
Energy-aware Scheduling of Multi-version Tasks on
Heterogeneous Real-time Systems

Julius Roeder

University of Amsterdam

Amsterdam, Netherlands

j.roeder@uva.nl

Benjamin Rouxel

University of Amsterdam

Amsterdam, Netherlands

b.rouxel@uva.nl

Sebastian Altmeyer

University of Augsburg

Augsburg, Germany

altmeyer@informatik.uni-augsburg.de

Clemens Grelck

University of Amsterdam

Amsterdam, Netherlands

c.grelck@uva.nl

ABSTRACT
The emergence of battery-powered devices has led to an increase of

interest in the energy consumption of computing devices. For em-

bedded systems, dispatching the workload on different computing

units enables the optimisation of the overall energy consumption

on high-performance heterogeneous platforms. However, to use

the full power of heterogeneity, architecture specific binary blocks

are required, each with different energy/time trade-offs. Finding a

scheduling strategy that minimises the energy consumption, while

guaranteeing timing constraints creates new challenges. These chal-

lenges can only be met by using the full heterogeneous capacity

of the platform (e.g. heterogeneous CPU, GPU, DVFS, dynamic

frequency changes from within an application).

Wepropose an off-line scheduling algorithm for dependentmulti-

version tasks based on Forward List Scheduling to minimise the

overall energy consumption. Our heuristic accounts for Dynamic

Voltage and Frequency Scaling (DVFS) and enables applications

to dynamically adapt voltage and frequency during run time. We

demonstrate the benefits of multi-version task models coupled with

an energy-aware scheduler. We observe that selecting the most

energy efficient version for each task does not lead to the lowest

energy consumption for the whole application. Then we show

that our approach produces schedules that are on average 45.6%

more energy efficient than schedules produced by a state-of-the-art

scheduling algorithm. Next we compare our heuristic against an

optimal solution derived by an Integer Linear Programming (ILP)

formulation (deviation of 1.6% on average). Lastly, we empirically

show that the energy consumption predicted by our scheduler is

close to the actual measured energy consumption on a Odroid-XU4

board (at most -15.8%).

This is the author's version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in:
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8104-8
https://doi.org/10.1145/3412841.3441930

CCS CONCEPTS
•Computer systems organization→Embedded software;Mul-
ticore architectures; • Hardware → Platform power issues;

KEYWORDS
DAG, energy-aware scheduling, multi-version, DVFS

ACM Reference Format:
Julius Roeder, Benjamin Rouxel, Sebastian Altmeyer, and Clemens Grelck.

2021. Energy-aware Scheduling of Multi-version Tasks on Heterogeneous

Real-time Systems. In The 36th ACM/SIGAPP Symposium on Applied Com-
puting (SAC ’21), March 22–26, 2021, Virtual Event, Republic of Korea. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3412841.3441930

1 INTRODUCTION
Systems such as autonomous robots and unmanned aerial vehicles

(UAV) used to be limited in terms of computation power, as the cor-

responding software stack required powerful workstations (e.g. for

image analysis). This limitation is now relaxed with the availability

of high-performance embedded computers, such as Odroid-XU4 [2]

or Nvidia Jetson boards [1]. Nonetheless, this type of systems are

often battery-powered, e.g [6, 16, 22], making energy consumption

an important design criterion [32]. The challenge is to minimise the

overall energy consumption while guaranteeing timing constraints

on complex, heterogeneous architectures.

To tackle this challenge, we need to fully utilise the heteroge-

neous capacity of the hardware. This among others includes hetero-

geneous CPUs (e.g. big.LITTLE) and accelerators (e.g. GPUs). Differ-

ent compute units may require architecture-dependent binaries (e.g.

CPU vs. GPU) due to different instruction set architectures (ISA).

The absence of binary compatibilitymakesmulti-version tasks a nat-

ural, if not necessary, starting point for our work on scheduling for

modern heterogeneous embedded platforms. Multi-version tasks

have equivalent functional behaviour (i.e. identical input yields

equivalent output), but different non-functional behaviour, namely

time and energy consumption. As multi-version tasks are required,

we can further exploit this and support versions resulting from

e.g. different compiler flags and different functionally-equivalent

algorithms. The necessity to include multiple task versions further

increases the complexity of reducing the overall energy consump-

tion.

501

https://doi.org/10.1145/3412841.3441930
https://doi.org/10.1145/3412841.3441930

Most modern systems allow Dynamic Voltage and Frequency

Scaling (DVFS). For each task, for each CPU type or GPU, there is a

clock frequency that minimises the energy consumption. A lower

frequency leads to longer runtime and thus increases static energy

consumption. A higher frequency leads to shorter runtime but the

necessary higher voltage increases dynamic energy consumption.

This convex behaviour depends on the code. In modern CPUs clock

frequency cannot be altered per core but only per core cluster (i.e.

voltage island). Hence, we need to pick the best frequency for each

voltage island with respect to the different tasks executing on that

island. We take advantage of DVFS for different voltage islands to

reduce energy consumption of a whole application consisting of

multiple tasks.

Heterogeneous platforms, multiple versions, voltage islands and

DVFS extend common scheduling challenges: schedulers now need

to decide on which computing unit and at what frequency a task

(version) should be executed to reduce the overall energy consump-

tion.

We propose an offline heuristic based approach for multi-version

scheduling, which: 1) Fully utilises the heterogeneous CPU and

accelerators. 2) Takes advantage of per voltage island DVFS. 3)

Dynamically adjusts the frequency throughout the application run

time. 4) Selects the optimal version of each task with respect to

energy consumption of the whole application.

We choose an offline scheduling approach as online scheduling

introduces prohibitive overhead such as keeping in memory all

different binaries and all version DVFS data. According to the tax-

onomy proposed by Davis and Burns [11], our approach can be

classified as static, partitioned, time-triggered and non-preemptive.

This paper makes the following contributions:

• We define a task model which integrates multiple versions

for dependent tasks.

• We propose a very fine grained energy model.

• Our scheduler embraces heterogeneity by incorporating both

different CPU types as well as GPU-style accelerators and

by actively controlling both CPU and accelerator DVFS.

• We empirically demonstrate that our approach decreases the

energy consumption of an application by more than 15% in

comparison to an approach accounting for single-version

tasks. Moreover, we show that our approach decreases the

energy consumption by on average 45.6% in comparison to

a state-of-the-art scheduler.

• We establish that our approach generates applications which

are close to optimal with respect to energy consumption.

• We empirically show that our energy-aware scheduler pre-

dictions are close to actual energy measurements (largest

error -15.8%) on an Odroid-XU4 board.

The remainder of the paper is organised as follows: In Section 2,

we describe the system model. In Section 3 we describe the heuris-

tic algorithm. Section 4 details the experimental setup. Section 5

demonstrates the viability of our heuristic scheduler in comparison

to a single-version approach, a makespan heuristic and a state of

the art energy-aware scheduler. Section 6 shows that our heuristic

scheduler produces results close to the optimum and that the pre-

dicted energy consumption is close to the actual energy consump-

tion. In Section 7 we discuss related approaches before concluding

in Section 8.

2 SYSTEM MODEL
In this section we first detail our platform model (Section 2.1),

followed by the task model (Section 2.2) and lastly we explain our

energy model (Section 2.3).

2.1 Platform Model
Our approach is fully platform-independent and can be applied to

a wide range of heterogeneous (embedded) system architectures.

Our model supports: multiple voltage islands, DVFS, heterogeneous

CPUs, GPU-style accelerators and in application frequency switch-

ing. Additionally, we support GPU tasks that do not only require

the GPU but also a CPU control core. The only restrictions our

approach has is that a voltage island needs to be homogeneous and

that tasks can be bound to a specific core.

