
On the Effect of Incompleteness to Check
Requirement-to-Method Traces

Mouna Hammoudi
Johannes Kepler University

Linz, Austria
mouna.hammoudi@jku.at

Christoph Mayr-Dorn
Johannes Kepler University

Linz, Austria
christoph.mayr-dorn@jku.at

Atif Mashkoor
Johannes Kepler University

Linz, Austria
atif.mashkoor@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
Requirement-to-method traces reveal the code location(s)
where a requirement is implemented. This is helpful to soft-
ware engineers when they have to perform tasks such as
software maintenance or bug fixing. Indeed, being aware of
the method(s) that implement a requirement saves engineers’
time, as it pinpoints the exact code region that needs to
be edited to perform a bug fix or a maintenance task. En-
gineers produce traces manually as well as automatically.
Nevertheless, traces are incomplete. This limits the amount
of information that could be used by an automated technique
to check further traces. Therefore, since traces are incomplete,
we would like to study the effect of incompleteness on the
automated assessment of requirement-to-method traces. In
this paper, we apply machine learning on either incomplete
or complete tracing information and we evaluate the effect
of incompleteness on checking trace information. We demon-
strate that the use of complete traces might yield a higher
precision but yields a lower recall. Also, the use of incomplete
traces yields a higher recall but a lower precision.

CCS CONCEPTS
• Software and its engineering → Software creation and man-
agement;

KEYWORDS
Traceability, Machine Learning, Requirement-to-method traces

ACM Reference Format:
Mouna Hammoudi, Christoph Mayr-Dorn, Atif Mashkoor, and Alexan-
der Egyed. 2021. On the Effect of Incompleteness to Check Requirement-
to-Method Traces. In The 36th ACM/SIGAPP Symposium on
Applied Computing (SAC ’21), March 22–26, 2021, Virtual Event,

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8104-8/21/03.
https://doi.org/10.1145/3412841.3442021

Republic of Korea. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3412841.3442021

1 INTRODUCTION
Traceability reveals the code region where a requirement is
implemented. Traceability facilitates program understanding
and change impact analysis. It is most beneficial during soft-
ware evolution when engineers tend to be the least informed
about code. Researchers indicate that engineers who have
little understanding of the code tend to apply changes to
inappropriate code regions, which leads to errors, software
decay, and wasted effort [20, 26]. Tracing relationships be-
tween code and requirements are reported under the form
of requirement-to-code matrices (RTMs) [13]. Multiple stan-
dards (such as CMMI level 3) [5, 9, 22] recommend the
creation of requirement-to-method trace matrices indicating
the code region where every requirement is implemented.
Nevertheless, the benefits of requirement-to-method traces
are contingent on their availability, completeness, and correct-
ness. Correct traces are needed to ensure that engineers are
making changes to the appropriate code regions. Complete
traces include the tracing relationship of every requirement
to every code region. Regrettably, there is no automated
technique generating complete and correct traces at an ac-
ceptable quality [6, 10, 12, 21, 24]. Thus, as of today, the most
widespread technique is to manually gather traces. However,
this technique is inefficient as it induces errors, entails high
effort, and is not complete. For instance, one of our case
studies is iTrust, which is a client server application that has
4,907 Java methods. Considering 34 of its requirements, engi-
neers would need to manually produce 4, 907 × 34 = 166, 838
requirement-to-method traces to precisely indicate the trac-
ing value for every requirement-to-method entry for iTrust.
Reporting the trace value for every entry within a trace ma-
trix [13] is so overwhelming that engineers tend to create
incomplete requirement-to-method trace matrices, leaving
many requirement-to-method entries undefined.

Researchers have devised manual as well as automated
techniques to check requirement-to-method traces and ensure
their correctness. However, requirement-to-method traces
have various levels of incompleteness [13]. Therefore, we
would like to study the effect of incompleteness on the ability

1465

This work is licensed under a Creative Commons Attribution-ShareAlike
International 4.0 License.

https://doi.org/10.1145/3412841.3442021
https://doi.org/10.1145/3412841.3442021
https://doi.org/10.1145/3412841.3442021
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3412841.3442021&domain=pdf&date_stamp=2021-04-22

to check requirement-to-method traces. To the best of our
knowledge, no other researchers have considered the effect
of incompleteness on checking requirement-to-method traces
and we believe our work to be the first one that does so.

