
How to Put Users in Control of their Data in Federated Top-N
Recommendation with Learning to Rank

Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Antonio Ferrara, Fedelucio Narducci∗
Politecnico di Bari, Bari, Italy
firstname.lastname@poliba.it

ABSTRACT
Recommendation services are extensively adopted in several user-
centered applications as a tool to alleviate the information overload
problem and help users in orienteering in a vast space of possi-
ble choices. In such scenarios, data ownership is a crucial concern
since users may not be willing to share their sensitive preferences
(e.g., visited locations) with a central server. Unfortunately, data
harvesting and collection is at the basis of modern, state-of-the-art
approaches to recommendation. To address this issue, we present
FPL, an architecture in which users collaborate in training a central
factorization model while controlling the amount of sensitive data
leaving their devices. The proposed approach implements pair-wise
learning-to-rank optimization by following the Federated Learning
principles, originally conceived to mitigate the privacy risks of tra-
ditional machine learning. The public implementation is available
at https://split.to/sisinflab-fpl.
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1 INTRODUCTION
Collaborative filtering (CF) models have been mainstream research
in the recommender system (RS) community over the last two
decades thanks to their performance accuracy [13]. Among them,
a prominent class uses the matrix factorization (MF) approach as
the inference model. The MF model’s main aim is to uncover user
and item latent representations whose linear interaction explains
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observed feedback. To date, the majority of existing MF models are
trained in a centralized fashion causing several concerns about the
privacy of user data and discouraging their collection. The conse-
quent data scarcity dilemma can thereby jeopardize the training of
MF models. Training high-quality MF models relies on sufficient
in-domain interaction data to ensure that enough co-occurrence
information exists to shape similar behavioral/preference patterns
in a user community. In recent years, federated learning (FL) was
proposed by Google as a mean to offer a privacy-by-design solu-
tion [3, 15] for machine-learned models. Federated learning aims
to meet ML privacy shortcomings by horizontally distributing the
model’s training over user devices; thus, clients exploit private data
without sharing them [15]. Weiss et al. [18] state that privacy can
be preserved by limiting data collection, which is one of the main
privacy concerns [9]. The accuracy of RS based on the CF paradigm
is dependent on the amount of user preferences available. Our idea
is to put users in control of their sensitive data by allowing them to
choose the amount of information to share with the server. Hence, if
data collection from the server side is reduced, other threats related
to retention, sales, and unauthorized data browsing are limited. The
proposed system, FPL (short for Federated Pair-wise Learning), is
a federated factorization model for collaborative recommendation.
It extends state-of-the-art factorization approaches to build a RS
that puts users in control of their sensitive data. Users participating
in the federation process can decide if and to which extent they
are willing to disclose their sensitive private data (i.e., what they
liked/consumed). FPL mainly leverages not-sensitive information
(e.g., places the user has not visited) – which can be large and non-
sensitive – to reach a competitive accuracy and, at the same time,
respect a satisfactory balance between accuracy and privacy. We
have carried out extensive experiments on real-world datasets [19]
in the Point of Interest (PoI) domain by considering the accuracy
of recommendation and diversity metrics. The experimental evalu-
ation shows that FPL can provide high-quality recommendations,
putting the user in control of the amount of sensitive data to share.

2 BACKGROUND
Federated Learning. Federated learning (FL) is a paradigm ini-

tially envisioned by Google [11, 15] to train a machine-learning
model from data distributed among a loose federation of users’
devices (e.g., personal mobile phones). The rationale is to face the
increasing issues of ownership and locality of data to mitigate the
privacy risks resulting from centralizedmachine learning [10] while
improving personalization [8]. In particular, given Θ denoting the
parameters of a machine learning model, we consider a learning
scenario where the objective is to minimize a generic loss function
𝐺 (Θ). FL is a learning paradigm in which the users 𝑢 ∈ U of a
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federation collaborate to solve the learning problem under the coor-
dination of a central server 𝑆 without sharing or exchanging their
raw data with 𝑆 . From an algorithmic point of view, we start with
𝑆 sharing Θ with the federation of devices. Then, specific methods
solve a local optimization problem on the single device. The client
shares the parameters of its local model with 𝑆 . The parameters
provided by the clients are then used to update Θ, which is sent
back to the devices in a new iteration step.