Our approach does not limit the number of voltage islands. Each

voltage island can have a differing number of cores andDVFS param-

eters. We consider co-processors as voltage islands. Our approach

does not limit the number of different co-processors either.

2.2 Task Model
We consider applications represented as Directed Acyclic Graphs

(DAG), hereafter called task graphs. In a graph 𝐺 = (𝜏, 𝐸) the set
of nodes/vertices 𝜏 represents the tasks, and the set of edges 𝐸

represents data dependencies between tasks, i.e. a producer task

needs to be completed before the corresponding consumer task

may start executing. Our task model supports multiple sources and

sinks. Each task graph has a deadline.

Each task 𝜏𝑖 consists of a (non-empty) set of task versions 𝑉 .

The different versions of a task 𝜏𝑖 are functionally equivalent (i.e.

they implement the same input/output relation), but differ in their

non-functional properties. Different versions can be the result of:

(1) targeting different functional units (i.e. big core, LITTLE core or

GPU); (2) using varying compilation flags to, for example, optimise

code for energy consumption, binary size, speed or architecture

features [23]; (3) different algorithms or implementation variants.

This results in a large state space, where picking the best version for

a given task can be challenging. All tasks in the task graph must be

executed. However, only one version of each task is executed. Hence,

the scheduler chooses the version to achieve the best trade-off

between energy and performance while meeting the given deadline.

Figure 1 presents a synthetic task graphwhichwe use to illustrate

our approach. It consists of nine different tasks: one generator task,

one storage task and seven computational tasks in between. The

seven computational tasks have one or two different versions each.

They target different compute unit types: CPU and GPU. Then,

edges are labelled and represent data transfer (or data dependencies)

between tasks.

502

Generator
CPU: C

LU Decomp.
CPU: C

GPU: OpenCL

Heart Wall
CPU: C

GPU: OpenCL

Heart Wall
CPU: C

GPU: OpenCL

Hotspot
CPU: C

GPU: OpenCL

Srad
CPU: C

B.F.-Search
CPU: C

k-N.N.
CPU: C

GPU: OpenCL

Storage
CPU: C

1 int

1 int

1 int

1 int

temperature
array

matrix

frames

temp.
array

neighbors

image

graph
nodes

Legend
Task

Version

Figure 1: Illustration DAG composed of Rodinia benchmark
tasks from Section 6.3 (Task graph number 159).

2.3 Energy Model
Aligned with the state-of-the-art [7, 18, 20] our energy model Equa-

tion (1) consists of a static part (𝐸𝑠) and a dynamic part (𝐸𝑑). Both

static and dynamic energy consumption are computed during sched-

uling as they depend on scheduling decisions (e.g. selected versions,

selected frequencies).

𝐸 = 𝐸𝑠 + 𝐸𝑑 (1)

In contrast to previous research we consider the impact of fre-

quency on static energy consumption. Frequencies are not continu-

ous and dynamic energy consumption is measured per task

Po
w

er
(W

)

Time(s)

Dyn. Power Task

Add. Power DVFS
Static Power

Figure 2: Energy Model

Figure 2 illustrates our energy model based on an example, the

x-axis represents the time and the y-axis represents the power. The

checkerboard blue box (spanning the complete width of the figure)

represents the energy consumption due to the device being powered

up. The crosshatch green boxes represent the energy consumption

required to run at higher frequencies. The third part of our energy

model is the dynamic power required to run a task represented by

the irregular shapes on top of the static power components.

𝐸𝑠 = 𝐸𝑠𝑚 + 𝐸𝑠 𝑓 (2)

The static energy consumption (𝐸𝑠), Equation (2), can be split into

two elements 𝐸𝑠𝑚 and 𝐸𝑠 𝑓 . Firstly, 𝐸𝑠𝑚 corresponds to the energy

consumed by the board because it is powered on and depends only

on the worst-case duration (i.e. application makespan) it remains

powered on. Equation (3) multiplies the average measured power

in Watt (𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒) required at the lowest frequency by the overall

schedule makespan (𝐶) of the application.

𝐸𝑠𝑚 = 𝐶 ∗𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (3)

Secondly, 𝐸𝑠 𝑓 corresponds to the additional energy consumption

required to operate the board at a given frequency. As the board

consists of multiple voltage islands, the 𝐸𝑠 𝑓 (Equation (4)) corre-

sponds to the consumed energy by all voltage islands (𝑖 ∈ 𝐼) at each
specific frequency (𝑓 ∈ 𝐹𝑖).

𝐸𝑠 𝑓 =
∑
𝑖∈𝐼

∑
𝑓 ∈𝐹𝑖

𝐶𝑖,𝑓 ∗𝑊𝑖,𝑓 (4)

Hence, the time spent on each voltage island at each frequency

(𝐶𝑖,𝑓) is multiplied by the average additional energy consumption at

that frequency (𝑊𝑖,𝑓). This time depends on the schedulers decisions

and more precisely on the worst-case execution time (WCET) of

the selected version for each task.

It is important to not over-accumulate the time spent in each

frequency. The WCET of two tasks executing concurrently on the

same voltage island should not be summed up to compute the time

spent in a given frequency. Instead it is the longest time of the

two tasks that must be accounted for. If two tasks are executed on

different voltage islands the WCET of each task must be accounted

for, as the time spent in each frequency is voltage island specific.

The dynamic energy consumption, Equation (5), is dependent on

the workload executed by a compute unit at a given frequency. Un-

like most existing power models, we measure the energy consumed

by each task version for each frequency on each corresponding

compute unit. Measures are performed a-priori to scheduling the
application and in isolation (all other compute units are idle, and no

other task is executing). To compute the dynamic energy consump-

tion we measure the total energy consumption and then subtract

the two static power components (i.e. the energy consumption due

to running at the base DVFS and the additional energy consumption

due to the increased frequency). That is also the reason why we

work with average power (𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒) for the static part, as using

the worst measured idle power could lead to a negative dynamic

energy consumption for some tasks.

The total dynamic energy, Equation (5), consumed by an applica-

tion 𝐸𝑑 is the sum of all selected task versions dynamic energy at a

given frequency targeting a specific compute unit (𝐸𝑝,𝑢,𝑓). This ap-

proach allows to better account for different energy requirements

of tasks since Balsini et al. [5] and Vasilakis et al. [30] showed

that a one-size-fits all dynamic energy consumption for the whole

application is unrealistic.

𝐸𝑑 =
∑
𝑝∈𝜏

𝐸𝑝,𝑢,𝑓 (5)

Not all task versions are present in the final energy consumption

estimation. The version selection depends on the scheduling deci-

sions. Even-though we skipped this constraint in above equations

for clarity, it is present in scheduling Algorithm 3.2. Splitting both

static and dynamic energy consumption allows us to model DVFS

for the three voltage islands on the Odroid-XU4 platform. This

concept can be extended to account for all additional DVFS capable

compute units or voltage islands.

Similar to Guo et. al [18] we neither consider Dynamic Power

Management (DPM) nor the switching cost of changing frequency

of the processors. DPM is only beneficial when the idle slot is longer

503

than a certain threshold. The idle time might not be long enough as

all CPU cores in a cluster have to be idle. Additionally, we already

decrease the frequency to the least possible if all cores in a cluster

are idle. We do not consider the frequency switching cost as it

is comparable to the cost of context switches in a multitasking

environment (i.e. marginal) [24, 27].

3 ENERGY-AWARE FORWARD LIST
SCHEDULING

Our proposed heuristic is based on Forward List Scheduling (FLS).

