be too simplistic for
informing executive decisions:

‘So one thing is getting people interested, and the
other one is informing, like, executive decisions. I
don’t think they should be informed ... by two minute
stories... I don’t think decisions about encryption are
made based on an intuitive understanding of crypto’

For P9[D], designers have a role to play in explaining privacy-
preserving techniques through prototyping their use in specific
contexts. This included explanations to end users, but also ‘a differ-
ent language to explain it to those designers as well’. Previously, their
design agency hadn’t ‘seen much demand for them on the industry
side’; however, that changed after publishing a blog post explaining
visually how differential privacy could work in the context of a
project on identifying inequalities in urban mobility:

‘Each step of the randomized response process ... we
had an image to go with it, so that you could see ... the
noise that you are adding to data. Visually seeing it
was really helpful for me as a designer and then tying
it to sort of real life stories so that I could see how you
wouldn’t be able to re-identify someone. Imagining
what that makes possible forces you to think about
the qualities of that technique, what it now enables
you to do’

When it came to explaining these systems to end-users, how-
ever, some participants questioned whether this was a worthwhile
goal. P9[D] couldn’t imagine ‘many scenarios where it’s necessary to
explain what privacy preserving techniques are being used to an end
user who is trying to do something with their phone’. P7[I] asked him-
self whether end-users understood these techniques, and answered:
‘Well in general, not. Is it a problem? I’m not sure it’s a problem’. In
such cases, it was seen as sufficient that end-users ‘trust the provider
of the solution that they do a good job’(P7[I]).

4.2.3 Governance and Accountability. Afinal themewas around the
challenges of governance and accountability of privacy-preserving
computation. These topics often followed organically from discus-
sions of explanation; attempts to explain these systems were often
made in the course of trying to justify their use to affected stake-
holders, and justification is a key element of accountability [16]).
But even if explanations don’t lead to real understanding on an
individual level, it might still be possible to justify them to the
public. P5[P] put it this way:

‘These technologies are extremely difficult to under-
stand... Do theymeaningfully address genuine privacy
issues? Yes they do. Do they address public concern?
That’s not to do with the technologies per se, [but]
how the technologies are explicated and made avail-
able. If you told the public: "As a result of using these
technologies, we are able to limit the amount of your

personal information that’s shared, and are still able
to offer you valuable services", they would be enthu-
siasts.’

Other participants expressed scepticism that the public would
take such guarantees at face value. In the context of proposals for
privacy-preserving facial recognition in border control, P6 asked:

‘if someone publicises this new system ... just by say-
ing: "and by the way the privacy of the information
is very well handled because we use the state of the
art cryptography", what does that mean to a citizen?’

Both P6 and P7 suggested that certifications and trust marks
applied to services which use these techniques could enable indi-
viduals to seek out more trustworthy systems. However, expecting
individuals to exercise meaningfully informed choices in relation
to different services involving privacy-preserving computation was
seen by some as adding to the burden of responsibility unhelpfully
placed on individuals. P9 reflected on how ‘constantly making deci-
sions about data in the technology that we use is just not sustainable’;
instead, they suggested that ‘collective consent models and other gov-
ernance mechanisms ... that can make decisions on behalf of people’
might be a better approach. Similarly, P2[R] felt decisions about
the technical details of the adoption of these technologies ought to
be made by ‘using experts or authorities’ who can act as ‘proxies ...
[who] understand their communities’.

While most of our participants pointed to the positive potential
of privacy-preserving computation techniques, a few were also
concerned about the power imbalances they might reinforce. When
the stakeholders are individuals, they are ‘by definition, the weaker
party’, and ‘lack the resources ... to induce changes; every time we talk
about privacy there is some asymmetry that is implied by it.’ (P1[R]).
For P9[D], it is important to recognise the limitations of PPCs as
they are just:

‘a technical solution to protecting people’s privacy ...
you have to think about the wider system that they
sit within and what other kind of power dynamics are
in that system.’ (P9[D])

5 DISCUSSION
The findings from our interviews raised several important impli-
cations for the design and governance of privacy-preserving com-
putation. They reveal how these techniques are being not only
technically but also socio-technically constructed and constituted
by a variety of actors, each pursuing overlapping and sometimes
diverging agendas. Clearly, privacy-preserving computation tech-
niques entail a variety of human-centric challenges which HCI re-
search could seek to address. These challenges are multifaceted and
will require diverse approaches; something that HCI as a method-
ologically diverse field is well-positioned to reflect. Furthermore,
these challenges are inter-related: for instance, the way in with
these technologies are translated from theory to practice may well
affect how they can be explained and held accountable; while closer
inspection of how ‘privacy’ and other motivations are unpacked
might reconfigure what kinds of interdisciplinary collaborations
are required in a particular context. Our aim in this section is to
reflect on these, to understand both the design problems facing
these techniques, and the challenges they raise in relation to the
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interests of a variety of users and wider society. This discussion is
not intended as direct ‘implications for design’; rather, we hope to
draw attention to issues which require further research, as well as
interdisciplinary discussion.

