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ABSTRACT
Differentially private data releases are often required to satisfy a

set of external constraints that reflect the legal, ethical, and logical

mandates to which the data curator is obligated. The enforcement

of constraints, when treated as post-processing, adds an extra phase

in the production of privatized data. It is well understood in the

theory of multi-phase processing that congeniality, a form of pro-

cedural compatibility between phases, is a prerequisite for the end

users to straightforwardly obtain statistically valid results. Conge-

nial differential privacy is theoretically principled, which facilitates

transparency and intelligibility of the mechanism that would oth-

erwise be undermined by ad-hoc post-processing procedures. We

advocate for the systematic integration of mandated disclosure into

the design of the privacy mechanism via standard probabilistic

conditioning on the invariant margins. Conditioning automatically

renders congeniality because any extra post-processing phase be-

comes unnecessary. We provide both initial theoretical guarantees

and a Markov chain algorithm for our proposal. We also discuss

intriguing theoretical issues that arise in comparing congenital dif-

ferential privacy and optimization-based post-processing, as well

as directions for further research.
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1 PRIVACY AS DATA PROCESSING
1.1 A blurry yet essential picture
The curation and dissemination of large-scale datasets benefits

science and society by supplying factual knowledge to assist discov-

eries, policy decisions, and promote transparency of information.

As more data become accessible to more entities, however, the un-

obstructed access to information collected from individuals poses
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the risk of infringing on their privacy. Differential privacy is a math-

ematical concept that quantifies the extent of disclosure of confi-

dential information in a database. It enjoys several advantages over

its previous counterparts in statistical disclosure limitation. Most

important of all, especially to data analysts who wish to conduct

statistical inference on privatized data releases, is the transparency

of the algorithm. The mechanism through which the privatized data

release is generated can be spelled out in full, with its statistical

properties fully understood. This enables analysts to incorporate it

as part of a model, hence permitting the statistical validity of the

resulting inference [12].

The protection of confidential data with differential privacy re-

lies on the careful design of a probabilistic mechanism, one that

can veil the microscopic identities of individual respondents while

preserving the macroscopic aspects of the data with high fidelity.

The probabilistic nature of the mechanism is necessary, and enables

a tradeoff as such to be made [4]. Typically, a differentially private

mechanism injects a random perturbation into an otherwise deter-

ministic query to be applied to the confidential database. One can

say, then, that differentially private releases are “blurry” versions

of the confidential data, just the same way a skilled Impression-

ist painter captures the essence of a pond of waterlilies without

sketching out the contour of every petal and leaf.

When randomness is involved, however, certain truthful aspects

of the data is invariably compromised, no matter howwell-designed

the privacy algorithm may be. Imagine if a picture of waterlilies

was commissioned, not by an art collector, but by a botanist whose

sole purpose is to study the structural formation of the plant, such

as the exact length and width of its petals. She would be terribly

disappointed at the Impressionist painting, even if it was the work

of Claude Monet himself!

Circumstances in practice dictates that aspects of the data release

may be deemed as unfit to be tampered with. These are usually

key statistics reflecting the fundamental purpose of data collection,

as required by law, policy, or other external constraints as put

forth by the stakeholders. The data curator is mandated to disclose

these statistics accurately at any expense, while at the same time

shielding the remainder part of the data releasewith a veil of privacy.

This poses a challenge to the design of the privacy mechanism

subject to mandated disclosure. The central question is, how to

integrate data privatization, an inherently random act, with the

mandated disclosure of partial yet deterministic information, while

maintaining both the logical consistency of the overall data release

and the quality of the privacy protection.

1.2 Congenial privacy
In this work we conceptualize the privacy mechanism as one of the

many phases of data processing. The concept of congeniality, or
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rather uncongeniality [19], is then relevant. The theory of uncon-

geniality was developed for investigating a seemingly paradoxical

phenomenon discovered by researchers dealing with imputations

for the U.S. Decennial Census and similar public-use data files. Fay

[7] and Kott [17] found that one can have inconsistent variance

estimation for multiple imputation inference [20], even when both

the imputation model and analysis procedure are valid. The is-

sue turned out to be a mathematical incompatibility between the

imputation model and the analysis procedure, even if neither is

incompatible with the underlying model that generates the data.

In other words, there is no probabilistically coherent model that

can simultaneously imply the imputation model and the analysis

procedure, a situation termed uncongeniality by Meng [19]. To

make matters worse, the imputation model, such as adopted by

the Census Bureau, is typically not disclosed to the analyst of the

imputed data, or at least not fully (e.g., due to confidential infor-

mation used to help better predict the missing values). The lack of

transparency makes it impossible for the analyst to correct for the

uncongeniality, and worse, even to realize the problem.

The framework of uncongeniality was later generalized to the

multivariate setting [22] and to general multi-phase processing

[3], which covers the current application by the same overarching

principles. Two properties are critical for good privacy practice:

transparency and congeniality. When the protection of privacy

must observe mandated constraints, our proposal is to use con-

ditional distributions as derived from the original unconstrained

differential privacy mechanism conditioning on invariant margins.

This approach achieves both automatically. Transparency is auto-

matic, because the conditional distribution is determined by the

original unconstrained distribution and the invariant constraints,

both fully disclosed by design. Congeniality stipulates the use of

a single coherent probabilistic model to ensure both differential pri-

vacy and mandated disclosure. This requirement is automatically

satisfied when we use the conditional distribution derived from the

original differential privacy mechanism, restricted solely to obey

the mandated disclosure. A third advantage is that our proposal

does not need any additional choice of procedural ingredients, such

as projection distance, which is required by optimization-based

post-processing such as adopted by the Census TopDown algo-

rithm [1].

There is, however, no free lunch. The first price we pay for

congenial privacy is computational. Sampling from a distribution

truncated on some space, as determined by the invariant margins,

is generally not trivial, especially when the truncated region is

of irregular shape. The second price is that we may pay more

privacy loss budget than necessary, since the budget designed for

the original mechanism depends on the sensitivity of the query

measure on the unconstrained space, which is larger than that

for the constrained space. When deriving the appropriate class of

conditional distributions for the constrained mechanism, the new

privacy loss budget should ideally be calibrated directly according

to the query behavior on the constrained space, as opposed to

be inherited from the unconstrained mechanism, which ensures

a likely overly conservative level of privacy protection for the

entire space. When the analytical complexity and computational

requirements for the two approaches of budget calibration are

similar, we certainly recommend the former.

1.3 The mechanism of differential privacy
Let x = (x1, . . . ,xn ) denote a database consisting of n individ-

uals, and X the space on which it is defined. A query function

s : X → Rd embodies the knowledge contained in the database

that stakeholders – scientists, policy makers and the general pub-

lic – would like to learn. What determines the value of s (x) is of
course x , or equivalently all its component xi values, corresponding
to individual respondents included in the database. It is precisely

these individuals records, or the xi ’s, that are the subject of privacy
protection. How can the data curator say useful things about s (x),
while saying barely anything about each of the xi ’s?

The mechanism that can instill privacy into the curator’s release

appeals to randomness. A random query functionM : X → Rd is

said to satisfy ϵ-differential privacy [5], if for all pairs of neighboring
datasets (x ,x ′) ∈ X × X, we have that

P (M (x) ∈ B) ≤ exp (ϵ) P
(
M

(
x ′

)
∈ B

)
(1.1)

for all Borel-measurable sets B ∈ B
(
Rd

)
. In this work, the term

neighboring datasets means that x and x ′ differ by exactly one in-

dividual’s record, i.e. for some j = 1, . . . ,n, x j , x ′j but for all
i , j, xi = x ′i . Write d (x ,x ′) = 1 if x and x ′ are neighbors. This
concept of neighbor is employed in the definition of ϵ-bounded
differential privacy [1], and is distinct from the original formulation

which defined neighbors as a pair that differ from each other by

the addition or deletion of a single record. There are many ways to

design an ϵ-differentially private algorithm M , among which the

most widely known and implemented are the Laplace and the Dou-

ble Geometric algorithms [5, 8], both are additive ϵ-differentially
private mechanisms.

