
HAL Id: hal-03251275
https://hal.science/hal-03251275

Submitted on 6 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A trace-driven methodology to evaluate and optimize
memory management services of distributed operating

systems for lightweight manycores
Emmanuel Podestá Junior, Pedro Henrique Penna, João Fellipe Uller, Marcio

Castro

To cite this version:
Emmanuel Podestá Junior, Pedro Henrique Penna, João Fellipe Uller, Marcio Castro. A trace-driven
methodology to evaluate and optimize memory management services of distributed operating systems
for lightweight manycores. SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing,
Mar 2021, Virtual Event, South Korea. pp.1190-1198, �10.1145/3412841.3441994�. �hal-03251275�

https://hal.science/hal-03251275
https://hal.archives-ouvertes.fr


HAL Id: hal-03251275
https://hal.archives-ouvertes.fr/hal-03251275

Submitted on 6 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A trace-driven methodology to evaluate and optimize
memory management services of distributed operating

systems for lightweight manycores
Emmanuel Junior, Pedro Henrique Penna, João Uller, Marcio Castro

To cite this version:
Emmanuel Junior, Pedro Henrique Penna, João Uller, Marcio Castro. A trace-driven methodology to
evaluate and optimize memory management services of distributed operating systems for lightweight
manycores. SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing, Mar 2021, Virtual
Event Republic of Korea, France. pp.1190-1198, �10.1145/3412841.3441994�. �hal-03251275�

https://hal.archives-ouvertes.fr/hal-03251275
https://hal.archives-ouvertes.fr


A Trace-Driven Methodology to Evaluate and Optimize Memory
Management Services of Distributed Operating Systems for

Lightweight Manycores

Emmanuel Podestá Junior
Federal University of Santa Catarina

Florianópolis, Santa Catarina, Brazil

emmanuel.podesta@posgrad.ufsc.br

Pedro Henrique Penna
Pontifical Catholic University of Minas Gerais

Belo Horizonte, Minas Gerais, Brazil

pedro.penna@sga.pucminas.br

João Fellipe Uller
Federal University of Santa Catarina

Florianópolis, Santa Catarina, Brazil

joao.f.uller@grad.ufsc.br

Márcio Castro
Federal University of Santa Catarina

Florianópolis, Santa Catarina, Brazil

marcio.castro@ufsc.br

ABSTRACT

Lightweight manycores belong to a new class of emerging low-

power processors for the Exascale era. These processors present

several challenges for the development of applications, such as dis-

tributed memory architecture, limited amount of on-chip memory

and no cache coherence. Recently, distributed Operating Systems

(OSs) have been proposed to address these challenges in a transpar-

ent way. In these systems, different OS services are deployed across

the processor cores, being the memory management service one

of the most important ones. However, the intrinsic characteristics

and memory limitations of lightweight manycores bring several

challenges to the design, implementation and future optimizations

of memory management services. In this work, we propose a trace-

driven methodology to evaluate and optimize features of a memory

management service of distributed OSs for lightweight manycores.

By using a compact representation of the page access pattern of the

applications, our methodology is capable of mimicking the memory

access pattern of the original applications on the target distributed

OS running on a lightweight manycore. We integrated our method-

ology in a distributed OS (Nanvix) and validated it using three

applications from a specific benchmark for lightweight manycores

(CAP Bench). Then, we applied our methodology to carry out a

case study using a software-managed cache implementation avail-

able in Nanvix. Our methodology enabled us to evaluate different

page replacement policies on Kalray MPPA-256, even without the

required support from the architecture to implement them.

CCS CONCEPTS

· Computer systems organization → System on a chip; Very

long instruction word; Multiple instruction, multiple data;

Parallel architectures;

KEYWORDS

Trace-DrivenMethodology, Distributed Operating System, Memory

Management, Software-managed Cache, Lightweight Manycores

ACM Reference Format:

Emmanuel Podestá Junior, PedroHenrique Penna, João Fellipe Uller, andMár-

cio Castro. 2021. A Trace-Driven Methodology to Evaluate and Optimize

Memory Management Services of Distributed Operating Systems for Light-

weight Manycores. In The 36th ACM/SIGAPP Symposium on Applied Com-

puting (SAC ’21), March 22ś26, 2021, Virtual Event, Republic of Korea. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3412841.3441994

1 INTRODUCTION

Historically, hardware architects were able to design faster and

more advanced uniprocessor systems by increasing the number

of transistors per chip and scaling the clock frequency. In addi-

tion, they implemented features such as speculative execution,

instruction-level parallelism, out-of-order execution and larger

caches, which contributed to improve single-threaded performance.

Unfortunately, these aggressive strategies led processors to hit a

new constraint: the power wall [21]. As a response to this chal-

lenge, the industry transitioned toward Chip Multiprocessor (CMP)

designs, which feature more than one processor core to increase

the aggregate performance of the chip.

More recently, the increase in performance and parallelism in

a single chip has been taken to a next level with the emergence

of a new class of highly-parallel processors named lightweight

manycores [3]. These processors integrate hundreds of low-power

cores on a single chip, which allow to exploit both data and task

parallelism, and have been proven to achieve better energy effi-

ciency than CMPs [5]. In this design, cores are grouped into clusters,

each one having its own limited local memory (a.k.a scratchpad

memory) and address space, thus resulting in a distributed memory

design. Clusters are interconnected by one or more Networks-on-

Chip (NoCs) and communications between them take place through

message exchanges. Examples of such processors are the Sunway

SW26010 [9], which is the base processor of the Sunway Taihu-

Light supercomputer (featuring 10.6 million low-power cores in

total, Adapteva Epiphany [16] and Kalray MPPA-256 [6].