Factorization Models and Pair-Wise Recommendation. A recom-
mendation problem over a set of users U and a set of items I is
defined as the activity of finding for each user 𝑢 ∈ U an item 𝑖 ∈ I
that maximizes a utility function 𝑔 : U × I → R. In this context,
X ∈ R |U |×|I | is the user-item matrix containing for each 𝑥𝑢𝑖 an
explicit or implicit feedback (e.g., rating or check-in, respectively)
of user 𝑢 ∈ U for item 𝑖 ∈ I. In the work at hand, an implicit
feedback scenario is considered — i.e., feedback is, e.g., purchases,
visits, clicks, views, check-ins —, with X containing binary values.
Therefore, 𝑥𝑢𝑖 = 1 and 𝑥𝑢𝑖 = 0 denote either user 𝑢 has consumed
or not item 𝑖 , respectively. In FPL, the underlying data model is a
Factorization model, inspired by MF [12], a recommendation model
that became popular in the last decade thanks to its state-of-the-
art recommendation accuracy [13]. This technique aims to build
a model Θ in which each user 𝑢 and each item 𝑖 is represented by
the embedding vectors p𝑢 and q𝑖 , respectively, in the shared latent
space R𝐹 . The algorithm relies on the assumption that X can be
factorized such that the dot product between p𝑢 and q𝑖 can explain
any observed user-item interaction 𝑥𝑢𝑖 , and that any non-observed
interaction can be estimated as 𝑥𝑢𝑖 (Θ) = 𝑏𝑖 (Θ) + p𝑇𝑢 (Θ) · q𝑖 (Θ)
where 𝑏𝑖 is a term denoting the bias of the item 𝑖 . Among pair-wise
approaches for learning-to-rank the items of a catalog, Bayesian Per-
sonalized Ranking (BPR) [17] is one of the most broadly adopted,
thanks to its capabilities to correctly rank with acceptable com-
putational complexity. In detail, given a training set defined by
K = {(𝑢, 𝑖, 𝑗) | 𝑥𝑢𝑖 = 1 ∧ 𝑥𝑢 𝑗 = 0}, BPR solves the optimization
problem via the criterion max

Θ

∑
(𝑢,𝑖, 𝑗) ∈K ln 𝜎 (𝑥𝑢𝑖 𝑗 (Θ)) − 𝜆∥Θ∥2,

where 𝑥𝑢𝑖 𝑗 (Θ) = 𝑥𝑢𝑖 (Θ) − 𝑥𝑢 𝑗 (Θ) is a real value modeling the rela-
tion between user 𝑢, item 𝑖 and item 𝑗 , 𝜎 is the sigmoid function,
and 𝜆 is a regularization parameter to prevent overfitting. Pair-wise
optimization can be applied to a wide range of recommendation
models, included factorization. Hereafter, we denote the model
Θ = ⟨P,Q, b⟩, where P ∈ R |U |×𝐹 is a matrix whose 𝑢-th row corre-
sponds to the vector p𝑢 , and Q ∈ R |I |×𝐹 is a matrix in which the
𝑖-th row corresponds to the vector q𝑖 . Finally, b ∈ R |I | is a vector
whose 𝑖-th element corresponds to the value 𝑏𝑖 .

3 APPROACH
Following the federated learning principles, letU be the set of users
(clients) with a server 𝑆 coordinating them. Assume users consume
items from a catalog I and give feedback about them (as in the
recommendation problem of Section 2). 𝑆 is aware of the catalog I,
while exclusively user 𝑢 knows her own set of consumed items.