Definition 1.1 (Laplace mechanism). Let s : X → Rd be a deter-

ministic query function. The Laplace mechanism is given by

M (x) := s (x) + (U1, . . . ,Ud ) , (1.2)

whereUi ’s are independent zero-mean Laplacian random variables

each with dispersion parameter ϵ−1∇ (s), and
∇ (s) = sup

(x,x ′)∈X×X

{

s (x) − s
(
x ′

)


: d

(
x ,x ′

)
= 1

}
is the global sensitivity of s . When the database consists of binary

records in an unrestricted domain, and s is the counting or his-

togram query, ∇ (s) = 1.

Definition 1.2 (Double Geometric mechanism). A random query

mechanismM is called the Double Geometric mechanism if it has

the same functional form as (1.2), withUi random variables defined

on the integers with probability mass function

pi (u | ϵ) = 1 − a

1 + a
· a |u | , (1.3)

where the parameter a = a (ϵ, s) = exp (−ϵ/∇ (s)).
Note that the definition of either the Laplace or the Double

Geometric mechanism presents not just one, but a collection of

mechanisms that can be written as {Mϵ }, indexed by ϵ > 0 the

privacy loss budget allocated to the mechanism in question. When

regarded as a sequence of statistical procedures, ϵ serves as an

indicator of the statistical quality of the output (with larger ϵ for
higher quality) that can be used to offer interpretation and to guide

its own choice. This point will be immediately useful in Section 1.4.



1.4 Statistical intelligibility
An important reason that differential privacy is embraced by the

statistics community is that it defines privacy in the language of

probability, induced by the mechanism that injects randomness

in the data release. An impactful consequence is that the distribu-

tional specification of the mechanism can be made fully transparent

without sabotaging the promised protection. This opens the door

for systematic analysis of the statistical property of mechanisms,

which is in turn crucial to the accurate interpretation of statistical

inference from privatized data releases [10]. The clarity both in def-

inition and in implementation makes up the statistical intelligibility

of differential privacy as a data processing procedure.

We discuss the statistical interpretation of the privacy mech-

anism, which is what served as inspiration for the conditioning

approach to construct the invariant-respecting mechanism in the

first place. The degree of protection exerted by a privacy mecha-

nism on the confidential database is seen as a calculated limit on

the statistical knowledge it is able to supply, as a function of the

privacy loss budget allotted to the mechanism. Compare quantities

π (xi = ω) and π (xi = ω | Mϵ (x) ∈ B) , (1.4)

which are the analyst’s prior probability about the value of the

ith entry of the dataset, versus her posterior probability if an ϵ-
differentially private query released a report B. Thus, the statistical
meaning ofMϵ can be explained as follows.

Theorem 1.3. Let x = (· · · ,xi , · · · ) ∈ X be the database, and
{Mϵ : X → Rd , ϵ > 0} a class of ϵ-differentially private procedures

operating on x . Then for every B ∈ B
(
Rd

)
, ϵ > 0 and every prior

probability π the analyst harbors about xi ,

π (xi = ω | Mϵ (x) ∈ B) ∈[
exp (−ϵ)π (xi = ω) , exp (ϵ)π (xi = ω)

]
. (1.5)

Proof. The posterior probability π (xi = ω | Mϵ (x) ∈ B) can be

written as

P (Mϵ (x) ∈ B | xi = ω)π (xi = ω)∑
ω′ P (Mϵ (x) ∈ B | xi = ω ′)π (xi = ω ′) .

The result then follows immediately from the fact that Mϵ is ϵ-

private, which means that for any B ∈ B
(
Rd

)
,

exp (−ϵ) ≤ P (Mϵ (x) ∈ B | xi = ω ′)
P (Mϵ (x) ∈ B | xi = ω) ≤ exp (ϵ).

□

Theorem 1.3 says that, any release generated by an ϵ-differentially
private procedure sharpens the analyst’s knowledge about xi by at

most a factor of exp(ϵ). This interpretation provides a direct link

between the differential privacy promise and the actual posterior

risk of disclosure due to the release of the random queryMϵ .

Recall that the definition of the Laplace and the Double Geomet-

ric mechanisms are both well-defined for any ϵ > 0. However, in

the limiting case of ϵ → 0, i.e. the privacy loss budget becomes

increasingly restrictive, both algorithms amount to adding noise

with increasingly large variance to the confidential query. At ϵ = 0,

neither mechanism remains well-defined since the distributions

of the noise component become improper due to the infinite car-

dinality of their respective domains. Nevertheless, the definition

of ϵ-differential privacy allows for the expression with ϵ = 0. A

mechanism is 0-differentially private if one cannot gain any discrim-

inatory knowledge from its release about the underlying database

whatsoever. In other words, the analyst’s knowledge about the in-

dividual state of xi must remain the same as her prior. This notion

can be explained consistently with Theorem 1.3, by observing that

lim

ϵ→0

π (xi = ω | Mϵ (x) ∈ B) = π (xi = ω) , (1.6)

where the limit is implied by (1.5). This inspires the following de-

liberate construction ofM0 as a 0-differentially private procedure.

Definition 1.4 (0-differentially private procedure). For {Mϵ } a

class of ϵ-differentially private procedures well-defined for ϵ > 0

but not ϵ = 0, define M0 as the 0-differentially private procedure

such that for every prior probability π ,

π (xi = ω | M0 (x) ∈ B) = π (xi = ω) , ∀B ∈ B
(
Rd

)
. (1.7)

Definition 1.4 grants conceptual continuity to M0, a perfectly

meaningful object in the privacy sense but lacking statistical intelli-

gibility from the mechanistic point of view. For practical purposes,

M0 should be taken to mean the suppression procedure, which sup-

plies vacuous knowledge to the analyst about the state of affairs of

the database. Theoretically, the meaning of M0 as a probabilistic

mechanism cannot be supplied by ordinary probabilities, because

any probability specification represents a set of specific knowledge

about relative frequencies of any pair of states. However, its mean-

ing can be quantified precisely in the more general framework of

imprecise probability, as Section 5 will discuss.

2 CONSTRUCTING CONGENIAL PRIVACY
2.1 Privacy with invariants
While privacy protection is called for, the data curator may be

simultaneously mandated to disclose certain aspects of the data

as they are exactly observed, without subjecting them to any pri-

vacy protection. This collection of information is referred to as

invariant information, or invariants. In practice, invariants are often

defined according to a set of exact statistics calculated based on the

confidential database [2]. For example, suppose s is the histogram
query which tabulates the population residing in each county of

the state of New Jersey from the 2020 U.S. Census. When produc-

ing a differentially private version of the histogram, the Census

Bureau is constitutionally mandated to report the total popula-

tion of each state as enumerated. This means that the privatized

histogram M(x∗) must possess the same total population size as

s(x∗), where x∗ the confidential Census microdata; or in notation,

∥M (x∗)∥ = ∥s (x∗)∥.
Suppose that the Double Geometric mechanism is to be applied

to the histogram query s . Due to the random nature of the per-

turbations, a single realization of the mechanism will with high

probability produce ∥M (x∗)∥ , ∥s (x∗)∥. FurthermoreM (x∗) has
a positive probability of consisting negative cell counts, which is

logically impossible of the confidential query s (x∗). The challenge
of privacy preservation under mandated disclosure is thus to find

an alternative mechanism, say M̃ , such that every realization of



M̃ meets all the requirement of mandated information disclosure,

while preserving the promise of differential privacy.

