
1

MUCH: Exploiting Pairwise Hardware Event
Monitor Correlations for Improved Timing Analysis

of Complex MPSoCs
Sergi Vilardell

‡,†, Isabel Serra†,?, E. Mezzetti†, Jaume Abella†, Francisco J. Cazorla †
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Abstract—Measurement-based timing analysis techniques in-
creasingly rely on the Performance Monitoring Units (PMU) of
MPSoCs, as these units implement specialized Hardware Event
Monitors (HEMs) that convey detailed information about mul-
ticore interference in hardware shared resources. Unfortunately,
there is an evident mismatch between the large number of HEMs
(typically several hundreds) and the comparatively small number
(normally less than ten) of Performance Monitoring Counters
(PMCs) that can be configured to track HEMs in the PMU.
Timing analysis normally require to observe a non-negligible
number of HEMs per task from the same execution. However, due
to the small number of PMCs, HEMs are necessarily collected
across multiple runs that, despite intended to repeat the same
experiment, carry out some significant variability (above 50% for
some HEMs in relevant MPSoCs) caused by platform-intrinsic
execution conditions. Therefore, blindly merging HEMs from
different runs is not acceptable since they may easily correspond
to significantly different conditions. To tackle this issue, the HRM
approach has been proposed recently to merge HEMs from
different runs accurately preserving their correlation w.r.t. one
anchor HEM (i.e. processor cycles) building on order statistics.
However, HRM do not always preserves the correlation between
other pairs of HEMs that might be lost to a large extent. This
paper copes with HRM limitations by proposing the MUlti-
Correlation HEM reading and merging approach (MUCH).
MUCH builds on multivariate Gaussian distributions to merge
HEMs from different runs while preserving pairwise correlations
across each individual pair of HEMs simultaneously. Our results
on an NXP T2080 MPSoC used for avionics systems show that
MUCH largely outperforms HRM for an identical number of
input runs.

I. INTRODUCTION

The pervasive adoption of increasingly autonomous systems
in domains such as automotive and avionics impose the
use of multiprocessor system-on-chips (MPSoCs) to reach
the performance levels required. However, while the use of
MPSoCs increases in those domains [1], they also hinder
software timing analysis as timing bounds become inherently
dependent on multicore interference in the access of shared
hardware resources like shared caches, memory controllers,
buses, and on-chip interconnects [2], [3], [4], [5].

Several solutions mitigate multicore interference by ex-
ploiting time segregation [6], [7], [8] (e.g. by partitioning
applications into memory and computing phases) or space

segregation (e.g. making different tasks access different hard-
ware blocks) [9], [10], [11], [12], [13], [14], [15], [16]. The
former approach is potentially intrusive with the application
code and semantics, and thus is not applicable in many cases.
The latter does not avoid multicore interference altogether that
can still occur in hardware resources not visible at software
level, such as interconnects, as well as buffers and internal
queues to shared caches [17], [18].

Powerful measurement-based timing analysis solutions have
been proposed for multicores for critical applications building
on hardware and software profiling [19], [20], [21]. In this
context, the Performance Monitoring Unit (PMU) in MPSoCs
offers information relevant for timing analysis [22], enabling
verification and validation (V&V) and software time budgeting
of time-critical applications. For instance, the usage of some
shared resources can be budgeted, monitored, and enforced
using event quotas building on Hardware Event Monitors
(HEMs) reached through the PMU [23], [24], [25], [26].
HEMs are used to monitor when tasks exceed their usage
quotas which are suspended. Indeed, HEM information is
already used as a pillar to certify critical avionics systems [27],
so PMUs, and the HEMs they allow monitoring, become the
basis of industrial-quality multicore interference mitigation
and estimation techniques.

PMUs typically support hundreds of HEMs, often related
to the access counts for different types of accesses and to
different hardware shared resources. However, HEMs can only
be interfaced through a much lower number (typically less than
10) of user-visible performance monitoring counters (PMCs).
Therefore, when the number of HEMs relevant for timing
analysis is higher than the number of PMCs, HEMs need to
be read in multiple experiments. For instance, the NXP T2080
MPSoC has around 20 HEMs just for monitoring the shared
L2 cache and only 6 PMCs.

This limitation confronts with the fact that task scheduling
needs to budget how much each task is expected to access
shared resources, which can only be done, in measurement-
based approaches, by reading a large number of HEMs simul-
taneously or, at least, consistently. However, collecting HEMs
by performing several runs has some notable side effects on
how the gathered values can be consistently merged: even
if the very same experiment is intended to be repeated, the
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impossibility of fully controlling the hardware and software
initial state brings significant variations across runs. A vari-
ation up to 59% in processor cycles has been observed on
the NXP T2080 MPSoC [28], despite the same program is
executed program with the same inputs. Hence, gathering a
comprehensive set of information by merging different HEMs
from different runs in a consistent way turns out to be a
challenging task.

Recently, HRM [28] has been proposed to tackle this
challenge. HRM builds on order statistics to relate HEMs from
different runs through an anchor HEM (typically processor
cycles) to merge HEMs while preserving their mutual correla-
tions; so that the final merged HEM vectors resemble as much
as possible those that would have been obtained when the
number of PMCs was high enough to read all HEMs at once.
While HRM efficiently preserves the correlation of each HEM
with the anchor HEM, it only exercises indirect control on the
correlation between other HEMs leading to limited accuracy.
Moreover, accuracy cannot be improved by collecting further
HEM measurements due to the intrinsic characteristics of
HRM, thus challenging those methods that require consistent
reads of a large number of HEM values.