FLS first orders the tasks, then adds them one by one to the sched-

ule without backtracking. We use two sorting algorithms: Depth

First Search (DFS) and Breadth First Search (BFS). For both sorting

strategies, we use the task WCET as a tie breaking rule (larger

WCET to be scheduled first). Furthermore, we introduce two ad-

ditional tie breaking rules for BFS, one based on time laxity and

one based on energy laxity. Since it is shown in [25] that no sorting

algorithm consistently outperforms the others, we generate four

schedules, each resulting from one sorting strategy / tie breaking

rule combination, and select the one resulting in the lowest energy

estimation as our heuristic solution. From here on-wards we will

refer to our energy-aware, multi-version task scheduling heuristic

as eFLS.

ALGORITHM 3.1: Scheduling algorithm
Input :An application DAG composed of multi-version tasks (𝜏), a

set of computational units (𝐶𝑈) and a deadline (𝐷𝐶
).

Output :A schedule.

1 Function ListSchedule(𝜏 = 𝜏1, . . . , 𝜏𝑛 |𝜏𝑥 = (𝑣),𝐶𝑈 ,𝐷𝐶)
2 𝑄𝑟𝑒𝑎𝑑𝑦 ← Topological_Sort_Tasks(𝜏)
3 𝑄𝑑𝑜𝑛𝑒 ← []
4 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑛𝑒𝑤 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ()
5 while 𝑡 ← 𝑄𝑟𝑒𝑎𝑑𝑦.𝑝𝑜𝑝_𝑓 𝑟𝑜𝑛𝑡 () do

// 𝑡𝑚𝑝𝑆𝑐ℎ𝑒𝑑 best schedule for the current task

6 𝑡𝑚𝑝𝑆𝑐ℎ𝑒𝑑 ← 𝑛𝑒𝑤 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ()
7 𝑡𝑚𝑝𝑆𝑐ℎ𝑒𝑑.𝑒𝑛𝑒𝑟𝑔𝑦 ←∞
8 foreach 𝑣 ∈ 𝑡 .𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 do
9 foreach 𝑢 ∈ 𝐶𝑈 do
10 if 𝑣 runs on 𝑢 then
11 𝑐𝑜𝑝𝑦 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

12 𝑐𝑜𝑝𝑦.𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑡𝑎𝑠𝑘 (𝑄𝑑𝑜𝑛𝑒, 𝑡, 𝑣,𝑢)
13 𝑐𝑜𝑝𝑦.𝑈𝑝𝑑𝑎𝑡𝑒_𝑒𝑛𝑒𝑟𝑔𝑦 ()
14 if 𝑐𝑜𝑝𝑦.𝑒𝑛𝑒𝑟𝑔𝑦 < 𝑡𝑚𝑝𝑆𝑐ℎ𝑒𝑑.𝑒𝑛𝑒𝑟𝑔𝑦 then
15 𝑡𝑚𝑝𝑆𝑐ℎ𝑒𝑑 ← 𝑐𝑜𝑝𝑦

16 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑡𝑚𝑝𝑆𝑐ℎ𝑒𝑑

17 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒.𝑈𝑝𝑑𝑎𝑡𝑒_𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ()
18 if 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒.𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 > 𝐷𝐶 then
19 return 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒

20 𝑄𝑑𝑜𝑛𝑒.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑡)
21 return 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

Our proposed scheduling algorithm is sketched out in Algorithm

3.1. It uses the task graph, a list of computational units (𝐶𝑈) and

the application deadline (𝐷𝐶
) as inputs. First it sorts the tasks

to be scheduled and creates a list (Line 2). Then, a loop iterates

over all tasks while there exist tasks to be scheduled (Lines 5–20).

Each tasks has multiple versions that are all tested on all possible

compute units (Lines 8–9). The different task versions also account

for different frequencies, i.e the frequency is a characteristic of 𝑣

(Line 8). Line 10 checks if a given version can be executed on the

given compute unit (𝑢). After scheduling the specific task version

to an appropriate compute unit (Line 12, calling Algorithm 3.2), we

compute the energy consumption of the new schedule (Line 13). The

energy consumption computation includes the two static energy

consumption components of the schedule and the dynamic energy

consumption of each task. The static base energy consumption and

the dynamic energy consumption are straightforward to compute,

but the time spent in each frequency on each voltage island is not.

We generate a list for each frequency in each compute unit. Then

if a task is scheduled on a compute unit we append the WCET of

the task to the matching frequency list entry. Next we merge all

WCETs for each frequency list if they overlap. This results in a list

of time blocks for each frequency and compute unit. Based on the

list we can compute the time spent in each frequency, which in

turn can then be used for computing the second component of the

static energy consumption.

ALGORITHM 3.2: Scheduling of a task
Input :List of scheduled tasks (𝑄𝑑𝑜𝑛𝑒), Current task to schedule

(𝑐𝑢𝑟_𝑡𝑎𝑠𝑘) and its version (𝑣𝑒𝑟𝑠𝑖𝑜𝑛), Current processor

(𝑐𝑢𝑟_𝑐𝑢).

Output :Add a new task to the schedule.

1 Function Schedule_task(𝑄𝑑𝑜𝑛𝑒, 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑐𝑢𝑟_𝑐𝑢)
2 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘.𝜌 ←𝑚𝑎𝑥𝑥∈𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑐𝑢𝑟_𝑡𝑎𝑠𝑘) (𝑥.𝜌 + 𝑥.𝐶)
3 𝐶ℎ𝑎𝑛𝑔𝑒 ← 𝑇𝑟𝑢𝑒

4 while Change do
5 𝐶ℎ𝑎𝑛𝑔𝑒 ← 𝐹𝑎𝑙𝑠𝑒

6 foreach 𝑡 ∈ 𝑄𝑑𝑜𝑛𝑒 do
7 if 𝑡 is mapped on core 𝑐𝑢𝑟_𝑐𝑢 then
8 if 𝑡 overlaps in time with 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘 then
9 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘.𝜌 ← 𝑡 .𝜌 + 𝑡 .𝐶

10 𝐶ℎ𝑎𝑛𝑔𝑒 ← 𝑇𝑟𝑢𝑒

11 foreach 𝑡 ∈ 𝑄𝑑𝑜𝑛𝑒 do
12 if 𝑡 is mapped on 𝑐𝑢𝑟_𝑐𝑢.𝑣𝑜𝑙𝑡_𝑖𝑠𝑙𝑎𝑛𝑑 then
13 if 𝑡 overlaps in time with 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘 then
14 if 𝑡 .𝑓 𝑟𝑒𝑞 ≠ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑓 𝑟𝑒𝑞 then
15 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘.𝜌 ← 𝑡 .𝜌 + 𝑡 .𝐶
16 𝐶ℎ𝑎𝑛𝑔𝑒 ← 𝑇𝑟𝑢𝑒

17 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑣𝑒𝑟𝑠𝑖𝑜𝑛)
18 𝑎𝑑𝑑_𝑡𝑎𝑠𝑘 (𝑐𝑢𝑟_𝑡𝑎𝑠𝑘)

The version and mapping resulting in the lowest energy esti-

mation is selected (Lines 14–15). Thus the selection of the best

compute unit and version is greedy. In Line 18 we check if the over-

all schedule makespan is less than the deadline (𝐷𝐶
). And finally

we add the scheduled task to the list of scheduled tasks𝑄𝑑𝑜𝑛𝑒 (Line

20). When all tasks are scheduled the final schedule is returned

(Line 21).

