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Figure 1: Our visual analytics tool, GestureMap: A configuration view to initialize and run the interactive clustering algorithm
(a), an overview of the entire application window (b), a density plot projected onto the gesture map (c). The numbers mark
different components further explained in Section 5.

ABSTRACT
This paper presents GestureMap, a visual analytics tool for gesture
elicitation which directly visualises the space of gestures. Con-
cretely, a Variational Autoencoder embeds gestures recorded as 3D
skeletons on an interactive 2D map. GestureMap further integrates
three computational capabilities to connect exploration to quan-
titative measures: Leveraging DTW Barycenter Averaging (DBA),
we compute average gestures to 1) represent gesture groups at a
glance; 2) compute a new consensus measure (variance around
average gesture); and 3) cluster gestures with k-means. We evaluate
GestureMap and its concepts with eight experts and an in-depth
analysis of published data. Our findings show how GestureMap
facilitates exploring large datasets and helps researchers to gain a
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visual understanding of elicited gesture spaces. It further opens new
directions, such as comparing elicitations across studies. We discuss
implications for elicitation studies and research, and opportunities
to extend our approach to additional tasks in gesture elicitation.
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1 INTRODUCTION
Designing effective interactions and user interfaces often involves
exploring two potentially high-dimensional spaces [65]: 1) The
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space of human behaviour (e.g. comfortable motion ranges of arm
and hand), and 2) the space of senseable input in a system or context
(e.g. tracking of up to X body joints in 3D).

Although central to HCI, the field has developed few dedicated
methods and tools for supporting the (joint) exploration of such
user-sensor spaces (cf. [65]). One successful method that has seen
widespread use is the elicitation study paradigm [66], which helps
HCI researchers and practitioners to explore the space of possible
and “intuitive” or “guessable” (gesture) commands: Participants are
shown a “referent” (often a system action, e.g. volume up) and are
asked to propose and perform a gesture they would use for it (e.g.
turn wrist right). This is repeated for several referents.

Researchers then analyse these gesture proposals, compute mea-
sures to identify common proposals (e.g. [59, 66]), and decide on a
set of gestures to be used in an interactive system, typically com-
posed of the gestures with high agreement among participants
(e.g. [56, 67]).

In this way, elicitation studies inform gestural interaction with
user-driven exploration: Most studies focus on the human behaviour
space and thus do not rely on a specific sensor; they typically
video-record participants for manual gesture analysis (e.g. [14, 28]).
Some additionally employ a sensor in elicitation (e.g. Leap [62],
Kinect [56]), thus also potentially considering the senseable space.

While elicitation studies have become a widely used staple in the
HCI toolbox, they still present challenges (cf. [51, 63]), including
the need for manual data analysis. This limits elicitation studies, as
well as the general endeavor of systematically exploring behaviour-
sensor spaces in HCI, as characterised in the following paragraphs:

• Workload: Watching videos to manually classify gestures
(e.g. [14, 28, 56, 62, 67]) is tedious work [51]. It may thus also
hinder the use of elicitation in user-centred processes that
require repeating such work (e.g. iteration).

• Subjectivity: As critically pointed out [51], manual interpre-
tation at best requires further efforts (e.g. multiple coders);
at worst, it leads to subjectively biased results.

• Limited scale: Without quantitative analysis tools, large-
scale elicitation remains scarce (survey: mean=25 partici-
pants [63]). This stands in contrast to motivations for di-
verse samples and for training recognisers on elicited ges-
tures [14, 25, 49, 63].

• Isolated results: The lack of quantitative data analysis meth-
ods and tools hinders replication, reuse, extensions, and com-
parisons across elicitations, even if the same sensor was used
(e.g. Kinect). Most work collects and analyses new data [63],
isolated from previously published datasets.

These challenges motivate our work on new quantitative meth-
ods and tools for analyzing elicitation data. Fittingly, recent related
work highlighted the need and feasibility of more objective, compu-
tational measures [59], and called for further computational models
and measures, based on a survey of 216 elicitation studies [63].

Addressing this, we extend the computational toolbox for ana-
lyzing gesture elicitation data with these contributions:

• GestureMap, a method and tool for visualizing and explor-
ing motion data from elicitation studies on an interactive,
learned 2D map, inspired by concepts from visual analytics.

• New computational capabilities for gesture representation,
consensus and clustering, based on average gestures com-
puted with DTW Barycenter Averaging (DBA) [43], to con-
nect exploration to quantitative measures, extending the
computational approach motivated in recent work [59, 63].

• Insights from using GestureMap in a detailed case study on
datasets from the literature, plus a qualitative expert evalua-
tion with eight researchers.

2 RELATEDWORK
The analysis concepts introduced in this work are built on previous
work spanning HCI, machine learning and visual analytics. This
section briefly describes gesture elicitation studies, followed by an
overview of tools that support researchers across different tasks
involved in analyzing elicitation data. In particular, we outline
existing analysis concepts for high-dimensional data.

2.1 Gesture Elicitation Studies
The gesture elicitation paradigm was first introduced by Wobbrock
et al. [66] to elicit users’ interaction preferences for new systems.
This method was then specifically adapted to include gesture pro-
posals to control surface tabletop computers [67]. In a subsequent
study, Morris et al. [68] confirmed that new users do prefer the
user-defined gesture set over the one created by experts. Since then,
this method has become a standard tool for the design of gesture
input mappings for new interactive systems, for example to control
a swarm of robots [28], smart-home appliances [26, 56], or AR/VR
applications [44].

Central to gesture elicitation studies is an in-depth analysis of
the proposed data to find common behavior. Researchers have
therefore developed various measures to formalize the consensus
among participants [56, 57, 61, 62, 67].

However, these measures rely on subjectively assessing the sim-
ilarity of the observed gestures: They require researchers to group
proposals into subgroups that they consider identical, which is
usually done by manual annotation based on watching videos of
the participants in the study [28, 39]. Thus, while these measures
set standards on how to compute consensus from gesture proposal,
they cannot avoid subjectivity per se.