To setup the federation for FPL, a global model is built on 𝑆

such that Θ𝑆 = ⟨Q, b⟩, where Q ∈ R |I |×𝐹 and b ∈ R |I | are the
item-factor matrix and the bias vector (introduced in Section 2).
Conversely, on each user 𝑢’s device FPL builds a model Θ𝑢 = ⟨p𝑢⟩,
which corresponds to the representation of user𝑢 in the latent space

of dimensionality 𝐹 . Hence, Θ𝑢 and Θ𝑆 are privately combined
together. The client produces tailored recommendations by scalar
multiplying local p𝑢 and q𝑖 . Each user 𝑢 holds her own private
dataset x𝑢 ∈ RI , which, analogously to a centralized recommender
system, corresponds to the 𝑢-th row of matrix X. Each FPL client 𝑢
hosts a user-specific training set K𝑢 : U × I × I defined by K𝑢 =

{(𝑢, 𝑖, 𝑗) | 𝑥𝑢𝑖 = 1∧𝑥𝑢 𝑗 = 0}, where 𝑥𝑢𝑖 represents the 𝑖-th element
of 𝑥𝑢 . Please note that we refer to 𝑋+ =

∑
𝑢∈U |{𝑥𝑢𝑖 | 𝑥𝑢𝑖 = 1}| as

the number of positive interactions.
The classic BPR-MF learning procedure [17] for model training

can not be applied to the federated learning scheme [15]. Instead,
we propose a novel learning paradigm that works by rounds of
communication and envisages Distribution→ Computation→
Transmission→Aggregation sequences between the server and
the clients, whose details are as follows.
(1) Distribution. 𝑆 randomly selects a subset of users U− ⊆ U
and delivers them the model Θ𝑆 .
(2) Computation. Each user 𝑢 generates𝑇 triples (𝑢, 𝑖, 𝑗) from her
dataset K𝑢 and for each of them performs BPR stochastic optimiza-
tion to compute the updates for the local p𝑢 vector of Θ𝑢 , and for
q𝑖 , 𝑏𝑖 , q𝑗 , and 𝑏 𝑗 of the received Θ𝑆 , following:

Δ𝜃 =
𝑒−𝑥𝑢𝑖 𝑗

1 + 𝑒−𝑥𝑢𝑖 𝑗
· 𝜕

𝜕𝜃
𝑥𝑢𝑖 𝑗 − 𝜆𝜃,

with
𝜕

𝜕𝜃
𝑥𝑢𝑖 𝑗 =


(q𝑖 − q𝑗 ) if 𝜃 = p𝑢 ,
p𝑢 if 𝜃 = q𝑖 , −p𝑢 if 𝜃 = q𝑗 ,
1 if 𝜃 = 𝑏𝑖 , −1 if 𝜃 = 𝑏 𝑗 .

It is worth noticing that Rendle [17] suggests, in a centralized
scenario, to adopt a uniform distribution (over K) to choose the
training triples randomly. The purpose is to avoid data traversed
item-wise or user-wise, since this may lead to slow convergence.
Conversely, in a federated approach, we required to train the model
user-wise since the training of each round of communication is
performed separately on each client 𝑢 knowing only data in K𝑢 .
This is the reason why, in FPL, the designer can control of the
number of triples 𝑇 used for training, to tune the degree of local
computation — i.e., how much the sampling is user-wise traversing.
(3) Transmission. The clients inU− send back to 𝑆 a portion of
the updates (ΔΘ𝑆,𝑢 ) for the computed item factor vector and item
bias. More in detail, since the training output of a triple (𝑢, 𝑖, 𝑗)
in BPR lets the server distinguish the consumed item 𝑖 from the
non-consumed one 𝑗 (for example just by analyzing the positive
and the negative sign of Δ𝑏𝑖 and Δ𝑏 𝑗 ), while they show the same
absolute value, we argue that sending all the updates computed
by 𝑢 may allow 𝑆 to reconstruct K𝑢 thus raising a privacy issue.
Since our primary goal is to put users in control of their data, FPL
proposes a solution to overcome this vulnerability. By sending
the sole update (Δq𝑗 ,Δ𝑏 𝑗 ) of each training triple (𝑢, 𝑖, 𝑗), user 𝑢
would share with 𝑆 indistinguishably negative or missing values,
which are assumed to be non-sensitive data. Furthermore, in FPL
we introduce the parameter 𝜋 , which allows users to control of the
number of consumed items to share with the central server 𝑆 . In
detail, 𝜋 works as a probability that the update ΔΘ𝑆,𝑢 contains a
specific positive item update (Δq𝑖 ,Δ𝑏𝑖 ) in addition to (Δq𝑗 ,Δ𝑏 𝑗 ).
(4) Global aggregation. 𝑆 aggregates the received updates in Q
and b to build the new model Θ𝑆 ← Θ𝑆 + 𝛼