Contribution: We propose MUCH, a MUlti-Correla-tion
HEM reading and merging approach. MUCH overcomes the
limitations of HRM with a completely different strategy to col-
lect HEM values and using multivariate Gaussian distributions
to merge HEM values, drastically improving the accuracy of
the merged HEM vectors for all pairs of HEMs at once. In
particular our contributions are:

1) We identify the intrinsic limitations of HRM to preserve
correlations across HEMs if the correlation of any of
them with the anchor HEM is weak, which may lead to
HEM vectors with limited accuracy.

2) As part of MUCH, we propose a different strategy to
collect HEM values that, instead of observing all HEMs
together with an anchor, ensures that each pair of HEMs
is observed together. This guarantees capturing useful
information to preserve pairwise HEM correlations, and
ultimately allows preserving all pairwise HEM correla-
tions.

3) The core of MUCH is the arrangement and merging of
individual and independent HEM readings into a single
dataset as if they were measured together with the use
of multivariate Gaussian distributions (MVGD) which
allow us to preserve all pairwise HEM correlations
simultaneously.

4) We evaluate MUCH and compare it with HRM. Our
results on an NXP T2080 MPSoC considered for avion-
ics systems show that (i) MUCH outperforms HRM
by preserving all pairwise HEM correlations regardless
of their individual correlations with any HEM, which
is a limitation of HRM; and (ii) as we increase the
number of measurements collected, MUCH increases
its accuracy reaching nearly perfect correlations, as
opposed to HRM, which quickly plateaus due to the
lack of information and ability to preserve some pairwise
HEM correlations.

The rest of this paper is organized as follows. Section II
introduces the need for merging HEM values into complete
HEM vectors. Section III formalizes the problem tackled.
Section IV presents MUCH, our solution for HEM merging.
MUCH evaluation and comparison against HRM is provided
in Section V. Section VI reviews the related work. Section VII
draws the main conclusions of this work.

II. MOTIVATION

Magnitude of the variability. HEM variability in the NXP
T2080 MPSoC [29] has been shown to be high [28]: when
running a 4-task workload with each task pinned to a specific
core and collecting HEMs all 262 HEMs in 44 different sub-
experiments (there are 6 PMCs in the T2080), the observed
HEM variability is high. Despite ignoring HEMs whose order
of magnitude is low to have a relevant impact in the execution
time (processor cycles), the variability observed for some
HEMs is above 60%, with variability on processor cycles up to
45% variability (reaching 59% variability in other experiments
for other workloads). Interestingly, HEMs related to the user-
visible functional behavior of the program (e.g. total and per-
type instruction counts) remain constant, reflecting that the
very same task is run with exactly the same inputs on each run.
Hence, the source for such (high) variability is the hardware
platform itself [28].

Distribution of the variability. The observed variability
is not just related to few outliers, but concerns the big bulk
of the distributions [28], which precludes the use of simple
approaches to discard few outliers and retain all the other
measurements. Distributions observed for the HEMs with a
relevant order of magnitude include Normal, concave, convex
and clustered distributions, along with other distributions hard
to fit into any specific category. It is of prominent importance
the fact that the HEM PROCESSOR_CYCLES, the target of
timing analysis methods, has a distribution hard to fit into any
specific category.

Sources of the variability. MPSoCs such as the NXP
T2080 and the Xilinx Zynq UltraScale+ offer high degree of
parallelism. As a result, several parallel activities occur si-
multaneously such as, for instance, multiple instructions being
executed in the different cores, DRAM refreshes, pending core
requests in queues and buffers in shared caches, interconnects
and memory controllers, etc. Analogously, MPSoCs carry out
plenty of state information in a large number of components
such as replacement history in all cache memories, initial
state of buffers and queues in all on-chip components, branch
predictors state, etc.; with most of the elements contributing
to such state being not explicitly controllable by software
means. Therefore, any attempt to re-run the very same software
with the very same input data is subject to many sources
of variability. While their impact is limited individually (e.g.
making core 1 accessing a shared cache before core 2),
repeated access patterns in software may cause such impact to
repeat systematically, thus leading to large relative variability
for many HEMs, including PROCESSOR_CYCLES. Moreover,
it is generally impossible to exercise full control on those
sources of variability, or to be able to identify the particular
combination of factors affecting each individual run.
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TABLE I: Main terms used in this work.

Term Definition
nh Number of HEMs.
np Number of PMCs.
nb Number of sub-experiments.
nr Number of runs per sub-experiment.
N Total number of runs.
H Set of HEMs.
hi HEM with id i.
{hi} Vector of concatenated samples of hi in different subex-

periments.
rk Run k as an observed vector of dim np.
ρij Correlation between HEMs hi and hj .
S Correlation matrix.
σi Variance of HEM i.
σij Covariance between HEMs i and j.
Σ Covariance matrix.
Σ0 Covariance matrix obtained from transformed data.

Nnh

(
µ,Σ) nh-dimensional Gaussian distribution with vector of

means µ and covariance matrix Σ.
x̂ Empirical version of variable x.
x′ Optimized computation of variable x.
xhrm Variable pertaining HRM.
xmuch Variable pertaining MUCH.

Number of PMCs and HEMs. For cost reasons, MPSoCs
implement only few PMCs, typically in the range of 2-8 per
core as this reduces the routing logic (e.g. multiplexors and
wires) needed to connect HEMs (in the order of hundreds)
and PMCs. This trend is common in MPSoCs like the Xilinx
UltraScale+ or the NXP T and L families. For some SoCs,
e.g. the Infineon AURIX, it is common having HEMs that can
only be mapped to a subset of the PMCs, further constraining
the HEMs that can be read simultaneously.

Correlation among HEMs. Keeping the correlation among
HEMs read in different runs is instrumental for timing analysis
to provide clear and comprehensive insight on how running
tasks use all shared resources, by considering the values in
their respective HEMs together (e.g. caches, buses and mem-
ory). Correlation also helps deriving other metrics relevant for
the analysis that combine different HEMs, like cache misses
per thousand instructions or cycles, memory misses per cache
access, and alike.

