Check for
Updates

TONIC: Towards Oblivious Neural Inference Compiler

Po-Hsuan Huang

Information Engineering, National
Cheng Kung University
Tainan, Taiwan
aben20807@gmail.com

ABSTRACT

Privacy-preserving deep learning computing becomes popular these
days as it helps protect, for example, both user data and deep neural
network (DNN) model parameters at the same time with crypto-
graphic techniques. In particular, significant efforts have been made
to leverage secure two-party computation schemes for preventing
user/model data from disclosure during DNN inference. Neverthe-
less, the existing works require manual intervention while convert-
ing trained models into secure computation programs, which is
not scalable to modern deep networks efficiently. In this work, we
propose a compiler framework, TONIC, to do the conversion auto-
matically with scalability. Given a pre-trained DNN model, TONIC
converts it into one of two secure two-party computation languages,
i.e., ObliVM and ABY. Based on tailored backends built on top of a
DNN compiler, TVM, our case studies show that TONIC is able to
automatically convert popular DNN models, such as CryptoNets
and MobileNetV2, into the corresponding programs for secure com-
putations.

CCS CONCEPTS

« Computer systems organization — Neural networks; « Soft-
ware and its engineering — Source code generation; « Secu-
rity and privacy — Software and application security;

KEYWORDS

Privacy-preserving inference; deep neural networks; deep neural
network compilation; secure two-party computation

ACM Reference Format:

Po-Hsuan Huang, Chia-Heng Tu, and Shen-Ming Chung. 2021. TONIC:
Towards Oblivious Neural Inference Compiler. In The 36th ACM/SIGAPP
Symposium on Applied Computing (SAC °21), March 22-26, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3412841.3441929

1 INTRODUCTION

As deep learning (DL) techniques become pervasive in various
application domains, data privacy concerns are raised since DL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °21, March 22-26, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8104-8/21/03...$15.00
https://doi.org/10.1145/3412841.3441929

Chia-Heng Tu
Department of Computer Science and Department of Computer Science and
Information Engineering, National
Cheng Kung University
Tainan, Taiwan

chiaheng@mail.ncku.edu.tw

491

Shen-Ming Chung
Industrial Technology Research
Institute
Hsinchu, Taiwan
antonius@itri.org.tw

requires user data to improve its knowledge base while the data
privacy could be compromised. This phenomenon exhibits the self-
contradiction challenge for the advancements of DL technologies.
One promising solution to the contradiction situation is known as
secure multiparty computation (SMPC) (or secure function evalu-
ation, SFE), which provides privacy-preserving computations by
allowing participants to do a computation cooperatively over their
data while keeping the data private to each individual participant,
where each of the participants has access to the computation results.
As a result, SMPC protects the data privacy of participants from
each other.

The concept of SMPC originated from the mental poker work
published in 1979 [32], and secure two-party computation (2PC)
was achieved by the garbled circuit (GC) protocol introduced in
1982 [34], known as the Millionaires’ Problem, where two million-
aires want to know which of them is richer without disclosing their
actual wealth status. The two-party model was generalized into the
multi-party model by the GMW sharing scheme [19] in 1987, which
presented the basic scheme for the following essential secure multi-
party protocols. For instance, oblivious transfer (OT) protocol [22]
was shown to be useful for a data sender and a receiver to pass the
data, where the sender transfers one of many pieces of information
to the receiver, but it is oblivious to the transferred data contents.
OT is considered to be complete for SMPC.

Oblivious computation refers to an OT-based protocol for 2PC,
which is free from either direct or indirect data content leaks, and
the oblivious computation based solutions have been proposed
for performing secure DL inferences. For instance, considering a
trained DL model used for a medical disease diagnosis application,
there is a patient holding his/her medical information on the client
machine and a server possessing the DL model for the diagnosis
task; the oblivious DL prevents the leaking of the plaintext medical
data and the DL model (e.g., the parameters) from each other by run-
ning the privacy-preserving inference operations simultaneously
on both the client and server sides, computing on the encrypted
data and exchanging data over the secrete channel (i.e., OT), which
is referred to as oblivious neural inference in this work.

Oblivious neural inference solutions (e.g., DeepSecure [29], Se-
cureML [25], MiniONN [24], Gazelle [21], HyCC [7], EzPC [8], and
XONN ([27]) have been developed to facilitate the secure compu-
tation by utilizing one or more cryptographic tools, such as GC
and GMW. In particular, EzPC and XONN are the latest efforts that
require their users to define the deep neural networks and generate
the corresponding programs using the cryptographic protocols, i.e.,
EzPC using Boolean and Arithmetic circuits, whereas XONN adopt-
ing GC circuits. Nevertheless, the above works are not suitable
for some occasions; for example, in the above medical application,

https://doi.org/10.1145/3412841.3441929
https://doi.org/10.1145/3412841.3441929
https://doi.org/10.1145/3412841.3441929
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3412841.3441929&domain=pdf&date_stamp=2021-04-22

it would require a tool to automatically convert the incremental
learned DL model into the oblivious DL version in a timely manner.
In such a case, it is a time-consuming job to use their proposed
methods to train the built model (i.e., the converted incremental
DL model) again whenever the incremental DL model is updated.
Furthermore, the above works are not shown they are scalable to a
deep network architecture (e.g., MobileNetV2 [30] with 52 convo-
lutional layers, 35 clips, and 1 fully-connected layer), which makes
them hard to be applied for real-world applications that require a
more sophisticated architecture.