504

Scheduling a task. Algorithm 3.2 sketches out the method to

determine the start time of the current task (𝑐𝑢𝑟_𝑡𝑎𝑠𝑘). Our ap-

proach uses an As Soon As Possible (ASAP) strategy. Each task must

start after its causal predecessors finished (Line 2), where 𝜌 is the

start time of a task and 𝐶 is the runtime of a task. Then, while

there have been changes (Line 4) in the last iteration we enforce: 1)

that there is no overlap between two tasks that require the same

compute unit (Lines 6 – 10); 2) that all tasks running at the same

time on the same voltage island run at the same frequency (Lines

11 – 16). If any of these two cases happens, the start time (𝜌) of the

current task (𝑐𝑢𝑟_𝑡𝑎𝑠𝑘) is postponed (Lines 9 and 15). Postponing

the start of the current task might not be optimal in the case of non-

matching frequencies. However, we test more than one frequency.

If the current task can be executed at the frequency of the other

tasks this scenario is also explored. The algorithm compares the

different alternatives and selects the best. Lastly, the task member

attributes are updated with the version attributes (Line 17) and we

add the task to the schedule (Line 18).

Algorithm 3.2 is guaranteed to terminate because we only post-

pone the current task, which can be moved as far as the end of the

current schedule. In this case, this task would be executed without

any other concurrent task. This ensures that all if-conditions are
satisfied and no more changes would be required.

4 EXPERIMENTAL SETUP
In Section 4.1 we describe the target hardware. Followed by Sec-

tion 4.2, which details our energy measurement setup. Then we in-

troduce the task graph generation (Section 4.3) that we use through-

out Sections 5 and 6. At last, we explain our DVFS approach for the

target platform (Section 4.4).

4.1 Target Platform
Our approach can target a wide variety of target platforms, as de-

scribed in Section 2. However, for the sake of illustration and con-

crete experimental validation we focus on the Odroid-XU4 board

from here onward.

The Odroid-XU4 [2] platform is based on the ARM big.LITTLE

CPU architecture [4] complemented by a Mali GPU accelerator [3].

The CPU is an Exynos 5 Octa 5422 chip [3], which embeds two

clusters of four cores each. One cluster includes energy efficient

in-order Cortex-A7 cores (LITTLE) while the other includes high-

performance, out-of-order, deep-pipeline Cortex A-15 cores (big).

Each cluster forms a separate voltage island, i.e. the voltage and

frequency can only be changed for all cores in a cluster at the same

time. The two core types are ISA-compatible. Each core has its own

L1 cache, and each cluster has a shared L2 cache (512KB for LITTLE

cores, 2MB for big cores). The Mali GPU features 6 shader cores

and shares the off-chip physical memory with the CPU, thereby

avoiding common data transfer overhead between CPU and GPU.

The GPU is a third voltage island independent from the CPU.

4.2 Energy Measurements
Energy consumption is measured with the Otii system by Qoitech

1
.

It is a non-intrusive high-side power monitor with a sampling rate

1
https://www.qoitech.com/products/standard

of up to 4kHz. Our target Odroid-XU4 platform communicates the

start of software tasks via UART to the Otii at 115200bps. To ensure

fair measurements we take the following steps:

• We do not take into account the energy consumption of the

fan, which is powered via a separate device.

• We calibrate the Otii device before the experiments.

• We warm up the involved devices by executing tasks before

the actual experiments.

• We measure time (WCET), power and energy to solution

(EtoS) at the same time.

• We run each experiment 50 times, to obtain enough data for

statistical testing.

4.3 Application code
In order to compare different scheduling methods we generate

random DAG based applications. To build the structure of the graph

we rely on Task Graphs For Free (TGFF) [14]. Task graphs are

generated with a total of eight different types of tasks. Then we

a-posteriori perform a mapping between TGFF tasks (nodes) to

Rodinia benchmark tasks [9]. This results in a large collection of

randomly generated task graphs with executable code.

Each task includes all IO, overhead and computations required

for the Rodinia benchmark. We work with the following 8 bench-

mark tasks: heartwall, hotspot, k-means, lud, nn, nw, bfs and srad_v1.
We use these benchmarks because only these could be executed on

the Odroid-XU4 with minor changes. These changes among others

ensure thread safety when multiple instances of the same bench-

mark are run concurrently. The Rodinia benchmark suit does not

provide a sequential implementation of the benchmarks. Therefore,

we use the OpenMP implementations and execute them on a single

thread. Additionally, we use the OpenCL implementations of six of

these benchmarks to demonstrate multi-version task scheduling.

A similar approach was taken by De Bock et. al. [12], who used

TACLe benchmarks [15] for independent tasks.

The energy and timing information required for our approach

can be obtained with different methods such as measurements or

static analysis. In this paper we chose to obtain the required infor-

mation through measurements. Static analysis is not possible as

the target architecture is non-deterministic. The dynamic energy

consumption and timing measurements were collected at the same

time and in isolation for each task. The measurements cover all

possible execution paths of the tasks and we selected the worst ob-

served values as the WCET estimates. To further increase the safety

of our estimations and to account for contention, we increased the

observed WCET by an arbitrary chosen safety margin of 30%.

4.4 DVFS
Previous papers [7, 10, 13] have shown that the energy consump-

tion of an application with respect to the frequency follows a con-

vex curve, i.e. the lowest energy consumption of an application

is achieved at a mid-level frequency. A lower frequency results in

long run times and, therefore, in a higher energy consumption. A

higher frequency results in a shorter run time, however the voltage

increases required for the frequency increase offsets the shorter

run time [7, 10, 13].

505

On the big cores we find similar convex behaviour for all selected

Rodinia benchmarks. The minimum energy consumption is always

achieved between 1.3GHz and 1.6GHz. Therefore, we consider all

frequencies between 1.3GHz and 2GHz (i.e. the maximum clock

frequency possible), allowing for a good trade-off between energy

consumption and run time. On the LITTLE cores the convex be-

haviour is not as pronounced as on the big cores (i.e. increasing the

frequency from 1.3GHz to 1.4GHz does not increase the energy con-

sumption by much). The minimum energy consumption is achieved

between 1.3GHz and 1.5GHz (i.e. the maximum clock frequency

possible). Hence, we consider all frequencies between 1.3GHz and

1.5GHz. For the GPU we consider all supported frequencies.

5 eFLS COMPARISONS
To validate our proposed approach we conduct a series of exper-

iments. For this purpose we generate 500 task graphs with TGFF

[14], with an average of 124.8 tasks. All experiments in Section 5

are based on the same task graphs.

First, Section 5.1 compares a multi-version task eFLS approach

to a single-version task eFLS approach. Then, we contrast our eFLS

heuristic to a multi-version task strategy based on classic Forward

List Scheduling (FLS) (Section 5.2). At last, we scrutinise if the eFLS

heuristic performs as well as a state-of-the-art meta-heuristic based

scheduler (Section 5.3).

5.1 Single-version vs. Multi-version tasks
We compare our multi-version task eFLS scheduler against a single-

version task eFLS scheduler. The single-version task scheduler is

the same as the multi-version task scheduler, however, it has access

to only the CPU version or to the GPU version of a task.

If the single-version eFLS scheduler only has access to the CPU

versions, then the multi-version task eFLS solutions are on average

15.7% more energy efficient and take less time than the single-

version task eFLS solutions. The multi-version task solutions are

up to 35.6% more energy efficient and are at least 6.9% more energy

efficient. The histogram of energy consumption reductions is shown

in Figure 3.

-40% -35% -30% -25% -20% -15% -10% -5%
Energy Consump. Change

0

10

20

30

40

50

60

70

o
f O

ccu
ren

ces

Figure 3: Histogram of the energy consumption reductions
when providing multiple versions to the eFLS scheduler.