One of the main problems that hinders the adoption of light-

weight manycores by the industry is the lack of Operating System

https://doi.org/10.1145/3412841.3441994


SAC’21, March 22-March 26, 2021, Gwangju, South Korea E. Podestá Junior et al.

(OS) support. Currently, software engineers have to explicitly deal

with data tiling, data prefetching and low-level communication

abstractions to extract reasonable performance out of a lightweight

manycore processor [20]. Moreover, communications must take

into account the NoC topology whenever possible to improve band-

width and reduce latency.

Recently, distributed OSs were proposed to address these chal-

lenges in a transparent way [4, 10]. The multikernel is one of the

distributed OS designs that has shown promising results. In this

approach, multiple independent OS kernel instances are deployed

on the lightweight manycore processor. Each kernel provides bare-

minimum abstractions and fully-featured system services are im-

plemented in a distributed fashion. Furthermore, the distributed

architecture brings: (i) better scalability; (ii) hardware-neutral char-

acteristics, enabling portability between different architectures; and

(iii) explicit inter-core communication, which offers more room for

optimizations and efficient use of the processor network.

Among the services offered by distributed OSs for lightweight

manycores, the memory management is one of the most impor-

tant ones. This service overcomes most programming intricacies

of a distributed memory architecture, and it must exploit the NoC

in order to achieve decent performance. However, designing and

implementing a memory management subsystem that takes into

account the intrinsic characteristics and memory limitations of

lightweight manycores is still an open problem, paving the way for

different performance optimizations. For instance, part of the local

memory of clusters can be used as a software-managed cache to

store recently used pages. Moreover, a software prefetching mech-

anism can be adopted to bring pages from the main memory to

the local memory of clusters in advance to hide NoC communica-

tion costs. Towards these optimizations, a possible approach would

be to port several applications of different domains to the target

distributed OS and carry out experiments with them. However, actu-

ally porting applications to distributed OSs that target lightweight

manycores is a time-consuming and error-prone task.

Thus, to help on these analyses and relieve developers from the

burden of porting several applications to the target distributed OS,

in this paper we propose a trace-driven methodology that can be

used to evaluate and optimize features of a memory management

service of distributed OSs for lightweightmanycores. In ourmethod-

ology, applications are first executed in a standard Linux environ-

ment and their memory accesses are traced. Then, the traced infor-

mation is transformed into compacted structures called heatmaps,

which represent the memory access pattern of the applications.

Finally, the heatmaps are used by a proxy application in the target

distributed OS running on the lightweight manycore processor to

mimic the memory access pattern of the original applications. In

summary, this work delivers the following new contributions to the

state of the art on the evaluation of memory management services

of distributed OSs for lightweight manycores:

(i) a new trace-driven methodology that helps distributed OS

developers to evaluate and optimize features of a memory

management services without the need of porting applica-

tions to the target distributed OS;

(ii) an integration of the proposed methodology in Nanvix, an

open-source distributed OS that targets lightweight many-

cores [17]; and

(iii) a case study of a software-managed cache evaluation in

Nanvix using the proposed methodology.

All experiments with Nanvix were executed on Kalray MPPA-

256 [6], a NoC-based lightweight manycore processor that features

a distributed memory architecture and integrates 288 cores in a

single chip. We show that our methodology is able to correctly

represent and mimic the memory access pattern of the original

applications. Moreover, we show that the resolution of the heatmap

can be fine-tuned to greatly reduce the number of memory accesses

performed by the proxy application in the target distributed OS,

while keeping the overall memory access pattern behavior of the

original applications. This allows for much faster executions, en-

abling the evaluation of the memory management service in several

scenarios in a feasible time. Finally, we show that the methodology

can be applied to study the behavior of different page replacement

policies of a software-managed cache implementation, even when

the underlying lightweight manycore processor does not feature

the necessary hardware support to implement them, helping hard-

ware architects to decide whether or not is beneficial to include

the necessary hardware support to allow the implementation of

smarter page replacement policies in the software-managed cache.

The remainder of this work is organized as follows. Section 2

presents the background on lightweight manycores and distributed

OSs. Section 3 describes our trace-driven methodology. Then, Sec-

tion 4 discusses our evaluation methodology. Finally, Section 5

presents our results, Section 6 covers related works and Section 7

concludes this paper.

2 BACKGROUND

First, we discuss about lightweight manycores and their main char-

acteristics (Section 2.1). Then, we present an overview of distributed

OSs for these processors (Section 2.2).

2.1 Lightweight Manycore Processors

Lightweight manycore processors differ from other architectures

that also have high core counts, such as Non-Uniform Memory

Access (NUMA) platforms, Graphics Processing Units (GPUs) and

other accelerators (e.g., Intel Xeon Phi). Their main distinctions are

the following:

(i) they integrate hundreds or thousands of low-power cores

in a single chip, which are tightly-coupled in groups called

clusters;

(ii) they are designed to target Multiple Instruction Multiple

Data (MIMD) workloads;

(iii) they have a distributed memory architecture;

(iv) they feature a constrained memory system with small local

memories inside clusters and no cache coherency between

clusters;

(v) they rely on high bandwidth and rich NoCs to carry out fast

and reliable message-passing communication; and

(vi) they usually have a heterogeneous configuration, both in

terms of Input/Output (I/O) and computing capabilities.



A Trace-Driven Methodology to Evaluate OSs for Lightweight Manycores SAC’21, March 22-March 26, 2021, Gwangju, South Korea

Manycore Processor

Kernel Instance

Service Instance

Application A

Application B

Idle CoreCluster

Core

NoC

Figure 1: A simplified overview of a conceptual lightweight

manycore running a multikernel OS.

Figure 1 shows an overview of a conceptual lightweight many-

core. Some examples of lightweight manycores are the Sunway

SW26010 [9] and the Kalray MPPA-256 [6]. The former is a custom-

designed processor used in the Sunway TaihuLight, currently the

world’s fourth most powerful system according to TOP5001. The

latter, on the other hand, is a commercially available lightweight

manycore processor designed by Kalray.