In this work, we propose a compiler framework, TONIC, for
converting a trained DL model into its 2PC version automatically
for secure computing, so that the client is able to protect its user
data privacy and the server can keep its model parameters private
to itself. The software architecture of TONIC is illustrated in Fig-
ure 1. Thanks to TVM, an open-source graph compiler converting
a model trained by various DL frameworks into machine executa-
bles, TONIC is able to accept the pre-trained DL models. In the
current setup, TONIC supports two kinds of backends that convert
a trained model into its 2PC versions (i.e., ObliVMLang and ABY
programs), where ObliVMLang is a high-level Java-based language
for writing 2PC programs, and ABY provides the lower-level C++
APISs to develop 2PC programs; more detailed information about
ObliVM [23] and ABY [16] is given in Section 2. TONIC is able to
provide oblivious DL inferences for a variety of models for MNIST
and ImageNet datasets. In particular, TONIC is able to convert the
MobileNetV2 model into its 2PC version with the ABY backend and
encouraging results are obtained.

In the rest of this paper, the background information of the in-
volved software frameworks is introduced in Section 2. The TONIC
framework is described in Section 3. Section 4 compares the de-
livered performance between TONIC and prior work. The related
work is introduced in Section 5. Section 6 concludes this work.

[Caf‘er] [TensorFlow] [Keras] [PyTorch] [MXNet]

TVM

TVM LLVM
backend

ABY
backend

TVM OpenCL
backend

OblivVM
backend

[CPUs] [CPUs][CPUs] [GPUs]

Figure 1: Overview of TONIC software architecture.

2 BACKGROUND

The open-source software projects involved in this work are intro-
duced in the following three subsections, which is followed by the
introduction of the system model for oblivious neural inference.

492

21 TVM

DL frameworks (e.g., TensorFlow and PyTorch) have been used
to facilitate the development of DL-based applications by expos-
ing high-level interfaces to application developers, and have been
designed to allow developed models to be migrated from one com-
puter platform to another for easier deployments (i.e., from the
private server to a cloud server). A graph compiler like TVM [10]
serves the purpose of optimizing the performance of DL models,
which are generated by different DL frameworks, on a variety of
hardware targets. The optimizations are done by the graph compiler
backends, each of which is responsible for optimizing the perfor-
mance of the given DL model (that is represented as a computation
graph within the compiler) for a specific hardware architecture. As
illustrated in Figure 1, TVM is capable of generating the codes to
run on CPU and GPU, respectively.

TONIC backends developed in this work are a little bit different
from the conventional backends mentioned above since the two
backends generate the programs in the specific 2PC languages
(i.e., ObliVMLang and ABY, which are further introduced in the
following subsections), which require further conversions using
cryptographic protocols before they are compiled into the CPU
executables. In other words, the two backends are more like the
source-to-source compilers (i.e., translating DL models into the two
2PC languages), instead of a typical compiler backend generating a
lower level code specialized for target hardware architecture.

2.2 OblivM

ObliVM [23] provides a high-level language-based framework for
SMPC using the GC cryptographic protocol. ObliVM introduces
the Java-based domain-specific language and uses ObliVMLang to
compile ObliVM code written by application developers into 2PC
program in Java, which is an ordinary Java program and can be
further converted into Java bytecode run by Java virtual machine.
During the 2PC programs’ execution, the garbled circuit library,
ObliVMGC, is invoked by the 2PC programs whenever necessary to
generate the garbled circuits emulating the behaviors defined in the
ObliVM program. Note that application developers write a single
ObliVM program, which will be converted into the corresponding
Java program for 2PC, where the two participants use the argument
list to configure the party for each of the two Java program instances,
which run simultaneously and collaboratively to perform the works
defined in the ObliVM program.

In ObliVM, garbled circuits are generated on-the-fly (i.e., gen-
erating the garbled circuits for the required operations as needed
right before its execution), and this design is able to handle the
application with large circuits since it is able to reduce the peak
memory footprint consumed by the circuits, compared with the
method which has to generate the entire garbled circuits for a code
segment before the code execution. In addition, ObliVM leverages
the garbage collection feature offered by Java virtual machine, and
the application developers do not have to worry about the memory
management issue (i.e., they do not have to manage the memory
explicitly in the code). Another advantage of ObliVM is that it is
Java-based software, which allows it to run on any platforms that
can run the Java virtual machine.

23 ABY

ABY [16] is a C++ language extension to support secure 2PC with its
library. Unlike ObliVM, which supports the GC protocol only, ABY
has the implementation of three cryptographic protocols: Arith-
metic sharing (A), Boolean sharing (B), and Yao’s GC (Y), and it
provides conversion mechanisms between each two of the three
protocols. Each protocol has its own advantage over the other two,
i.e., Arithmetic sharing doing well for additions and multiplications,
Boolean sharing performing better in multiplexer situations, and
GC for comparison operations. By allowing to switch among the
three different protocols, ABY makes the 2PC more applicable for
different application domains. Because the mechanism of Boolean
sharing and Arithmetic sharing are similar, we group them as the
GMW-based protocols later.

While one can use either ObliVM or ABY to implement the same
application for 2PC execution, they are very different in the follow-
ing aspects: 1) the programming abstraction level, 2) the supported
cryptographic protocols, and 3) the execution scheme, as well as
4) the execution efficiency. Different from the high-level program-
ming language of ObliVM, which requires very little knowledge
about multi-party computation (i.e., the GC protocol) to write an
ObliVM program, ABY users need to use the ABY APIs to perform
the arithmetic operations for the computations required by the
target application and to switch among the three protocols with
explicit ABY function calls so as to enhance the execution efficiency.
In contrast to the dynamic circuit generation scheme in ObliVM,
ABY adopts the setup-and-execution scheme, where the garbled cir-
cuits are able to run only after they are set up properly. ABY users
are responsible for taking care of the memory footprints required
by the arranged circuits in order to prevent memory overflows
caused by excessive circuits used in the setup phase. To sum up,
it is easier to program 2PC computation with the Java-like lan-
guage with ObliVM, but ObliVM runs on top of the Java virtual
machine, which incurs some level of overhead when emulating the
execution of garbled circuits within the virtual machine. On the
contrary, while ABY requires extensive knowledge to program 2PC
applications, the primitive cryptographic protocol functions are
more efficient for the execution. Section 4 further compares their
delivered performance.

