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ABSTRACT
While educational robotics and makerspaces are useful to modern
STEM education, they introduce both physical and economic bar-
riers to entry. By creating a simulated, networked environment,
we can facilitate instruction on cyber-physical systems and related
topics while reducing cost and complexity. The virtual environ-
ment created is connected to a block-based programming language,
NetsBlox, to allow students to engage with the curriculum regard-
less of programming experience. The networked simulation and
collaborative programming environment combine to become espe-
cially effective for distance learning. This demonstration showcases
example scenarios providing students with a simple interface to
interact with a simplified sensor network in a small area of a smart
city and solve robot challenges.

CCS CONCEPTS
• Computer systems organization → Robotics; Sensor networks;
• Social and professional topics→ Computing education.
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1 INTRODUCTION
The Internet of Things (IoT), robots, and other smart devices are
rapidly becoming ubiquitous, hence, students should be familiar
with the underlying technologies. Providing educational content on
distributed computing with devices typically requires an upfront
cost of purchasing hardware, establishing their network and contin-
ued maintenance. In addition, the recent prioritization of distance
education may cause difficulty with physical devices. Through sim-
ulation, these costs and issues can be greatly reduced.

While “Robot as a Service”, remote IoT education, and general
educational robotics simulators have previously been used, this
system intends to expand upon the domain of potential topics and
provide new opportunities for students otherwise underserved by
existing methods.
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2 NETSBLOX
To also flatten the learning curve of programming these devices, the
block-based programming language NetsBlox was used [1, 3]. Nets-
Blox, based on Snap! [2], allows students to access a rich program-
ming environment from a web browser. The server infrastructure
for NetsBlox provides access to web services through Remote Pro-
cedure Calls (RPC). For example, Google Maps is accessible through
the "call" block, with RPCs such as “getMap”. The NetsBlox editor
and program code run in a web browser, making it compatible
with the vast majority of student computers. In addition, NetsBlox
includes collaboration features so that students can work in teams.
Through message passing, students can develop applications such
as multiplayer games while using an abstracted networking block
set providing a level of complexity suitable for novices.

The same distributed computing abstractions, RPCs and message
passing, also support interfacing with networked robots and other
devices. While the typical paradigm for educational robotics is to
have students write code to run on the robots, NetsBlox supported
devices have pre-programmed firmware that receives commands
over the network via the “send command” RPC. Robots, in turn,
send acknowledgements and sensor values via messages. The com-
munication can be “intercepted” by other students and robots will
accept commands from anybody, motivating the need for cyberse-
curity, allowing lessons on encryption, denial of service and replay
attacks, and other topics [4].

In this work, we expand the concept of interfacing with physical
devices into virtual worlds. The approach includes a new com-
ponent, named IoTScape, that allows arbitrary devices, whether
physical or virtual, to expose their network location and capabili-
ties to the NetsBlox server through a similar interface to physical
robots. The server then creates a service for each device type ac-
cessible through NetsBlox’s usual abstractions automatically. By
implementing a library for Unity to define services in scene files,
scenarios are able to define the capabilities of virtual devices within
them. An example of blocks used by a student to retrieve data from
simulated sensors and respond to it is seen in Figure 1.

Figure 1: NetsBlox code for requesting vehicle sensor data
and changing traffic light colors.
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Figure 2: System Architecture

3 PLATFORM DESIGN
Virtual environments used for simulation are created in the Unity
game engine. Unity allows for straightforward cross-platform de-
velopment, and has previously been used for educational robotics
simulations [5]. The use of a commercial off-the-shelf game engine
allows the program to be designed for extension and modification
by end users. Each virtual environment used by the software rep-
resents a "scenario" including a game engine scene and objects
including information about interactions and evaluation. These sce-
narios are downloaded upon request, so a large library of content
can be provided remotely. In addition, using Unity allows for sim-
pler development of a virtual reality (VR) interface for the software.
A VR interface allows students to have a deeper interaction with
the virtual devices, such as physically building robots and selecting
sensors to meet specifications.

Students accessing virtual environments share a networked
space. To prevent student connection speeds or hardware limi-
tations from interfering with the fidelity of the simulation, the
physics and networking can run on a remote server. Each student
sees a view of the same environment, allowing them to collaborate
in this shared space no matter whether they are in the classroom or
studying from home. The system architecture is shown in Figure 2.

4 DEMONSTRATION
Two scenarios are used for this demonstration. The first focuses
on tasks utilizing sensors at a four-way intersection in a smart
city (as seen in Figure 3). In this scenario, students must program a
controller for the traffic signal and are evaluated based on efficiency
of the intersection. Traffic in this environment comes from all direc-
tions, with flow patterns designed to test the quality and robustness
of the student’s solution. Desirable traits of a traffic signal at this
intersection are assumed to optimize both throughput and fairness.

The second scenario focuses on robotics in an environment
where multiple students can collaborate to solve a task. Students’
robots are placed on an elevated platform with several boxes they
are tasked with removing from the area (Figure 4). To remove these
boxes, the robots must push each box off the platform’s edge. This
scenario can be given to students as a remote-control task, that is,
they write the code to manually drive the robot with their keyboard
for example, or they may be assigned to use the robots’ distance
sensor to autonomously locate and remove boxes. Performance is
evaluated by the time required to clear the platform.

Figure 3: Overhead view of the “smart city” environment

Figure 4: Overhead view of the “box pushing” task

Although this demonstration focuses on programming controllers
for cyber-physical systems, STEM disciplines outside of computer
science and engineering could take advantage of this system. For
example, the virtual sensors could be used to obtain data from sim-
ulations of climate or ecology. The underlying framework each
scenario is loaded into does not restrict the domain of simulations
to robotics or sensors, and the abstractions provided by NetsBlox
enable classroom use with minimal programming experience.
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