2.2 Distributed Operating Systems

Distributed OSs recently emerged as an alternative approach to

address the challenges in software development and deployment in

lightweight manycore processors [1, 17]. These OSs are composed

by a set of services that implement the main abstractions of a

traditional OS. They are usually structured in three main layers. In

the bottom layer, a Hardware Abstraction Layer (HAL) abstracts the

underlying hardware, so as to provide portability across different

architectures. In the middle layer, an OS kernel provides resource

multiplexing as well as basic OS abstractions, such as processes and

threads. Finally, the top layer features several OS services to provide

a transparent programming environment for users.

In this paper, we are specially interested in distributed OSs de-

signed specifically for lightweight manycores such asMOSSCA [12],

M3 [1] and Nanvix [17]. In these OSs, a microkernel design is em-

ployed in the middle layer so as to cope with the low amount of

on-chip memory as shown in Figure 1. Usually, a single microkernel

instance is deployed in each Compute Cluster (kernel instance) and

all other cores of the Compute Cluster are used to run system ser-

vices (service instance) or user-level applications. We chose Nanvix

as our target distributed OS in this work because, to the best of our

knowledge, it is currently the only open-source distributed OS that

runs on commercially available baremetal lightweight manycores.

In Nanvix, the memory management service manages page al-

location and sharing among Compute Clusters. The Distributed

Paging System (DPS) is the main component of this service, which

provides a shared memory abstraction and exposes a programming

interface to manipulate these abstractions. In the next sections, we

show how our trace-driven methodology can help distributed OS

developers to evaluate and optimize features of this service without

the need of porting applications to this distributed OS.

1Available at: https://www.top500.org

1

Trace Collection Page Access Pattern

2 43
Trace

Preprocessing
Profiling Heatmap

Proxy

Application

Multicore (Linux)

Ligthtweight manycore (Distributed OS)

Execution

Figure 2: Overview of the trace-driven methodology.

3 TRACE-DRIVEN METHODOLOGY

Our trace-drivenmethodology is intended to aid developers to study,

implement and optimize features of memory management services

of distributed OSs. This methodology relieves developers from the

burden of porting several applications to the target distributed OS,

which is necessary to evaluate the memory management service

under different scenarios.

Figure 2 presents an overview of this methodology. First, applica-

tions are compiled and executed in a standard Linux environment

along with a memory profiling tool. The profiler collects memory

accesses of the target application and dumps this information on

trace files (Step 1 ). Then, each trace file is preprocessed (if neces-

sary), so as to obtain a well-formatted output (Step 2 ).

Next, the well-formatted output is used to create a heatmap: a

compact two-dimensional structure that describes how many times

each memory page (or a set of pages) was accessed during some

discrete time frames (Step 3 ). The resolution of the heatmap struc-

ture can be fine-tuned to significantly reduce the execution time

of the proxy application (Step 4 ), at the cost of losing some details

about the memory access pattern of the application. Then, a proba-

bilistic approach is applied by the proxy application, which uses the

heatmap structure to mimic the page access pattern of the original

application in the target distributed OS running on the lightweight

manycore processor (Step 4 ). Finally, the proxy application outputs

statistics about the execution. In the next sections, we describe each

of these steps in more details.

3.1 Trace Collection

This stage is composed of 2 main steps, which are described next.

3.1.1 Step 1: Profiling. This step consists in running the application

of interest on a standard Linux OS and collecting information about

its memory accesses (Step 1 ). An approach for obtaining such

information without any application source code changes is to use

a binary instrumentation tool such as Valgrind [15] or Intel Pin [2].

The output of this step is a raw trace file containing the timestamp

and the address of every memory access made by the program.

3.1.2 Step 2: Trace Preprocessing. Some manipulations may be

necessary on the raw trace file output in Step 1 to produce a well-

formatted trace file that contains only the needed data (Step 2 ).

The complexity of these manipulations are related to the output

produced by the profiler. There are mainly three manipulations that

may be considered in the preprocessing step: (i) segment selection;

(ii) address/page translation; and (iii) page number normalization.

The segment selection concerns the selection of user space seg-

ments of interest in the raw trace file (stack, heap, BSS, data and/or

https://www.top500.org


SAC’21, March 22-March 26, 2021, Gwangju, South Korea E. Podestá Junior et al.

text). Depending on how applications are implemented, most of

the memory accesses of interest may occur in the heap segment (if

data is dynamically allocated), in the BSS/data segments (if data is

statically allocated) or both. The choice of selecting one or more

segments is related to both the application itself and to the access

pattern that should be mimicked later on.

Since we are interested in the page access pattern of the appli-

cation, the address/page translation is necessary only if the events

registered by the profiler refer to memory addresses (instead of

memory pages). In this case, a trace file manipulation is needed to

translate subsequent memory access events on addresses that fall

into the same memory page to a single page access event in the

output trace file. The size of the memory page should be considered

to perform such translation.

Finally, a page number normalization is performed, so as to sim-

plify the allocation and management of these pages by the proxy

application (Step 4 ). The proxy application considers that all pages

have consecutive numbers.

3.2 Page Access Pattern

This stage is composed of 2 main steps, which are described next.

3.2.1 Step 3: Heatmap. The preprocessed trace output in Step 2

is used to produce a heatmap structure in Step 3 . The heatmap is

a compact two-dimensional graphical representation of measured

values of numerical data using a chosen color scheme, with one

end of the color scheme representing the high values and the other

end representing the low values [19]. The variation in color may

be by hue or intensity, giving visual insights to the reader about

how a phenomenon is clustered or varies over space and time.