2.4 System Model for Oblivious Neural
Inference

A 2PC system for deep learning inferences is composed of two
participants, where one is the user data provider and the other is the
model provider. The system requires data from both participants
to accomplish the required model inference. Usually, the model
provider runs a service (e.g., deep learning as a service) to take the
user data as the input to its pre-built DL model and to output the
prediction results regarding the given input. Since it is often the
case that the trained DL model parameters are way more valuable
than the DL network architecture, it is a natural design decision
to express the neural network architectures as the 2PC programs,
where the user data and the model parameters are fed to the two
individual program instances, respectively. In such a case, the above
model is able to protect their private data from each other.

493

w T

protocols
F(z, W) F(z, W)

Model provider User

Figure 2: The system model for oblivious neural inference,
where there are two participants, the model provider and the
user, and both run the 2PC programs for the neural network
inference operations of the pre-trained DL model. Note that
x refers to user private data, W is the pre-trained weights
of the DL model, whose mathematical operations are per-
formed by the functions ¥ and C represents the correspond-
ing circuits of 7. For further information about protocols,
please refer to ABY [16].

Figure 2 illustrates the above system model for oblivious neural
inference. Specifically, the model provider runs its own share of
the 2PC program and takes the parameters of the model as input,
where the corresponding network architecture and operations of a
pre-trained DL model are defined in the 2PC program. On the other
hand, the user also runs its share of the 2PC program in parallel
to the model provider, and the user’s program is fed with the data
private to the user. When there is a need for data exchanges, the
2PC protocol(s) is used to secretly transferred the required data
between the 2PC programs. Finally, both parties are able to obtain
the prediction results at the end of the program executions.

3 OBLIVIOUS NEURAL INFERENCE
COMPILER

For automatically compiling the pre-trained DL models, especially
for convolutional neural networks (CNNs) produced by the DL soft-
ware frameworks, TVM is used and served as the compiler frontend
to accept the existing, trained models and to convert the models
into its intermediate representation (i.e., TVM IR). Our proposed
oblivious neural inference compiler is actually built upon the TVM
framework by creating the two TVM backends to generate the 2PC
version programs, which are instructed by the computations de-
fined in the trained model. Figure 3 depicts the workflow of the
TONIC framework. In particular, the two TVM backends generate
the 2PC programs in the ObliVM language and in C++ with ABY
function calls, respectively. In order to achieve high execution ef-
ficiency of the 2PC programs, the two backends should be aware
of the characteristics of the target languages and need to perform
the optimizations accordingly during the compilation, which are
described in the following two subsections, respectively.

3.1 Characteristics of Oblivious Computing
Languages

For the two oblivious computing languages, the language-level

supports for writing an oblivious computing program are examined

and the corresponding compilation strategies for these language

supports are discussed.

ObliVMLang
TVM yTTTT TS N

Java Java

DNN §

—> TVM
ABY

J

bytecode

J code/program ObLVML code | [I
ObliVM 1 ang ava -
model backend compiler | compiler | -JVM (a)

! backend

N /| C++ code with
ABY functions

—
—+
L —{e) o
compiler
——— Binary
executable

Figure 3: The workflow of the TONIC framework, which consists of two TVM backends for oblivious computing languages,

ObliVM (a) and ABY (b), respectively.

3.1.1 Data Types. As ObliVM is a new domain-specific language
for oblivious computing, its compiler currently supports the two
primitive data types, integer and float, and the related mathe-
matical operations (e.g., additions and multiplications) are avail-
able, which are sufficient to implement a variety of applications.
In the TVM backend, float is adopted to keep the parameters of
the given DL model. Internally, ObliVM relies on single-precision
floating-point format to represent the ObliVM float, and based
on our validation results, our compiled 2PC programs can achieve
compatible accuracy against the original version.

On the other hand, ABY works with several bit schemes, such
as 8, 16, 32, and 64 bits, for integers to support the multiple cryp-
tographic protocols concurrently. Although it supports float op-
erations for boolean protocol, what we want is to leverage the
efficient arithmetic protocol, which is much faster than a boolean
one. Therefore, we introduce the mechanism to scale up and down
between floating-point numbers and fixed-point ones. The user im-
age and the weights of the model are all converted into fixed-point
before being inputted into ABY, and back to floating-point after the
computation finishes. The 64-bit fixed-point data can be used for
basic mathematical operations, so it may be used for DL inference
computing. Nevertheless, while the 64-bit execution scheme pro-
vides better results (i.e., higher accuracy) for the model inference,
it costs about 2x more time than the 32-bit fixed-point counterpart.
Based on the validation results that we have done with ObliVM,
TONIC-ABY uses the 32-bit fixed-point data representation for the
floating-point data manipulations in the DL model, so as to balance
the accuracy and the execution speed.

3.1.2 Data Structures. Typical CNNs contain multi-dimensional
data for both user input data and model parameters, and it will
save the TONIC backend development time if the oblivious comput-
ing languages support the multi-dimensional data structures (e.g.,
vector), and related computations (e.g., matrix-to-matrix or matrix-
to-vector multiplications). Unfortunately, the multi-dimensional
data storage and the related operations are not available in ObliVM,
but only for ABY, which leverages the underlying C++ language
support. Hence, in TONIC-ObliVM, the multi-dimensional data
are converted into one-dimensional arrays in the generated 2PC
programs. In addition, the supplement functions (e.g., the element-
wise multiplication function) have been developed to emulate the
original matrix/vector related operations.

Data variables used in ObliVM and ABY are either in plaintext
(i.e., data contents are available to both parties, which is referred to
as public data) or secretly shared (i.e., neither party sees the data

494

contents, which is referred to as secure data). During the develop-
ment of TONIC backends, we examine and determine the property
for each type of data involved in the DL inference operations, and
we assign the property (i.e., public or secure data) to each type of
the data involved. For example, the user input data and the model
parameters are stored as secure data to prevent leaking the data
contents.