These results clearly demonstrate that including the GPU ver-

sions is beneficial with respect to energy consumption. One might

argue that instead of using the CPU versions for all tasks, using only

the GPU version for some tasks will be more beneficial. However,

it is not clear before scheduling which task should be executed on

the GPU as this differs per task graph. For example, the k-means
tasks are scheduled on the GPU in 24.2% of the cases and the LU
decomposition tasks are scheduled on the GPU in 77.0% of the cases.

Combining this knowledge with the fact that there is only one GPU

(i.e. GPU tasks have to run sequentially after each other), it is not

surprising that providing the k-means and LU decomposition GPU

versions to the single-version eFLS scheduler does not improve

the situation. Our results show that the multi-version schedules

are on average 11.3% more energy efficient than the single version

approach with the k-means and LU decomposition GPU versions.

Thus, including multiple versions and letting the scheduler pick the

best one has clear advantages. Decreasing energy consumption by

more than 15% could be a real game changer for battery operated

devices.

5.2 Energy optimising vs. Makespan
Next we compare our multi-version task eFLS scheduler against a

multi-version task energy-unaware scheduler. We use the same FLS

approach as introduced in Section 3, however instead of selecting

the best version based on energy consumption, we select the best

version based on run time. This way we mimic existing methods,

e.g. [25].

As the FLS schedule focuses purely on minimising makespan,

it takes full advantage of the high clock speeds available on the

Odroid-XU4, thereby increasing the voltage to the maximum. Thus,

it is not surprising that the eFLS generated schedules consume on

average 25.1% less energy than the FLS generated schedules, with

a standard deviation of 3.4%. The eFLS solutions are always more

energy efficient. They are at least 11.4% more energy efficient and at

most 33.3%. The makespan focus (and thus high frequency) means

that the FLS solutions result in a makespan which is on average

19.3% lower than the makespan of the eFLS solutions. Thus, we

can show that our approach to minimising energy consumption is

valid.

5.3 eFLS vs. ARSH-FATI
As shown by Sheikh and Pasha [27], heterogeneous energy effi-

cient scheduling methods so far have mostly focused on optimising

the energy consumption of multiple independent tasks. A paper

published by Ullah Tariq et. al. [29] is the only exception that we

are aware of. The authors researched energy-efficient static sched-

uling for DAG task graphs with deadline constraints. The paper

focuses on Smart Networked Systems, and experimental results

are simulation-based. The paper explores scheduling, mapping and

DVFS based on population heuristics. The solutions generated by

their approach are 24%more energy efficient than CA-TMES-Search

and 30% more energy efficiency than CA-TMES-Quick [19].

Their approach only selects the per voltage island DVFS once,

whereas our approach can switch between frequency levels at run-

time. Additionally, the approach by Ullah Tariq et. al. neither differ-

entiates between task versions, nor takes into account the GPU. We

implemented the proposed meta-heuristic from the description in

506

their paper and used it to schedule the same task graphs as in Sec-

tions 5.1 and 5.2. Besides the population size we used the same hyper

parameters as determined in [29] (𝐷𝑅 = 0.3, 𝜆 = 0.9,𝑁𝐼 = 500).

The population size in the original paper was limited to 5, increas-

ing the population size to 500 improved the performance of the

meta-heuristic significantly.

-65% -60% -55% -50% -45% -40% -35% -30% -25% -20% -15%
Energy Consump. Change

0

10

20

30

40

50

o
f O

ccu
ren

ces

Figure 4: Histogram of the energy consumption reductions
of our eFLS approach over the ARSH-FATI meta-heuristic.

Figure 4 shows the improvement of our approach over the ARSH-

FATI meta-heuristic. Our approach produces schedules that are on

average 45.6% more energy efficient, at most 60.6% more efficient

and at least 20.7% more energy efficient.

50 100 150 200 250 300
Number of Tasks

-65%

-60%

-55%

-50%

-45%

-40%

-35%

-30%

-25%

-20%

-15%

Ene
rgy

 Co
nsu

mp
. C

han
ge

Figure 5: Energy consumption reduction of eFLS vs ARSH-
FATI with respect to the number of tasks in a taskgraph.

Further analysis indicates that ARSH-FATI performs better on

smaller task-graphs as shown in Figure 5. An additional experiment

with smaller taskgraphs (average of 9.78 tasks) shows that the gap

between ARSH-FATI and eFLS is indeed smaller. However, the eFLS

scheduler still produces solutions that are on average 21.9% more

energy efficient.

The significant difference between eFLS and ARSH-FATI shows

that our approach can explore the optimisation state-space better

than the current state-of-the-art approach.

In conclusion our experiments show that: multi-version outper-

forms single-version, our approach to energy scheduling is valid

and our approach is better at handling the optimisation space than

the current state-of-the-art approach.

6 eFLS VS. OPTIMAL
Heuristic algorithms return approximate solutions by nature. De-

termining the over-approximation ratio requires to compare the

results of the heuristic with those of an exact method. Fortunately,

for scheduling problems it is possible to generate optimal solutions

using an Integer Linear Programming (ILP) formulation. However,

solving ILP scheduling problems is an NP-hard problem and thus

does not scale well with increasing number of tasks. To estimate

the over-approximation of our eFLS heuristic we also introduce an

ILP-based scheduler, which is summarised in Section 6.1. Then we

compare the ILP generated solutions to the eFLS generated solutions

in Section 6.2. At last, we show that the predicted energy consump-

tion matches the measured energy consumption (Section 6.3).

6.1 ILP formulation
An ILP formulation consists of a set of constraints that must be

satisfied and an objective function that will be optimised. In some

of the following constraints, logical operators ∨ and ∧ are used for

clarity, these operators can be linearised using [8].

Objective function. Our goal is to minimise the energy con-

sumption over all tasks of an application as formalised by Equa-

tion (6). The energy consumption 𝐸 of a schedule is equal to the

sum of the static energy consumption and the dynamic energy

consumption, as stated by Equation (1) in our energy model.

Map a task to a compute unit. Equation (9) ensures that task

𝑝 is mapped on one and only one compute unit 𝑢 (𝑚𝑝,𝑢 = 1). Equa-

tion (10) indicates if two tasks, 𝑝 and 𝑞, are assigned to the same

compute unit 𝑠𝑝,𝑞 = 1.

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐸 =𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ×𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (6)

+
∑
𝑖∈𝐼

∑
𝑓 ∈𝐹𝑖

𝑎𝑐𝑐𝑡𝑖𝑚𝑒𝑓 ,𝑖 ×𝑊𝑖,𝑓 (7)

+
∑
𝑝∈𝜏

𝐸𝑝 (8)

∑
𝑢∈𝐶𝑈

𝑚𝑝,𝑢 = 1, ∀𝑝 ∈ 𝜏 (9)

𝑠𝑝,𝑞 =
∑

𝑢∈𝐶𝑈

𝑚𝑝,𝑢 ∧𝑚𝑞,𝑢 , ∀(𝑝,𝑞) ∈ (𝜏 × 𝜏), 𝑝 < 𝑞 (10)

Prevent overlap on same compute unit. If two tasks are

mapped to the same compute unit, variable 𝑜 determines the order

of tasks 𝑝 and 𝑞, 𝑜𝑝,𝑞 = 1 means 𝑝 is scheduled before 𝑞. Thus,

Equation (11) enforces that two tasks are executed in a given order,

and only one of the two orders is possible at once.