We use heatmaps to represent the page access pattern of the

application, which show how many times each page (or a group of

pages) is accessed during specific discrete time periods (the darker

the color of the cell of the heatmap, the higher the number of page

accesses). The 𝑥-axis represents a temporal behavior (timestamps of

events), whereas the 𝑦-axis represents a space behavior (pages or

groups of pages). The resolution of the heatmap can be fine-tuned

by grouping several events into bins in 𝑥 and/or 𝑦 axes. Thus, a

maximum resolution is achieved if the heatmap uses individual

events. The higher is the number of events grouped into bins, the

lower will be the heatmap resolution, resulting in a less accurate

page access pattern of the application. By adjusting the resolution

of the heatmap we can significantly reduce the time spent on mim-

icking the memory access pattern of the application on the target

distributed OS running on the lightweight manycore processor

as well as the amount of memory footprint required to store the

page access pattern ś recall that this is an important constraint for

lightweight manycores.

3.2.2 Step 4: Proxy Application. Finally, a proxy application mimics

the page access pattern of the original profiled application on the

distributed OS running on target lightweight manycore processor

(Step 4 ). It takes as input a heatmap, which was obtained in Step 3 ,

and a trial factor (𝑡 𝑓 ). The heatmap is seen by the proxy application

as a set of histograms (each time bin in the 𝑥-axis is actually a

histogram of page accesses) and it uses a probabilistic approach

to generate a variable number of random memory page accesses

(trials) in each time bin based on its frequency distribution. The

number of trials performed by the proxy application in each time

bin 𝑥 corresponds to

𝑡𝑟𝑖𝑎𝑙𝑠𝑥 =

number of events in the original heatmap in 𝑥

𝑡 𝑓
. (1)

Thus, the higher is the trial factor, the lower will be the number

of page accesses (trials) generated by the proxy application. The

value of 𝑡 𝑓 impacts on the overall behavior of the memory access

pattern being reproduced: the more random values are generated,

the closer will be the behavior produced by the proxy application

compared to the original execution. However, it is possible to reduce

considerably the number of random page accesses without losing

the original access pattern, as we show in Section 5.1. This allows us

to improve considerably the execution time of the proxy application

as well as to deal with very large heatmaps.

4 EVALUATION METHODOLOGY

In this section, we discuss the evaluation methodology to validate

our trace-driven methodology. First, we present the applications

considered in this study. Then, we describe our experiment environ-

ments in more details. Finally, we discuss the experimental design

and methods applied in this paper.

4.1 Applications

We selected three applications from CAP Bench [18] that feature dif-

ferent memory access patterns. CAP Bench is an open-source bench-

mark suite that includes applications suitable to evaluate emerging

lightweight manycore processors such as Kalray MPPA-256. These

applications allow us to validate our trace-driven methodology as

well as to show its potential to evaluate and optimize the memory

management service of Nanvix.

In the following paragraphs we give a brief overview of these

applications. In-depth descriptions of these applications can be

found in [18].

Friendly Numbers (FN) This application computes the amount

of friendly numbers in a range [𝑚,𝑛]. In number theory,

two natural numbers are friendly if they share the same

abundancy. In turn, the abundancy 𝐴 of a given number 𝑛

is defined as 𝐴(𝑛) =
𝜎 (𝑛)
𝑛

, where 𝜎 (𝑛) denotes the sum of

divisors of 𝑛.

Gaussian Filter (GF) This program implements a Gaussian blur,

which is an image smoothing filter. GF consists in applying

a specially computed two-dimensional Gaussian mask (𝑚)

to an image (𝑖) using a matrix convolution operation. Thus,

this application features a stencil pattern.

K-Means (KM) This application implements the K-Means data

clustering algorithm, which partitions 𝑛 points into 𝑘 par-

titions in a 2D space. Data points and centroids are evenly

and randomly distributed in space. Then, data points are re-

clustered into 𝑘 partitions taking into account the minimum

Euclidean distance between them and the centroids. Next,

the centroid of each partition is recalculated taking the mean

of all points within the partition. The whole procedure is

repeated until all centroids remain unchanged.



A Trace-Driven Methodology to Evaluate OSs for Lightweight Manycores SAC’21, March 22-March 26, 2021, Gwangju, South Korea

IO Cluster

NoC NoC NoCNoC

RMRMRMRM

I-Cache

D-Cache

I-Cache I-Cache I-Cache

DDR

PCIe

Compute Cluster

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE RM

D-NoC C-NoC

SRAM

Interleaved

2-D Torus

DDR

PCIe
Eth.

Eth.

Figure 3: MPPA-256 lightweight manycore processor.

4.2 Experimental Environment

We carried out our experiments on two platforms:

Intel Xeon A 10-core Intel Xeon E5-2640v4 running at 2.40 GHz

and 128 GB of RAM, running Ubuntu 16.04.6 LTS with kernel

v4.4.0.

Kalray MPPA-256 A NoC-based lightweight manycore processor

that features a distributed memory architecture and inte-

grates 288 cores in a single chip, running Nanvix v1.0.

We used the former platform to collect the traces from the CAP

Bench applications. Then, we employed the latter platform to vali-

date and evaluate our trace-driven methodology in Nanvix.

Figure 3 pictures an architectural overview of Kalray MPPA-

256 (Bostan architecture), which was the processor adopted in this

paper. It features 272 general-purpose cores and 16 firmware-cores,

called Processing Elements (PEs) and Resource Managers (RMs),

respectively, all running at 400 MHz. Cores within the same cluster

share some local hardware resources, such as Static Random Access

Memory (SRAM) and NoC interfaces, and they have a uniform

access latency to these local components. The processor presents

two types of clusters:

Compute Clusters They feature 16 PEs, 2 MB of SRAM, 2 NoC

interfaces and an RM. Overall, the processor has 16 Compute

Clusters in total.