III. PROBLEM FORMALIZATION

Our goal is collecting values for a given set of HEMs, re-
garded as relevant for timing analysis, H 3 {h1, h2, · · · , hnh}
for a given program running on MPSoC, with a given input
data set. We use the terminology shown in Table I.

In an MPSoC where variability occurs across measurements
the ideal scenario corresponds to the case where the number
of HEMs needed (nh) does not exceed the number of PMCs
in the platform (np). In this case, we just need to collect as
many measurements (runs) as needed to capture variability to
a sufficient extent, as dictated by the timing analysis method
used, and each run captures all HEMs at once (all hi ∈ H), as
illustrated in the example in Figure 1. Note that the number of
measurements required solely depends on the timing analysis
method used, and it is out of the scope of this work, where we
focus on how to provide the timing analysis with observations
providing consistent data for all HEMs in each HEM vector.

h1 h2 h3 h4 h5 h6 h7
r1
r2
r3
r4

Fig. 1: Runs collected with an ideal MPSoC with np ≥ nh.
In particular, np = nh = 7 in the example.

h1 h2 h3 h4 h5 h6 h7
r1
r2
r3
r4

r5
r6
r7
r8

r9
r10
r11
r12

Fig. 2: Runs collected with HRM when np < nh. In particular,
np = 3 and nh = 7 in the example.

As discussed in Section II, the number of PMCs is rather
low, and will be typically lower than the number of HEMs
relevant for the timing analysis. Formally stated, np < nh. In
that case, each complete set of HEMs needs to be obtained
with multiple runs (sub-experiments), and the actual HEMs to
read on each run are determined by the method used to merge
them. The lowest number of runs needed to collect all HEMs is
given by nbmin =

⌈
nh
np

⌉
. In the case of HRM, for instance, the

anchor HEM (i.e. processor cycles typically) is read on each
run, because it is used as the link across runs reading different
HEMs to merge them into a single HEM vector. Thus, in the
case of HRM, the number of sub-experiments is nbhrm =⌈
nh−1
np−1

⌉
. Figure 2 illustrates the case for HRM when np = 3

and nh = 7, and h1 is the anchor HEM. As shown, nb = 3,
to read h1, h2 and h3 in sub-experiment 1, h1, h4 and h5

in sub-experiment 2, and h1, h6 and h7 in sub-experiment 3.
For the sake of illustration, we set the number of runs per
sub-experiment nr = 4. Therefore, the total number of runs
N = nb · nr = 12.

Note that, in our example, we assume that all HEMs can be
read with all PMCs, so that there is no constraint to allocate
HEMs to PMCs in each sub-experiment. If some HEMs can
only be read with a subset of PMCs, this could add further
constraints and, potentially, lead to a higher number of sub-
experiments. This type of constraints is platform-dependent
and does not change the challenges and solutions presented in
this paper.

IV. MUCH: MULTI-CORRELATION HEM READING AND
MERGING

On each run where a subset of HEMs is read (np out of
nh), the particular platform state which determines the actual
values read is – as discussed before – to some extent unknown,
uncontrollable and, due to the many combinations of multiple
possible platform factors, practically unique. This uniqueness
makes that only HEMs read in the same sub-experiment
can be guaranteed to be exposed to an identical platform
state in each run, which we refer to as noise for concision.
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Therefore, HEM values read in different sub-experiments are
necessarily exposed to different noise. Still, some relation,
stronger or weaker, exists among many HEMs (i.e. their
pairwise correlation), and by preserving such relation, HEMs
can be merged in a way that they correspond to similar noise
levels.

Formally stated, every pair of HEMs hi and hj exhibits
some degree of correlation ρij when they are read in the
same sub-experiment. However, if read across different sub-
experiments, we have different sets of values for each HEM,
and the challenge is to merge them into complete HEM vectors
so that the pairwise correlations among each hi and hj pair
is as close as possible to ρij .

A. HRM Analysis

The approach followed by HRM consists in reading an
anchor HEM, ha in each sub-experiment along with np − 1
other HEMs, without repeating any of the other nh − 1
HEMs across sub-experi-ments. See Figure 3 for a visual
explanation of HRM with two sub-experiments and the first
column representing the anchor. Then, it merges all HEMs into
complete HEM vectors by preserving their correlation with the
anchor ha perfectly, since all HEMs are read along with ha in
one sub-experiment. That is, for any HEM hi, the correlation
ρai is fully preserved. In fact, if two HEMs, hi and hj , where
i 6= a and j 6= a, are read in the same sub-experiment, they
will be merged together in the merged HEM vector and hence,
their pairwise correlation ρij will also be fully preserved.
However, no action is taken to preserve the correlation among
any other pair of HEMs read in different sub-experiments.
Recalling the example in Figure 2, and focusing on a specific
HEM (e.g. h2) this implies that correlations ρ21 and ρ23 are
fully preserved, whereas correlations ρ24, ρ25, ρ26, and ρ27
are not. Since those HEMs in different sub-experiments are
placed in the same merged HEM vector through their relation
with ha, as discussed before, their pairwise correlation is only
preserved to a limited extent dictated by ρai and ρaj . For
instance, in our example, correlation ρ24 is preserved as much
as determined by the product ρ21 · ρ41. If such product is low,
then HRM will preserve ρ24 poorly, and increasing the number
of runs for each sub-experiment cannot cure such limitation.

Formalization. When two strongly correlated HEMs, hx

and hy , with correlation ρxy , are read in different sub-
experiments, then, given an anchor HEM ha, HRM preserves
ρxy correlation only partially ρfactorxy = ρax ·ρay . Hence, under
HRM the actual correlation preserved is ρhrmxy = ρfactorxy · ρxy .
Unless both ρax and ρay are very high (e.g. close to 1.0),
the degree of joint correlation preserved drops significantly
and their actual correlation in the merged HEM vector can be
drastically different to the real one. For instance, if ρxy ≈ 1.0,
but ρax ≈ 0.7 and ρay ≈ 0.7, then ρfactorxy < 0.5 and hence,
ρhrmxy < 0.5, largely below ρxy ≈ 1.0.