Let X∗ ⊂ X be the set of x ’s that obey the given invariants. In

turn, X∗
defines the set of values that the query must satisfy as

S∗ =
{
s (x) ∈ Rd : x ∈ X∗

}
. (2.1)

Note that implicitly, S∗ = S∗ (x∗) is a set-valued function of the

confidential dataset x∗, because the invariant knowledge we intend
to impose on the private release is implied by x∗.

A random mechanism M̃ satisfies the mandated disclosure if

M̃ (x) ∈ S∗, ∀x ∈ X∗. (2.2)

That is, whenever applied to a database conformal to the mandated

disclosure, with mathematical certainty M̃ is also conformal to the

mandated disclosure. The size and complexity of the restricted S∗

(and X∗
) relative to their original spaces are crucial to the overall

extent to which privacy of the residual information in the database

can be protected, a point we will revisit in Section 5.1.

There may be many ways to construct a random mechanism M̃ ,

but all are not equally desirable. We argue that M̃ should be con-

structed in a principled manner, and a constructive way to achieve

that is to use conditional distributions of unconstrained privacy

mechanisms. The resulting mechanism can be easily tuned to retain

its differential privacy promise, while ensuring its congenial inte-

gration into the data processing pipeline, preserving the statistical

intelligibility of its releases.

2.2 Imposing invariants via conditioning
LetM be a valid ϵ-differentially private mechanism, which gener-

ates outputs that typically do not obey the invariant requirement

M (x) ∈ S∗
, even if x ∈ X∗

. A natural idea to force the requirement

ontoM is via conditioning. Define a modified privatization mecha-

nismM∗
, such that the probability distribution it induces is the same

as the conditional distribution ofM subject to the constraint that

M (x) ∈ S∗
. For what’s next, we’ll use the notation Z

L
=W to mean

Z andW are identically distributed, andM (x) | M (x) ∈ S∗
denotes

a well-specified conditional distribution P(M (x) | M (x) ∈ S∗).
Also assume for now P(M (x) ∈ S∗) > 0. We have the following

theorem.

Theorem 2.1. Let x∗ ∈ X be the confidential database, and
X∗ ⊂ X the invariant subset to which x∗ conforms. The deterministic

function s : X → Rd is a query, and the implied S∗ ∈ B
(
Rd

)
is defined by (2.1). Let M be an ϵ-differentially private mechanism
based on s , andM∗ be a constrained mechanism such that

M∗ (x) L
= M (x) | M (x) ∈ S∗. (2.3)

Then for all invariant-conforming pairs of datasets that arek-neighbors,
i.e. (x ,x ′) ∈ X∗×X∗ such that d (x ,x ′) = k , there exists a real-valued
γ ∈ [−1, 1] such that for all B ∈ B

(
Rd

)
,

P
(
M∗ (x) ∈ B

)
≤ exp ((1 + γ )kϵ) P

(
M∗ (

x ′
)
∈ B

)
. (2.4)

Proof. For a pair of k-neighboring and S∗
-conforming datasets

(x ,x ′) and any B ∈ B
(
Rd

)
,

P (M∗ (x) ∈ B)
P (M∗ (x ′) ∈ B) =

P (M (x) ∈ B | M (x) ∈ S∗)
P (M (x ′) ∈ B | M (x ′) ∈ S∗)

=
P (M (x) ∈ B ∩ S∗)
P (M (x ′) ∈ B ∩ S∗) ·

P (M (x ′) ∈ S∗)
P (M (x) ∈ S∗) .

Clearly each of the last two ratios above is bounded above by

exp (kϵ) and below by exp (−kϵ) becauseM is ϵ-differentially pri-

vate. Consequently, if we let

γ ∗ =
1

kϵ
log

 max

(x,x ′)∈X∗×X∗

d(x,x ′)=k

P (M (x ′) ∈ S∗)
P (M (x) ∈ S∗)

 , (2.5)

then γ ∗ ∈ [0, 1] and it is a known constant because S∗
is public.

Then, (2.4) holds for any γ ∈ [γ ∗, 1], and certainly for γ = 1. □

Our proof above might create an impression that only γ ≥ 0 is

permissible, but Sections 4 and 5.1 will supply two examples both

with γ < 0. Negative γ may sound paradoxical, for it seems to

suggest that better privacy protection can be achieved by disclosing

some information. However, we must be mindful that differential

privacy is not about protecting privacy in absolute terms. Rather, it

is about controlling the additional disclosure risk from releasing the

privatized data to the users (or hackers), relative to what they know

before the release. The presence or absence of mandated invariants

would ex ante constitute two different bodies of knowledge, hence

any additional privacy protection would carry different interpreta-

tions too. We also emphasize that Theorem 2.1 generalizes to cases

where P(M(x) ∈ S∗) = 0, such as when it is a linear subspace of Rd

and the privacy mechanism is continuous. The proof is a bit more

involved in order to properly define P(M (x) | M (x) ∈ S∗), which
we will discuss in future work. However, this complication is not a

concern for discrete privatization mechanisms, such as within the

Census TopDown algorithm [1].

Theorem 2.1 holds broadly for arbitrary kinds of ϵ-differentially
private mechanisms, as well as any deterministic invariant infor-

mation about either the database or the query function that can

be expressed in a set form. It lends itself to the same kind of poste-

rior interpretation enjoyed by unconstrained differentially private

mechanisms. Specifically, ifM∗
ϵ is the constrained differentially pri-

vate procedure constructed based on the unconstrained procedure

Mϵ , according to the specifications of Theorem 2.1, then for all

x ∈ X∗
such that ∃x ′ ∈ X∗

so that d (x ,x ′) = 1, and ∀B ∈ B (S∗),
the analyst’s posterior probability π

(
xi = ω | x ∈ X∗,M∗

ϵ (x) ∈ B
)

is bounded in between[
exp (− (1 + γ ) ϵ)π

(
xi = ω | x ∈ X∗) ,

exp ((1 + γ ) ϵ)π
(
xi = ω | x ∈ X∗) ] .

This an interval that bears structural resemblance to (1.5), thanks

to the conditional nature ofM∗
which allows for statistical infor-

mation from privacy mechanisms, constrained or otherwise, to be

interpreted in the same (hence congenial) way.



The definition of ϵ-differential privacy has the property that, if a

mechanismM is ϵ1-differentially private, then for all ϵ2 ≥ ϵ1,M is

also ϵ2-differentially private. If the invariant information does not

substantially disrupt the neighboring structure of the sample space

of the database, a notion we will make precise later in Section 5,

what Theorem 2.1 says is that enforcing the invariant X∗
onto the

unconstrained mechanismM via conditioning costs (1 + γ ) times –

and at most twice since γ can always be set to 1 – the privacy loss

budget allotted toM . When a more cost-effective value of γ is hard

to determine, a simplest way to ensure privacy loss budget ϵ for

M∗
is to use a budget of ϵ0 = ϵ/2 for the unconstrained mechanism

M to begin with; see Section 3.

2.3 An Monte Carlo Implementation
Let p denote the probability distribution, either a mass function

or a density function, induced by the unconstrained differentially

private algorithmM which depends on the confidential query s∗.
Further denote p∗ to be the corresponding conditional distribution

of p constrained on the invariant set S∗
. The constrained privacy

mechanism requires samples from p∗. A simplest, though often

inefficient or event impractical, method is rejection sampling. Since

p∗ (s) =
{

c−1p (s)
0

if s ∈ S∗

otherwise,

where c =
∫
S∗ p (s)ds , one can opt for a proposal density q with

support S∗
such that sups ∈S∗ [p(s)/q(s)] ≤ R, and accept a sample

s ∼ q with probability p(s)/Rq(s). This encompasses the option

to set q = p, the unconstrained privacy kernel itself, and keep

sampling until the sample falls into S∗
. This strategy is clearly

inefficient in general, and impossible when c = 0.