I/O Clusters They feature 4 RMs cores, 4 NoC interfaces, 4 in-

struction caches, a shared data cache and an SRAM. The

processor has 4 I/O Clusters in total, where two of them are

connected to a different Double Data Rate (DDR) controller

and the other two are attached to Peripheral Component

Interconnect (PCI) and Ethernet controllers.

PEs and RMs are designed to target different goals. RMs are

dedicated to manage communications, whereas PEs are general-

purpose cores, so they can run user programs. It is important to

note that hardware cache coherence is not supported in Compute

Clusters. Clusters have distinct address spaces, and they communi-

cate with one another by explicitly exchanging messages through

one of the available NoCs: a Data NoC (D-NoC), which should be

used for system- and user-level large data transfers, and a Control

NoC (C-NoC), which is reserved for small control messages. Kalray

MPPA-256 has built-in Direct Memory Access (DMA) controllers

in their NoC interfaces to enable asynchronous communications.

4.3 Experimental Design and Methods

We divided the experimental evaluation in two sets of experiments,

each of which aiming at a different goal. In the following paragraphs

we describe each set in more details.

In the first set (Section 5.1), we aim at validating our trace-driven

methodology by comparing the heatmaps of the applications ob-

tained from the trace files with the heatmaps generated by the proxy

application. If both heatmaps are similar, we can conclude that our

trace-driven methodology is able to correctly represent and mimic

the memory access pattern of the original applications. Moreover,

we analyze the heatmaps produced by the proxy application with

different trial factors, so as to evaluate if the overall memory access

pattern behavior of the original applications are preserved.

In the second set (Section 5.2), we intend to show one case study

where our trace-driven methodology can be applied. In this case

study, we evaluate the software-managed cache implementation

of the memory management service in Nanvix. This cache keeps

the pages being accessed by the application in the local memory

of Compute Clusters, so as to avoid the high latency of fetching

pages from remote memories. Originally, the software-managed

cache implementation used a simple First-in First-out (FIFO) page

replacement policy, since Kalray MPPA-256 has important hard-

ware limitations2 that prevent OS developers to implement more

sophisticated policies. However, since our proxy application mimics

the memory access pattern of the original applications by making

explicitly calls to the software-managed cache, we were able to

implement other policies such as Not Frequently Used (NFU) and

Aging. Based on the obtained results, hardware architects can de-

cide whether or not is beneficial to include the necessary hardware

support to allow the implementation of smarter page replacement

policies at the OS-level.

In NFU andAging policies, there is a reference counter associated

to every page, which is initially set to zero. The main difference

between these policies is on how the reference counters of pages

that have been accessed are updated at fixed time intervals: in NFU,

the reference counter is incremented by 1 whereas in Aging, it

is first shifted right and then, its most significant bit is set to 1.

Due to these operations, Aging ensures that pages referenced more

recently will have higher counters. In both policies, the page with

the lowest reference counter is chosen to be evicted from the cache.

We ran CAP Bench applications on Intel Xeon to collect their

traces and to build their heatmaps (Steps 1 , 2 and 3 ). We imple-

mented our proxy application (Step 4 ) as user-level application in

Nanvix and ran it on the target lightweight manycore processor

(Kalray MPPA-256). The size of the software-managed cache in all

experiments was 128 KB, which allows us to store 32 pages of 4

2The MMU hardware of this processor does not update page metadata when a page is
accessed or modified. Therefore, the only information available for the page replace-
ment policy is the time in which the page was admitted in the system.



SAC’21, March 22-March 26, 2021, Gwangju, South Korea E. Podestá Junior et al.

800000

600000

400000

200000

0

800

600

400

200

0

80

70

60

50

40

30

20

10

0

M
e
m

o
r
y
 p

a
g

e
s

Time Time Time

M
e
m

o
r
y
 p

a
g

e
s

M
e
m

o
r
y
 p

a
g

e
s

Original Proxy application with tf=1000Proxy application with tf=1000Proxy application with tf=1000Proxy application with tf=1000 Proxy application with tf=1000Proxy application with tf=1000Proxy application with tf=1000Proxy application with tf=10000

F
N

(a) FN application.

1.0

0.8

0.6

0.4

0.2

0.0

1e6

M
e
m

o
r
y
 p

a
g

e
s

Time

1000

800

600

400

200

0

M
e
m

o
r
y
 p

a
g

e
s

Time

120

100

80

60

40

20

0

M
e
m

o
r
y
 p

a
g

e
s

Time

K
M

(b) KM application.

160000

140000

120000

100000

80000

60000

40000

20000

0

M
e
m

o
r
y
 p

a
g

e
s

Time

160

140

120

100

80

60

40

20

0

M
e
m

o
r
y
 p

a
g

e
s

Time

16

14

12

10

8

6

4

2

0
Time

M
e
m

o
r
y
 p

a
g

e
s

G
F

(c) GF application.

Figure 4: Heatmaps of FN, GF and KM.

KB each. We selected only the heap segments of CAP Bench ap-

plications during the trace preprocessing step (Step 2 ), since data

processed by these applications are allocated dynamically.

Our proxy application has a deterministic behavior. Thus, a single

execution is enough to obtain the desired results. For the software-

managed cache experiments, however, we carried out 10 trials

of each experimental configuration to eliminate undesired cache



A Trace-Driven Methodology to Evaluate OSs for Lightweight Manycores SAC’21, March 22-March 26, 2021, Gwangju, South Korea

warm-up effects. Then, we carried out a single execution to collect

the results.

5 RESULTS

First, we discuss about the validation of our trace-drive methodol-

ogy (Section 5.1). Then, we show the results obtained in our case

study with a software-managed cache implementation (Section 5.2).