5.1 Whither the end user?
While our experts generally acknowledged the individuals whose
personal data is being privately computed on as an important stake-
holder group, few seemed to prioritise seeking their understanding
and acceptance. This is in contrast to the small number of exist-
ing HCI studies that investigate ‘user acceptability’ of particular
privacy-preserving computation techniques such as differential pri-
vacy [19, 117] and MPC [92]. User acceptability could and should
be further examined in particular contexts; for instance, Colnago
et al. suggest further work is needed to explore whether such tech-
niques embedded in Internet-of-Things privacy assistants might
‘help mitigate people’s reservations about data collection practices
and reduce the chance they opt out’ [24]. There is clearly great scope
for important research within this paradigm of user acceptability.

However, our experts spoke about privacy-preserving computa-
tion technologies more as tools enabling organisations to achieve a
variety of goals (including managing privacy risks, but also protect-
ing corporate assets and secrets), rather than as a means of directly
serving users’ interests. While user acceptance was not entirely
disregarded, it did not appear to be a primary concern; even P9, a
designer well-versed in user-centred design, doubted that people
could or should be expected to understand and make decisions
about privacy-preserving computation. Privacy may be important,
and these techniques may have the potential to meaningfully em-
bed it, but whether or not individuals understand and accept them
seemed to be almost a secondary issue. In many of the use cases
they mentioned, individuals whose data is being computed may not
have any direct interaction with the system, nor any choice about
whether to use it. In expressing such doubts, our interviewees might
appear to be denying a sacrosanct tenet of HCI as a human-centred
discipline. However, rather than denying the importance of user
acceptance, we believe that these doubts should in fact point us
towards alternative human-centric approaches to the development
of privacy-preserving computation, in addition to solely looking at
end users as data subjects.

First, our findings point towards studying the needs of differ-
ent kinds of end users; specifically, those developers and designers
who attempt to apply foundational privacy-preserving computation
techniques in real-world applications. This echoes recent calls to
acknowledge that ‘developers are users too’, as Green and Smith
argue in relation to crypto and security libraries [49]. Similarly,
P9[D] pointed to the relative lack of awareness and understand-
ing of these techniques among designers. As with the application
of other complex methods in computer science, such as machine
learning, it may be difficult for designers to use privacy-preserving
computation techniques in design practice due to unfamiliarity
with how they work and awareness of what they can achieve[32].
P9[D] made the case for technical specialists and designers to work
together to translate these technologies into ‘design material’ which
design practitioners can use to explore real use cases.

In addition to understanding developers, designers, and others as
users of privacy-preserving computation techniques, studying them
also allows us to explore how a human value like privacy shapes the
construction of complex computational systems. This perspective
accords with ‘third wave’ approaches to HCI which orient atten-
tion towards the ethical obligations and values of designers [41],
and incorporate different disciplinary perspectives which examine
how social and political dimensions are embedded and reflected in
systems [13]. As such, rather than just considering whether end
users or laypeople understand, trust, and accept privacy-preserving
computation technologies, we might also benefit from considering
the perspectives of the various people involved in constructing
their technical, commercial and regulatory foundations. Assess-
ing whether an innovative technology will be acceptable to users
through lab and field studies may be valuable, but such approaches
often neglect the ways in which such technologies are interpreted,
shaped, andmutually constructed over time through their designers,
users, and broader political, economic and regulatory forces[60, 79].
As a result, it is equally important to consider the plurality of differ-
ent actors and broader contexts through which values like privacy
will be understood, traded-off, and embedded in these systems (or
not).

5.2 The Limits of Abstraction
If, as suggested above, we are to consider the needs of developers
and designers as users of underlying privacy-preserving compu-
tation techniques, then how might those needs be met? Many of
the interviewees identified the need to create building blocks for
privacy-preserving computation. In an ideal world, these building
blocks would allow developers to abstract away the technical details
and apply them to applications in different contexts. Creating such
abstractions is fundamental to progress in computer science and
programming; in Edsger Dijkstra’s words, it is ‘our only mental aid
... to organize and master complexity’ [31]. However, many of the
experts expressed uncertainties about the form such abstractions
should take and the extent to which they could reasonably be made
in the domains of privacy-preserving computation. Especially with
homomorphic encryption, abstracting away the details of imple-
mentation could mean losing the ability to optimise performance
through engineering ‘tricks’ (P1[R]).