Efficient algorithm tailor-made to specifications of S∗
are pos-

sible. Here, we present in Algorithm 1 a generic approach based

on Metropolized Independent Sampling [MIS; 18], for the most

common case in which the mandated invariants are expressed in

terms of a consistent system of linear equalities and inequalities

S∗ =
{
s ∈ Rd : As = a,Bs ≥ b

}
.

Here A and B are dA × d and dB × d matrices with ranks dA < d
and dB < d respectively, and a and b vectors with length dA and

dB respectively. The algorithm requires a proposal index set I, a
subset of {1, . . . ,d} of size d − dA such that rank

(
A[Ic ]

)
= dA,

where A[J] is the submatrix of A consisting of all columns whose

indices belong to J . For eachA, the choice of I may not be unique,

and can have a potential impact on the efficiency of the algorithm.

This algorithm is applicable to both discrete and continuous data

and privatization schemes, and it does not require the normalizing

constant for p∗. In Section 3 below, we use it to construct a mech-

anism for differentially private demographic contingency tables

subject to both linear equality and inequality invariant constraints.

3 CONTINGENCY TABLE WITH INVARIANTS
The table we consider is of dimension 2×23, with rows representing

sex (male/female), and columns representing age bucketed roughly

every four years, with finer buckets around key age ranges such as

18, 21 and 60. This data structure corresponds to the 2010 Census

Algorithm 1Metropolized Independent Differentially Private Sam-

pler with Invariants

Input: unconstrained privacy mechanism p,
confidential query s∗, invariant parameters (A,a,B,b),
proposal distribution q, proposal index set I,
initial value s(0) ∈ S∗

, integer nsim;

Iterate: for t = 0, 1, . . . , nsim − 1, at t + 1:

step 1, propose s̃:
1-1. sample s̃I ∼ q;
1-2. solve for s̃Ic in A[I]s̃I +A[Ic ]s̃Ic = a;
1-3. write s̃ = (s̃I , s̃Ic );

step 2, compute α(s(t ), s̃) = min

{
1,

p(s̃)1(Bs̃≥b)q
(
s (t )I

)
p(s (t ))q(s̃I )

}
;

step 3, set s(t+1) = s̃ with probability α(s(t ), s̃),
otherwise set s(t+1) = s(t ).

Output: a set of draws {s(t )}, t = 1, . . . , nsim.

Table #P12 and 2020 Census Table #P7 [21], one of the most ref-

erenced type of contingency table releases by the Census Bureau

at various geographic levels. For the purpose of computational il-

lustration, this example will use simulation to construct synthetic

datasets that represent the confidential Census demographic data.

Let s be a vector of length 46, denoting the row-vectorized con-

tingency table. The constraints to be imposed on the differentially

private table include

(1) total population;

(2) proportion of female population;

(3) total voting age population (18+ age); and

(4) nonnegative table entries.

Items (1) to (3) constitute equality constraints, and item (4) inequal-

ity constraints. The unconstrained privacy mechanism that serves

as the basis of our construction is the Double Geometric mechanism,

with distribution function

p (s) =
46∏
i=1

pi
(
si − s∗i | ϵ

)
,

where pi is as defined in (1.3), and the privacy loss budget set

to ϵ = 0.5 per cell. The proposal distribution is set to be of the

same family as does the unconstrained privatization algorithm,

but it is given a distinct dispersion parameter ϵ̃ to tune for best

algorithmic performance, in this case the acceptance probability

of the algorithm. The proposal distribution function for s̃I , the
(d − dA)-length subvector of the kth proposal s̃ , is

q (s) =
∏
i ∈I

pi
(
si − s∗i | ϵ̃

)
,

where I is chosen to be {2, . . . , 22, 24, . . . 45}. The remainder coor-

dinates of the kth proposal, s̃Ic , is solved according to the equality

constraint As̃ = a.
Table 1 displays a simulated confidential table (top) and a con-

strained differentially private table (bottom) based on the confi-

dential table, where the draw is produced by Algorithm 1. In this

case, setting ϵ̃ = 0.6 yields the best acceptance probability, with

acceptance probability at 1.68%, as shown in Figure 2 in Appendix C



< 5 6-10 11-15 16-17 18-19 20 21 22-24 25-29 30-34 35-39 40-44 45-49 50-54

Female 8 6 3 6 4 4 4 8 5 7 7 6 1 5

Male 3 4 5 8 6 4 5 5 5 6 10 7 3 2

55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84 85+ Total

Female 4 4 9 6 2 8 8 8 7 130
Male 5 11 6 4 7 4 5 3 8 126

Voting 43 213 256

< 5 6-10 11-15 16-17 18-19 20 21 22-24 25-29 30-34 35-39 40-44 45-49 50-54

Female 6 6 4 3 2 10 2 5 6 7 5 6 0 5

Male 9 4 5 6 3 4 5 5 3 4 7 8 5 3

55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84 85+ Total

Female 4 5 10 8 3 8 8 12 5 130
Male 2 23 8 2 6 3 0 3 8 126

Voting 43 213 256

Table 1: A confidential sex× age contingency table (top) and a corresponding constrained differentially private (bottom) release,
subject to total population, proportion female population and voting age population constraints (bold).

alongside traceplots for the second and the first cells of the table,

with the former index belonging to I and the latter not.
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Figure 1: Average L1 (top) and L2 (bottom) distances of a sim-
ulated confidential dataset from its privatized releases using
four different processing methods.

We compare the outputs of our congenial mechanismwith the un-

constrained privacy mechanism, with and without post-processing

via nonnegative L2 minimization onto the invariant set S∗
defined

by (1)-(4). A total of 20 confidential contingency tables are simu-

lated, each with cells following

si
i .i .d .∼ Neдative Binomial (100, .05) ,

which has mean E(si ) = 5.26 and varianceVar (si ) = 5.54. For each

confidential table, 100 privatized releases were created using each

of the following methods:

a) the unconstrained (raw) Double Geometric mechanism with

privacy loss budget ϵ = 1 per cell;

b) the above mechanism followed by nonnegative L2 (NNL2)

minimization onto the subspace defined by the four con-

straints, i.e. S∗
;

c) Our proposed S∗
-conditional algorithm per Algorithm 1,

constructed based on an unconstrained Double Geometric

mechanism with ϵ0 = 0.5; and

d) the same unconstrained Double Geometric mechanism as in

(a), but with ϵ = 0.5 per cell.

The L1 distance and L2 distance between a confidential table s
and s̃ , a privatization of s , are given respectively by

L1 (s, s̃) =
∑
i

|si − s̃i | and L2 (s, s̃) =
√∑

i
(si − s̃i )2. (3.1)

For each of the four types of privatization and processing mecha-

nisms, we compute averages of both distances over 100 realizations

of s̃ . Figure 1 displays the box plots of these average distances

over the 20 simulated copies of private table s . We observe that

the conditional mechanism, constructed from an unconstrained

mechanism with ϵ0 = 0.5, exhibits a degree of variability between

the unconstrained mechanisms with privacy loss budget ϵ = 0.5

and ϵ = 1. On the other hand, the nonnegative L2 projection of the

unconstrained mechanism with ϵ = 1 achieves a level of accuracy

mostly on par with it. Note that this observation should not be taken

as a suggestion of relative accuracy between the nonnegative L2

minimization and the constrained mechanism, because the effective

privacy guarantee that either mechanism enjoys is undetermined,

an issue we will discuss further at the end of Section 4. That said,

by Theorem 2.1 that the conditional mechanism inflates the privacy

loss budget of a unconstrained algorithm by (1 + γ ), the empirical



observation suggests that the effective γ may be somewhere in

between 0 and 1. In the following sections, we will see examples

where γ = 0 or even γ < 0.