5.1 Methodology Validation

Figure 4 presents the heatmaps built from the traces collected

from the execution of CAP Bench applications (original) as well as

from our proxy application with two trial factors (𝑡 𝑓 = 1000 and

𝑡 𝑓 = 10000). The former value was chosen so as to have a scenario

with a moderate yet significant reduction factor. The latter, on the

other hand, represents the near maximum possible value for the GF

application, which had no more than 160K memory page accesses

per cell in the original heatmap.

The 𝑥-axis in Figure 4 represents the temporal behavior (times-

tamps of memory page accesses), whereas the 𝑦-axis represents the

space behavior (memory pages). Noteworthy, cells in Figure 4c were

highlighted with dashed boxes to improve visualization, since their

values were very close to 0 (i.e., white color). Finally, the resolutions

of heatmaps were fine-tuned so as to have 30 bins in the 𝑦-axis and

50 bins in the 𝑥-axis.

Overall, the proxy application was able to mimic the page access

pattern of the original applications, even with a high trial factor.

However, some information about less frequently accessed pages

were lost when we increased the trial factor, as it can be seen

in Figure 4c with 𝑡 𝑓 = 1000, and even more with 𝑡 𝑓 = 10000

(dashed boxes). This happens due the probabilistic approach of

our methodology, which tends to keep information about memory

pages that were accessed more frequently.

Table 1 shows the root-mean-square deviation (RMSD) of the

results obtained from the proxy application with different trial fac-

tors (the lower the RMSD value, the higher the similarity between

the access pattern of the original application and the one produced

by the proxy application). The very low RMSD values indicate that

our methodology is capable of producing a memory access pattern

behavior very close to the original applications, even with a high

trial factor. As it can be noticed, GF showed the highest RMSD val-

ues among all applications considered in this study, specially with

𝑡 𝑓 = 10000. The main reason for that is two-fold: (i) the number

of accesses per page is much lower in this application compared

to the other ones, which results in information losses when a high

trial factor is employed; and (ii) this application has a set of pages

that are accessed very few times throughout the execution, thus

the probability of accessing a page in this set tends to be very low

(near zero percent) with a high trial factor.

Another important aspect of our methodology that should be

evaluated is the memory footprint to store the page access pattern

of the applications. Table 2 presents the size of the original trace files

and their respective representation with heatmaps. Overall, the size

of the heatmaps is several orders of magnitude lower than the size

of the original trace files. Since our proxy application uses heatmaps

instead of trace files to mimic the memory access pattern of the

original applications, it is able to cope with the limited amount

Table 1: Root-mean-square deviation (RMSD) of the results

obtained from the proxy application.

Application RMSD (𝑡 𝑓 = 1000) RMSD (𝑡 𝑓 = 10000)

FN 0.395 1.206

KM 0.198 0.649

GF 1.539 4.594

Table 2: Sizes of trace files and heatmaps.

Application Trace Heatmap

FN 1.4 GB 8.0 KB

KM 5.6 GB 7.2 KB

GF 119 MB 4.4 KB

of on-chip memory available in lightweight manycore processors.

Moreover, it improves the execution of the proxy application, since

heatmaps are allocated in memory and no I/O operation is needed.

5.2 Case Study: Software-managed Cache

Figure 5 pictures the variation of the software-managed cache hit

ratio obtained from our proxy application with three different re-

placement policies: FIFO, NFU and Aging. The hit ratio was com-

puted periodically with a fixed period of 𝑝 = 600 memory access

events. Thus, each point in Figure 5 represents the cache hit ratio

computed as follows

ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 =

number of cache hits in 𝑝

𝑝
. (2)

We also fine-tuned the input heatmaps used by the proxy appli-

cation as follows: maximum resolution in 𝑦-axis (i.e., 1 page per

bin) and 200 bins 𝑥-axis. Our empirical tests with FN, KM and GF

showed that this configuration was enough to obtain precise results.

Figure 5a shows the hit ratio obtained with FN. As shown in

Figure 4a, this application performs memory accesses to every page

in the beginning of the execution but its working set reduces as the

execution proceeds. This is mainly due to the data access pattern

of a nested loop that computes the abundancy of the numbers.

This behavior is reflected in the hit ratio, which increases as the

execution approaches its end because the working set starts fitting

in the cache. The best results were achieved with FIFO, since the

page access pattern of FN follows exactly the same behavior.

In Figure 5b, however, we observed that Aging was more ben-

eficial for KM. This application has two well-defined page access

behaviors: pages on top and bottom ranges in Figure 4b are always

accessed throughout the execution whereas middle range pages

are accessed in a FIFO ordering fashion. The FIFO page replace-

ment policy is able to correctly keep middle range pages in cache,

showing a stable cache hit ratio of 96% on average. NFU, on the

other hand, presented a high hit ratio variation with several spikes.

The main reason is that NFU constantly evicts middle range pages

because they usually have lower reference counters. This problem

is solved by Aging, since it is aware of the time span of page use.



SAC’21, March 22-March 26, 2021, Gwangju, South Korea E. Podestá Junior et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sample period

75

80

85

90

95

100

Hi
t r

at
io

 (%
)

Aging
NFU
FIFO

(a) FN.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sample period

75

80

85

90

95

100

Hi
t r

at
io

 (%
)

Aging
NFU
FIFO

(b) KM.

1 2 3 4 5 6 7 8 9 10 11 12 13
Sample period

75

80

85

90

95

100

Hi
t r

at
io

 (%
)

Aging
NFU
FIFO

(c) GF.

Figure 5: Software-managed cache hit ratio.

Finally, Figure 5c shows the results obtained with GF. As shown

in Figure 4c, this application has few pages that are constantly

accessed throughout the execution (top range) whereas the access

pattern of all other pages follows the FIFO rule. We observed that

all page replacement policies were able to keep a hit ratio very close

to 100%, since the most accessed pages fit in the cache.