Such limitation is intrinsic to the way HRM collects sub-
experi-ments, since, in general the correlation across HEMs
in different sub-experiments is not observed (as HRM resorts
only the relations of each HEM with the anchor HEM). As a
result, even if HRM collected more runs per sub-experiment
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Fig. 3: Diagrams of HRM and MUCH methodologies. On
both diagrams the colors represent the order statistics of each
column, i.e. lighter colors represent lower values while darker
colors represent higher values.

or even different sub-experiments, it would still be unable to
get rid of its intrinsic limitation.

Our proposal, MUCH, tackles explicitly this issue by ob-
serving all HEM pairwise correlations through a set of appro-
priately designed sub-experiments, and by using multivariate
Gaussian distributions to preserve those correlations when
merging HEM values into complete HEM vectors. In the next
section, we deepen into HRM limitations and present MUCH.

Summary. HRM preserves the correlation between each
HEM and the anchor is preserved with almost perfect accuracy
in the merged HEM vector. The number of sub-experiments
needed by HRM, nbhrm is typically very close to the minimum
possible number of sub-experiments nbmin . However, in gen-
eral, HRM does not collect any data to retrieve the degree
of correlation between HEMs in different sub-experiments.
Therefore, the merged HEM vector may completely lose the
correlation among strongly correlated HEMs read in different
sub-experiments.

B. Introduction to MUCH

MUCH, instead, builds upon observing all pairwise cor-
relations across HEMs. Then, MUCH merges values from
the different HEMs into complete HEM vectors preserving
all pairwise correlations simultaneously. For instance, given
4 HEMs h1, h2, h3 and h4, MUCH organizes their values
into complete HEM vectors so that preserving some corre-
lations (e.g. all correlations with h1, 〈h1, h2〉, 〈h1, h3〉 and
〈h1, h4〉) does not impact negatively the other correlations (e.g.
〈h2, h3〉, 〈h2, h4〉 and 〈h3, h4〉). Therefore, MUCH’s challenge
is putting all HEM values into complete vectors so that all
pairwise correlations observed across HEMs separately are
preserved simultaneously after merging.

Interestingly, by observing all pairwise HEM correlations
one does not overcome the problem of preserving those
correlations. It is still necessary to devise a proper method
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to merge all the observed readings into a complete dataset
while keeping the correlations as close as possible to the ideal
scenario. For instance, in the example above, if we merge
all HEMs preserving their perfect correlation with h1, e.g.
sorting by h1 values in all pairs 〈h1, h2〉, 〈h1, h3〉 and 〈h1, h4〉,
and merging directly the rows keeping any of the values of
h1 in each row, we would keep perfect correlation between
h1 and each other HEM. However, we would likely degrade
significantly the correlation of the pairs 〈h2, h3〉, 〈h2, h4〉
and 〈h3, h4〉. The challenge addressed by MUCH is exactly
this one: how much do I have to “sacrifice” each pairwise
correlation so that, when putting all HEMs together, each
pairwise correlation is still close to the observed one?

To observe all pairwise correlations across HEMs, sub-
experi-ments need to be arranged so that all pairs of HEMs
are observed together in at least one sub-experiment. This is
illustrated in Figure 4 for the same example discussed for
HRM, with np = 3 and nh = 7. As shown, for instance, h2 is
observed in the first sub-experiment (r1-r4) together with h1

and h3, in the forth sub-experiment (r13-r16) together with h4

and h6, and in the fifth sub-experiment (r17-r20) together with
h5 and h7. This allows observing all pairwise correlations, and
thus, organizing observed values into merged HEM vectors
where ρ̂ij ∼ ρij for each pair of HEMs hi and hj .

Given that we have observed all pairwise HEM correlations,
MUCH generates a nh-dimensional model of the HEMs by
building on MVGD. Then, by organizing HEM values read
according to that model, MUCH generates merged HEM
vectors where all pairwise HEM correlations are preserved
simultaneously with high accuracy, as detailed in next subsec-
tion.

Also MUCH requires a higher number of sub-experiments
than HRM to observe all pairwise HEM correlations. Such
number increases with the number of relevant HEMs (nh)
and whenever the number of PMCs (np) decreases. How-
ever, as shown later in the evaluation section, under similar
number of runs for HRM and MUCH, i.e. nbhrm · nrhrm ≈
nbmuch · nrmuch , MUCH provides higher accuracy. Note
that in that case, typically we have nbhrm < nbmuch and
nrhrm > nrmuch .

C. Mathematical approach

By virtue of the Central Limit Theorem, we can model the
expected value of each HEM as a Gaussian distribution. This
can be extended to multiple variables (e.g. the nh HEMs of
interest), which are regarded as a MVGD with nh dimensions
modeling the expected value of each HEM.

Definition. Let us consider a set of l i.i.d. Gaussian random
variables Z ∼ N(0, 1). The covariance matrix for Z is the
identity matrix Il with expected value 0. Now, let A be a k× l
matrix and µ be a k-vector, both with real finite coefficients.
Then, X = AZ + µ has a MVGD. The expected value of X
is µ and the covariance matrix is Σ = AAT . The usual way
of writing the MVGD is X ∼ N

(
µ,Σ

)
[30].

The computation of this model requires the expected value
and the variance of each HEM, µ and σ2, and the covariance
matrix Σ, where the latter can be obtained from the correlation

h1 h2 h3 h4 h5 h6 h7
r1
r2
r3
r4

r5
r6
r7
r8

r9
r10
r11
r12

r13
r14
r15
r16

r17
r18
r19
r20

r21
r22
r23
r24

r25
r26
r27
r28

Fig. 4: Runs collected with MUCH when np < nh. In
particular, np = 3 and nh = 7 in the example.

matrix S. In particular, the covariance of variables X and
Y , σXY , can be obtained as follows, where ρXY is their
correlation.