To address this, Vatavu [59] has recently proposed a new, data-
driven approach: It employs a distance measure as an objective basis
for assessing consensus in elicitation studies. Our work builds on
this idea, extends its data-driven perspective with a visual analytics
tool, and introduces a new measure fitting this visualization.

2.2 Gesture Analysis Tools
Several tools have been created for more effective and objective
analyses. Video analysis has been the preferred evaluation method,
but the annotation of individual video sequences can be time-
consuming [51]. An efficient analysis becomes evenmore important
as large-scale gesture data sets can be collected online, for exam-
ple, through cloud elicitation tools [2]. Thus, researchers devised
different ways to distribute the work among people [1, 36].

While the concepts introduced in this paper also enable re-
searchers to better annotate sequences, our focus lies in particular
on the exploration of elicited gesture data.
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Nebeling et al. [41] created a tool to analyze recordings created
by a Kinect camera sensor. They included three visualizations. First,
they used a 3D animation of a Kinect skeleton. Second, they pro-
vided a visualization where only the moving joint is drawn on
the canvas. The third visualization is similar to the second, but
additionally employs a heat-map to emphasize the time domain.

The most similar work to ours is GestureAnalyzer by Jang et al.
[24] which also focuses on the analysis of gesture elicitation studies.
To find behavioral patterns, it employs a variation of the small-
multiples plot [52] and an interactive hierarchical clustering in-
terface visualized in a tree layout. Their calculations and analyses
are based on hand-engineered features. The gesture map which
we propose in this work facilitates a richer exploration of the be-
havior space using machine learned features for the gesture poses.
It provides an overview of the gesture data and introduces a new
continuous traceable 2D paths which represent gesture sequences.
For further discussions on the comparison of these two systems we
refer to section 8.2.2.

2.3 Visualization of High Dimensional Data
A key challenge in visual analytics is the effective visualization of
high-dimensional data. This typically involves two steps: 1) Project-
ing the data to 2D for display on a screen. 2) Suitably visualising
the projected data, considering the analysts’ tasks and goals. While
there exist many dimension reduction techniques [20, 32, 38, 54, 55],
we use a Variational Autoencoder [30] to reduce the dimensions of
the raw sensor data. To visualize temporal data, a common repre-
sentation is a line plot, horizon plot [16], or a small-multiples plot
[52]. However, these highly abstract visualizations may occlude the
nature of the underlying data. For example, these plots may hide
the structure of a 3D skeleton recording. We therefore combine an
abstract 2D mapping with a grid of representative 3D skeletons to
give analysts a visual overview of the proposed gestures.

Also related to our work are tools to analyze and visualize
machine learned representations of complex data: Deep learning
models are capable of learning human-understandable features of
high-dimensional data: For example, Kingma and Welling [30] and
Lawrence [33] sample multiple points from the learned space and
visualize them to demonstrate that the learned space is continu-
ous and smooth, but without providing interaction functionalities.
Smilkov et al. [48] filled this gap by providing a generic tool to
visualize these embeddings.

Some researchers created specific visualizations to facilitate in-
terpretation of the axes of a (2D) projection, to judge the variation
of the data [27, 60] or the relative importance of the data attributes
along an axis [31]. Liu et al. [35] used a cartographic approach
to compare and analyze learned embedding spaces. In this work,
we adapt similar visualization concepts with the goal to create an
interpretable gesture space.

To the best of our knowledge, GestureMap is the first tool to
use a latent variable model to analyze sensor-based motion data in
the context of gesture elicitation studies. We combine interactive
k-means clustering, automatic metric computation, a new visual-
ization, and analysis concepts to provide an integrated platform.

Challenge /
Motivation in the
Literature

Visual Analytics
Actions

Feature in
GestureMap

Call for more
computational support
[51, 61, 63]

Model Building, Model
Usage

Average Gesture
Sequence; Statistical Plot
Overlay; Variance
Computation

Multiple representation
for gesture sequences
[24, 63]

Visual Mapping 2D Path; 3D Skeleton

Comparisons across
participants, sessions
and trials [24, 61]

Visualization
Manipulation

Selective Filtering;
Gesture Highlighting

Visual support for
temporal dimension
[24, 41]

Visual Mapping 2D/3D Animation

Unfamiliarity with
Gesture Design Space
[9, 12]

Visual Mapping, Model
usage, Model-vis Interactive Gesture Map

Processing large data
sets [1, 2, 24, 41]

Model Building, Model
Usage

Interactive Clustering;
Cluster Reassignment

Share and Save Analysis
[24, 36, 41] N/A Export Analysis

Table 1: Main analysis components in GestureMap with the
challenge and relatedwork thatmotivated this feature and a
reference to the supported actionwithin theKnowledge Gen-
eration Model for Visual Analytics [45].

3 GESTUREMAP CONCEPT
We introduce a structured analysis approach based on a learned 2D
gesture map, as realised in GestureMap. We motivate the conceptual
features via related work as summarized in Table 1 and elaborate
on them in the following sections.

3.1 Feature Requirements and Overview
The features in GestureMap were informed by close examination of
the literature on gesture elicitation and related concepts and tools:
We collected features 1) proposed in related work, 2) motivated in
calls for further improvements, and 3) explicitly requested from
future work. In addition, we included further ideas. Table 1 shows an
overview of the relation to related work. The following paragraphs
further introduce and motivate the features.

3.1.1 3D Skeleton View (Figure 1b 2○). Related tools [24, 41] show
a 3D skeleton view with animation. GestureMap also offers this, to
afford easy examination of a recorded gesture.

3.1.2 2D Map View (Figure 1b 1○). GestureMap is fundamentally
motivated by providing researchers with a visual overview of the
elicited gesture space.