4 CURATOR’S POST-PROCESSING MAY NOT
BE INNOCENT PROCESSING

A common practice to ensure unconstrained differentially private

releases respect the mandated disclosure requirements is through

optimization-based post-processing, which takes the general form

f
(
M ;S∗) = argmins ∈S∗∆ (M, s) . (4.1)

That is, f is the element in S∗
that is the closest to M according

to some discrepancy measure ∆, typically a distance, such as the

two given in (3.1). In the case of the Census Bureau’s TopDown

algorithm, f is a composite post-processing procedure consisting of

first a nonnegative L2 minimization followed by an L1 minimization

onto the integer solutions; see [1].

In the literature of differential privacy, there is a widely ref-

erenced theorem which establishes that differentially privatized

releases are “immune” to post-processing [6]. The theorem states

that ifM is an ϵ-differentially private mechanism and д is an arbi-

trary function, then д ◦M is still ϵ-differentially private. Indeed for

any д-measurable set B,

P (д(M (x)) ∈ B) = P(M (x) ∈ д−1(B)). (4.2)

Thus for every x ∈ X, the maximal increased risk of disclosure

from releasingд(M(x)) cannot exceed that from releasingM(x) (but
the reversed is guaranteed only when д is one-to-one). Intuitively,

further blurring an already blurred picture can only make it harder,

not easier, to see what is in the original picture.

This intuition, however, is based on the assumption that the fur-

ther blurring process does not use any knowledge about the original

picture. We need to make clear here that imposing invariants on dif-

ferentially private releases via optimization-based post-processing,

in the sense of the operation discussed here, does not in general

fall under the jurisdiction of the post-processing theorem. This is

because f , the function used to impose invariants on the uncon-

strained outputM (x), is implicitly dependent on the confidential

dataset x∗, with the dependence induced via S∗
, or equivalently

X∗
to which x∗ belongs. Since S∗

supplies information about the

confidential database, whereas the unconstrained mechanism M
is by design not preferential towards S∗

, any further processing

of M that makes nontrivial use of S∗
risks violating the privacy

guarantee thatM deserves.

The post-processing theorem guarantees that no loss of privacy

will be induced to the privatized query via any functional transfor-

mation that may be carried out by an ordinary analyst or data user.

However, imposing invariants is the kind of post-processing that

only the data curator – one who has access to the confidential data –

is capable of performing. In the extreme scenario (see Example 5.2)

that the invariant forces the privatized disclosure to be precisely

equal to the confidential query, for the data curator to achieve this

algorithmically is as simple as taking the privatized queryM and

projecting it to the single point in Rd defined by the confidential

value s (x∗). But this is impossible for a data user who do not know

what s (x∗) is.

One may wonder the following question. While the invariant

S∗
has a dependence on the confidential x∗, itself is nevertheless

public information. Doesn’t that make f (·;S∗) a fully specified

function, just like д in the post-processing theorem? The answer is

no in general, and the distinction here is a subtle one. When talking

about the value of the invariants, it suffices to regard S∗
merely

as an announced description of the confidential data. However as

alluded to previously, S∗
is a set-valued map from the database

space to subsets of the query space, i.e. S∗
: X → B(Rd ). Almost

always is the case in practice that the functional form of map of

S∗
is a priori determined, but its value – namely S∗ (x∗) – can be

calculated only after the confidential data is observed. Indeed, the

actual specification of S∗
would almost certainly change if x∗ were

observed differently. This means for an f -measurable set B and a

database x ∈ X, the equivalent events in the f and the M spaces

are now

f
(
M (x) ;S∗ (x)

)
∈ B ⇔ M (x) ∈ f −1

(
B;S∗(x)

)
, (4.3)

noting that the inverse function f −1(·;S∗(x)) now depends on x .
To see the complication caused by this dependence, write B̃(x) =

f −1(B;S∗(x)) and f (x) = f (M (x) ;S∗(x)). We then have

P(f (x) ∈ B)
P(f (x ′) ∈ B) =

P(M(x) ∈ B̃(x))
P(M(x ′) ∈ B̃(x ′))

. (4.4)

Although both B̃(x) and B(x ′) are measurable sets, they are not

necessarily the same when x ′ , x . Hence we cannot use (1.1) to
conclude that the right hand side of (4.4) is bounded above by

exp (ϵ). This does not necessarily imply that the post-processing f
as defined in (4.1) is not ϵ-differentially private. Indeed, we prove

in Appendix A that both L2 and (a class of) L1 post-processing

in Example 4.1 below is ϵ-differentially private. But it does imply

that in general, the statistical and privacy properties of f are not

straightforwardly inherited from that ofM , and hence they need

to be established on a case by case basis.

Anothermajor drawback of using optimization-basedmethods to

impose invariants is that the statistical intelligibility of differential

privacy is obscured. The post-processing function f is often proce-

durally defined, hence a complex and confidential data-dependent

map from the unconstrained query space to the constrained query

space, with almost impenetrable statistical properties, and certainly

so for any given database. In contrast, using conditioning to re-

alize differential privacy with mandated disclosure, despite often

computationally demanding by construction, preserves the sta-

tistical intelligibility of the privacy mechanism. The constrained

privacy mechanism is distributionally – as opposed to procedurally

– constructed, preserving the possibility of transparent downstream

analysis. It furthermore delivers privacy guarantee in the same

format as does differential privacy without constraints, offering a

congenial statistical interpretation that resembles the original.

Below we use an example to compare congenial privacy with

two approaches of post-processing for a same query function. The

example is simple enough for analytical derivations of the distribu-

tions of post-processing mechanisms to be possible. As we will see,

the three approaches to impose invariant constraints yield distinct

theoretical behaviors.



Example 4.1 (A two-bin histogram with constrained total). Sup-
pose the confidential database x is a binary vector, and the query

of interest tabulates the number of 0 and 1 entries in x , i.e.

s (x) = (s1 (x) , s2 (x)) =
(∑

i
1 (xi = 0) ,

∑
i
1 (xi = 1)

)
.

Employ the Laplace mechanism as the unconstrained privatization

mechanism to protect the two-bin histogram, i.e.

M (x) = (m1 = s1 + u1,m2 = s2 + u2) , ui i .i .d .∼ Lap(2ϵ−1),
expending in total ϵ privacy loss budget. The induced probability

density ofM is

p (m1,m2) =
(ϵ

4

)
2

exp

{
−ϵ

2

(|m1 − s1 | + |m2 − s2 |)
}
.

Suppose the invariant to be imposed is that the total of the

privatized histogram shall be the same as that the the confidential

query itself. That is, for any given x , the associated invariant set is

S∗ (x) =
{
(a1,a2) ∈ R2

: a1 + a2 = s1 (x) + s2 (x)
}
. (4.5)

In the calculations below, a certain database x is fixed, and we write

the invariant total n = ∥x ∥, the length of x .

Congenial privacy. Under the constraint of histogram total, our

congenialM∗ (x) is obtained from the conditional distribution

(s1 + u1, s2 + u2) | u1 + u2 = 0.

It turns out that the probability density ofM∗
is

P (m1 =m,m2 = n −m) = ϵ

2

exp {−ϵ |m − s1 |} (4.6)

and 0 otherwise; see Appendix A. That is, our congenial mecha-

nism M∗
is simply to draw a u from Lap(ϵ−1), and then release

(m1 = s1 + u,m2 = s2 − u). Clearly, the privacy property of M∗
is

the same as its first component, call it M∗
1
, which protects s1 by

releasingm1 because settingm2 = n −m1 is a deterministic step

with no implication on privacy when n is known. ButM∗
1
is simply

the Laplace mechanism with ϵ budget. Consequently, our conge-

nial mechanism maintains the same ϵ guarantee as the original

unconstrained mechanism, even though the meaning of protection

is different, as we emphasized in Section 2.2.