σXY = ρXY · σX · σY

The measurement collection procedure allows obtaining
some relevant information.
• For each hi, the measurements collected in each sub-

experi-ment allow obtaining a grouped sample, that is
{hi}, which includes all measurements of hi across all
sub-experiments.

• For each hi, the values of µ̂i and σ̂i obtained from {hi}.
• For each pair of HEMs hi and hj , we obtain ρ̂ij , which

is the empirical counterpart of ρij . ρ̂ij is obtained from
the sub-experiment where both hi and hjare observed
together.

Therefore, since we have σ̂i, σ̂j and ρ̂ij , we can also obtain
their empirical covariance σ̂ij . Then, we can produce the
empirical correlation matrix Ŝ ∼ S, and the corresponding
(empirical) covariance matrix Σ̂. Once we have constructed
this information, we have a model for how each HEM in the
experiment relates to all other HEMs in terms of expected
values. Since we have µ̂ and Σ̂ for all HEMs, we can describe
the corresponding MVGD as follows:

X ∼ Nnh

(
µ̂, Σ̂

)
However, now we need to generate actual merged HEM

vectors using measured data in accordance with the MVGD
model. From a mathematical point of view, the challenge
is to reorder the grouped sample {hi} for each HEM hi,
such that for each pair of HEMs hi and hj the empirical
correlation of the grouped samples is close to ρij . Equivalently,
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the challenge is to reorder the grouped samples such that the
new corresponding (empirical) covariance matrix is close to Σ̂.
This corresponds to an optimization problem with an existing
solution, since the set of potential orders (all permutations) is
large but finite. However, it is not a trivial problem from a
computational point of view. We construct the solution with a
probabilistic approach using the preliminary results of copula
theory [31].

Application of copula theory. For each hi, the empirical
distribution function F i

emp lets us transform the grouped
sample into a uniform sample. A uniform sample can be
transformed into a Gaussian sample by applying the inverse
function of the cumulative distribution function of a standard
Gaussian distribution, Φ. Therefore, the grouped sample is
transformed one-to-one into a standard Gaussian distribution:

Φ−1
(
F i
emp

(
{hi}

))
(1)

For instance, if {hi} is {1, 2, 5, 8}, this would map to
a uniform sample {0.2, 0.4, 0.6, 0.8}1. Then, those val-
ues would map to a standard Gaussian distribution as
{−0.842,−0.253, 0.253, 0.842}2.

We apply this process to all HEMs, thus obtaining for
each measurement of each HEM its counterpart value for the
standard Gaussian distribution. Then, we refer to as Σ̂0 to
the covariance matrix obtained from the transformed data to
differentiate it from the one obtained from the measured data
(Σ̂).

Finally, we generate a sample sampMVGD of nMVGD runs
(e.g. nMVGD = 10 000) from the MVGD, which we define
using Σ̂0:

X ∼ Nnh

(
0, Σ̂0

)
(2)

which produces a joint sample with marginal standard Gaus-
sian distribution (i.e. sampled values follow such distribution).
At this point, sampMVGD provides a matrix with as many
columns as HEMs (nh), as many rows as HEM vectors we
want to generate (e.g. as many as total measurements per
HEM), and preserving the correlations across all pairs of
HEMs (ρij ) simultaneously. However, values in the matrix
correspond to a standard Gaussian distribution instead of being
HEM values read. Thus, we use the actual sampMVGD to
produce the indexes for order statistics. In other words, if
for a given HEM hi, sampMVGD has a particular order of
values (e.g. kth lowest first, lth lowest second, mth lowest
third, and so on and so forth), we set the actual observed
values for hi in the very same order to generate the merged
HEM vectors. The easiest way to do this is setting nMVGD

to the actual number of measured values per HEM. For
instance, if for a given HEM hi the sampMVGD has produced
the values {1.121,−0.870,−0.172, 0.343}, and the actual
values observed are 9, 10, 12, 17, they would be sorted as
follows: {17, 9, 10, 12}, thus preserving the same ordering,

1Given a HEM hi for which we have n values, the uniform sample
probability space is split into n+1 identical parts. Out of the n+2 boundary
values, we exclude 0 and 1 since they cannot be used later for the Gaussian
distribution as their counterpart values would be −∞ and +∞ respectively.

2As for the uniform distribution, those values distribute the probability
space into n+ 1 parts with identical cumulated probability.

but this time using the actual values read. By following their
sampMVGD ordering for all HEMs to organize the actual
values measured, we generate as many merged HEM vectors as
actual values have been observed for each HEM. For instance,
recalling the example in Figure 4, where we have 12 values per
HEM, we could set nMVGD = 12, and would sort the values
for each of the 7 HEMs in the same order as their synthetic
values in sampMVGD .

In fact, once this process is complete, we could assess ρ̂′ij
for all pairs of HEMs in the merged vectors and compare
them with the original values ρ̂ij obtained from pairwise HEM
measurements. Some (small) discrepancy is expected due to
statistical reasons (i.e. sampling processes can always produce
inaccuracies). Such discrepancy could be reduced with an
iterative process where X in Equation 2 is obtained as many
times as needed and measured HEM values sorted accordingly
to obtain new merged vectors where ρ̂′′ij is compared to ρ̂ij .
This process could be repeated a fixed number of times or until
a specific criterion is fulfilled. However, this step is purely
optional.