It is important to note that ObliVM implements the state-of-the-
art oblivious structure, Circuit ORAM [33], to improve the privacy
of both data contents and data access patterns, meaning that the
data stored with the ORAM technology will not be revealed its
content and the attackers are not able to guess the data contents
by the access patterns. The access pattern hiding is done by per-
forming the consistent access pattern, regardless of which data
to be accessed; for instance, it could be done by walking through
the entire memory locations whenever memory access needs to be
performed. Based on our empirical results, the ORAM technology
incurs a significant amount of runtime overheads to hide the data
accesses, and hence, in TONIC-ObliVM, only the data contents are
protected and leaving the data access patterns in plain sight. This
design choice is consistent with our system model since the data
access patterns are specified in the DL network architectures and
it is easy to get the patterns by reverse engineering the machine
codes of the 2PC executables.

3.1.3 Supplement Functions. The oblivious computing languages
support some of the arithmetic operations for their primitive data
types. For example, additions, multiplications, and divisions for
the float data are supported by ObliVM. However, the basic op-
erations commonly seen in a neural network model are often not
supported by specialized languages. Taking the softmax operation
as an example, it is widely adopted in the last layer of a CNN model
to better rank the prediction results. It is not supported by either of
the two languages as a built-in function, and it would be a challenge
to implement the operation since softmax involves dividing and
exponential operations incurring a high computational cost. They
can be approximated by the Newton method or Taylor series in
GC-based protocol (as adopted by ObliVM), but cannot be run in
the sharing-based protocols (i.e., GMW-based protocols in ABY).
According to the prior work [24], the softmax function can be ig-
nored when performing the oblivious neural inference because it is
the order-preserving operation and maximum and minimum data
remain the same before and after applying the softmax operations.

3.2 Source-to-Source Translation

The considerations for the high-level code generation are described
in this subsection. In particular, the following items are discussed:
the execution model of the generated oblivious programs, the issues
raised when generating codes for the different types of NN layers,
the large code size problem for the generated code, and the huge
memory footprint for keeping the input data during runtime.

3.2.1 Execution Model. In a setting of 2PC with the GC-based pro-
tocol, there is a circuit generator and a circuit evaluator, and the data
exchanges between them are performed via the oblivious transfer
(OT). At the initial stage of the GC-based execution scheme, they
perform the following operations to facilitate the following execu-
tion: 1) the generator garbles the circuits; 2) the generator sends the
garbled circuits and the labels of the circuit inputs to the evaluator;
3) the evaluator gets the labels of its inputs through OT; 4) the
evaluator evaluates the garbled circuits. In step 3, the evaluator has
to obtain the labels of its inputs from the generator through OT so
that the evaluator is able to evaluate the garbled circuit sent by the
generator later, and hence, the network traffic is determined by the
input data size of the evaluator. Based on this observation, in order
to improve the execution efficiency of oblivious neural inference, it
is essential to determine which roles (i.e., circuit generator and eval-
uator) are played by the model provider and the user since the data
sizes between a deep learning model and its input (i.e., user data)
are often imbalanced. Therefore, it is always a good idea to let the
one with the larger data size acting as the generator, and the com-
munication volumes are reduced naturally. The setting of 2PC with
GMW-based protocols does not have this kind of issue since data
transmissions between the two parties are balanced. In summary,
the above design is applied to TONIC-ObliVM and TONIC-ABY
running with the GC mode, where the GC protocol in ABY is used
to handle the non-linear layers.

3.2.2 Layer-by-Layer Translation. TONIC adopts the layer-by-layer
translation approach to generate the backend language codes for
each type of the CNN layers, where there are mainly three types
of layers found in most of the CNN models: 1) convolutional, 2)
activation, and 3) fully-connected (FC) layers. As the convolutional
and FC layers have to process a large number of structured data,
TVM IR defines its own vector operations to handle the massive
data manipulation, and these vector functions are mapped to the ap-
propriate functions supported by the target hardware architecture
by the TVM backend for computation accelerations. For example,
the LLVM backend illustrated in Figure 1 may generate the AVX-
based SIMD (Single Instruction Multiple Data) macros for these
TVM vector operations to accelerate the matrix operations defined
in CNN models on the Intel processors.

It is interesting to note that the architectural SIMD support in
the garbled circuits is not available now, where the circuits can
process multiple data with the same instruction concurrently to
improve the processing speed, as the architectural SIMD support
found in modern CPU/GPU. However, ABY does have its own SIMD
support to reduce the generated circuit size, which is referred to
as ABY-SIMD in this work. In particular, the ABY-SIMD uses the
same circuit gate iteratively to process multiple data, instead of
replicating multiple, identical circuit gates to process the multiple

495

data, and the technique is able to reduce the circuit size, which
further helps improve the execution efficiency of the 2PC programs
because multiple garbled labels can be allocated in a single gate.
In TONIC-ABY, the vector operations found in TVM IR are con-
verted into the corresponding ABY-SIMD operations to improve
the execution efficiency. On the other hand, ObliVM does not have
a feature similar to ABY-SIMD, and in TONIC-ObliVM, the vector
operations are converted into the array type operations.

Activation layer functions often contain non-linear operations,
such as identifying the maximum and minimum numbers. Both
ObliVM and ABY support such basic non-linear functions, e.g.,
GT returns 1 if the first operand on the left is greater than the
second operand, otherwise, it returns 0. As for those functions
that are not supported, e.g., max and min, they are implemented
by ourselves as the language extensions and these supplement
functions invocations are generated when the corresponding non-
linear operations are found during the layer-by-layer translation
from TVM IR into the target oblivious computing language.