Researchers demonstrated that there is a correlation be-
tween the code structure (method calls) and requirement-to-
method traces [13]. For instance, if all of a method’s callers
and all its callees have a Trace to a requirement, then there is
a high probability that the method under consideration also
traces to the same requirement. Therefore, we can learn from
such correlations between the code structure and the traces
to check further requirement-to-method traces. Neverthe-
less, since traces are incomplete, we would like to investigate
how this learning process is impacted by the presence of in-
completeness within requirement-to-method traces. In other
terms, we would like to study the variations in the preci-
sion and recall depending on the presence or the absence of
incompleteness within our traces.

In this paper, we investigate how incompleteness affects
the ability of our technique to learn about the correlations
between the code structure and the requirement-to-method
traces. We show that complete trace data might yield a higher
precision but yields lower recall. Also, we demonstrate that
incomplete trace data yields a higher recall but a lower preci-
sion. As input, our technique takes (1) a training set: (some)
requirement-to-method traces and (2) characteristics about
the code structure (i.e., mainly method calls) which are de-
rived automatically by parsing the source code. As output,
our technique provides trace checking for the requirement-to-
method entries within the test set. We evaluate our technique
on four open-source systems made of 7.2-72 KLOC represen-
tative of software developed in industry.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our technique, Section 3 evaluates our
technique, Section 4 presents the related work and finally,
Section 5 provides conclusions.

2 TECHNIQUE
In the following section, we first define our trace types, we
provide a motivating example and we define the features used
by our technique to learn about trace information.

2.1 Trace Types
Requirement-to-method traces are represented under the
form of matrices- called requirement-to-method trace ma-
trices (RTMs). Table 1 represents an example of such an
RTM for a Train Ticket Management system (the exam-
ple we use in this paper). The rows in the RTM represent
the different methods of the system and the columns repre-
sent the different requirements under consideration. We take
into consideration requirement 1: “Proceed to payment and
get ticket checked by controller” and requirement 2: “Pay
fine”. Every RTM entry shows the tracing relationship for a
given method and a given requirement. We use the terms “T
trace”, “N trace”, and “U trace” to respectively designate
Trace, NoTrace and, Undefined tracing relationhips between

Table 1: Requirement-to-Method traces for the Train Ticket-
Management System (an illustration)

Method Requirement 1 Requirement 2
1-letPassengerIn T N
2-showTicketTo. T U

3-proceedToPayment N U
4-proceedToPayment N U

5-scanTicket T N
6-stampTicket T U
7-getReceipt T U

a requirement and a method. A T trace signifies that the
method implements the requirement under consideration. For
instance, the methods 2-proceedToPayment and 7-getReceipt
have T traces to requirement 1. An N trace signifies that the
method of interest does not implement a given requirement.
For instance, method 3-letPassengerIn has an N trace to re-
quirement 1. A third possible state specific to our work is a U
trace, which signifies that it is uncertain if a requirement has
a T trace or an N trace to a given method. For instance, it is
uncertain whether 2-proceedToPayment and 3-letPassengerIn
have T traces or N traces to requirement 2. U traces are
ignored in literature as automated techniques only focus on
the generation of T traces assuming that all of the remain-
ing requirement-to-method entries are N traces. However, U
traces are frequent as engineers besides automated techniques
rarely generate a complete requirement-to-method trace ma-
trix. This motivates our technique’s output of T traces, N
traces, and U traces. Since our technique might not generate
T trace or N trace checking for some requirement-to-method
entries, it would be better to assign U traces to such entries
rather than enforcing a T trace or an N trace decision. Our
use of U traces and N traces represents the most important
distinction between our technique and others, as traditional
techniques only generate T traces, assuming that all of the
remaining requirement-to-method traces are N traces.

2.2 Motivating Example - Code Structure
We apply our technique on the different features characteriz-
ing the code structure of our case studies. Our technique relies
on the different features characterizing the code structure
and learns about the correlations between this code structure
and the requirements.

Our technique requires little information about the code
structure that is easily derived automatically. The Train
Ticket Management system is represented in Figure 1 and
contains five classes and seven methods. Each class is rep-
resented by a rectangle with its top part showing the class
name and its bottom part listing the methods within the
class. The letters T, N, and U written next to each method
name respectively represent T traces, N traces, and U traces
to the requirement under consideration. We observe in Fig-
ure 1 that some methods call each other. For example, 1-
letPassengerIn calls 3-proceedToPayment (1 and 3 are IDs
that we use to differentiate same named methods within