Recalling the example for HRM limitations before, MUCH
would successfully preserve all correlations across the three
HEMs simultaneously, overcoming the limitation of HRM.
In particular, MUCH does not favor any particular random
variable (HEM) when merging and, instead, all correlations are
preserved as accurately as possible at the same time. Instead,
HRM strategy is a supervised one where correlations with a
particular variable (anchor HEM) are perfectly preserved at the
expense of causing large inaccuracies for other correlations if
they are weakly correlated with the anchor.

D. Procedure

For the sake of completion, we provide the application
process of MUCH, which includes five main steps. The
procedure can be followed visually on Figure 3.
• STEP À. The HEM selection for each sub-experiment

does not play a role in MUCH. Each HEM will be
measured with every other HEM at least once, to capture
the relation between them, i.e. to compute the empirical
correlation matrix Ŝ. While generating the minimum
number of sub-experiments allowing to capture all pair-
wise HEM correlations is convenient, it is not strictly
mandatory for the application of MUCH, so combinations
can be generated with greedy algorithms if needed. For
each sub-experiment at least 30 runs (nr ≥ 30) are
needed to allow the use of the Central Limit Theory [32].
In general, the higher nr, the more accurate Ŝ will be.
As a matter of fact, in this paper we set nr = 50.

• STEP Á. Once the values are gathered, map them to a
standard MVGD, and compute the covariance matrix Σ̂0.

• STEP Â. Compute the MVGD using Σ̂0 as shown in
Equation 2, and generate a sample equal in size (nMVGD )
to the number of collected values for each HEM in a
sub-experiment or in all sub-experiments. Note that the
method could also be applied with larger nMVGD values.

• STEP Ã. (OPTIONAL) As an optimization step, we can
compute the correlation matrix of the generated sample
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TABLE II: Workloads.

Core 1 Core 2 Core 3 Core 4
W1 IMUL UL2 FADD MEM FMUL MEM LMUL MEM
W2 LADD DL1 LMUL UL2 FADD UL2 FMUL UL2
W3 LMUL MEM LMUL UL2 FADD UL2 DMUL UL2
W4 LADD UL2 FADD MEM FMUL MEM LADD MEM
W5 FADD MEM FMUL MEM LADD MEM LMUL MEM
W6 FADD UL2 FMUL UL2 LADD UL2 LDIV UL2
W7 FADD UL1 FMUL UL1 LADD UL1 LMUL MEM
W8 FMUL UL1 FADD MEM LMUL L1 LMUL MEM
W9 FMUL MEM FADD DL1 FADD MEM LMUL DL1
W10 LADD MEM LADD DL1 LADD UL2 LADD MEM
W11 FADD DL1 FADD UL2 FADD MEM FMUL UL1
W12 FADD UL2 LADD UL2 LDIV DL1 LMUL UL2
W13 LADD UL2 FADD MEM FMUL MEM LADD MEM
W14 LADD UL2 LMUL UL2 FADD MEM FMUL MEM
W15 FADD MEM FMUL MEM LADD DL1 LDIV DL1
W16 LADD DL1 LDIV DL1 FADD MEM FMUL MEM

Ŝ′ from the MVGD and compare it to the measured
correlation matrix Ŝ, for instance, obtaining the Minimum
Square Error (MSE). Then, we can repeat step Â and keep
the Ŝ′ with lowest MSE compared to Ŝ. Such process can
be repeated as many times as wanted as a way to further
increase accuracy without requiring additional runs on the
target platform.

• STEP Ä. Copy the order statistics of the sample of the
MVGD into the experimental data. Now, the experimental
data is finally merged in accordance with the MVGD.

V. EVALUATION

This section presents the experimental framework, the val-
idation approach followed to evaluate MUCH and compare it
with HRM, and the results of the evaluation.

A. Experimental Setup

We use an NXP T2080 MPSoC [29], [33], relevant for
critical avionics systems [27], which includes 4 cores with
private first level data (DL1) and instruction (IL1) caches per
core, a unified second level (UL2) cache shared across cores,
and an interconnect network to reach the memory controller,
as well as a number of peripherals and interfaces (DMA, PCIe,
SATA, DUART, Ethernet, etc.).

We run our tests on bare-metal and configure and read
PMCs without using any library to minimize unwanted vari-
ability. The task running in core 1 is the one for which we
read the HEMs and apply our technique, although the very
same process could be applied to any other task analogously.
Benchmarks run with the same input data so they execute
always the same instructions. We also run experiments in bare
metal and reset the state of caches and TLBs across runs. Both
help reducing any source of variability other than platform
latent noise.

Our benchmarks have been devised to trigger a wide set
of HEMs. In particular, they perform some core and mem-
ory operations with a variety of patterns, which include the
operand type (Integer, Long, or Floating point), the type
of core operation (ADDition or MULtiplication), and the
level of the memory hierarchy accessed (DL1, UL2, or main
MEMory), thus leading to 18 different combinations. For

TABLE III: HEMs with observed relevant variability.

Name HRM id
PROCESSOR_CYCLES ha

CYCLES_LSU_SCHE_STALLED 1
CYCLES_LSU_ISSUE_STALLED 1
BLINK_REQUEST 1
L2_MISSES 1
L2_DEMAND_ACCESSES 1
L2_ACCESSES 2
L2_STORE_ALLOCATES 2
L2_DATA_MISSES 2
L2_RELOADS_FROM_CORENET 2
L2_SNOOP_HITS 2
L2_SNOOP_PUSHES 3
STALL_FOR_RLT_CYCLES 3
STALL_FOR_WDB_CYCLES 3
BIU_MASTER_REQUESTS 3
BIU_GLOBAL_REQUESTS 3

instance, LMUL UL2 performs long integer multiplications
with data fetched mostly from UL2. For our evaluation, we
have generated the 16 workloads shown in Table II.