Furthermore, some researchers indicated that participants may
struggle to propose gestures, if they are unfamiliar with the gesture
design space [9, 12, 46]. They therefore modified elicitation such
that people could choose from a predefined list of gesture proposals.

GestureMap addresses these needs as its 2D map shows observed
gesture proposals and gives an idea of past behavior. While we
focus on researchers as users of this map in this paper, it could also
be shown to participants as we described in Section 8.3.
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3.1.3 2D Map Overlays (Figure 1b 1○, Figure 1c). Prior work has
extensively used scatter plots to analyze machine learned represen-
tations [35, 48]. Our map view affords different plots on top of it,
such as:

• Scatter plots (point = body posture; Figure 1b 1○)
• Drawing paths (path = gesture; Figure 4)
• Densities (e.g. where in the space are postures and gestures
located? Figure 1c)

3.1.4 Linked Views of Postures. Villarreal-Narvaez et al. [63] called
for future work to include multiple representations of gestures.
GestureMap realises this by linking the 2D map and the 3D skeleton.
Concretely, the 3D skeleton view updates while the user moves the
cursor over the 2D map to present the posture at that point in the
gesture space.

3.1.5 Linked Animations of Gestures. Complementary to the fea-
ture for postures, GestureMap accounts for the temporal nature of
gesture data [24, 41] by offering linked animations of gesture paths
(point moving on the path) and 3D skeletons (skeleton moving).

3.1.6 Gesture Clustering. As larger data sets are expected in the fu-
ture [1, 24, 41], we also provide an interactive clustering method to
reduce manual workload for identifying similar gesture (sub)groups.

3.1.7 Sharing Results. Motivated by such interests in relatedwork [24,
36, 41], we include an export functionality to easily share analyses
with other researchers.

3.2 The Learned 2D Gesture Map
Here, we describe the map concept in more detail.

3.2.1 Core Visualization Concept. Following a cartographic ap-
proach [47], and in line with 2D projections in visual analytics
(e.g. [27, 64]), we use a map metaphor to visually guide analysts
through the elicited gesture space. This gesture map is a 2D plot
with a grid of representative body poses shown as small human
skeletons. These “pose landmarks” give an overview of the poses
in the corresponding rectangular map region (Figure 1b 1○). The
map itself is continuous, that is, each 2D point represents a pose.
Thus, since gestures are sequences of poses, they are paths con-
necting multiple points on the map. In this way, the gesture map
combines a line plot’s simplicity with the structural expressiveness
of a small-multiples visualization [24].

3.2.2 Learning a Gesture Map. The two dimensions of the map do
not have a direct predefined meaning yet emerge from elicited data.
Formally, let the set of all 𝑁 individual gesture poses in the dataset
be denoted by G = {𝑔𝑖 | 𝑖 = [1, . . . , 𝑁 ]}, 𝑔𝑖 ∈ R𝐷 where 𝐷 is the
dimensionality of the raw sensor data (in our case D=20). A gesture
sequence which consists of 𝑇 gesture poses can be viewed as an
ordered tuple of size 𝑇 i.e., g = (𝑔1, . . . , 𝑔𝑇 ).

(1) To reduce the dimensions of the raw sensor data, we use an
encoder 𝑓𝐸𝑛𝑐𝑜𝑑𝑒𝑟 : R𝐷 → R2 to embed every gesture pose
𝑔𝑖 ∈ G into a latent space code 𝑧𝑖 ∈ R2. These latent codes
represent a pose using only two learned features.

(2) The raw and high-dimensional gesture sequence g is then
embedded as a two-dimensional path z = (𝑧1, . . . , 𝑧𝑇 ) in the
latent space.

(3) To create the grid of gesture poses in the background, we
compute an evenly spaced grid M ∈ R𝑚×𝑚×2 of 𝑚 rows
and columns over a visible region in the latent space. For
example, if the embedded gesture poses (latent codes) range
from -4 to 4 in both x and y dimension, we would linearly
sample a number of points within this square region.

(4) Using the decoder model we can decode arbitrary 2D map
points into a full pose, i.e. f𝐷𝑒𝑐𝑜𝑑𝑒𝑟 : R2 → R𝐷

In this paper we use a Variational Autoencoder (VAE). In general,
layout and quality of the space (e.g. smoothness), and of pose decod-
ing, depend on the model, and we reflect on this in our discussion.

3.3 Map Interaction Concepts
Here we describe how users can interact with the map.

3.3.1 Pan and Zoom. The map supports pan and zoom and ac-
cordingly recomputes the grid of landmarks (small skeletons). This
feature helps to adjust the viewport to support exploration of data-
dense areas, and deal with the fact that landmark representations
are discrete indicators for the continuous space.

3.3.2 Examining Poses. Scatter or density plots can be projected
onto the map (e.g. Figure 1b 1○ and Figure 1c). Using “details on
demand”, users can hover over points to see the corresponding pose
skeleton (Figure1b 2○), and referent, participant and trial number in
the detail view (Figure1b 6○). The scatterplot may help researchers
to detect outlier body poses, while the density plot reveals regions
with recorded data.

3.3.3 Examining Gestures. For further inspection, one or more
gestures can be selected (e.g. Figure 4) from a referent’s list of
gesture proposals (Figure 1 3○). This allows researchers to view
details on-demand e.g. to reduce the risk of information overload.

3.3.4 Examining Unseen Poses. A fundamentally new capability of
GestureMap is that unseen poses or gestures (i.e. not proposed by
participants) can be simulated by decoding arbitrary 2D points in
the learned space. In our prototype users can thus hover over the
map to visualize 3D skeletons for any cursor location. Analysts can
examine if empty regions are anatomically not feasible (cf. 8.3.3)
or if people did not show such behaviour. This might be useful to
adjust elicitation setup/instructions, for example to prompt people
to also cover a previously empty part of the map.