3.2.3 Code Size Consideration. The Java virtual machine has the
64 KB code size limitation for the Java bytecode of a Java method!.
During the early stage of the TONIC-ObliVM implementation, we
found that some error occurs during the execution of the generated
2PC programs on the Java virtual machine. After further analysis,
we find that the ObliVMLang compiler adopts the Static Single
Assignment (SSA) form internally and generates the corresponding
Java code from the SSA-enabled IR, which largely expands the code
size of a generated Java method, since the SSA form will create new
versions of the variable when there are multiple assignments to
the very same variable, especially for the convolutional and fully-
connected layers. To overcome this problem, the TONIC-ObliVM
backend generates the ObliVM program in the SSA form, which
helps prevent expanding the code size. On the other hand, we do not
find a similar issue in ABY, which adopts the C++ library support
for 2PC and relies on the third-party compiler toolchains to compile
the ABY program.

3.24 Memory Footprint Reduction. Conventionally, the inputs are
fed into the 2PC programs during the initialization of both programs
before entering the main entry points. Nevertheless, since ObliVM
requires the data to be stored in the binary format (i.e., using the
binary representation of floating-point numbers and saving as the
binary strings), the size of the memory used to keep the input data
is grown proportionally with the size of the input. This incurs the
problem when running with a large CNN model. Taking VGG16 as
an example, it requires about 500 MB to store its model parameters
in the file system, and each 2PC program will need 12 GB of memory
to proceed with the execution.

As most of the model parameters are local to a certain NN layer,
TONIC-ObliVM uses the dynamic parameter loading technique to
feed only the required parameters to a NN layer as needed at the
beginning of the execution of the layer, which effectively reduces
the peak memory footprint. In addition, the binary representation
of the input data consumes a large amount of space so the data
are saved in the floating-point format to save the space. Besides,

The code_length item of the Code attributes: https://docs.oracle.com/javase/specs/
jvms/se11/html/jvms-4.html#jvms-4.7.3

https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-4.html#jvms-4.7.3
https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-4.html#jvms-4.7.3

since the secure data content requires relatively larger space than
its public version, TONIC-ObliVM saves the dynamically loaded
parameters of a layer in the public form and converts the public
data into the corresponding secure version only when the data are
required for the secure computations. The above dynamic parameter
loading and conversing techniques conform to the security model
defined in Section 2.4 because the model parameters in the plaintext
are only available to the model provider and the user is allowed to
see the encrypted version of the parameters during the computation
if necessary.

Figure 4 illustrates the concept of the dynamic parameter loading
for each layer as needed, where the model provider acts as the
generator and the user is the evaluator, as described in Section 3.2.1.
Note that the generator adopts the dynamic parameter loading and
secure data conversion schemes, and the evaluator uses the default
mechanism provided by ObliVM to feed the input data (i.e., reading
the input image at once during the program initialization stage
and saving the data as secure contents by default). Note that while
ABY does not have the memory footprint issue as the ObliVM does,
TONIC-ABY uses the dynamic parameter loading technique for
each NN layer in order to reduce the peak memory footprint to
facilitate the execution of 2PC programs.

image

Public

wl Conv2D Conv2D

T\
g ’
E ReLU ReLU
2 w2— FC FC
Gj ReLU RelLU
w3—->| FC FC
v v
3 3
Generator Evaluator

Figure 4: Illustration of the dynamic parameter loading tech-
nique adopted by TONIC.

4 EXPERIMENTAL RESULTS

The capabilities of the proposed framework are demonstrated in this
section. Thanks to TVM, which accepts various popular deep learn-
ing frameworks, such as Keras, TensorFlow, and PyTorch, TONIC
can handle the models trained by these TVM-supported frameworks.
We show that TONIC is able to convert a variety of the trained CNN
models into the corresponding 2PC versions without any manual
conversion efforts. Specifically, we use Keras [12] to build and train
the well-known models, which are introduced in Section 4.1, for
the classification problems with the datasets, MNIST and ImageNet,
since we are not able to find the pre-trained models online. The
trained models are imported into TVM via its Keras frontend, and
TONIC backends are responsible for generating the 2PC version
codes. The delivered performance of the 2PC programs between
TONIC and the prior work is presented in Section 4.2. Section 4.3
validates the computation results of the 2PC programs generated

496

by TONIC. The memory footprints consumed by the generated
oblivious neural inference codes are evaluated in Section 4.4.

Most of the experiments are performed on the two machines in
the LAN setting. One machine is equipped with Intel Core i7-10700K
CPU with 32 GB memory, and the other has Intel Core i7-7700K
with 16 GB memory, where Ubuntu 18.04 is run on both machines
that are connected with each other via the Gigabit Ethernet.

4.1 Neural Network Workloads

Based on the settings in [18, 24, 25, 29], we create the four CNN
models for the MNIST dataset. Furthermore, we also created the
large model, MobileNetV2, for handling the ImageNet dataset. Their
architectures are listed below. The training accuracy of the built
CNN models is given in Table 1.

BM1. FC-Square-FC-Square-FC, from [25].

BM2-1. Conv2d-Square-FC-Square-FC, from [18].

BM2-2. Conv2d-ReLU-FC-ReLU-FC, from [29].

BM3. Conv2D-ReLU-Maxpool-Conv2D-ReLU-Maxpool-FC-
ReLU-FC, from [24].

MobileNetV2 (0.35-224). 52 Convolutions, 35 ReLU6s, 1
Average pooling, 1 FC, from [30].

Table 1: The accuracy of the trained models.

Dataset Arch. Trained Top-1 Acc. (%)
BM1 97.63
BM2-1 98.80
MNIST BM2-2 98.72
BM3 99.18
ImageNet MobileNetV2 60.3 (Top-5: 82.9)

4.2 Execution Time

Two sets of performance results are presented according to the
used datasets, MNIST and ImageNet, which are presented in Sec-
tions 4.2.1 and 4.2.2, respectively. Especially, the delivered perfor-
mance achieved by TONIC and the prior work is compared to
demonstrate the capability of TONIC.