1466

distinct classes). We say that 1-letPassengerIn is the caller of
3-proceedToPayment, and reciprocally, 3-proceedToPayment
is the callee of 1-letPassengerIn. The solid-line arrows in
Figure 1 denote method calls, while the dashed line arrow
denotes the relationship between an interface method and
its implementation. Our technique checks requirement-to-
method traces based on the learned correlations between the
requirement-to-method trace value and the trace values of
the method’s calling relationships. We notice that we could
in ideal cases have complete trace information for all the
requirement-to-method traces as shown in Figure 1 when
considering requirement 1 as shown in Table 1. However, in
other cases, we could have U traces for some requirement-
to-method traces as shown in Figure 2 (Requirement 2 in
Table 1), in which the tracing information is only specified
for one method out of seven. We define three keywords in
what follows:

Definitions:
∙ Complete trace Neighborhood This refers to requirement-

to-method entries that do not have any Undefined traces
within their callers and callees. For instance, in Figure 1,
method 6-stampTicket() is called by 2-showTicket.() and
calls 7-getReceipt(). Both methods 2-showTicket.() and
calls 7-getReceipt() have T traces to requirement 1 as
shown in Table 1. Thus, they do not have any Us within
their callers and callees and we state that method 6-
stampTicket() has a complete trace neighborhood when
considering requirement 1.

∙ Incomplete trace Neighborhood This refers to requirement-
to-method entries that have one or more Undefined traces
within their callers or callees. For instance, considering the
same example of method 6-stampTicket() in Figure 2, both
methods 2-showTicketToController() and 7-getReceipt()
have U traces to requirement 2. Thus, we state that method
6-stampTicket() has an incomplete trace neighborhood
when considering requirement 2.

∙ Mixed Trace Neighborhood This refers to requirement-to-
method entries that are chosen randomly regardless of
whether they have a complete or an incomplete trace neigh-
borhood.

Figure 1: Code Structure of the Train Ticket Management
System with Complete trace information (Requirement 1 in
Table 1)

2.3 Random Forest Technique
We apply a machine learning technique to evaluate the impact
of incompleteness on checking requirement-to-method traces.

Figure 2: Code Structure of the Train Ticket Management
System with Incomplete trace information (Requirement 2 in
Table 1)

In order to choose which machine learning technique to use,
we compared the performance of decision trees, naive bayes,
K nearest neighbors, VSM, LSI, and random forest. The best
precision and recall was obtained after using random forest [8].
Thus, we choose to apply the random forest technique in
order to evaluate the impact of incompleteness on checking
requirement-to-method traces. The source code along with
the input file used for data processing are available online1.

Our training set consists of a set of features to learn
about the correlations between the code structure and the
requirement-to-method traces. These features characterize
the code structure. For instance, one rule that our technique
could learn is that if a method has all its callers having T
traces to a requirement, then the method under consideration
also has a T trace to the same requirement. In the following,
we enumerate the features that our technique relies on, in
order to derive the set of correlations between these feature
values and the trace value for a given requirement-to-method
entry.
∙ Class NTU: This refers to the trace value of the owner

class of a method considering a given requirement. In other
words, this refers to the trace value of the requirement-to-
class entry.

∙ Quantities of T, N and U within Callers: This feature char-
acterizes the amounts of T traces, N traces, and U traces
within a method’s callers.

∙ Quantities of T, N and U within Callees: This feature char-
acterizes the amounts of T traces, N traces, and U traces
within a method’s callees.

∙ Quantities of T, N and U within Callers’ Callers: This fea-
ture characterizes the amounts of T traces, N traces, and U
traces within the union of the callers’ callers of a method.

∙ Quantities of T, N and U within Callees’ Callees: This fea-
ture characterizes the amounts of T traces, N traces, and U
traces within the union of the callees’ callees of a method.

3 EVALUATION
3.1 Research Questions
In order to evaluate the correctness, completeness, and ap-
plicability of our technique, the following research questions
are addressed:

1https://github.com/jku-isse/SAC2021

1467

∙ RQ1: What is the distribution of incompleteness within the
requirement-to-method trace matrices of our case studies?
Since incompleteness is widespread within requirement-to-
method trace matrices, it is important to quantify this
incompleteness, as this could help us understand how to
improve the precision and recall of techniques used for
automated checking.

∙ RQ2: What is the effect of an incomplete versus a complete
trace neighborhood on the performance of our technique?
As previously stated, requirement-to-method traces have
various levels of incompleteness. Therefore, it is crucial to
evaluate how our technique performs when applied to an
incomplete versus complete training or test sets.

∙ RQ3: How does the amount of incompleteness within a
requirement-to-method trace matrix affect the use of our
technique for cross project learning? Since we have four
case studies and since the second research question does not
distinguish among case studies, we are interested in how our
technique performs when applied separately on each case
study. This will help us understand if the technique using
data with high, respectively low incompleteness affects the
quality of estimates when applied to the remaining case
studies.