3.4 Analysis Concepts Using the Gesture Map
Exploratory analysis seeks to uncover structural patterns in the
dataset, identify anomalies, and single-out outliers [53]. We thus
conceptualized the gesture map to enable researchers to seamlessly
cycle between the detection of new observations and the assess-
ment of supporting evidence. The analysis concept is structured
further by differentiating between global observations and local
observations. The former targets questions that may span multiple
referents or the entire dataset, while the latter focuses on a few
gestures to identify specific behavioral idiosyncrasies.

3.4.1 Global Observations. The first of many analysis steps often
involves developing an overview of the data to understand its un-
derlying properties: Researchers here often use statistical plots to
summarize the data and to identify broad patterns.
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Developing an Overview of the Gesture Space. GestureMap sup-
ports this as well: For instance, Figure 3 depicts a scatter plot pro-
jected on the gesture map. Scatter points on top of the pose grid
enable researchers to quickly identify which general poses were
observed in the data. Each scatter point corresponds to a pose from
the dataset, whereas empty patches in the gesture map may indi-
cate behavior that has not been observed (e.g. poses/gestures not
proposed by participants during elicitation).

Spotting Clusters and Outliers. Scatter points may visually cluster
near gesture poses that are characteristic for a particular referent.
These clusters can help researchers to form a mental model of the
main poses that are characteristic for a group of gesture sequences.
It might also be interesting to analyze outlier behavior which can be
detected by examining scatter points that lie far from these clusters.

Comparing Referents and Regions. Additionally, color codes fa-
cilitate the comparison of behavior across different referents. For
example, it might be interesting to identify which referents share
behavior and which are distinctive. Regions in the gesture map
that contain multiple embedded data points from different referents
may indicate that this region encodes shared generic behavior.

Judging Densities and Overlap of Referents. Scatter plots may con-
tain too much detail and clutter the visualization. Density plots then
offer a visualization of the most frequent gesture poses. Researchers
can use it to detect overlapping or distinctive behavior across dif-
ferent referents. For example, these observations can inform re-
searchers interested in building gesture recognizers in judging the
difficulty of separating gestures for the various referents.

3.4.2 Local Observations. The key local observation in elicitation
data is to examine individual gesture proposals. GestureMap also
supports such analysis, as outlined here:

After the initial data exploration it is often necessary to find con-
crete example for detected patterns. For example, in the elicitation
context, we might be interested in comparing the behavior across
different participants and experimental trials.

The gesture map can serve as a common visual basis for such
investigations: By projecting multiple gestures onto the map, re-
searchers can evaluate each participant’s behavior individually.
The trajectory of the embedded gesture paths can inform them
on specific behavioral characteristics. For example, a participant’s
movement can be subtle, in which case the embedded gesture path
is simple in shape and typically spans a small region in the ges-
ture map. In contrast, a complex gesture may be represented as an
intricate path that may meander across the map.

Thus, by comparingmultiple embedded gesture paths researchers
can visually assess gestures as similar or not. Considering research
interests in the elicitation context from the literature, for example,
this might support researchers to examine if a participant can re-
member and repeat the same gesture proposal across multiple trials
[40], or if behavior was influenced by a priming effect [6].

4 CONSENSUS AND CLUSTERINGWITH DBA
We introduce the concept of an average gesture sequence as a new
computational capability in the context of gesture elicitation. This
has three practical values, which complement our tool:

(1) Descriptive: The average gesture can serve as a single, visual
proxy for a group of gestures, which opens up new visual-
ization opportunities (e.g. showing and comparing referents
as average paths on our gesture map).

(2) Evaluative: It enables a newmeasure of consensus/variability
among gesture proposals for a referent. This measure aligns
well with other statistical notions of variability: Consensus
is assessed via the variance of actual gestures around the
average gesture.

(3) Explorative: The average gesture enables clustering methods
that require averaging (e.g. here: k-means), supporting the
automated detection of groups of gestures in a dataset (e.g.
in “open elicitation” without referents, cf. [63]).

We next describe the technical approach in more detail.

4.1 Computing an Average Gesture with DBA
We employ the DTW Barycenter Averaging (DBA) algorithm by
Petitjean et al. [43] to compute an average gesture: Intuitively, this
algorithm first aligns an initial sequence with every sequence in the
set of gesture proposals, before computing a centroid (barycenter)
for each aligned coordinate. For further technical details we refer
the reader to the related work [43].

4.2 Consensus as Variation Around Barycenter
Vatavu [59] were the first to propose a data-driven consensus mea-
sure that does not rely on human judgement of gesture similarity.
To achieve this, they employed Dynamic Time Warping (DTW)
distance computations to define a consensus measure: They con-
sidered two gesture sequences g𝐴 and g𝐵 as similar if the DTW
distance was below a threshold Δ𝐷𝑇𝑊 (g𝐴, g𝐵) ≤ 𝜏 . To determine
consensus for a referent they calculated the pairwise distances across
all gesture proposals for this referent. Finally, to report a measure
independent of the threshold value 𝜏 , they used a logistic regres-
sion model to determine the consensus for a range of normalized
threshold values and reported the growth rate as an indication of
the overall consensus.

This work motivates us to further explore data-driven measures
of consensus: We follow a similar approach, but instead of regress-
ing on the DTW distance values, and relying on pairwise compar-
isons, we directly compute an average sequence from all gesture
proposals in a referent group, using DBA.

We then measure the DTW distance of every gesture proposal
𝑔∗ for a referent 𝑅 to the computed average gesture (i.e. barycenter)
g𝐷𝐵𝐴 for 𝑅. Finally, we report the variance of these DTW distances
as a measure of consensus. Formally, this is noted as:

VAR𝑅 =

∑G𝑅

g∗ (Δ𝐷𝑇𝑊 (g∗, g𝐷𝐵𝐴))2

|G𝑅 |
(1)

G𝑅 denotes the set of all gestures elicited for referent 𝑅. Intuitively,
for example, a high value VAR𝑅 may inform an analyst that referent
𝑅 contains quite varied gesture proposals (i.e. low consensus).