B. Validation Approach

The reference against which to compare MUCH is the actual
correlation of each pair of HEMs when measured together in
the platform, so that we can validate whether correlations in
the merged HEM vector are accurate w.r.t. real correlations.
For completeness, we compare MUCH against HRM in terms
of both, accuracy w.r.t. the real correlations and number of
runs required.

For the sake of comparison, we focus on the same 16
HEMs regarded as relevant in HRM [28], which we list in
Table III for completeness. Note that, while all HEMs are
treated homogeneously by MUCH – thus meaning that all
pairwise HEM correlations are measured and then processed
together in an identical basis – the same does not apply to
HRM. In particular, HRM needs a HEM to be the anchor.
Then, given that the T2080 MPSoC has 6 PMCs and one of
them is used by the anchor, the remaining 15 HEMs need to
be distributed across 3 sub-experiments. The sub-experiment
where each HEM is read for HRM is shown in Table III in
the HRM id column.

Note that, by using 16 HEMs, there are 120 different pairs
of HEMs for which we evaluate the actual correlation obtained
for the merged HEM vectors with MUCH and HRM, and
compare them against their real empirical correlation, ρ̂i,j .
In particular, we compute the accuracy for both methods as∣∣ρi,jmuch − ρ̂i,j

∣∣ and
∣∣ρi,jhrm − ρ̂i,j∣∣.

C. Results

We evaluate the correlation accuracy obtained, for both
MUCH and HRM, against the real empirical correlation. For
this first comparison, we set nr = 50. The number of sub-
experiments is only 3 for HRM (nb = 3). For MUCH, while
theoretically we could observe 120 pairs of HEMs with nb = 8
sub-experiments (15 pairs per sub-experiment with 6 PMCs),
we needed nb = 10 just following a greedy process to create
sub-experiments where we iterate over HEMs from 1 to 16,
and for each one we create sub-experiments adding the lowest
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Fig. 5: Correlation Difference for each HEMs pair for work-
load 1 (top-left), workload 2 (top-right), workload 3 (bottom-
left), and workload 5 (bottom-right).

order HEM not yet observed with any of already selected
HEMs in the sub-experiment. Therefore, N = 150 for HRM
and N = 1000 for MUCH.

We show detailed results for the 120 pairs of HEMs in
Figure 5 for workloads W1, W2, W3, and W5. In particular,
W2 corresponds to the case where the improvement of MUCH
w.r.t. HRM is only moderate, W3 to an extreme case with huge
improvement, and W1 and W5 to two cases with typical high
improvement. The HEM pair values are sorted from lowest
difference to highest difference w.r.t. the real correlation for
each technique. As shown, MUCH provides higher accuracy
since its differences w.r.t. the real correlation are much lower
than those of HRM. Moreover, the difference in the worst
case for MUCH is up to 0.25 for very few pairs of HEMs,
whereas HRM reaches values above 0.5 for a non-negligible
number of pairs, and even above 0.75 in some cases. Note
that the maximum theoretical difference is 2.0, which would
occur when the estimated correlation is 1.0 (or -1.0), and the
real correlation is -1.0 (or 1.0).

As a second comparison, we study the dependence of each
method on the total number of runs N = nr · nb, which
illustrates the trade-off between cost (in terms of number of
runs) and accuracy for both methods. Again, we consider
the same 4 workloads, where we vary nr (values 50, 100,
200 and 400), and obtain for each workload, the MSE for
their difference w.r.t. the real correlation across the 120 pairs
of HEMs. In particular, to produce a statistically significant
comparison, we bootstrapped 50 samples for each of the
methods and each nr value. For instance, for nr = 100 this
implies that we generate a random sample of 100 runs for each
sub-experiment and apply the corresponding method on that

MUCHMUCH

Fig. 6: Mean square error for HRM and MUCH as a function
of the number of runs. Workload 1 (top-left), workload 2
(top-right), workload 3 (bottom-left), and workload 5 (bottom-
right).

sample. Then, we repeat the process 50 times, thus obtaining
50 estimates for each method and nr value.

Figure 6 shows those results, where dots indicate individual
measurements and the line corresponds to the mean across
them. Note that both axes are in logarithmic scale. First, we
observe that HRM obtains negligible gains from increasing
N . Those gains are only noticeable for W2, where pairwise
correlations with the anchor HEM are indeed high, allowing
HRM to be almost as accurate as MUCH. In any case, HRM
apparently plateaus at N = 1200 (nr = 400).

For MUCH, we observe significant gains in all cases but
W3, where increasing N produces limited improvements in
accuracy. However, in the other 3 cases we observe improved
accuracy as we increase N , and, apparently, such improvement
does not plateau even with nr = 400, thus offering opportu-
nities to further increase accuracy if the number of runs is
increased beyond that number.

When comparing MUCH and HRM, we note that in general,
MUCH allows reaching much more accurate merged HEM
vectors. It is of prominent importance the case where N ≈
1000, because it allows performing an iso-cost comparison
across both methods, i.e. with the same number of total runs. In
this case, where Nmuch = 1000 (nrmuch = 50) and Nhrm =
1200 (nrhrm = 400), thus with a slight advantage for HRM,
we observe that MUCH is significantly better than HRM in
3 out of 4 workloads, and in the remaining one, where the
MSE is already pretty low for both methods, MUCH is slightly
better despite its slightly lower number of runs. Finally, note
that in both methods, increasing N reduces dispersion of the
bootstrap, thus making merged HEM vectors more stable in
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TABLE IV: MSE for the 16 workloads under iso-runs (N =
2100).