6 RELATED WORKS

Tracing is a well-known technique to collect information from the

execution of applications. This information is used by researchers

and developers to achieve different goals such as debugging, perfor-

mance optimizations in hardware/software, as well as to allow for

more realistic simulations of architectures and applications. When

used in simulations, they provide means to evaluate several possi-

ble scenarios and configurations in a feasible time. In this section,

we discuss some related works that make use of memory accesses

traces to help to evaluate and/or optimize software and hardware

solutions.

To the best of knowledge, the closest work to ours was proposed

by M. M. Rahman and Dueck [13], whose goal was to evaluate and

test Automated Memory Management (MM) runtime systems, such

as the Java Virtual Machine (JVM). The proposed approach is based

on collecting MM operations in traces from benchmark suites at

run-time. Since these traces are very large, the authors proposed a

trace synthesizer that produces synthetic trace files with basic MM

operations for given configuration parameters. These parameters

can be adjusted based on the profiling results of real trace files.

Their results show that the trace synthesizer can generate more

test scenarios, helping developers to evaluate the MM system of

the JVM. In contrast to this work, we were interested in distributed

OS-level optimizations for lightweight manycores, which brings

other challenges due to the intrinsic characteristics and limitations

of these processors. Furthermore, our approach is able to mimic

the page access pattern of the original applications using heatmaps

along with a probabilistic approach. Because of that, we neither

need to deal with large trace files when reproducing the behavior

of the applications nor create new synthetic trace files.

Diener et al. [7] proposed CDSM, a mechanism that uses page

faults to detect communications between threads and uses this

information to map threads to cores. They used heatmaps to store

information about the number of communication events between

two processes or threads. Heatmaps are used to map processes and

threads to close processing units according to their communication

behavior at run-time. As it can be noticed, Diener et al. [7] used

heatmaps to achieve a different goal, although sharing some aspects

that are similar to our page access pattern representation.

Traces have also been used to build more realistic cache simula-

tors [8, 11, 14]. Moeng et al. [14] proposed the use of GPUs to ac-

celerate a trace-based cache simulator conceived to study the cache

coherence in multithreaded workloads and multilevel cache imple-

mentations. The information is collected once using a functional

simulator and a trace of events is generated. Then, the simulator

replays the events registered in the traces. Similarly, Keramidas

et al. [11] used both CPU and GPU processors to speedup cache

simulation. Finally, Dumas et al. [8] proposed a trace-driven sim-

ulation method to accurately compare cache coherence protocols

in NoC-based manycores. Their solution helps manycore archi-

tects to select and dimension the best cache coherence protocol for

their application considering performance and hardware related

costs. In contrast to these works, we were interested in evaluat-

ing a software-managed cache by carrying out experiments on a

baremetal hardware without any cache-level simulation.

7 CONCLUSION

The development of applications for lightweight manycores is very

challenging. Software engineers have to explicitly deal with the

limited amount of on-chip memory, no cache coherence and multi-

ple address spaces. To tackle these challenges, distributed OSs have

been proposed to ease development and improve portability.

In this context, the memory management is one of the most im-

portant services offered by distributed OSs. However, the intrinsic

characteristics and memory limitations of lightweight manycores

bring several challenges to its design and implementation, open-

ing new opportunities for optimizations. A possible approach to

help the design and evaluation of the memory management service

is to port several applications of different domains to the target

distributed OS and carry out experiments with these applications.



A Trace-Driven Methodology to Evaluate OSs for Lightweight Manycores SAC’21, March 22-March 26, 2021, Gwangju, South Korea

Notwithstanding, porting software to distributed OSs for light-

weight manycores is a time-consuming and error-prone task.

Aiming at this problem, in this work, we proposed a trace-driven

methodology that can be used to evaluate and optimize features of

a memory management service of distributed OSs for lightweight

manycores. Thanks to a compact representation of memory access

patterns, our methodology is capable of mimicking the memory

access pattern of the original applications on the target distributed

OS running on a lightweight manycore with low footprints. We

integrated our methodology in Nanvix and validated it using three

applications from CAP Bench. Furthermore, we carried out a case

study using a software-managed cache implementation available in

Nanvix. Our methodology enabled us to evaluate different page re-

placement policies on Kalray MPPA-256, even without the required

support from the architecture to implement them.

As future work, we intend to apply our methodology to help

the design and evaluation of new optimizations in Nanvix, such

as the software prefetching module and a more sophisticated page

sharing algorithm. We also intend to consider other applications

from CAP Bench and other benchmarks. Finally, we intend to ap-

ply our methodology to other distributed OSs and/or lightweight

manycore processors.

ACKNOWLEDGMENTS

This work was partially supported by Conselho Nacional de Desen-

volvimento Científico e Tecnológico ś Brasil (CNPq) and by Coor-

denação de Aperfeiçoamento de Pessoal de Nível Superior ś Brasil

(CAPES) ś Finance Code 001 and under the CAPES-PrInt Program

Grant No.: 88881.310783/2018-01.

REFERENCES
[1] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard

Fettweis. 2016. M3: A Hardware/Operating-System Co-Design to Tame Het-
erogeneous Manycores. In Conference on Architectural Support for Programming
Languages and Operating Systems (APLOS). ACM, New York, USA, 189ś203.

[2] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A.
Jaleel, C. Luk, G. Lyons, H. Patil, and A. Tal. 2010. Analyzing Parallel Programs
with PIN. Computer 43, 3 (2010), 34ś41.

[3] Shekhar Borkar. 2007. Thousand core chips. In Design Automation Conf. (DAC).
ACM Press, New York, USA, 746.

[4] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,
and Zheng Zhang. 2008. Corey: An Operating System for Many Cores. In Con-
ference on Operating Systems Design and Implementation (OSDI). USENIX Associ-
ation, San Diego, USA, 43ś57.