The gesture variance integrates well with GestureMap’s visu-
alization concept because this already displays the involved aver-
age gestures as visual elements. Moreover, this approach yields
a one-number summary without a logistic regression model on
top. Overall, we see this approach as an additional measure, not
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a replacement of others: As a flexible tool, GestureMap can be ex-
tended to additionally display further such measures (e.g. the one
by Vatavu [59]) to support researchers with the analysis.

4.3 Clustering Gestures with DBA & K-Means
Being able to compute an average gesture enables the use of clus-
tering methods that require average computations. Here, we use
k-means in particular. The idea of clustering gesture elicitation data
is motivated by two aspects:

(1) Exploration: For example, in “open elicitation” [63] or settings
where referents are not predefined, such as in the work by
Williamson and Murray-Smith [65], a clustering may proved
a valuable reference point to identify novel behavior.

(2) Annotation: Clustering may also be used to help kickstart
(manual) annotation in cases where explicit groupings of
proposals are desired (e.g. for agreement measures [67]).

Considering the literature, Jang et al. [24] used an interactive
hierarchical clustering approach with complete-linkage. In contrast,
we experimented with the k-means algorithm, using DBA to calcu-
late the centroids. We motivate this choice by interpretability of the
resulting centroids, versus the abstract representations in the hierar-
chical approach: In particular, the centroids (i.e. average/barycenter
gestures) are more compatible with our 2D gesture map, on which
they could be displayed as paths. In contrast, a hierarchical treemap
does not directly fit the map metaphor well.

5 IMPLEMENTATION OF GESTUREMAP
We implemented GestureMap as an analysis tool that integrates the
described concepts of both the interactive gesture map (Section 3)
and the DBA-based computations (Section 4). Here we describe the
key implementation aspects.

5.1 User Interface and Functionality
Figure 1 shows the UI; the following sections refer to the numbers
in the figure. Overall, we implemented all UI views and interactions
conceptually described in Section 3.

5.1.1 Gesture Map Figure 1b 1○. Researchers can zoom, pan, and
hover over the gesture map, and overlay a scatter plot or a density
plot (e.g. Figure 1c) to explore individual or multiple gesture poses.

5.1.2 Experiment View Figure 1b 3○. This view lists all referents
and gesture proposals in a compact way as numbers for quick
reference and selection. When hovering over an element, the corre-
sponding gesture path is shown on the map for a moment.

5.1.3 3D Skeleton View Figure 1b 2○, Figure 1b 4○. This view either
shows the raw skeleton recording or a reconstructed skeleton. If
researchers animate a gesture, it is simultaneously animated in
this view and on the map. The progress of the animation can be
controlled via a play/pause button and slider.

5.1.4 Statistics View Figure 1b 5○. This view shows different met-
rics, namely variances around the average gesture sequence per
selected referent (Section 4.2), the distributions of DTW distances of
proposals to their average gesture sequence, and nearest neighbor
distances for a selected gesture.

5.1.5 Cluster View Figure 1b 6○. This dialog is unfolded with a
button in Figure 1b 3○ and lets users interactively cluster gesture
proposals for a referent. Centroids can be animated and once the
clusters have been computed, users can toggle all gesture proposals
that were assigned to a centroid.

5.2 Architecture
We used a server-client architecture. The frontend and backend
modules communicate through a REST API through which the data
is transmitted as a JSON formatted string. The frontend was im-
plemented with NodeJS [18] and React [15]. For plotting, we use
the PlotlyJs library [22]. For the backend we used the Flask frame-
work [10] and Pandas [11] to handle the data transformations and
queries. We cached expensive computations such as the computed
average sequences and distances matrices on MongoDB [21] to .
PyTorch [42] was used to develop the embedding model.

6 EXPERIMENTS
Ledo et al. [34] identified four evaluation strategies for toolkit con-
tributions. We follow their perspective to evaluate GestureMap,
combining two such strategies: First, here we follow the Demon-
stration strategy and provide a detailed analysis of examples on
elicitation data from related work. Second, Section 7 follows the
Usage strategy and reports on a user study with HCI researchers.

6.1 Datasets
We consider four existing datasets: One explicit gesture elicitiation
study by Vatavu [59], plus three datasets collected for gesture recog-
nition systems [3, 7, 17]. We first focus on the dataset by Vatavu [59]
that consists of 1312 full body gestures elicited from children aged
3-6, recorded with a Kinect sensor. For preprocessing, we followed
the original authors [59] but left out the resampling step.

6.2 Model Training
We used a Variational Autoencoder (VAE) [13] to embed the data as
a 2D gesture map. The VAE here serves as an exemplar of a model
with both powerful (non-linear) encoding and decoding capabilities.
We reflect on other possible choices in our discussion.

We trained the VAE on the poses (frames) of the mentioned
dataset [59] which has 60 dimensions (20 body joints × 𝑥,𝑦, 𝑧). We
adapted the architecture from Spurr et al. [50] (i.e. 4 hidden layers
for both encoder and decoder) and used a 2D bottleneck layer. In
line with Fu et al. [19], we used a weight term to modulate the mix
of KL-loss and reconstruction loss in early training. We trained for
2000 epochs with Adam [29] (lr=3𝑒−5).

We experimented with different numbers of hidden neurons ℎ:
Overall, reconstruction loss decreases for larger models, regularized
by the KL-loss, leading to diminishing returns and a decision for
ℎ = 512 here. For full details, we provide the training scripts and
model comparisons on the project website.