∑
𝑢∈U− ΔΘ𝑆,𝑢 , with 𝛼
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Table 1: Characteristics of the datasets used for experiments:
|U|, |I |, and 𝑋+ are the number of users, items, and records.

Dataset |U | |I | 𝑋 + 𝑋+
|U|

𝑋+
|I |

𝑋+
|L|·|U|%

Brazil 17,473 47,270 599,958 34.34 12.69 0.00073%
Canada 1,340 29,518 63,514 47.40 2.15 0.00161%
Italy 1,353 25,522 54,088 39.98 2.20 0.00157%

being the learning rate (each row of Q and each element of b are
updated by summing up the contribution of all clients inU− for
the corresponding item).

4 EXPERIMENTS
Experimental Setting. FPL needs to be evaluated in a domain

that guarantees the availability of transaction data the user may
prefer to protect. In our view, the optimal domain would be that of
the Point-of-Interest (PoI), which concerns data that users usually
perceive as sensitive. Among the many available datasets, a good
candidate is the Foursquare dataset [19], which is often considered
as a reference for evaluating PoI recommendation models. To mimic
a federation of devices in a single country, we have extracted check-
ins for three countries, namely Brazil, Canada, and Italy to obtain
datasets with different size/sparsity characteristics. To evaluate
FPL, we have kept users with more than 20 interactions to avoid
the known CF cold-start limitations. We have split the datasets by
adopting a realistic temporal hold-out 80-20 splitting on a per-user
basis [7] (see training sets’ characteristics in Table 1).

To evaluate the efficacy of FPL, we have conducted the exper-
iments by considering non-personalized methods (random and
most popular recommendation), and different recommendation ap-
proaches, including the centralized BPR-MF implementation [17],
VAE [14], and FCF [2], which is, to date, the only federated recom-
mendation approach based on MF (since no source code is available,
we reimplemented and considered it in the reader’s interest). To
evaluate the impact of feedback deprivation on recommendation
accuracy, we have evaluated different values of 𝜋 in the range
[0.0, 1.0], with 𝜋 = 0.0 meaning that 𝑢 is not sharing any positive
feedback with 𝑆 , and 𝜋 = 1.0 meaning that 𝑢 is sharing the up-
dates on all positive items. Hence, we have considered two different
configurations regarding computation and communication:
• sFPL: it reproduces the centralized stochastic learning, where
the central model is updated sequentially; thus, we set |U− | = 1
to involve just one random client per round, and it extracts solely
one triple (𝑢, 𝑖, 𝑗) from its dataset (𝑇 = 1) for the training phase;
• pFPL: we enable parallelism by involving all clients in each round
of communication (U− = U); we keep 𝑇 = 1.

In Rendle et al. [17], authors suggest to set the number of triples
in one epoch of BPR to 𝑋+, which corresponds to the number of
optimizations steps. A particular choice is to randomly sampling
𝑇 = 𝑋 +

|U | triples per user. To compare federated training with BPR
and among configurations, we consider 𝑟𝑝𝑒 rounds of communica-
tion of FPL to be equivalent to one epoch of centralized BPR, if 𝑟𝑝𝑒
is set such that we perform the same overall number of optimization
steps. This results in 𝑟𝑝𝑒 = 𝑋+ for sFPL, and 𝑟𝑝𝑒 = 𝑋 +