[5] Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps,
Patrice Couvert, Benoît Ganne, Pierre Guironnet de Massas, Francois François
Jacquet, Samuel Jones, Nicolas Morey Chaisemartin, Frederic Riss, and Thierry
Strudel. 2013. A Clustered Manycore Processor Architecture for Embedded
and Accelerated Applications . In IEEE High Performance Extreme Computing
Conference (HPEC) (HPEC ’13). IEEE, Waltham, USA, 1ś6.

[6] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clé-
ment Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry Strudel. 2013. A
Distributed Run-Time Environment for the Kalray MPPA-256 Integrated Many-
core Processor. In International Conference on Computational Science (ICCS),
Vol. 18. Elsevier, Barcelona, Spain, 1654ś1663.

[7] Matthias Diener, Eduardo H.M. Cruz, Philippe O.A. Navaux, Anselm Busse, and
Hans-Ulrich Heiß. 2015. Communication-aware process and thread mapping
using online communication detection. Parallel Comput. 43 (2015), 43 ś 63.

[8] Julie Dumas, Eric Guthmuller, César Fuguet Tortolero, and Frédéric Pétrot. 2017.
Trace-driven exploration of sharing set managementstrategies for cache co-
herence in manycores. In International New Circuits and Systems Conference
(NEWCAS). IEEE Computer Society, Strasbourg, France, 77ś80.

[9] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xiaomeng
Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao, Wei Zhao, Xunqiang Yin,
Chaofeng Hou, Chenglong Zhang, Wei Ge, Jian Zhang, Yangang Wang, Chunbo

Zhou, and Guangwen Yang. 2016. The Sunway TaihuLight Supercomputer:
System and Applications. Science China Information Sciences 59, 7 (jul 2016),
72001ś720016. https://doi.org/10.1007/s11432-016-5588-7

[10] Simon J Hollis, Edward Ma, and Radu Marculescu. 2016. nOS: A Nano-Sized
Distributed Operating System for Many-Core Embedded Systems. In International
Conf. on Computer Design (ICCD). IEEE, Scottsdale, USA, 177ś184.

[11] Georgios Keramidas, Nikolaos Strikos, and Stefanos Kaxiras. 2011. Multicore
cache simulations using heterogeneous computing on general purpose and graph-
ics processors. In Digital System Design (DSD). IEEE, Oulu, Finland, 270ś273.

[12] Florian Kluge, Mike Gerdes, and Theo Ungerer. 2014. An Operating System for
Safety-Critical Applications on Manycore Processors. In International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE,
Reno, USA, 238ś245.

[13] K. B. Kent M. M. Rahman, K. Nasartschuk and G. W. Dueck. 2016. Trace Files
for Automatic Memory Management Systems. In International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, Suita, Japan, 9ś12.

[14] Michael Moeng, Sangyeun Cho, and Rami Melhem. 2011. Scalable multi-cache
simulation using GPUs. In International Workshop on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS). IEEE, Singapore,
Singapore, 159ś167.

[15] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In ACM SIGPLAN Notices, Vol. 42. Asso-
ciation for Computing Machinery, New York, NY, USA, 89ś100.

[16] Andreas Olofsson, Tomas Nordstrom, and Zain Ul-Abdin. 2014. Kickstarting
High-performance Energy-efficient Manycore Architectures with Epiphany. In
Asilomar Conference on Signals, Systems and Computers (ACSSC). IEEE, Pacific
Grove, USA, 1719ś1726.

[17] Pedro H. Penna, João V. Souto, Davidson F. Lima, Márcio Castro, François Bro-
quedis, Henrique C. de Freitas, and Jean-François Méhaut. 2019. On the Per-
formance and Isolation of Asymmetric Microkernel Design for Lightweight
Manycores. In Brazilian Symposium on Computing Systems Engineering (SBESC).
IEEE Computer Society, Natal, Brazil, 1ś8.

[18] Matheus A. Souza, Pedro Henrique Penna, MatheusM. Queiroz, Alyson D. Pereira,
Luís Fabricio W. Góes, Henrique C. Freitas, Márcio Castro, Philippe O. A. Navaux,
and Jean-François Méhaut. 2017. CAP Bench: A Benchmark Suite for Performance
and Energy Evaluation of Low-power Many-core Processors. Concurrency and
Computation: Practice and Experience 29, 4 (2017), e3892.

[19] H. Suematsu, S. Yagi, T. Itoh, Y. Motohashi, K. Aoki, and S. Morinaga. 2014. A
Heatmap-Based Time-Varying Multi-variate Data Visualization Unifying Nu-
meric and Categorical Variables. In International Conference on Information Visu-
alisation (IV). IEEE, Paris, France, 84ś87.

[20] Anish Varghese, Bob Edwards, Gaurav Mitra, and Alistair P Rendell. 2014. Pro-
gramming the Adapteva Epiphany 64-Core Network-on-Chip Coprocessor. In
International Parallel Distributed Processing Symposium Workshops (IPDPSW).
IEEE Computer Society, Phoenix, USA, 984ś992.

[21] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens, N.
Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler, and W. J.
Dally. 2014. Scaling the Power Wall: A Path to Exascale. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). ACM, New Orleans, USA, 830ś841.

https://doi.org/10.1007/s11432-016-5588-7

	Abstract
	1 Introduction
	2 Background
	2.1 Lightweight Manycore Processors
	2.2 Distributed Operating Systems

	3 Trace-driven Methodology
	3.1 Trace Collection
	3.2 Page Access Pattern

	4 Evaluation Methodology
	4.1 Applications
	4.2 Experimental Environment
	4.3 Experimental Design and Methods

	5 Results
	5.1 Methodology Validation
	5.2 Case Study: Software-managed Cache

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