6.3 Global Observations
Here demonstrate the use of GestureMap in a walkthrough of an
explorative analysis: Examining the gesture map, the center (Fig-
ure 2C) reveals start/end poses (standing upright, arms at rest). We
further see, for example, sitting (Figure 2B), clapping (Figure 2D),
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Figure 2: Gesture map for the dataset by Vatavu [59]. Pose
landmarks represent poses in that part of the learned ges-
ture space. Marked areas are referenced in Section 6.3.

and raising an arm (Figure 2A). Thus, the map reveals the space of
poses elicited by Vatavu [59] at a glance: For example, their refer-
ents included crouch, draw a flower, draw a circle, draw a square,
applaud or raise your hands, which all match the poses in our map.

Using overlays in GestureMap, we can identify similarity and
differences between gestures across referents: For example, Figure
3 (left) shows that crouch, draw circle, draw flower, draw square
share common behavior; their scatter points largely overlap in the
region that encodes “raised arm” behavior. In contrast, for instance,
gestures proposed for crouch cover a different region (pink).

The variance plot in GestureMap (Figure 3 right) indicates that
proposals for crouch and draw flower vary more than for draw
circle and draw square. Potentially, for the children the basic shapes
afforded less flexible interpretation than a flower or crouching.

We defined a consensus measure on this variability (Section 4.2):
Comparing this variability between all referents, our results largely
agree with Vatavu [59]: In particular, applaud, fly like a bird and
hands up show high consensus while climb ladder, crouch, turn
around have low consensus.

6.4 Local Observations
Proposals for crouch form two main clusters (pink points in Figure 3
left), one in the region of starting poses, another in sitting/crouching
regions. Thus, GestureMap visually reveals that people interpreted
crouch in different ways, matching the high variance (Figure 3
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Figure 3: Left: Scatter plots show gesture poses for four refer-
ents elicitet by Vatavu [59] (crouch, draw circle, draw flower,
draw square). Right: Variances of the gestures’ DTW dis-
tances to their average gesture sequence.

Figure 4: Gesture proposals for throw ball from four peo-
ple (different colors). Trials per person are not discernible
(same color), yet the colored paths distinctly cover different
regions, revealing high consistency per person.

right). Examining the map locally, in combination with gesture
animations, reveals that some children sat on the floor, some on
their heels, some crawled on hands/knees, and others stood with
a stooped body posture. Some additionally jumped at the end of
their gesture proposals to get back onto their feet.

As another such example, for throw ball, behavior can be catego-
rized into four clusters: Most children used their right hand, others
used two hands, and some kicked the ball. Only a few used the left
hand. As Figure 4 shows, the children mostly stuck to their inter-
pretation across multiple repeated trials for that referent, revealing
consistency (cf. [5]). This is an example for using GestureMap’s
spatial visualisation of gestures as paths for visual comparison via
shape.
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6.5 Interactive Clustering
For a typical elicitation study, such as this one by Vatavu [59], it is
reasonable to expect clusters induced by the referents. Therefore,
to demonstrate our proposed clustering analysis we removed the
referent labels and then evaluated if k-means finds clusters that
match the original referents.

Concretely, we ran the clustering with 15 sequences chosen
randomly. We then inspected the mix of original referents present
in the gestures assigned to each found cluster. We repeated this ten
times and made these observations:

• Our k-means clustering identified those referents with high
agreement (e.g. hands up, crouch, applaud, fly like a bird).

• Gestures for referents with much common behavior ap-
peared as one cluster (e.g. draw circle, square, flower). Note
that this is not necessarily “wrong”, since a behaviour “draw
something” would also have been a plausible referent.

• The resting pose was detected as a separate cluster.
• Other referents were (clearly) present only in some of the
clustering repetitions.

Overall, this indicates the potential of automated clustering, for
example, when examining data from open elicitation with no given
referents. We return to ideas for improvements in our discussion.

In another experiment, we applied clustering to look for patterns
within a referent: As mentioned, referents such as throw ball and
crouch contained distinct patterns, revealed on the map. Indeed,
running k-means revealed some of them: For example, for throw
ball k-means also detected throwing with the right hand vs using
both hands. In contrast, it did not separately find left hand and
kicking, presumably since those were proposed only a few times.

6.6 Comparison Between Datasets
Other researchers noted that elicitation findings are spread across
multiple venues and need to be consolidated [63]. GestureMap sup-
ports this as it offers a platform to visualize and analyze multiple
studies. We demonstrate this by creating a gesture map using four
datasets [3, 8, 17, 59].

To motivate a concrete example, citetJain2016 showed that ob-
servers can distinguish behavior of children and adults. Figure 5
shows all 20 proposals for jump from the data by Aloba et al. [3],
next to the children’s proposals from Vatavu [59]. The gesture paths
visit roughly similar main parts of the gesture space, yet the chil-
dren do not find consensus. Our variance measure also reflects this
(Aloba - adults 23.70, children 44.89; Vatavu - children 54.94).

As a second example, we compared behavior diversity across
datasets. Without knowing anything about the referents, Figure 6
already reveals that one dataset [3] (blue) covers a larger region than
the other [59] (orange). Thus, it seems to contain a more diverse
set of body poses. Indeed, this observation can be explained by the
longer referent list (58 referents in [3] vs 15 in [59]).

7 USER STUDY
To further evaluate GestureMap, we recruited eight HCI researchers
(7 male, 1 female) from three universities via e-mail for remote
think-alound and interview sessions. Six were familiar with ges-
ture elicitation studies, the other two were interested in analysing
gesture sensor data. Five were familiar with machine learning.

Aloba - Adults Aloba - Children Vatavu - Children

Figure 5: Gesture paths for adults and children for “jumping”
referents from two studies [3, 23].

Figure 6: Combined gesture space from [3, 8, 17, 59]. The den-
sity plots projected on this gesture map refer to [3] (blue)
and [59] (orange).