Post-processing with L2 minimization. Here we minimize the L2

distance betweenM (x) and the post-processed histogram release,

denoted fL2
, subject to its sum being n. The solution is

fL2

(
M (x) ,S∗) = argmins ∈S∗ ∥M (x) − s∥

2
= (x̄ + ũ, x̄ − ũ) ,

where ũ is the average of two independent Laplace random vari-

ables with scale 2ϵ−1
. As can be easily seen (for example from its

characteristic function), ũ is not a Laplace random variable, but in

fact follows distribution

1

2

Lap(ϵ−1) + 1

2

SдnGamma(2, ϵ−1), (4.7)

that is a 50-50 mixture of a Laplace distribution with scale ϵ−1
and

a signed Gamma distribution (i.e. a regular Gamma distribution

multiplied by a fair random sign) with shapek = 2 and scale ϵ−1
; see

Appendix A for derivation. It is worth noting that since a signed

Gamma distribution of shape k = 2 can be written as the sum

of two independent Laplace distributions of the same scale, ũ is

more variable than a single independent Laplace random variable

E (m1,m2) Var (m1)
M∗ (s1 (x) , s2 (x))⊤ 2

ϵ 2

fL2
(s̄ (x) , s̄ (x))⊤ 4

ϵ 2

fL1
(s1 (x) , s2 (x))⊤

[
4

ϵ 2
, 8

ϵ 2

]
Table 2: Differentially private two-bin histogram with in-
variant total: expectation and first-component variance of
the conditional (M∗) and post-processed (fL2

and fL1
) his-

tograms.

of the same scale. Hence for any x , the privatized release using fL2

will be more variable than that of the congenial privatizationM∗
.

Intuitively, this suggests that fL2
should not do worse thanM∗

in

terms of privacy protection. Indeed as we will show in Appendix A,

fL2
also achieves the same ϵ-differentially private guarantee.

Post-processing with L1 minimization. If we change the L2 norm

to L1 norm in the above, the privatization mechanism is no longer

unique. There will be infinitely many solutions in the form of

fL1

(
M (x) ,S∗) = argmins ∈S∗ ∥M (x) − s∥

1
:= (s̃,n − s̃) ,

where s̃ only needs to satisfy

s̃ ∈ [min {s1 + u1,n − (s2 + u2)} ,max {s1 + u1,n − (s2 + u2)}]
L
= [s1 +min (u1,u2) , s1 +max (u1,u2)] ,

where min (u1,u2) and max (u1,u2) are the minimum and the maxi-

mum of two i.i.d. Laplace random variables. In particular, choosing

any convex combination of u1 and u2 as the additive noise term to

the first entry constitutes a solution, i.e., s̃1 = s1+βu1+(1−β)u2 for

some β ∈ [0, 1], and then set s̃2 = n − s̃1. For the rest of the article,

L1 post-processing refers to this convex combination strategy.

For ease of reference, Table 2 collects a comparison of the con-

strained differentially private histogram M∗
and two the post-

processing approaches, fL2
and fL1

, in terms of the expectation

and variance of the resulting release for a given database x ∈ X
and confidential query s . All expectations are taken with respect to

the relevant mechanism.

We can see that our congenial mechanism has the smallest vari-

ance. Because the congenial mechanism and fL2
both carry the

same ϵ-privacy guarantee which cannot be further improved, we

can comfortably declare that fL2
is inadmissible because it is domi-

nated by the congenial mechanism, providing less utility (in terms

of statistical precision) without the benefit of increased privacy

protection. However, we cannot say that the congenial mechanism

dominates fL1
even though it still leads to smaller variance. This is

because, as we will prove in Appendix A, the attained level of pri-

vacy guarantee of fL1
is ϵ/(2 max{β , 1 − β}), which is never worse

than ϵ . Hence the increased variance under fL1
might be acceptable

as a price for gaining more privacy protection. In general, com-

paring the utility of two privatization mechanisms with the same

nominal but different actual privacy loss budget is as thorny an

issue as comparing the statistical power of two testing procedures

with the same nominal, but different actual, Type I error rates.



5 DISCUSSION
5.1 Finding better γ
While Theorem 2.1 always holds with γ = 1, it likely sets a loose

bound on the ratio between P (M∗ (x) ∈ B) and P (M∗ (x ′) ∈ B),
hence declaring an overly “conservative” nominal level of privacy

loss induced byM∗
. Depending on how the invariant S∗

interacts

with the distributional property of the unconstrained mechanism

M in a specific instance, γ can be shown to take smaller values,

adding more “bang of the buck” to the privacy loss budget, so to

speak. Three examples are given below.

Example 5.1 (trivial invariants). Consider the trivial case where
the set of invariants does not actually impose any restriction, i.e.,

X∗ = X. It is then necessarily true that S∗ = S, and the “con-

strained” differentially private mechanism is identical in distribu-

tion to the unconstrained one:M∗ L
= M . In this case, γ = 0 andM∗

is ϵ-differentially private.

Example 5.2 (rounding and secrecy). Let x be a binary vector of

length n indicating a group of individuals’ possession of a certain

feature (yes 1/no 0), and the query of interest is s(x) = ⌈∑xi/10⌉,
or the number of groups of size 10 that can be formed by people

who possesses the feature. A Double Geometric mechanismM(x) =
s(x) +U is used to protect the query, with a privacy loss budget of

ϵ (under the global sensitivity of ∇(s) = 1).

Suppose the following invariant set is mandated for disclosure:

X∗ =
{
(x1, . . . ,xn ) ∈ {0, 1}n :

∑
xi ∈ [41, 50]

}
,

or equivalently, S∗ = {5} is the singleton set that contains nothing

but the true value s(x∗) = 5. In this case, the implied constrained

privacy mechanismM∗
is equivalent to a degenerate distribution:

P (M∗ (x) = 5) = 1 for all x ∈ X∗
. Furthermore, for all neighboring

datasets (x ,x ′) ∈ X∗ × X∗
, and any B a measurable subset of N,

P
(
M∗ (x) ∈ B

)
= exp (0) P

(
M∗ (

x ′
)
∈ B

)
=

{
1

0

if 5 ∈ B

otherwise.

Therefore in this particular instance,M∗
is in fact 0-differentially

private, corresponding to γ = −1 in Theorem 2.1. This means that

for those databases conformal to the invariant X∗
,M∗

supplies no

discriminatory information among them whatsoever. Indeed, if the

value of the supposedly private query is already public knowledge,

no mechanism can further increase its disclosure risk, therefore

achieving complete differential privacy.

Our third example is a less trivial example of γ < 0, which

is actually provided by the congenial mechanism in Example 4.1.

There, although the guaranteed privacy loss budget is still ϵ , in
applying Theorem 2.1, k must be set to 2 or greater, because under

the constraint of fixed sum, the nearest neighbors among binary

vectors (x ,x ′) must have d(x ,x ′) = 2. Hence the ϵ privacy bound

implies k(1 + γ ) = 2(1 + γ ) = 1, yielding γ = −0.5.

This example also reminds us that a major cause of information

leakage due to invariants is the structural erosion to the underly-

ing data space, such as making d(x ,x ′) = 1 (as measured on the

original space X) impossible. In reality, the unconstrained data

spaceX is typically regular, and containsX∗
as a proper subset. We

should expect to find many x ∈ X∗
, and many (if not many more)

x ′ ∈ X\X∗
such that x and x ′ are neighbors, near or far. Know-

ing that the confidential dataset must belong to X∗
categorically

rules out the possibility that all the x ′’s can be the confidential

dataset, weakening the differential privacy promise by eliminating

the neighbors. If the invariant is sufficiently restrictive such that

X∗
becomes topologically small relative to X, it may be the case

that for some x ∈ X∗
, all of its original immediate neighboring

datasets are not in X∗
:{(

x ,x ′
)
∈ X∗ × X∗

: d
(
x ,x ′

)
= 1

}
= ∅,

in which case we say that the neighboring structure of the original

data space of the database is substantially disrupted, as seen in

Example 4.1. If the disruption is so substantial that neighbors of

any distance cease to exist, we say that the neighborhood structure

is completely destroyed:{(
x ,x ′

)
∈ X∗ × X∗

: d
(
x ,x ′

)
≥ 1

}
= ∅.