Attempts to create tools for developers to enable them to inte-
grate privacy-preserving computation techniques into their prod-
ucts may therefore need to grapple with this need to balance ab-
straction and engagement with the implementation details. Specific
applications will always require some ‘intimacy with the details’
[105] that might otherwise be abstracted away. Some of our intervie-
wees argued that the necessary education required for developers
could potentially be integrated into standardised APIs. This sug-
gests that broader adoption of privacy-preserving computation may
benefit from work in HCI which considers APIs and libraries as
‘first class design objects’ [85, 120], with the goal of ‘driving adop-
tion of software components’ [81]. This could involve (re)designing
them around the typical ways programmers learn, e.g. on-the-fly,
via information foraging, and trial and error [65, 71].

However, the nature and extent to which developers need to
become intimate with the details, and how they might do so, will
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clearly depend on the particular technique in question. For instance,
a DP library might implement a variety of noise sampling and injec-
tion techniques, but this is relatively simple compared to the much
more complex mathematics and reasoning involved in deciding
on and managing an appropriate privacy budget, which requires
case-by-case human consideration. For SMPC, libraries might take
care of some of the networking details, but leave difficult decisions
regarding the protocol up to the developer. The nature and value
of these standardised building blocks will therefore vary greatly
between approaches.

Ultimately, the design and adoption of these privacy-preserving
computation building blocks may need to reckon with the messy
realities of underlying enterprise IT infrastructure, agile and itera-
tive approaches to software development [51], and service-oriented
architectures [68]. Given these practical considerations, the full
complexity of these technologies might instead need to be medi-
ated via a two-step process: general-purpose libraries which expose
all of the complexity of a domain (e.g. homomorphic encryption)
that enable specialist privacy engineers to create particular privacy-
preserving computation components for common operations or
use cases (e.g. private set intersection for contact discovery); those
components could then be adapted and deployed with minimal
configuration by non-specialist developers as microservices.

5.3 Privacy-Enhanced Technocracy
The way privacy-enhancing technologies are sometimes described
can make them seem esoteric, exotic, and mysterious. For instance,
in industry press they have been described as ‘black magic’ 10 and
a ‘holy grail’11. Such language suggests that their development
is entirely in the hands of a small and specialised cabal of cryp-
tographers and engineers, much like the early programmers who
regarded themselves as ‘high priests’ of assembly code.12 It is pos-
sible to imagine how in these respects, they might end up sharing
the same ‘rampant hyperbole and political envisioning’ [37] of a
higher-profile cryptographic technology — blockchain.

While our interviewees avoided such language, and even criti-
cised the perceived ‘hype’ around PETs, they did reflect the highly
specialised knowledge required to make use of the underlying math-
ematics, and drew parallels with magic. P6[I] described feeling
like ‘Gandalf the wizard’ upon telling people that computation
on encrypted data was possible, while P1[R] described the need
for engineering ‘tricks’ to optimise performance within reason-
able levels. From this perspective, the technical work of applying
privacy-preserving computation seems more like craft than sci-
ence, which the guild of cryptographers and engineers are uniquely
capable of performing [91].

However, the mystery of their inner workings could easily serve
as an excuse for not making these systems accountable to affected
stakeholders. When reflecting on the challenges laypeople face in
trying to understand PPCTs on any meaningful level, both P5[P]
and P7[I] expressed some doubts about the possibility that individ-
uals could ever be expected to really understand how they work.
However, without some form of explanation, and absent any other

10https://dualitytech.com/tag/homomorphic-encryption/
11https://www.fastcompany.com/90314942/duality-homomorphic-encryption
12In the words of Rear Admiral Grace Hopper [116]

mechanism for meaningfully communicating their risks and op-
portunities, there is a risk that privacy-preserving computation
becomes not just a technical but a technocratic solution imposed on
populations without popular consent by grey eminences operating
behind the scenes.

However, several of the experts did acknowledge the need for
mechanisms of accountability and governance to developed as these
technologies are rolled out. P6[I] and P7[I] suggested this could
involve certification schemes. Similarly, while P1[R] and P9[D]
were doubtful about individuals being able to meaningfully consent
to these technologies, they proposed alternative forms of collective
governance, where the interests of affected individuals could be
represented by relevant representatives and experts who can make
informed choices and demands on their behalf. These and other
democratic mechanisms will need to be explored in order to counter
a privacy-enhanced technocracy, and methods from HCI — such
as participatory design [36], futures workshops [63], and other
governance approaches — may have much to offer.