7.1 Procedure
The interviews lasted 80 minutes and were conducted via screen-
sharing using Skype/Zoom, with GestureMap hosted online such
that people could use it on their own computer. We again used
the dataset by Vatavu [59]. With people’s consent we recorded the
interviews. We encouraged them to think out loud and occasionally
asked questions to better understand actions. We took notes and
compiled a report from this material. Given the exploratory nature
of the interactions and the diversity in people’s approaches this was
done in an inductive approach, leading to the themes in Section 7.2.

The interviews had four parts: 1) We introduced GestureMap (20
minutes), with a concept presentation, a guided walk through the
tool and UI, and opportunities for questions. 2) In an exploratory,
manual analysis task people were prompted to use GestureMap to
identify groups of behaviors in the gesture proposals for two refer-
ents. In real use, researchers would conduct such analyses to better
understand elicited data. 3) In a more confirmatory, automatic analy-
sis task we asked them to build on their gained insights to initialize
the clustering algorithm and refine the automatic clustering results.
In real use, researchers might export this result, for example, for
a report, calculations of agreement, etc. 4) The session concluded
with a semi-structured interview of at least ten minutes. Here, we
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inquired into what people liked/disliked about GestureMap, and
asked for ideas for improvements and additional features.

7.2 Findings
7.2.1 Initial Use. Upon first use, most people immediately ani-
mated a few gestures, saying that this was the most natural and
familiar way to view the data Since the map visualization was
unfamiliar to them, some had initial difficulties to understand the
distinction of single poses (points) and entire gestures (paths). These
people found the animation particularly important: Seeing the 3D
skeleton and the 2D path animated in sync highlighted that a ges-
ture was a path on the map and thus helped them to get familiar
with the map concept. Summarising their initial experience, one
person said: “Although, the learning curve [...] is steep, once you
understand the core concepts, this tool offers a great overview of the
entire behavior that is captured in the dataset.”

7.2.2 Statistical Plot Overlays. We asked the researchers to analyze
the proposals for crouch and throw ball. Throughout the interview
we noticed that all participants preferred the scatter plot over the
density plot. When asked why they keep returning to the scatter
plot, they said that it provided more detail and that density can also
be estimated from scatter points. They also said that points were
visually closer to the data (point=pose).

7.2.3 Details of the Gesture Map View. When study participants
paused their exploration for a longer period, we inquired why that
was the case. Some people noted that they struggled to find a specific
pose on the map. They suggested to increase the visibility of the
poses by showing fewer and larger landmarks. Another researcher
felt that the map should show more detail so it would be easier to
judge differences and transitions of poses. Together, this feedback
motivates a changeable grid size (our zoom was implemented to
always keep an 11 × 11 grid).

Some found similar poses encoded in different map regions and
noted that these should ideally reside in one area. This is an artefact
of dimensionality reduction, as we discuss further in Section 8.2

7.2.4 Exploration Strategies. When we asked the participants what
the main aspect was that they used to determine interesting be-
havioral patterns, we observed diverse analysis strategies, but we
broadly highlight two main ones:

1) Shape driven analysis: Some started by skimming through
gestures to get an overview of their different path shapes on the
map. They stopped to examine gestures in more detail that differed
largely from the shapes seen so far. In a sense, they searched for
outlier behavior based on the path shapes. These participants noted
that the 2D gesture path visualization offers a quick way to spot
irregular behavior and that their analysis becomes an active search
versus passively watching every gesture individually.

2) Position driven analysis: In contrast, other participants focused
entirely on the scatter points as template poses. Using expectations
about possible behavior for a gesture proposal (e.g. left vs right
hand throwing), they examined scatter points in those map regions
that based on the landmark skeletons encoded related poses.

7.2.5 Manually Forming Clusters. Regardless of their initial analy-
sis strategy, when asked which feature they would use to group the

gestures, people agreed on the path shapes as primary discerning
feature (strategy 1). For the crouch referent, everyone distinguished
two to three groups of behaviors. For throw ball, everyone found at
least three (left/right/both handed throwing). Some also found the
kicking behavior as described in Section 6. Overall, the researchers
felt comfortable with grouping the proposals based on the path
shapes. However, there were some complex paths (e.g. crossing
over many poses on the map) that people were unable to assign to
a group. One person suggested to create an outlier group for these.

7.2.6 Interactive Clustering. We asked people to use the interactive
clustering tool based on their observations in the first task.

Next, they were asked to initialize the clustering algorithm us-
ing their knowledge from the previous task. Now, all participants
specifically searched for individual gesture proposals as templates
(strategy 2) and used those to initialize the algorithm.

However, the resulting computed centroids often deviated from
people’s expectations, and thus did not immediately make sense
to them. One user noted that one still has to inspect all gesture
proposals in order to choose suitable initialisations for the k-means
algorithm. On the positive side, the researchers liked the refinement
step, where they could reassign proposals to another cluster. These
reassignments, however, were not yet considered when rerunning
the clustering algorithm in the current implementation.

Overall, after being asked to give a final verdict over the inter-
active clustering feature, all deemed it important. However, they
noted that it should be more accurate and manually refined as-
signments need to be respected when rerunning the clustering
algorithm, thus enabling iterative, interactive use. Technically, this
can be readily implemented by initialising k-means with the current
(refined) assignments.

8 DISCUSSION
8.1 Extending the Gesture Elicitation Toolbox
GestureMap builds on and extends functionalities of previous tools
for gesture elicitation: It combines 1) gesture modeling and visu-
alization, 2) automatic computation of elicitation metrics, and 3)
interactive clustering to provide an integrated analysis platform.

Seeing this and related work as a “toolbox”, researchers may
now consider various options: For example, AGATE 2.0 [61] is a
highly specialized tool to compute agreement, which assumes a
given labeled dataset. GestureMap could be used to label data and
export it for analysis in tools like this.