4.2.1 CNNs for MNIST. The runtime of the 2PC programs gener-
ated by TONIC and the prior work is listed in Table 2. It is obvious
that the TONIC-ObliVM version has the longest runtime among
others since ObliVM uses hash functions and the on-the-fly circuit
generation and execution that incurs more frequent communica-
tions between the two machines when evaluating every single gate.
In addition, ObliVM is based on the Java virtual machine, which
would introduce another execution overhead. Based on our results,
while ObliVM provides a higher-level programming interface to
alleviate the programming overhead and uses the on-the-fly execu-
tion to mitigate the large circuit size issue, they are achieved at the
cost of higher running time.

TONIC-ABY, on the other hand, achieves comparable perfor-
mance, compared with the other approaches. In particular, the pro-
grams generated by TONIC-ABY have moderate runtime, which is
higher than Gazelle and XONN. The major advantage of these two

works is that they produce highly optimized models by manually
adjusting circuit designs and by re-training the models optimizing
for binarized neural networks, respectively. This is the reason why
these two works are significantly faster than the others. Neverthe-
less, it will require a remarkable development time when handling
a different model and it would be hard for these two works to gen-
erate the 2PC version of a larger model due to the same reason
which makes them faster. More details about the two works are
given in Section 5.3.

By further decomposing the runtime into the offline and online
parts, it is shown that the online time is more close to the leading
group. For example, TONIC-ABY is only two to four times slower
than Gazelle, but it is able to generate the trained CNN models,
which is not applicable for Gazelle. In fact, the prior work listed in
Table 2 does not support the automatic model conversion to the
2PC version, and TONIC-ABY is faster than some of them. Based
on the online time, we believe that TONIC-ABY is with sufficient
speed and is able to be put to real use. For example, the secure CNN
inference service is a promising candidate application since the
circuits can be pre-built and loaded to eliminate the setup (offline)
time.

Table 2: Comparison of TONIC with the state-of-the-art for
the MNIST neural inference in LAN setting. Runtimes are in
seconds.

Arch. Framework Offline Online Runtime
SecureML 4.7 0.18 4.88
MiniONN 0.9 0.14 1.04
EzPC 2 — — 0.7

BM1 Gazelle 0 0.03 0.03
XONN 2 — — 0.13
TONIC-ObliVM P 0 955.5 955.5
TONIC-ABY 0.776 0.123 0.899
CryptoNets — — 297.5
MiniONN 0.88 0.4 1.28
HyCC 0.683 0.134 0.817

BM2-1 EzPC? — — 0.6
Gazelle 0 0.03 0.03
TONIC-ObliVM P 0 989.6 989.6
TONIC-ABY 0.704 0.095 0.799
DeepSecure — — 9.67
HyCC 0.784 0.163 0.947
Gazelle 0.15 0.05 0.20

BM22 - yonn® — - 0.13
TONIC-ObliVM P 0 907 907
TONIC-ABY 0.729 0.102 0.831
MiniONN 3.580 5.740 9.32
HyCC 1.825 1.621 3.446
EzPC? — — 5.1

BM3 Gazelle 0.481 0.33 1.16
XONN 2 — — 0.15
TONIC-ObliVM P 0 4844 4844
TONIC-ABY 4.929 1.257 6.186

@ The decomposition of the runtime cost into offline and online
is not reported by the authors.

b We run all ObliVM experiments in the localhost setting and the
offline is inaccessible because of the on-the-fly technique.

497

4.2.2 MobileNetV2 for ImageNet. Table 3 lists the performance
of the 2PC programs generated by TONIC-ABY and nGraph-HE2,
the state-of-the-art for automatically compiling a CNN model for
secure neural inference with homomorphic encryption (HE). The
results show that TONIC is 2.3% faster than nGraph-HE2 when
considering the latency for handling a single input image data. It is
important to note that nGraph-HE?2 is designed for high throughput
systems, where it has a similar latency for handling 4,096 images
in one batch with 56 threads. On the other hand, our approach
requires no more than two threads for handling a single secure
inference request at a time, which is more suitable for the medical
application mentioned in Section 1, where each user can protect
the privacy of its own data and it does not require the packing
of other user data together for oblivious secure inference at the
risk of leaking the data during the data packing. While TONIC-
ABY and nGraph-HE2 are capable of generating the 2PC version
of the deep model, MobileNetV2, they are different in the adopted
cryptographic protocols, detailed comparison of the two works is
in Section 5.4.

Table 3: Performance delivered by TONIC with nGraph-HE2
for MobileNetV2. Runtimes are in seconds.

Runtime
Framework Localhost LAN
Offline Online Total Offline Online Total
nGraph-HE2 2 — — 529 - - 1,559
TONIC-ABY 162 62 224 502 123 625

2 Separation of runtime cost into offline and online is not reported by the
authors.

4.3 Validation

To validate the computation results of the 2PC version programs
against those produced by the original models. For the 2PC version,
the verify mode offered by ObliVM is turned on to obtain the com-
putational outputs after the inference operations performed on each
layer. As for the original model, we have revised the C++ backend
from TVM and run the model inference in the TVM debug mode
to obtain the outcomes for each model layer. The layer-by-layer
outputs comparison between the 2PC and the original versions
uses mean absolute error (MAE) to quantify the difference between
them.

Figure 5 shows the MAEs between the two versions of the BM2-2
model inference on the MNIST dataset. Overall, the accumulated
MAE, observed after performing the softmax operations at the
last layer of the model, is at the order of magnitude of —4 (i.e.,
1.12e—4). Based on our preliminary analyses, the error would be
originated from the floating-point numbers system adopted by
ObliVM, where the IEEE 754 like system is adopted for computing
the 32-bit floating-point data, and the C++ backend generates the
32-bit floating-point numbers run by C++ language conforming
IEEE 754 standard. It can be seen that the error is increased with the
involved multiplication operations. For instance, there is a steep rise
after the Conv2d (convolutional) operations performed and another

is at the dense (fully-connected) layer. It is interesting to note that
the non-linear layer, such as ReLU, actually helps reduce the error
since the original and 2PC versions have similar numerical values
and the non-linear operations convert these similar values into the
same output values.