Equation (12) prevents time-wise overlap of two tasks on the

same compute unit, i.e. 𝑞 must start after the completion of 𝑝 , if

𝑝 is scheduled before 𝑞. It uses a big-M nullification [17] to deac-
tivate the constraint if tasks are scheduled in the opposite order.

𝑀 must always be greater than the left-hand side of the equal-

ity, we therefore use the sequential makespan of the application

𝑀 =
∑
𝑝∈𝜏 𝑚𝑎𝑥 (𝐶𝑝), as many other papers, e.g. [25].

𝑠𝑝,𝑞 = 𝑜𝑝,𝑞 + 𝑜𝑞,𝑝 , ∀(𝑝,𝑞) ∈ (𝜏 × 𝜏), 𝑝 < 𝑞 (11)

𝜌𝑝 +𝐶𝑝 ⩽ 𝜌𝑞 + (1 − 𝑜𝑝,𝑞) ×𝑀, (12)

∀(𝑝,𝑞) ∈ (𝜏 × 𝜏), 𝑝 ≠ 𝑞

507

Data dependencies in task graphs. Equation (13) ensures that
if one task 𝑝 depends on the data of another task 𝑞, the start time

of 𝑝 (𝜌𝑝) is greater than the end time of 𝑞 (𝜌𝑞 +𝐶𝑞).
𝜌𝑝 ⩾ 𝜌𝑞 +𝐶𝑞 , ∀𝑝 ∈ 𝜏, ∀𝑞 ∈ predecessors(p) (13)

Task version selection. Equation (14) enforces that exactly one
version of each task is selected (𝑎𝑝,𝑖 = 1). Each version is mapped to

one and only one core (𝑥𝑝,𝑖,𝑚 = 1), Equation (15). And Equation (16)

links version and accepted architecture (𝑥𝑝,𝑖,𝑚). Then, Equation (17)

sets the selected mapping at the task level (𝑤𝑝,𝑚).∑
𝑣∈𝑣𝑝

𝑎𝑝,𝑣 = 1, ∀𝑝 ∈ 𝜏 (14)

𝑎𝑝,𝑣 =
∑

𝑢∈𝐶𝑈

𝑥𝑝,𝑣,𝑢 , ∀𝑝 ∈ 𝜏, ∀𝑣 ∈ 𝑣𝑝 (15)

𝑥𝑝,𝑣,𝑢 = 0, ∀𝑝 ∈ 𝜏, ∀𝑣 ∈ 𝑣𝑝 , ∀𝑢 ∈ 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 (𝑣) (16)

𝑤𝑝,𝑢 =
∑
∀𝑣∈𝑣𝑝

𝑥𝑝,𝑣,𝑢 , ∀𝑝 ∈ 𝜏, ∀𝑢 ∈ 𝐶𝑈 (17)

Energy & Timing & Frequency. Equations (18) to (20) set the

energy, time, and frequency for each task (𝐸𝑝 ,𝐶𝑝 , 𝐹𝑝) to the energy,

time and frequency (𝐸𝑝,𝑣,𝑢 ,𝐶𝑝,𝑣,𝑢 ,𝐹𝑝,𝑣,𝑢) of selected version 𝑥𝑝,𝑣,𝑢 =

1.

𝐸𝑝 =
∑
𝑣∈𝑣𝑝
(𝑥𝑝,𝑣,𝑢 × 𝐸𝑝,𝑣,𝑢), ∀𝑝 ∈ 𝜏, ∀𝑢 ∈ 𝐶𝑈 (18)

𝐶𝑝 =
∑
𝑣∈𝑣𝑝
(𝑥𝑝,𝑣,𝑢 ×𝐶𝑝,𝑣,𝑢), ∀𝑝 ∈ 𝜏, ∀𝑢 ∈ 𝐶𝑈 (19)

𝐹𝑝 =
∑
𝑣∈𝑣𝑝
(𝑥𝑝,𝑣,𝑢 × 𝐹𝑝,𝑣,𝑢), ∀𝑝 ∈ 𝜏, ∀𝑢 ∈ 𝐶𝑈 (20)

Timing constraints. Equation (21) guarantees that all sink

nodes (𝑠) of an application DAG complete execution (𝜌𝑠 +𝐶𝑠) before
the (global) deadline 𝐷 .

𝜌𝑠 +𝐶𝑠 ⩽ 𝐷, ∀𝑠 ∈ 𝑠𝑖𝑛𝑘𝑠 (𝜏) (21)

Consistent voltage island. When multiple tasks are mapped

on the same voltage island at the same time, their frequencies

must match as required by a voltage island. Equation (22) sets on

which island 𝑖 the task 𝑝 is mapped (𝑖𝑠𝑝,𝑖 = 1), while Equation (23)

checks if two tasks 𝑝, 𝑞 are on the same island (𝑠𝑖𝑠𝑝,𝑞 = 1). Then,

Equation (24) checks if two tasks 𝑝, 𝑞 overlap in time (𝑡𝑜𝑝,𝑞 = 1)

(obviously on different cores as enforced by previous constraints

Equation (11)). And Equation (25) forces the frequency of two tasks

𝑝, 𝑞 to be equal, 𝐹𝑝 = 𝐹𝑞 , if they are on the same voltage island at

the same time.

𝑖𝑠𝑝,𝑖 =
∑
𝑢∈𝑖
(𝑤𝑝,𝑢), ∀𝑝 ∈ 𝜏, ∀𝑖 ∈ 𝐼 (22)

𝑠𝑖𝑠𝑝,𝑞 =
∑
𝑖∈𝐼
(𝑖𝑠𝑝,𝑖 ∧ 𝑖𝑠𝑞,𝑖), ∀(𝑝,𝑞) ∈ (𝜏 × 𝜏), 𝑝 < 𝑞 (23)

𝑡𝑜𝑝,𝑞 = (𝜌𝑞 +𝐶𝑞) ≥ 𝜌𝑝 ∧ (𝜌𝑝 +𝐶𝑝) ≥ 𝜌𝑞 , ∀(𝑝,𝑞) ∈ (𝜏 × 𝜏), 𝑝 < 𝑞 (24)

(𝑠𝑖𝑠𝑝,𝑞 ∧ 𝑡𝑜𝑝,𝑞) × (𝐹𝑝 − 𝐹𝑞) = 0, ∀(𝑝,𝑞) ∈ (𝜏 × 𝜏), 𝑝 < 𝑞 (25)

Time spent in each CPU frequency. To compute the time

spent by each voltage island at each frequency, wemust look at each

time quantum if there is a task active. Equation (26) scans all time

steps between 0 and𝑀 , which is the longest possible (sequential)

schedule, then set 𝑡𝑎𝑡,𝑝 = 1 if the task 𝑝 is active at that time. Note

that it would be better to use the makespan of the schedule rather

than𝑀 , but the makespan results from scheduler decision and is

therefore unknown when modelling the problem. Equation (27)

then sets the binary variable 𝑓 𝑎𝑖,𝑓 ,𝑡 = 1 if at least one task is

active at time 𝑡 with frequency 𝑓 on island 𝑖 . Finally, Equation (28)

accumulates the time at which the island 𝑖 runs at frequency 𝑓 .