3.2 Study Design
Figure 3 shows the process followed in order to conduct our
study. First of all, the source code of each system is auto-
matically parsed using the open source library Spoon [23].
This allows us to extract the features used by our technique,
notably the list of methods as well as the method calls within
the source code. Then, the methods are provided to the devel-
opers who produce requirement-to-method traces (RTM) for
each system, meaning that they specify the tracing informa-
tion for each method considering the different requirements
for the given system. The RTMs for each system can then
be divided into mixed, incomplete, and complete sub-RTMs,
which respectively represent requirement-to-method traces
with mixed, incomplete, and complete trace neighborhoods.
For RQ1, we quantify the amount of incompleteness within
the trace neighborhoods for our requirement-to-method traces
as shown in Tables 4 and 5. In order to answer RQ2, we ran-
domly select 50% of our RTMs as a training set and we select
the remaining 50% as a test set. In order to answer RQ3, we
select one random system as the training set and we consider
the remaining three systems as the test set. Our TraceChecker
technique learns about the correlations between trace values
and features within the training set and checks further traces
within the test set.

3.3 Case Studies
To address these research questions, we applied our technique
on four case studies. The investigated systems are written in
Java and are open source. The systems under consideration
are Chess, Gantt, iTrust, and JHotDraw (Table 2). Chess [1]
is an application of the chess game in which two players
compete on a 2D board. Gantt [2] is a system that allows one

Table 2: Information on the Four Study Systems

Chess Gantt iTrust JHotDraw
Language Java Java Java Java

KLOC 7.2 41 43 72
#Methods 752 5013 4913 6520

#Interfaces 23 209 5 99
#Classes 104 666 718 663

#Superclasses 18 180 135 296
#Method Calls 1042 7578 12093 11413
#Sample Reqs 8 18 34 21

rtmm Size 6016 90234 167042 136920

Table 3: Quantifying the requirement-to-method rtmm Input
Gold Standard

Sys. Tm
(#)

Nm
(#)

Um
(#) Total Tm

(%)
Nm
(%)

Um
(%)

Chess 563 2389 3064 6016 9.36 39.71 50.93
Gantt 343 23166 66725 90234 0.38 25.67 73.95
iTrust 307 7173 159562 167042 0.18 4.30 95.52
JHot. 439 12219 124262 136920 0.32 8.92 90.76

to manage calendars and resources. iTrust [3] is a system that
allows patients to monitor their medical history. JHotDraw [4]
is a 2D graphics system that allows its user to draw 2D graph
structures, such as architecture and design models.

We selected these case studies as they are nontrivial with
regards to their code sizes (between 7 and 72 KLOC in size);
the high amount of lines of code (LOC) is representative of
software developed in industry. Furthermore, 81 functional
requirements were available for these systems along with their
requirement-to-method traces. In the following, we refer to
these ground-truth traces as our gold standard and we use
them to evaluate the correctness of our technique’s output.

We evaluate our technique by comparing its estimations
against the gold standard. For Chess, we hired a master
student at Johannes Kepler University and we prompted
him to produce requirement-to-method traces. This was an
easy task to achieve for the student given the small size of
Chess. Indeed, the student could easily familiarize himself
with the source code of Chess and specify which group of
methods trace to any given requirement. For Gantt and
JHotDraw, we hired the key developers of these systems
and we asked them to list the key requirements for these
systems and produce requirement-to-method traces for these
requirements. The developers were given an entire week to
create the requirement-to-method traces (our gold standard).
The developers were paid for performing these tasks. For
iTrust, the list of the code’s core functionalities as well as the
list of requirement-to-method traces were all made public on
the project’s website by the systems’ developers [29]. Given
that iTrust is a commonly used system in traceability research,
we conjecture that the quality of these traces is high. For all
of our case studies, developers did not assign trace values for

1468

Figure 3: Study Design Steps

all requirement-to-method traces and left some undefined (U
traces). Indeed, trace information was not specified for all the
methods within inner Java classes, interfaces, and abstract
classes.