|U− | for pFPL.
Reproducibility. For the splitting strategy, we have adopted a

temporal hold-out 80/20 to separate our datasets in training and
test set. Moreover, to find the most promising learning rate 𝛼 , we

have further split the training set, adopting a temporal hold-out
80/20 strategy on a user basis to extract her validation set. VAE
has been trained by considering three autoencoder topologies, with
the following number of neurons per layer: 200-100-200, 300-100-
300, 600-200-600. We have chosen candidate models by considering
the best models after training for 50, 100, and 200 epochs, respec-
tively. For the factorization models, we have performed a grid
search in BPR-MF for 𝛼 ∈ {0.005, 0.05, 0.5} varying the number
of latent factors in {10, 20, 50}. Then, to ensure a fair comparison,
we have exploited the same learning rate and number of latent
factors to train FPL and FCF, and we explored the models in the
range of {10, . . . , 50} iterations. We have set user- and positive item-
regularization parameter to 1

20 of the learning rate. The negative
item-regularization parameter is 1

200 of the learning rate, as sug-
gested by Anelli et al. [4].

Evaluation Metrics. We have evaluated the performance of FPL
under the accuracy and diversity perspective. The accuracy of
the models is measured by exploiting Precision (𝑃@𝑁 ) and Recall
(𝑅@𝑁 ). They respectively represent, for each user, the proportion
of relevant recommended items in the recommendation list, and
the fraction of relevant items that have been altogether suggested.
We have assessed the statistical significance of results by adopting
Student’s paired T-test considering p-values < 0.05 (see complete
results at https://split.to/sisinflab-fpl). The results are in general sta-
tistically significant but the differences among BPR-MF, sFPL, and
pFPL, which is a very important result. To measure the diversity of
recommendations, we have measured the Item Coverage (𝐼𝐶@𝑁 ),
and the Gini Index (𝐺@𝑁 ). 𝐼𝐶 provides the normalized number of
diverse items recommended to users. It also conveys the sense of the
degree of personalization [1]. Gini measures distributional inequal-
ity, i.e., how unequally different items a RS provides users with [5].
A higher value of 𝐺 corresponds to higher personalization [7].

Discussion. The goal of the experiments is assessing whether it
is possible to obtain a recommendation performance comparable to
a centralized pair-wise learning approach while allowing the users
to control their data. In this respect, Table 2 shows the accuracy
and diversity results of the comparison between the state-of-the-art
baselines and the experimental configurations of FPL presented in
Section 4. By focusing on accuracy metrics, we may notice that VAE
outperforms the other approaches in the three datasets. However,
who is familiar with VAE knows that, since it restricts training
data by applying k-core, it does not always produce recommenda-
tions for all the users. Moreover, it is important to investigate the
differences of FPL with respect to BPR-MF, which is a pair-wise
centralized approach, being FPL the first federated pair-wise rec-
ommender based on a factorization model. The performance of
BPR-MF against FPL, in the configuration sFPL, shows how Preci-
sion and Recall in sFPL are slightly outperforming BPR-MF while
achieving very similar diversity values. The consideration that the
performance is comparable is surprising since the two methods
share the sequential training, but sFPL exploits a 𝜋 reduced to 0.5,
0.1, and 0.4, respectively, for Brazil, Canada, and Italy. This behavior
is more evident in Figure 1, where the harmonic mean between
Precision and Recall (F1) is plotted for different values of 𝜋 . If we
look at the dark blue line, we may observe how the best result does
not correspond to 𝜋 = 1. When comparing pFPL with sFPL, we

https://split.to/sisinflab-fpl
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Table 2: Results of accuracy and beyond-accuracy metrics for baselines and FPL on the
three datasets. For each configuration of FPL, the experiment with the best 𝜋 is shown.
For all metrics, the greater the better.