𝑡𝑎𝑡,𝑝 = (𝑡 ⩾ 𝜌𝑝) ∧ (𝑡 ⩽ (𝜌𝑝 +𝐶𝑝), ∀𝑡 ∈ [0;𝑀], ∀𝑝 ∈ 𝜏 (26)

𝑓 𝑎𝑖,𝑓 ,𝑡 = 𝑡𝑎𝑝,𝑡 ∧ (𝐹𝑝 == 𝑓) ∧ 𝑖𝑠𝑝,𝑖 , ∀𝑡 ∈ [0;𝑀], ∀𝑖 ∈ 𝐼 , ∀𝑓 ∈ 𝐹𝑖 , ∀𝑝 ∈ 𝜏 (27)

𝑎𝑐𝑐𝑡𝑖𝑚𝑒𝑖,𝑓 =
∑

𝑡∈[0;𝑀]
𝑓 𝑎𝑖,𝑓 ,𝑡 , ∀𝑖 ∈ 𝐼 , ∀𝑓 ∈ 𝐹𝑖 (28)

6.2 ILP vs. eFLS
To estimate the over-approximation of our eFLS heuristic (Section 3)

over the optimal solution we generate 500 task graphs with TGFF

and schedule them with both techniques. We then compare the

predicted energy consumption of the generated schedules, i.e. we

calculate the expected energy consumption of the task graph with

respect to the two schedules and compare the energy consump-

tion. On average the generated task graphs have 9.78 tasks with a

standard deviation of 4.53.

For each technique, the solving time vs. amount of tasks can

be found in Figure 6. The figure clearly shows that the ILP solv-

ing time increases exponentially with the number of tasks. Hence,

demonstrating that the ILP does not scale well.

The ILP approach found solutions with a gap smaller than 0.1%

for 45% of the task graphs within 24 hours on a 16 core Intel Xeon

Gold 6130 using Cplex. For the remaining 55% the solver found

solutions with a gap larger than 0.1% in 38.2% of the cases and no

solution in the last 16.8% of the task graphs.

5 10 15 20 25
Number of Tasks

0

20000

40000

60000

80000

Sc
he

du
ling

 Ti
me

(s)

eFLS solving time
ILP solving time

Figure 6: Solving time (s) of the ILP solver vs eFLS heuristic

The average energy degradation of the eFLS solution, with re-

spect to the solved ILPs, is 1.6%, which we deem an acceptable

trade-off for shorter scheduling times and better scalability. The

degradation distribution is shown in Figure 7. At best both methods

result in the same schedule (in 24.2% of the cases). At worst the eFLS

method results in a schedule that consumes 15.9% more energy.

6.3 Energy consumption: predicted vs
measured

In this section we compare the predicted energy consumption from

the scheduler to the actual energy consumption when executed on

the Odroid-XU4 board. There is no significant difference between

the predicted makespan and the actual makespan as we employ a

time-triggered approach.

508

-2% 0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Energy Consump. Change

10 0

10 1

10 2

o
f O

ccu
ren

ces

Figure 7: Distribution of energy degradation of the eFLS
scheduler vs the ILP scheduler. (logarithmic scale)

We choose five arbitrary task graphs (Table 1) from Section 6.2

and execute the applications, for both the ILP and the eFLS gen-

erated schedules, 50 times on the Odroid-XU4. An example task

graph is shown in Figure 1. It consists of 9 tasks, where 5 of the

tasks have GPU versions.

For the task graph in Figure 1 both the ILP and the eFLS sched-

uler make use of the GPU for the LU decomposition task and execute
the other tasks on the CPU. The largest difference between the two

schedules is that the ILP generated schedule mostly executes tasks

at 1.3GHz and two tasks at 1.5GHz, whereas the eFLS schedule exe-

cutes most tasks at 1.5GHz. Therefore, the eFLS generated schedule

is a little bit faster and slightly worse at balancing runtime and

energy consumption. For sake of brevity we do not discuss the

other task graphs in detail.

Table 1: The maximum and average error of the measured
energy consumption vs the predicted energy consumption
for each selected task graph, for both the ILP and the eFLS
solutions.

Task Gr. #Tasks ILP eFLS Degradation

max. er. avg. er. max. er. avg. er. Pred. Meas.

97 6 -15.6% -15.2% -15.2% -14.6% 7.9% 8.7%

151 7 -12.7% -12.2% -14.6% -14.0% 3.0% 1.0%

159
2

9 -14.8% -14.3% -14.7% -14.2% 2.7% 2.8%

225 10 -15.6% -15.2% -15.8% -15.4% 3.0% 2.7%

320 6 -9.0% -9.0% -9.0% -9.0% 0.0% 0.03%

Table 1 shows the error between the measured and the predicted

energy consumption. All predictions over-estimate the energy con-

sumption, which is likely due to the safety margin. The predicted

energy consumption is at most off by 15.8% and at least by 9.0%. The

measured energy consumption degradation of the eFLS solution is

almost the same as the degradation of the predicted energy con-

sumption. Thus, our predictions can be used to compare scheduling

methods.

7 RELATEDWORK
The majority of research until 2016 focused on energy-efficient

scheduling for homogeneous multi-core platforms, for surveys see

2
Shown in Figure 1

[6, 16]. The two most explored techniques were Dynamic Voltage

and Frequency Scaling (DVFS) and Dynamic Power Management

(DPM). DVFS techniques focus on balancing clock frequency and

voltage with required system performance, aiming for the best

trade-off between energy consumption and execution time. DPM

techniques switch parts of the CPU into a low-power state, thereby

reducing energy consumption [6, 16].

In recent years attention has shifted from homogeneous to het-

erogeneous systems. Scheduling techniques now account for core

mapping and energy efficiency of tasks [26].

Most research in the hard-real time community focuses on two-

type cores [21] and on scheduling independent tasks [26, 28]. In

contrast, we address dependent tasks for multi-type CPUs with

on-board GPU. Additionally, we are not aware of any energy min-

imising approaches that work with multi-version tasks.

Most previous publications use energy models that rely on a

standard power model that estimates the power consumption based

on a static and a dynamic part [7, 18, 20, 28, 29]. However, this

ignores that different tasks may consume very different amounts

of dynamic energy even if the tasks take the same amount of time

(e.g. integer division vs double multiplication on big cores). Our

energy model is based on per task measurements. Thus, switching

to a different architecture does not require a new power model,

but merely re-measuring tasks. Additionally, we do not consider

core frequencies to be continuous, as this does not reflect the actual

hardware. Instead we consider the true set of available frequencies.

Lastly, previous research does not take into consideration DVFS

for the static energy consumption.

Further differences to previous work are:

Unlike Guo et. al [18] we do not only focus on CPU power

consumption but also on GPU power. Additionally, we work with

time-triggered dependent tasks instead of independent parallel

sporadic tasks.

Zahaf et. al. [31] proposed scheduling approaches for soft real-

time tasks running on heterogeneous multi-core platforms. They

introduce integer non-linear programming (INLP) and heuristics to

determine the best amount of parallelism for each independent task.

In comparison, we minimise the energy consumption of dependent

tasks, which are executed concurrently.

Thammawichai and Kerrigan [28] work with two-type hetero-

geneous multiprocessors, focusing on independent, preemptive

tasks. The three approaches introduced use mixed-integer nonlin-

ear program (MINLP), non-linear programming and a task ordering

algorithm. Our work focuses on dependent non-preemptive depen-

dent tasks.

To summarise, in comparison to previous research, our work

focuses on reducing energy consumption for dependent, time-

triggered, multi-version tasks on single heterogeneous devices. Fur-

thermore, we extend the aspect of heterogeneity to not only take

into account a heterogeneous CPU, but also the GPU. We introduce

a more realistic energy model. Lastly, our experimentation is based

on the Odroid-XU4, a more modern board than used in previous

research.

509

8 CONCLUSION
High-performance embedded systems such as the Odroid-XU4 or

the Nvidia Jetson boards are becoming ubiquitous. Many applica-

tion areas requiring such platforms are battery powered, hence

software executing on them needs to consume as little energy as

possible. To achieve this we need to take into account all features

of modern hardware. To the best of our knowledge we are the first

to propose a scheduling approach that combines heterogeneous

CPU and GPU, multi-version dependent tasks, a fine grained energy

model and in application frequency switching.