Workload MUCH HRM
W1 0.003 0.135
W2 0.004 0.024
W3 0.004 0.295
W4 0.006 0.272
W5 0.005 0.110
W6 0.007 0.083
W7 0.006 0.021
W8 0.006 0.068
W9 0.020 0.228
W10 0.007 0.168
W11 0.017 0.207
W12 0.005 0.158
W13 0.008 0.282
W14 0.005 0.106
W15 0.007 0.068
W16 0.017 0.250

terms of accuracy w.r.t. the real correlations.
For completion, we have evaluated all workloads with

N = 2100, so nrhrm = 700 and nrmuch = 210, again
with a bootstrap with 50 samples. The mean MSE across the
50 samples is shown in Table IV. As expected, MUCH is
systematically more accurate than HRM for all workloads, and
the difference across both methods is tiny (e.g. W2 and W7)
only when HRM is highly accurate, since MUCH is always
highly accurate. In fact, the worst MSE for MUCH (0.020 for
W9) is indeed better than the best MSE for HRM (0.021 for
W7).

So far we have shown that MUCH outperforms HRM under
iso-cost (identical number of runs N ), and naturally, under
identical number of runs per sub-experiment (iso-nr), where
MUCH has a higher N value. Moreover, we have shown
that in all cases MUCH is highly accurate. However, the
number of sub-experiments needed by MUCH is much more
dependent on nh and np than that of HRM. For instance, if
nh is high or np is very low, MUCH may need many sub-
experiments whereas HRM only needs Nhrm = nr ·

⌈
nh−1
np−1

⌉
.

In particular, for MUCH we need to observe
(
nh
2

)
= nh·(nh−1)

2
pairs of HEMs, and each sub-experiment allows observing up
to

(
np
2

)
= np·(np−1)

2 pairs. Assuming that sub-experiments
for MUCH can be optimized to generate always unobserved
pairs of HEMs only, the number of sub-experiments would be
ratio between both values, and hence, the total number of runs
would be Nmuch = nr ·

⌈nh·(nh−1)
np·(np−1)

⌉
. Figure 7 shows Nmuch

and Nhrm for the case np = 6, as in the T2080, and nr = 100,
when varying nh. As shown, Nmuch grows much faster than
Nhrm as we increase nh. Therefore, there may be cases
where Nmuch might not be affordable and the only affordable
solution is HRM. In those cases, despite the limitations of
HRM, such solution has been shown to be systematically better
than any other alternative (except MUCH) [28], and thus, it
would be the best choice.

VI. RELATED WORK

Several solutions have been proposed to master multicore
interference in industrial contexts. Some approaches attempt
to reduce or fully remove interference across tasks running

Fig. 7: Number of total runs as a function of the number of
HEMs to arrange. The parameters on Nmuch and Nhrm are
np = 6, nr = 100.

concurrently in multicores by segregating accesses to different
hardware blocks. These approaches have been devised for on-
chip and off-chip memories, including banks of shared caches,
as well as banks and ranks of DDR memories [9], [10], [11],
[12], [13], [14]. Other approaches perform segregation over
time, rather than over space, by splitting execution of tasks
into memory and computation phases, thus letting schedulers
guarantee that memory phases from different tasks do not
occur simultaneously [6], [7], [8]. However, segregation over
time is not always doable due to the characteristics of the
hardware or the application itself (e.g. application semantics
cannot be changed due to overwhelming verification and
validation costs). Therefore, if time segregation is not feasible,
even if space segregation is used, multicore interference can
still occur in hardware resources not visible at software level,
such as interconnects, as well as buffers and queues internal
to shared caches for instance [18]. As discussed before, this
is the case for the NXP T2080 considered for critical avionics
systems [27]. In those cases, solutions are needed to master
interference in multicores and account for it during timing
analysis.

Several works build on HEMs for multicore timing analysis,
for bound estimation and online monitoring [23], [34], [35],
[36]. On the industrial side, HEMs have also been exploited
to produce timing evidence needed for certification on multi-
cores [27], [37].

Several works in the high-performance domain study the
source of HEM values variability. They found some sources
in software layers such as the operating system, the application
itself or the HEM interface library [38], [39], [40], [41]. How-
ever, none of those applies in our context where we exclude
them by exercising sufficient control in the system, much
in line with critical real-time embedded systems practices.
Sources at hardware level have already been identified in
the form of hypotheses [42]. However, despite they can be
identified in some cases, explicit control cannot be exercised
and variability exists anyway.

Alternative approaches to merging HEMs could be consid-
ered, such as for instance, Matrix Completion methods [43],
[44]. Unfortunately, Matrix Completion requires particular
properties for the matrix that HEMs values cannot fulfill, such
as being a random matrix with rows and columns belonging to



10

the same distribution. Such property cannot be met because,
for instance, the distribution of one HEM (e.g. processor
cycles) is different to that of any other HEM (e.g. L2 cache
misses), since they have different mean, variance and shape.

Finally, to our knowledge the only work tackling the same
problem as MUCH is HRM [28], whose pros and cons have
been deeply discussed all along the paper, and compared
against MUCH proving that MUCH merges HEM vectors with
much higher accuracy w.r.t. real observed data.

VII. CONCLUSIONS

Multicore timing analysis often builds upon HEMs to
produce reliable execution time bounds for critical real-time
applications in avionics, automotive and space domains among
others. However, the number of PMCs is too small to allow
reading all relevant HEMs at once, and variability across
runs is unavoidable, so end users need solutions to merge
HEM values into consistent vectors resembling the case where
they had been read all together. So far, only HRM has been
proposed to tackle this problem. While its requirements in
terms of number of test runs needed is low, the quality of the
merged HEM vectors by HRM is limited due to its inability
to preserve correlations among many pairs of HEMs. This
paper presents MUCH, which overcomes HRM limitations by
smartly observing pairwise HEM correlations and building on
multivariate Gaussian distributions to generate merged HEM
vectors where discrepancies between produced pairwise HEM
correlations and real ones is very low. Our results on an NXP
T2080 MPSoC used for avionics critical systems support the
effectiveness of MUCH and prove that it outperforms HRM
systematically, thus being HRM appropriate only in those
cases where too many HEMs are needed and there are very
few PMCs.
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