Brazil Canada Italy
P@10 R@10 IC@10 G@10 P@10 R@10 IC@10 G@10 P@10 R@10 IC@10 G@10

Random 0.00013 0.00015 0.97567 0.70946 0.00030 0.00035 0.36639 0.26809 0.00030 0.00029 0.41055 0.28914
Top-Pop 0.01909 0.02375 0.00040 0.00020 0.04239 0.04679 0.00061 0.00030 0.04634 0.05506 0.00074 0.00035
VAE * 0.10320 0.13153 0.11642 0.02117 0.06060 0.06317 0.03537 0.00652 0.01459 0.02985 0.00647 0.00327
BPR-MF 0.07702 0.09494 0.05399 0.00756 0.03694 0.03650 0.04120 0.00998 0.04560 0.05458 0.00074 0.00036
FCF 0.03089 0.03749 0.01927 0.00095 0.03724 0.03836 0.01707 0.00174 0.03126 0.03708 0.01579 0.00158
sFPL ** 0.07757 0.09581 0.03345 0.00561 0.04515 0.04550 0.01528 0.00243 0.04701 0.05600 0.00071 0.00036
pFPL ** 0.07771 0.09582 0.04472 0.00638 0.04582 0.04637 0.01440 0.00213 0.04642 0.05465 0.00376 0.00056
* For Italy, VAE does not produce recommendations for all the users; thus, we followed the weighting
scheme proposed in prior literature [16]
** Best 𝜋 obtained for FPL variants (Br, Ca, It) are: sFPL = (0.5, 0.1, 0.4), pFPL = (0.8, 0.1, 1)
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Figure 1: F1 performance at differ-
ent values of 𝜋 in the range [0.1, 1].
Dark blue is sFPL, light blue pFPL.

observe that the increased parallelism does not affect the perfor-
mance significantly. As a concluding remark, we may affirm that
the proposed system can generate recommendations with a quality
that is comparable with the centralized pair-wise learning approach,
and that the training parallelism does not significantly affect results.
Compared to FCF, FPL generally behaves better while preserving
privacy to a greater extent, since sharing gradients of all rated
items in FCF may leak raw data [6]. Afterwards, we varied 𝜋 in the
range [0.1, . . . , 1.0] to investigate how removal of the updates for
consumed items affects the final recommendation accuracy, and
we plotted the accuracy performance by considering F1 in Figure 1.
The best performance rarely corresponds to 𝜋 = 1. On the con-
trary, the training reaches a peak for a certain value of 𝜋 , and then
the system performance decays in accuracy when increasing the
amount of shared positive updates. In rare cases, e.g., sFPL, and
pFPL for Brazil dataset, the decay is absent, but results that are
very close for different values of 𝜋 . The general behavior suggests
that the system learning exploits the updates of positive items to
absorb information about popularity. This consideration is coherent
with the mathematical formulation of the learning procedure, and
it is also supported by the observation that for Canada and Italy
FPL reaches the peak before with respect to Brazil. Indeed, Canada
and Italy datasets are less sparse than Brazil, and the increase of
information about positive items may lead to push up too much the
popular items (this is a characteristic of pair-wise learning), while
the same behavior in Brazil can be observed for 𝜋 ≃ 1. Ultimately,
users can receive high-quality recommendations, also when disclosing
a small amount of sensitive data.

5 CONCLUSION AND FUTUREWORK
We proposed FPL, a novel federated learning framework that ex-
ploits pair-wise learning for factorizationmodels. We have designed
a model that leaves the user-specific information of the original
factorization model in the clients’ devices so that a user may be
completely in control of her sensitive data and could share no posi-
tive feedback with the server. The framework can be envisioned as
a general factorization model in which clients can tune the amount
of information shared among devices. We have conducted an ex-
ploratory, but extensive, experimental evaluation to analyze the
degree of accuracy, the diversity of the recommendation results,
the trade-off between accuracy, and amount of shared transactions.
We have assessed that the proposed model shows performance
comparable with several state-of-the-art baselines and the classic

centralized factorization model with pair-wise learning. The evalua-
tion shows that clients may share a small portion of their data with
the server and still receive high-performance recommendations.
We believe that the proposed privacy-oriented paradigm may open
the doors to a new class of ubiquitous recommendation engines.
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