Then, even for the constrained mechanismM∗
, the ϵ-differential pri-

vacy promise becomes vacuously true, since no possible neighbor-

ing pairs remain for which the concept of privacy is applicable. How-

ever, Example 5.2 demonstrates that vacuous privacy promise can

occur without the neighborhood structures completely destroyed.

In general, it is conceptually difficult to parse out the share of

responsibility on privacy attributable to the data curator under any

scenario of mandated disclosure. If certain information is made

public, then any information that it logically implies cannot be

expected to be protected, either. The best that we can expect any

privacy mechanism to deliver, then, is protection over information

that truly remains. Notions that serve the equivalent purposes as

X∗
and S∗

have been proposed in the literature for expositions of

new notions of differential privacy, including blowfish and pufferfish
privacy [14, 16], where the privacy guarantee is re-conceptualized

on the restricted spacemodulo any structural erosion to the original

sample space due to external or auxiliary information available to

an attacker. When interpreting the promise of Theorem 2.1, we

shall pay due diligence to the case in which immediate neighbors

no longer exists, and talk about the ϵ-differential privacy guarantee
only for those k-neighbors that actually do.

5.2 Other interpretations of privacy
The literature has seen other lines of work that offer interpretations

of differential privacy in statistical terms. Notably, the posterior-
to-posterior semantics of differential privacy [2, 4, 15] explains the

effect of privacy also in the vocabulary of Bayesian posteriors. The

posterior-to-posterior semantics establishes differential privacy

as a bound for the ratio of posterior probabilities assigned to an

individual confidential data entry, when the private mechanism is

applied to neighboring datasets that differ in only one entry. The

said ratio is between the two quantities

π
(
x∗i = ω | Mϵ (x) ∈ B

)
and π

(
x∗i = ω | Mϵ

(
x ′

)
∈ B

)
, (5.1)

where x and x ′ are neighboring datasets. What varies between the

two posterior quantities is the confidential dataset on which the

private query is applied. The datasets x and x ′ are neighboring

datasets, one of which presumably (but not necessarily) contains

the true value of the ith confidential data entry x∗i , and the other

contains a fabricated value of it.



The comparison in (5.1) raises the question of what it means by

the conditional probability of x∗i given a private query constructed

from a database that does not contain this true value, as this con-

ditional probability hinges on external knowledge about how a

fabricated database may inform the actual confidential database.

Our prior-to-posterior semantics formulated in Theorem 1.3 takes a

practical point of view and avoids such conceptual complication.

We compare the disclosure risk before and after an actual release,
reflecting the core idea behind differential privacy.

5.3 Full privacy or vacuous knowledge
As alluded to in Section 1.4, the notion of vacuous knowledge

cannot be appropriately captured by ordinary probabilities. The

defect reflects a fundamental inability of the language of probability

in expressing a true lack of knowledge, a central struggle in the

Bayesian literature that motivated endeavors in search for the so-

called “objective priors” [9]. Neither the uniform distribution nor

any other reference distributions are truly information-free, as they

all invariably invoke some principle of indifference in relation to

a specific criterion (such as the Lebesgue measure, the counting

measure, or the likelihood function) which is subject to debate.

To supply the rigorous definition needed to define probabilisti-

callyM0(x) in Section 1.4, we invoke the concept of lower proba-

bility functions, and as a special case belief functions [see e.g. 11],

both generalized versions of a probability function which amounts

to a set of probability distributions on a given space. The statistical

information contained inM0 is represented by the vacuous lower

probability function, denoted P , which takes the value P(B) = 1

only when B = Rd , and 0 everywhere else. Equivalently stated in

terms of its conjugate upper probability function P(B) = 1 − P(Bc ),

P (B) =
{

1

0

if B ∈ B
(
Rd

)
\ {∅} ,

if B = ∅.
(5.2)

That is, the statistical information contained inM0 can be (but is not

known to be) concordant with any Borel-measurable probability

function, thus the probability of any B is as low as 0 and as high as

1, as long as B is neither the full set nor the empty set.

Generally, the conditioning operation involving lower probabil-

ity functions is not trivial, and it is not unique due to the existence

of several applicable rules. But if the lower probability functions

being conditioned on is vacuous, there is consensus among differ-

ent rules as to what posterior distribution should result, namely

precisely as stated in (1.7). See [13] for an extended exposition of

conditioning rules involving lower probability and belief functions.

5.4 Future directions
This work points to several future directions of pursuit. On the

computational front, how do we construct efficient algorithms to

realize congenial privacy, by drawing possibly high-dimensional

releases subject to complex constraints? When we use non-perfect

Markov chain Monte Carlo to accomplish this task, how do we

ensure the declared privacy guarantee is not destroyed because

a chain cannot run indefinitely? On the privacy front, for every

constrained mechanism constructed through conditioning, how to

find the best γ value that tracks as closely as possible the effective

privacy loss budget, which in turn enables fair performance compar-

isons among invariant-respecting algorithms? Furthermore, how

to achieve an orthogonal decomposition of the public, invariant

information from the free, residual information that remains in the

confidential microdata, in a logical sense without having to resort

to the probabilistic vocabulary of statistical independence?
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A PRIVACY GUARANTEES FOR CONGENIAL,
L1 AND L2 METHODS

We first derive the conditional distribution of two i.i.d. Laplace

random variables, given that their sum is zero. Let u1,u2

i .i .d .∼
Lap

(
2ϵ−1

)
and denote v = u1,w = u1 +u2. Since (v,w) is linear in

(u1,u2), their joint probability density function is given by.

p (v,w) ∝ p (u1 (v,w) ,u2 (v,w))
∝ exp (−0.5ϵ |v | − 0.5ϵ |w −v |) ,

This implies that

p (v | w = 0) ∝ p (v,w = 0)
∝ exp (−ϵ |v |) ∼ Lap(ϵ−1),

which leads to (4.6).

We then derive the density for ũ = βu1 + (1 − β)u2, where

β ∈ (0, 1) (the case of β = 0 or 1 is trivial). This covers the L1

projection case, where any β ∈ [0, 1] is acceptable, and the L2

projection case, where β = 1/2. Since u1 = β−1[ũ − (1 − β)u2], the
Jacobian from (ũ,u2) to (u1,u2) is β−1

. Consequently,

pϵ (ũ,u2) =
ϵ2

16β
exp

{
− ϵ

2β
[|ũ − (1 − β)u2 | + β |u2 |]

}
.

To derive pϵ (ũ), we assume without loss of generality ũ ≥ 0. Con-

sider pϵ (ũ) =
∫
pϵ (ũ,u2)du2 on three regions:

I1(β) =
ϵ2

16β

∫
0

−∞
exp

{
− ϵ

2β
(ũ − u2)

}
du2 =

ϵ

8

exp

{
− ϵ

2β
ũ

}
;

I2(β) =
ϵ2

16β

∫ ũ
1−β

0

exp

{
− ϵ

2β
[ũ + (2β − 1)u2]

}
du2

=
ϵ

8(2β − 1)

[
exp

{
− ϵ

2β
ũ

}
− exp

{
− ϵ

2(1 − β)ũ
}]

;

I3(β) =
ϵ2

16β

∫ ∞

ũ
1−β

exp

{
− ϵ

2β
[u2 − ũ]

}
du2 =

ϵ

8

exp

{
− ϵ

2(1 − β)ũ
}
.