5.4 Secrets, Assets, Human Rights: Unpacking
‘Privacy’

Our findings attest to the many varied interpretations and uses of
the term privacy. As previous work has explored, and as discussed
above, the notion of privacy in Privacy-Enhancing Technologies
is often a narrow interpretation of what is a multi-faceted and
contested concept [50, 89, 104, 107]. This is certainly the case for
the subset of privacy-preserving computation PETs studied here.
They turn privacy into something mathematically formalisable,
e.g. in terms of entropy in cryptographic approaches, or indistin-
guishability in statistical approaches, which can all be understood
as variations of ‘confidentiality’, a pillar of the security triad [30].
This means that other ways of understanding privacy may be de-
emphasised and de-prioritised.

There are continuities herewith earlier PETs, such as de-identification
techniques based on hashing personal data. Phillips argues that that
these techniques embody privacy as protection ‘from unwanted
intrusion’[89]. However, they leave in place the ability of power-
ful observers to produce ‘panoptic’ knowledge which can be used
to sort and discipline populations [23, 43]. Similarly, if we under-
stand privacy as confidentiality, this can be engineered through
architectures of data minimisation [103]; but this can lead to de-
sign choices which preclude alternative understandings of privacy
(e.g. privacy-as-control), and hinder the exercise of related rights
afforded by data protection law [111]. In our expert’s discussions,
these alternative understandings of privacy were conspicuous by
their absence.

Our findings also demonstrate that even while discourse around
privacy-preserving computation restricts certain interpretations
of privacy, it also stretches the meaning of privacy to incorporate
unorthodox meanings, such as competitive secrecy, corporate asset
protection, and government security. These are clearly significant
and important use cases for the technology, but they arguably bear
only a family resemblance to privacy as it relates to individuals
and society. Indeed, intellectual traditions which value privacy as
an individual right and public good have often been associated
with opposition to corporate and government secrecy; according to
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them, privacy should be reserved for the weak, while transparency
should be an obligation required of the strong [28]. In referring
to all of these things as ‘privacy’, privacy-preserving computation
technologies may elide significant political tensions between them.
This is not to deny that they may have a powerful role to play
in supporting privacy as an individual right and as a public good
[40, 70]; but this confluence of quite different values under one
banner complicates the narrative around whose interests they serve.

As well as tending to address narrow and perhaps unorthodox
conceptualisations of privacy, it is important to recognise that these
technologies do not protect other important values and interests. If
our aim is to build and shape systems encompassing multiple social
goals, where privacy is just one such goal, then privacy-preserving
computation techniques have to be considered in relation to the
whole system and the social context. The danger is that the soci-
etal problems of data processing technologies — such as the ways
they create distinctions and hierarchies that reinforce power, shape
politics, or facilitate abuse — are sidelined, redefined, or collapsed
under the banner of ‘privacy’, so that privacy-preserving compu-
tation techniques can be positioned as the solution (what Pinch
and Bijker term ‘closure by problem redefinition’ [90]). This danger
was alluded to in P6[I]’s example of privacy-preserving border con-
trol (where people are still ultimately at the mercy of a powerful
state), and in P9[D]’s concern about considering the wider power
dynamics in the context of deployment.

6 CONCLUSIONS
Like other technologies which have been touted as potentially
revolutionary in recent years, the concrete impact of these privacy-
preserving computation techniques remains to be seen. New tech-
nologies often emerge in unexpected ways, at unpredictable times
from niches of computer science: hypertext, Merkle trees, and
neural networks were once confined to their respective research
sub-fields before they became known more widely as the world
wide web, blockchain, and ‘AI’ (in its latest guise of deep learn-
ing). Prior to their take-up in wider society, these specialised areas
of research were conceived as laying the groundwork for purely
technical pieces of invisible infrastructure, whose implications for
human-computer interaction were remote and unclear.

However, we believe it is worth HCI researchers studying such
technologies prior to their widespread adoption. Whatever tech-
nical and institutional forms they take, the journey of privacy-
preserving computation techniques from the annals of cryptogra-
phy into production code will be shaped in substantial part by the
approach they take to a variety of human and societal challenges.
Indeed, these challenges directly implicate some fundamental con-
cerns of HCI, including: multifaceted (re)conceptualisations of the
notion of ‘the user’; helping people navigate and manage compu-
tational complexity and its consequences; exploring how values
like privacy can be reflected in the systems we build; and examin-
ing how different political agendas, economic rationale, and user
groups shape and are shaped by those systems. These concerns all
cohere and overlap in the emerging space of privacy-preserving
computation.

This paper has aimed to provide a preliminary and partial outline
of those challenges, laying some of the groundwork for substantial

further exploratory and in-depth work to be done. In addition to
several recent studies which focused on people’s understanding of
these techniques and their willingness to disclose personal data in
the presence of them, we have outlined a broader set of research
questions prompted for HCI by PPCs. These include understanding
specific application contexts; usability of PPC libraries and tools
from a non-specialist developer’s perspective; and understanding
the explanation and governance challenges associated with these
techniques.
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