1.12E-4

1.00E-4

1.00E-5

1.00E-6

MAE in log scale (the smaller the better)

1.00€-7

Figure 5: Average MAE for each layer of ObliVM backend of
BM2-2 on the MNIST dataset.

4.4 Memory Footprint

Table 4 lists the peak memory required during the oblivious neural
inference for the BM2-2 model with MNIST dataset. We find that the
on-the-fly technique adopted by ObliVM reduces lots of memory
usage so that the Java programs can run under the small memory
footprint. On the other hand, ABY has to construct the entire circuits
first before its execution, so the memory consumption is higher
than that required by ObliVM.

Table 4: Peak memory footprint of the 2PC for BM2-2.

Peak memory footprint (MB)

Framework
Generator Evaluator
TONIC-ObliVM 16 16
TONIC-ABY 92 83

5 RELATED WORK

This section introduces the software efforts for the general-purpose
oblivious computations. Furthermore, on top of the software in-
frastructures, the privacy-preserving inference techniques via the
handcraft and the automatic compilation approaches are described.
As this work belongs to the automatic compilation category, we
discuss the major differences between TONIC and the prior work.

498

5.1 General-purpose Oblivious Computing
Software

Many research efforts have been done to provide the software
platforms facilitating the oblivious computations. JustGarble [2]
provides a C library for garbling and evaluating circuits based on
the fixed-key AES, where the AES computations are accelerated by
the CPU, e.g., Intel AES-NI. Similarly, ABY [16] offers C++ libraries
to support the mixed-protocol 2PC and to efficiently convert among
the three protocols, arithmetic sharing of GMW, boolean sharing
of GMW, and Yao’s GC. It is shown that oblivious transfer exten-
sion (OT extension) [20] is more efficient than HE (homomorphic
encryption) schemes (DGK [14] and Paillier [26]) for precomput-
ing multiplication triples of arithmetic sharing [16]. There are also
studies of building the programming languages for oblivious compu-
tations. Usually, these studies are either proposing domain-specific
languages or using the lower-level languages, e.g., C language.
ObliVM [23] and Obliv-C [35] are such examples, where the two
general-purpose frameworks take the program written in their
supported languages as inputs and generate the executables by
leveraging other 2PC software; for example, ObliVM uses its inter-
nal library ObliVMGC and Obliv-C adopts JustGarble to perform
the GC protocol. EzPC [8] proposes the domain-specific language
for the 2PC, which leverages the ABY support for running between
the boolean sharing and arithmetic sharing protocols. HyCC [7],
on the other hand, converts the user given C code to the different
versions of circuits (i.e., using different combinations of the 2PC
protocols) by leveraging the ABY library and HyCC attempts to
select the best protocol for 2PC execution based on the C code
structures.

5.2 Handcrafted SMPC for Specific NN Models

To shorten the execution time for privacy-preserving inferences,
works requiring human intervention have been done by manually
crafting implementations of NN models with the support of existing
low-level toolkits. CryptoNets [18] is the first work to approach the
privacy-preserving inference, and it uses YASHE' [5] scheme and
is implemented by SEAL [31]. DeepSecure [29] is based on the GC
protocol to achieve classification and has the mechanism to reduce
the computations through preprocessing. In addition to a single
cryptographic protocol, the hybrid-protocol based schemes are also
developed. MiniONN [24] mixes YASHE implemented by SEAL and
ABY’s GC and arithmetic sharing. Gazelle [21], the state-of-the-art
in this category, combines GC and packed additive homomorphic
encryption (PAHE) scheme, which leverages the PALISADE [28]
library and benefits from the SIMD operations by packing multiple
plaintexts into a single ciphertext. Gazelle calculates all linear com-
putations (e.g., operations in convolutional and FC layers) within
the PAHE scheme and transfers to GC for the non-linear layers (e.g.,
ReLU and MaxPooling). SecureML [25] leverages ABY to handle the
conversion between GC and arithmetic sharing for the 2PC of ma-
chine learning applications, including linear regression and logistic
regression, as well as neural network training and inference.

5.3 Automatic Conversion of NN Models for
SMPC

Some works have been developed to take a NN model, which is a
trained model or is described via the high-level descriptions, such as
Python using Keras [12], as the input and to convert the NN model
into the 2PC programs for privacy-preserving inference. CHET [15]
is known to be the pioneer to introduce the compiler and runtime
for performing such a conversion task and using the FHE (fully
homomorphic encryption) scheme for the 2PC. nGraph-HE [4] and
nGraph-HEZ 3] leverage the graph compiler (i.e., Intel nGraph [13])
to convert a given DNN model to the 2PC programs running with
the HE-based protocol. As the nGraph compiler is similar to TVM, it
is able to support DNN models imported from a variety of software
frameworks, such as TensorFlow [1] and MXNet [9]. Both nGraph-
HE and nGraph-HE2 are the backends for nGraph compiler for gen-
erating the 2PC programs with the supports from BFV [6, 17] and
CKKS [11], both powered by SEAL. nGraph-HE2 optimizes CKKS
to achieve 2x higher throughput than nGraph-HE. In addition, the
client-aided method is adopted to decrease the multiplicative depth,
which further reduces the execution time. Nevertheless, the client-
aided scheme requires the transfer of the intermediate outputs from
the server to the client and hence, have the potential of leaking the
data contents, which means the privacy of the model parameters is
compromised since the client can reveal the raw information from
the intermediate data. XONN [27] provides the frontend to parse
the model described by Keras, and it requires to train the given
network architecture using the Binary Neural Networks (BNNs)
in order to find a proper configuration so that the resulting BNN-
based model performs well. While the BNN-based approach helps
accelerate the computation of GC protocol, the method is not suit-
able for the applications described in Section 1, which relies on the
incremental trained DL model and the re-training of the built DL
model is time-consuming and requires the entire training datasets
in history.