Summing up these terms and noting the symmetry of pϵ , we obtain

pϵ (ũ) =
ϵ

4(2β − 1)

[
β exp

{
− ϵ

2β
|ũ |

}
− (1−β) exp

{
− ϵ

2(1−β) |ũ |
}]

=
β2

(2β−1)Lap
(
2βϵ−1

)
− (1−β)2
(2β−1)Lap

(
2(1−β)ϵ−1

)
. (A.1)

Remark I. The expression (A.1) is fascinating. It shows that the

density of a convex combination of i.i.d. Laplace random variables

is a “mixture" but non-convex combination of two Laplace densities

with different scale parameters, because

β2

(2β − 1) +
[
− (1 − β)2
(2β − 1)

]
= 1.

That is, although the two weights add up to one, they always take

the opposite sign when β , 1/2.

Remark II. When β = 1/2, the expression (A.1) is of 0/0 appear-

ance, but is well-defined once taking the limit β → 1/2 and using

the L’Hospital’s rule, yielding

pϵ (ũ) =
ϵ

4

[1 + ϵ |ũ |] exp {−ϵ |ũ |} . (A.2)

This can be written as

p (ũ) =
1

2

· ϵ
2

exp {−ϵ |ũ |} + 1

2

· ϵ
2

2

|ũ | exp {−ϵ |ũ |}

∼ 1

2

Lap
(
ϵ−1

)
+

1

2

SдnGamma
(
2, ϵ−1

)
,

suggesting that it is more variable that Lap(ϵ−1). We now prove

that (A.2), moreover the entire family of distributions given by

(A.1) as indexed by β ∈ (0, 1), is ϵ-differentially private. In fact, they

attain a level of privacy protection more stringent than ϵ whenever

β , 1/2. Our proof relies on the following general result, which

can be useful for verifying differential privacy guarantees in other

situations.

Theorem A.1. Suppose f (x) is a positive real-valued function on
a normed vector space X, with its norm denoted by |x |. Suppose f (x)
has the following properties:

(i) f (x) is monotone decreasing in |x |;
(ii) дα (x) = f (x)eα |x | is monotone increasing in |x |, where α is

a positive constant.

Then for any a ∈ X and b ∈ X, we have

sup

x ∈X

f (x − a)
f (x − b) ≤ eα |a−b | . (A.3)

Proof. For any x ∈ X, if |x−a | > |x−b |, then f (x−a) ≤ f (x−b)
by (i) and hence (A.3) holds trivially. If |x − a | ≤ |x − b |, then
дα (x − a) ≤ дα (x − b) by (ii), and hence

f (x − a)
f (x − b) =

дα (|x − a |)
дα (|x − b |)e

α ( |x−b |− |x−a |)

≤ eα ( |x−b |− |x−a |) ≤ eα |a−b | .

□

To apply this result, we first note that for pϵ (x) of (A.1) with
x > 0, its derivative is given by

dpϵ (x)
dx

=
ϵ2

8(2β − 1)

[
exp

{
− ϵ

2(1−β)x
}
− exp

{
− ϵ

2β
x

}]
< 0,

for any β , 1/2. For β = 1/2, we can directly verify from (A.2) that

dpϵ (x)
dx

= −ϵ
3

4

x exp {−ϵx} < 0,

Hence, condition (i) holds for (A.1) for all β ∈ (0, 1).
To establish condition (ii), the choice α is the key since it directly

governs the degree of privacy guarantee. From the expression (A.3),

we want the smallest α such that condition (ii) holds, which gives us

the tightest bound hence better privacy guarantee. A good strategy

here is to start with α = cϵ and let the mathematics tell us how to

minimize over c . We start with the simplest case with β = 1/2. From



the expression (A.2), the smallest c that can make дα monotone

increasing is clearly 1. The resulting дα also has the property that

lim

|x |→∞

дα (|x − a |)
дα (|x − b |) = 1. (A.4)

This implies that the bound eϵ |a−b | can be approached arbitrarily

closely by letting |x | → ∞, which means that the privacy loss

budget ϵ cannot be reduced. For our current application, this means

the post-processing by L2 projection is also differentially private at

level ϵ , but not more stringent than that.

When β , 1/2, we assume without loss of generality β > 1/2.

Then for дα (x) = ecϵ |x |pϵ (x), it is easy to verify that for any x > 0,

dдα (x)
dx

=
ϵ2

8(2β − 1)

[
wc exp

{
wc
2β

ϵx

}
+[wc + c

′] exp

{
−wc + c

′

2(1 − β)ϵx
}]
,

where wc = 2cβ − 1 and c ′ = 2(1 − c). Our job is to seek the

smallest c such that this derivative is non-negative regardless of

the value of x . Clearly the positivity holds when we set wc = 0,

that is c = (2β)−1 < 1, and hence c ′ > 0. To show that this is the

smallest possible c , we see that when setting α = ϵ/(2β), we have

дα (|x − a |)
дα (|x − b |) =

β − (1−β) exp {−τ |x − a |}
β − (1−β) exp {−τ |x − b |} ,

where τ = (2β − 1)/(2β(1− β)) > 0. Clearly as |x | → ∞, the

ratio above goes to 1 regardless of the value a and b as long as

they are fixed. Consequently, the same implication from (A.4) fol-

lows, that the bound eα |a−b |
can be approached arbitrarily closely

with α = ϵ/(2β), hence it cannot be further improved. That is, for

post-processing via L1 projection, the actual differential privacy

protection achieved is ϵ/(2β) when β > 1/2 (and ϵ/(2(1− β)) when
β < 1/2). This makes intuitive sense. For example, when β = 1

the injected noise is drawn from a single Lap(2ϵ−1) distribution,
corresponding to a privacy loss budget of ϵ/2.

In summary, for any β ∈ [0, 1], the attained privacy loss budget

forM(x) = s(x) + ũ is ϵ/(2 max{β, 1 − β}).

B SAMPLING SCHEME FOR THE DOUBLE
GEOMETRIC DISTRIBUTION

The Double Geometric mechanism, as introduced in Definition 1.2,

utilizes additive noise whose cumulative mass function is given by

F (u) = P (U ≤ u) =
{

a−u
1+a

1 − au+1

1+a

u ≤ 0,

u > 0,

with quantile function

F−1 (v) =


⌈− logv−log(1+a)
log(a)

⌉⌊
log(1−v)+log(1+a)

log(a)

⌋ v ≤ 1

1+a ,

v > 1

1+a .

Hence, one way to sample a Double geometric random variable is

via inverse probability sampling. That is,

Ui ∼ Uni f (0, 1) , F−1 (Ui ) ∼ pi (· | ϵ),

where pi is given by (1.3). This method is implemented for all

numerical examples illustrated in this paper.
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Figure 2: Algorithm 1 acceptance rate as a function of the
proposal parameter ϵ̃ .
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Figure 3: Traceplots of 10, 000 draws fromAlgorithm 1 of the
second (left) and the first (right) cell of the constrained dif-
ferentially private contingency table.

C PERFORMANCE DIAGNOSTICS OF THE
MIS ALGORITHM

The acceptance rate of Algorithm 1 rate is shown in Figure 2 as a

function of the proposal inverse scale parameter ϵ̃ . The acceptance
rate is the highest in this example when ϵ̃ is set to 0.6, just slightly

larger than the privacy loss budget of the unconstrained privacy

mechanism (ϵ = 0.5 per cell). The acceptance rate achieved is about

1.68%.

Figure 3 shows traceplots of 10, 000 draws from Algorithm 1

of respectively the second (in proposal index set I) and the first

(not in proposal index set I) cells of the constrained differentially

private contingency table, when ϵ̃ = 0.6.
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