Alternatively, Ali et al. [1] proposed a crowd platform for anno-
tation, yet without computational support for the workers, such
as alternative gesture representations or similarity measures. Such
support as shown in GestureMap could be combined with a crowd
approach in the future. GestureMap is already implemented as a
web-based tool, rendering it flexible and open to such integration.

Looking ahead, new cloud elicitation tools [2, 36] yield large
datasets. GestureMap’s concepts support handling large data, visu-
ally summarised and explored via our map view.

Finally, the “toolbox” in the literature includes several formal-
ized agreement measures [56, 67]. These could be used also with
our interactive clustering, for example, by plugging in the cluster
cardinalities instead of subjective gesture group counts.
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8.2 Reflection on Model & Clustering Choices
Here, we highlight model and clustering aspects to consider.

8.2.1 Smoothness of the Latent Space. A smooth latent space facil-
itates suitable visualization by reducing “jumps” in gesture paths.
These occur due to recording issues (e.g. sensor occlusion in some
frames) or when subsequent poses are embedded far apart in the 2D
space. While some models address this (e.g. we used a VAE instead
of AE), there is no universal “natural” 2D layout of body poses and
some artifacts are likely to exist for most models and datasets. Be-
sides technical model improvements, visualization concepts could
be explored to address this as well (e.g. visually mark “jumps” along
the gesture path).

8.2.2 Cluster Approaches. A difficulty with k-means is setting the
number of clusters. As an example strategy, to detect the subgroup
behavior for the throw ball referent, we quickly skimmed through
the gestures using the map and visually identified rough patterns.
We then chose 𝑘 correspondingly. We chose k-means, because it
readily integrates with the gesture map and the "variance around
mean gesture" that we introduced in section 4.2. Color coding the
cluster results can be done quickly. Jang et al. [24] proposed to
use interactive hierarchical clustering. Integrating such a tree-like
layout into the gesture map adds complexity and might be material
for future endeavours. We can imagine that average gestures calcu-
lated with the DBA-algorithm can be used to visualize the non-leaf
nodes in the hierarchical tree. In addition, interactive hierarchical
clustering would eliminate the need for choosing the number of
clusters beforehand.

8.2.3 Feature Representation. Hand-engineered features [4, 24, 58]
may help with the interpretation, however, they may be specific to
a sensor and interaction setup. As an exploratory tool, GestureMap’s
learned space is applicable to new and changing setups, without de-
veloping hand-engineered features first. Furthermore, our learned
representation supports gesture simulation useful to examine re-
gions of the behavior space that were not covered by participants.

8.3 Opportunities for Research & Applications
Here we outline further ideas enabled or supported by GestureMap.

8.3.1 Supporting Meta-Analysis and Consolidation. GestureMap
empowers researchers to compare data across studies (cf. Section 6).
As a community, we could consolidate our findings in a meta-map
of many studies, as a sensor data-driven complement to literature
surveys [63]. For instance, such a map might reveal which gestures
and poses are most common or intensely studied. Separate maps
could also compare gesture spaces for different contexts, devices,
etc., for example, to better understand the influences of such factors.

8.3.2 Enabling Map-based Gesture Authoring. GestureMap could
be extended to define new gestures: For example, users could draw
a gesture as a path on the map. Since the underlying latent vari-
able model can simulate new behavior (decoding), such a drawn
path implicitly defines a pose sequence that could be exported as
a template-based gesture recogniser. As an alternative to drawing,
users could demonstrate the gesture in front of the sensor, with a
“cursor” moving on the map live. Users could also select recorded

gestures on the map, labelled manually or with help from our clus-
tering tool, to train a classifier. Such a recognizer then also could
be used in other tools to support sensor feed annotation (e.g. [41]).

8.3.3 Enabling Analysis of Unseen Behavior. So far, elicitation has
focused on observed gestures, yet it might also be relevant to ex-
amine why behavior was not observed. GestureMap enables this:
Researchers can explore map areas without data, which may reveal
unlikely behavior, or indicate issues with interaction (e.g. anatomi-
cally difficult or tiring gestures) or the sensor (e.g. gestures leading
to self-occlusion of body parts). In this way, GestureMap supports
the diagnosis of challenges and limitations in the joint user-sensor
space of an interactive system (cf. [65]).

8.3.4 Supporting Live Exploration and Monitoring. GestureMap
could be extended to more than post-hoc analysis: For example, we
could embed live sensor data and continuously update the under-
lying mode. This live embedding provides a monitoring tool, for
example, for participants to see their currently performed gesture
(e.g. shown as a “cursor”/point on the map), possibly to nudge them
towards exploring new regions of the behavior space (cf. [65]). One
could also predefine a gesture path to monitor live performances
and to judge deviation from this “template”, possibly to learn/teach
a movement sequence. Related, gesture sets are mostly presented as
drawings and videos today [37]. Instead, GestureMap could be used
to show gestures to users, allowing them to reenact and explore
them with live monitoring via the map.

9 CONCLUSION
As our key contribution, we presented a set of visualization and
analysis concepts for gesture elicitation data and a tool that im-
plements them: GestureMap is the first visual analytics tool for
gesture elicitation which directly visualises the space of gestures,
using a learned 2D embedding. It further leverages the computation
of average gestures to enable researchers to 1) represent gesture
groups with one gesture; 2) assess consensus as variance around
this average gesture; and 3) cluster gestures automatically.

Expert users especially liked the visual expressiveness of Ges-
tureMap, as it quickly summarizes the underlying dataset. The
extensibility of GestureMap further encourages future work to em-
ploy machine learning as a tool for analysis of human behavior.
With this work, we contribute to the vision of more widespread
use of applicable computational methods in HCI, also to support
more extensive and cost-efficient large-scale, data-driven HCI work.
Given the proliferation of crowd platforms to collect large datasets,
we expect computational methods and visual analytics as proposed
here to become indispensable tools for many future HCI studies.

GestureMap and further materials are available on the project
website: https://osf.io/dzn5g/
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