Our eFLS scheduling heuristic embraces heterogeneity and incor-

porates both different CPU types as well as GPU-style accelerators.

The scheduling heuristic can not only change the frequency at regu-

lar intervals in the application but also employs an energy model to

steer its direction that is more fine-grained then previous research

energy model. Lastly, it scales well with the size of task-graphs.

We demonstrate that our novel multi-version scheduling ap-

proach can take full advantage of a heterogeneous system, reduc-

ing energy consumption by more than 15% over a single version

approach. We also show that there is not one single best version

for all tasks across all task graphs. This provides evidence that the

multi-version approach produces more energy-efficient schedules

than a single-version approach. We show that our eFLS scheduling

approach outperforms a standard FLS scheduler and the state-of-

the-art ARSH-FATI [29] scheduler by on average 45.6% with respect

to energy consumption.

Our energy-aware Forward List Scheduling (eFLS) solutions ex-

perience a mean degradation of only 1.6%, with respect to energy

consumption in comparison to the optimal Integer Linear Program-

ming (ILP) solutions. Lastly, we show that the energy predictions

of our scheduling approach is similar to the measured energy con-

sumption with a maximum error of 15.8%.

We improve on the state-of-the-art scheduling method and show

that our approach can explore the optimisation state-space better.

We show that a multi-version approach has advantages over a

single-version approach. Lastly, the solutions generated by our

heuristic are very close to optimal.

In the future we plan to extend our scheduling approach to

take into account security, thereby allowing for different trade-offs

between time, energy and security. Furthermore, we plan to extend

our approach to incorporate hardware resilience and thereby be

more applicable to critical cyber physical systems.

ACKNOWLEDGMENT
We would like to thank the reviewers for their time and feedback.

This work is supported and partly funded by the European Union

Horizon-2020 research and innovation programme under grant

agreement No. 779882 (TeamPlay).

REFERENCES
[1] [n. d.]. Nvidia Jetson. https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems-dev-kits-modules/. Accessed: 2019-09-06.

[2] [n. d.]. Odroid-XU4. https://wiki.odroid.com/odroid-xu4/odroid-xu4. Accessed:

2019-09-06.

[3] 2019. Exynos 5 Octa 5422 Processor: Specs, Features: Samsung Exynos.

https://www.samsung.com/semiconductor/minisite/exynos/products/

mobileprocessor/exynos-5-octa-5422/

[4] ARM Ltd. 2013. White Paper: big.LITTLE Technology : The Future of Mobile.

(2013).

[5] A. Balsini, L. Pannocchi, and T. Cucinotta. 2018. Modeling and simulation of

power consumption and execution times for real-time tasks on embedded het-

erogeneous architectures. In EWiLi 2018.

[6] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. 2016. Energy-Aware

Scheduling for Real-Time Systems. TECS 15, 1 (2016).

[7] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong. 2018. Energy-efficient

real-time scheduling of dag tasks. TECS 17, 5 (2018).

[8] G.G. Brown and R.F. Dell. 2007. Formulating integer linear programs: A rogues’

gallery. ITE 7, 2 (2007).

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S. Lee, and K. Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In IISWC. IEEE.

[10] A. Colin, A. Kandhalu, and R. Rajkumar. 2016. Energy-Efficient Allocation of

Real-Time Applications onto Single-ISA Heterogeneous Multi-Core Processors.

J. of Signal Processing Systems 84, 1 (2016).

[11] R.I. Davis and A. Burns. 2011. A survey of hard real-time scheduling algorithms

for multiprocessor systems. Comput. Surveys (2011).

[12] Y. De Bock, S. Altmeyer, T. Huybrechts, J. Broeckhove, and P. Hellinckx. 2018.

Task-set generator for schedulability analysis using the TACLeBench benchmark

suite. ACM SIGBED Review 15, 1 (2018).

[13] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho. 2013. The energy/frequency

convexity rule: Modeling and experimental validation on mobile devices. In

PPAM. Springer, 793–803.

[14] R.P. Dick, D.L. Rhodes, and W. Wolf. 1998. TGFF: task graphs for free. In 6th

CODES/CASHE. IEEE.

[15] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoe-

berl, R.B. Sørensen, P. Wägemann, and S. Wegener. 2016. TACLeBench: A Bench-

mark Collection to Support Worst-Case Execution Time Research. In 16thWCET,

Vol. 55. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[16] M.E.T. Gerards, J.L. Hurink, and P.K.F. Hölzenspies. 2016. A survey of offline

algorithms for energy minimization under deadline constraints. J. of Scheduling

19, 1 (2016).

[17] I. Griva, S.G. Nash, and A. Sofer. 2009. Linear and nonlinear optimization. Vol. 108.

Siam.

[18] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N Guan. 2019. Energy-

efficient real-time scheduling of DAGs on clustered multi-core platforms. RTAS

2019-April (2019).

[19] Jian-Jun Han, Man Lin, Dakai Zhu, and Laurence T Yang. 2014. Contention-aware

energy management scheme for NoC-based multicore real-time systems. TPDS

26, 3 (2014), 691–701.

[20] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. 2014. Energy efficient DVFS

scheduling for mixed-criticality systems. EMSOFT 354 (2014).

[21] O. Khan and S. Kundu. 2010. A self-adaptive scheduler for asymmetric multi-cores.

GLSVLSI (2010).

[22] L. Mo and A. Kritikakou. 2019. Mapping imprecise computation tasks on cyber-

physical systems. P2P Networking and Applications 12, 6 (2019).

[23] J. Pallister, S.J. Hollis, and J. Bennett. 2015. Identifying compiler options to

minimize energy consumption for embedded platforms. Comput. J. 58, 1 (2015).

[24] S. Park, J. Park, D. Shin, Y.Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate

modeling of the delay and energy overhead of dynamic voltage and frequency

scaling in modern microprocessors. Trans. Comput.-Aided Des. Integr. Circuits

Syst 32, 5 (2013), 695–708.

[25] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut. 2019. Hiding communication

delays in contention-free execution for SPM-based multi-core architectures. In

31st ECRTS19.

[26] S.Z. Sheikh and M.A. Pasha. 2018. Energy-Efficient Multicore Scheduling for

Hard Real-Time Systems: A Survey. TECS 17, 6 (2018).

[27] S.Z. Sheikh and M.A. Pasha. 2019. Energy-efficient multicore scheduling for hard

real-time systems: A survey. TECS 17, 6 (2019).

[28] M. Thammawichai and E.C. Kerrigan. 2018. Energy-efficient real-time scheduling

for two-type heterogeneous multiprocessors. Real-Time Syst. 54, 1 (2018).

[29] U. Ullah Tariq, H. Ali, L. Liu, J. Panneerselvam, and X. Zhai. 2019. Energy-efficient

Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems. TIST 1, 1 (2019).

[30] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M.G.H. Katevenis.

2017. Modeling energy-performance tradeoffs in ARM big.LITTLE architectures.

27th PATMOS (2017).

[31] H.E. Zahaf, A.E.H. Benyamina, R. Olejnik, and G. Lipari. 2017. Energy-efficient

scheduling for moldable real-time tasks on heterogeneous computing platforms.

J. of Systems Architecture 74 (2017).

[32] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. 2013. Survey

of energy-cognizant scheduling techniques. TPDS 24, 7 (2013).

510

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://wiki.odroid.com/odroid-xu4/odroid-xu4
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