5.4 Discussion

Our proposed framework is similar to nGraph-HE and nGraph-
HE2 in that TONIC can operate on the trained deep learning mod-
els, which are accepted by the graph compiler, TVM. The major
difference is that TONIC runs on top of the SMPC-based proto-
cols, whereas the nGraph-based approaches adopt the HE-based
schemes for the privacy-preserving inference. As a result, TONIC
and nGraph-based approaches have different security models [4].
Furthermore, TONIC-ABY has relatively shorter latency for han-
dling the oblivious neural inference of a single input data for Mo-
bileNetV2, as shown in Section 4, and does not have the potential
security risk as nGraph-HE2 does. Therefore, we believe that TONIC
is applicable for real-world applications, such as the medical task
mentioned in Section 1.

6 CONCLUSION

In this work, we propose the TONIC framework for compiling
trained CNN models into the corresponding 2PC programs for
oblivious neural inference. We describe the issues faced by the
oblivious computing software, ObliVM and ABY, and our devised

499

compilation strategies. Our results show that our two TONIC back-
ends are able to convert a variety of trained CNN models. Especially,
the TONIC-ABY backend is able to convert the deep neural network,
MobileNetV2, which shows our approach is scalable and the execu-
tion time of the 2PC-based MobileNetV2 is faster than the inference
time for the 2PC MobileNetV2 generated by the prior work, nGraph-
HE and nGraph-HE2. We believe that our work is applicable to the
oblivious neural inference for real-world applications.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/. Software available from tensorflow.org.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.
Efficient Garbling from a Fixed-Key Blockcipher. In IEEE Symposium on Security
and Privacy. 478-492.

Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzyn-
ski. 2019. nGraph-HE2: A High-Throughput Framework for Neural Network
Inference on Encrypted Data. In ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography. 45-56.

Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski. 2019.
nGraph-HE: a graph compiler for deep learning on homomorphically encrypted
data. In ACM International Conference on Computing Frontiers. 3—13.

[5] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. 2013. Im-
proved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In
IMA International Conference on Cryptography and Coding. 45-64.

Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In Annual International Cryptology Conference. 868—
886.

Niklas Biischer, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and
Thomas Schneider. 2018. HyCC: Compilation of Hybrid Protocols for Practical
Secure Computation. In ACM Conference on Computer and Communications
Security. 847-861.

Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: Programmable and Efficient Secure Two-Party Computation
for Machine Learning. In IEEE European Symposium on Security and Privacy. 496~
511.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
Computing Research Repository abs/1512.01274 (2015).

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In USENIX Symposium on Operating
Systems Design and Implementation. 578—594.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In International
Conference on the Theory and Application of Cryptology and Information Security,
Vol. 10624. 409-437.

Francois Chollet et al. 2015. Keras. https://keras.io.

Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew
Brookhart, Avijit Chakraborty, William Constable, Christian Convey, Leona Cook,
Omar Kanawi, Robert Kimball, Jason Knight, Nikolay Korovaiko, Varun Kumar
Vijay, Yixing Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer Myers,
Sandeep Aswath Narayana, Adam Procter, and Tristan J. Webb. 2018. Intel nGraph:
An Intermediate Representation, Compiler, and Executor for Deep Learning.
Computing Research Repository abs/1801.08058 (2018).

Ivan Damgard, Martin Geisler, and Mikkel Kreigaard. 2008. Homomorphic
encryption and secure comparison. International Journal of Applied Cryptography
1(2008), 22-31.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing. In ACM SIGPLAN
Conference on Programming Language Design and Implementation. 142—156.
Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In Network

—_
&,

[4]

[6

7

8

[11

==
L

(14]

[15

[16

http://tensorflow.org/
https://keras.io

[17]

[18]

[19

[20

[21

[22]

[23]

[24

[25]

and Distributed System Security Symposium.

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. IACR Cryptology ePrint Archive 2012 (2012), 144.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy. In International Confer-
ence on Machine Learning. 201-210.

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In ACM
Symposium on Theory of Computing. 218-229.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious
Transfers Efficiently. In Annual International Cryptology Conference. 145-161.
Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
USENIX Security Symposium. 1651-1669.

Joe Kilian. 1988. Founding Cryptography on Oblivious Transfer. In ACM Sympo-
sium on Theory of Computing. 20-31.

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. In IEEE Symposium
on Security and Privacy. 359-376.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network
Predictions via MiniONN Transformations. In ACM Conference on Computer and
Communications Security. 619-631.

Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In IEEE Symposium on Security and Privacy.
19-38.

500

[26

&
=

[28

[29

[30

[31

(32]

@
&

[34

(35]

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-
uosity classes. In International Conference on the Theory and Applications of
Cryptographic Techniques. 223-238.

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,
and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural
Network Inference. In USENIX Security Symposium. 1501-1518.

Kurt Rohloff and Yuriy Polyakov. 2017. The PALISADE Lattice Cryptography
Library. https://git.njit.edu/palisade/PALISADE. 1.0 edition.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
scalable provably-secure deep learning. In Design Automation Conference. 1-6.
Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4510-4520.
SEAL 2019. Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

Adi Shamir, Ronald L Rivest, and Leonard M Adleman. 1979. Mental Poker.
Technical Report. MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
COMPUTER SCIENCE.

Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound. In ACM Conference on Computer and
Communications Security. 850-861.

Andrew Chi-Chih Yao. 1982. Protocols for secure computations. In IEEE Sympo-
sium on Foundations of Computer Science. 160-164.

Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. IACR Cryptology ePrint Archive 2015 (2015), 1153.

https://git.njit.edu/palisade/PALISADE
https://github.com/Microsoft/SEAL

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