Table 3 presents details about the amount of requirement-
to-method traces available to us (gold standard available for
comparison with the output of our technique). As is often
the case, the requirement-to-method rtmm (the subscript m
stands for method) tends to be incomplete. The high per-
centage of U traces for our systems is a normal phenomenon
since engineers do not specify complete tracing information
between requirements and code [13]. There could be a high
proportion of U traces as is the case for iTrust. In spite of this
incompleteness, the gold standard presents us with a quantity
of useful data that is more than sufficient. For instance, for
JHotDraw’s rtmm, 12,658 of 136,920 entries have T/N trace
information. Also, we notice that we have a low number of
requirement-to-method entries having T traces compared to
requirement-to-method traces having N traces as shown in
Table 3. The reason for this is that a small area of the code
(i.e, a few methods) implements a given requirement and the
majority of the remaining methods do not. For instance, there
could only be two methods implementing the requirement
and 1,000 other methods not implementing it. This justifies
the imbalance between the proportion of T and N traces at
the method level. The traces used for each case study can be
found as Supporting Online Material.2

2https://doi.org/10.5281/zenodo.4047965

3.4 Data Preparation
In order to quantify the amounts of callers and callees of
a requirement-to-method trace, we consider the traces of
the callers and callees of every requirement-to-method trace
and we categorized them into four categories: H (High), M
(Medium), L (Low), and N (None). We define the follow-
ing four combinations of callers and callees (NoCallersUNo-
CalleesU, Low, Medium, and High Combinations) depending
on the different amounts of U traces within the callers and
callees.

Combination Definition
NoCallersU NoCalleesU 𝐶𝑎𝑙𝑙𝑒𝑟𝑠N & CalleesN

LowCombination
(︀
CallersL &

(︀
CalleesL

‖ CalleesN)︀)︀
‖

(︀
CallersN & CalleesL)︀

MediumCombination
(︀
CallersM &

(︀
CalleesM

‖ CalleesL ‖ CalleesN)︀)︀
‖

(︀
CallersN ‖

(︀
CallersL

& CalleesM)︀)︀
HighCombination

(︀
CallersH &

(︀
CalleesH

‖ CalleesM

‖ CalleesL ‖ CalleesN)︀)︀
‖

(︀
CallersH &

(︀
CalleesM

‖ CalleesL ‖ CalleesN)︀)︀
We analyzed the patterns and the general distribution of

the amount of U traces within our callers and callees and we
created the following definitions. These definitions represent
the variables used in the formulas above:

1469

Callees𝑁 ‖ Callees𝑁
= 0

Callers𝐿 ‖ Callees𝐿
= 1

1 < Callers𝑀 ‖ Callees𝑀 ≤ 5

5 < Callers𝐻 ‖ Callees𝐻

3.5 Results
3.5.1 Quantities of U traces within callers and callees. Tables 4
and 5 both show the percentages of requirement-to-method
traces having either non-existing (No Callers U No Callees U),
low, medium, or high combinations of U traces within their
callers and callees. Table 4 shows the percentages of T or N
requirement-to-method traces having different amounts of
Undefined callers and callees. Table 5 shows the percentages
of U requirement-to-method traces having different amounts
of Undefined callers and callees.

As we can notice from Table 4, except for Chess, the
majority of requirement-to-method T or N traces have either
low, medium, or high combinations of U traces within their
callers and callees. Indeed, for Chess, we notice that 70% of
the traces do not have any U traces within their callers and
callees. Also, the traces for Gantt and JHotDraw respectively
have 43% and 36% of their callers and callees not having
any U traces. However, we notice that iTrust’s traces only
have 3% of their callers and callees not having any U traces.
Also, we notice that the majority of traces for iTrust have a
medium combination (52%) of U traces within their callers
and callees.

From Table 5, we notice that the majority of U requirement-
to-method traces have either low, medium, or high combina-
tions of U traces within their callers and callees. Again, the
traces for iTrust have the lowest percentage (12%) of U traces
within their callers and callees. On the other hand, Chess,
Gantt, and JHotDraw have higher percentages of traces with
no U traces within their callers and callees. Indeed, Chess’,
Gantt’s, and iTrust’s traces respectively have 42%, 31%, and
24% of NoCallers U NoCallees U traces within their callers
and callees. Thus, this demonstrates the strong presence of
incompleteness within requirement-to-method traces. This
motivates the need for us to investigate the effect of in-
completeness on the ability to check requirement-to-method
traces.

3.5.2 Evaluating the impact of incompleteness on trace check-
ing. We selected all entries within our test set that our tech-
nique estimated to be either T or N traces and we compared
them with the gold standard. We then derived the number
of true positives, true negatives, false positives, and false
negatives, separately for T traces and N traces, which in turn
gave us the precision and recall values of our technique (see
Table 6).

We will clarify our evaluation from the T trace perspective
first. If our estimation and our gold standard are T traces,
then this is a True Positive (TPT). If our estimation is an N
trace and our gold standard is an N trace, then this is a True

Table 4: Percentages of Requirement-to-Method T traces or N
traces with Undefined trace Combinations within their Callers
and Callees

Sys. NoCallersU
NoCalleesU

Low
Comb.

Medium
Comb.

High
Comb.

Chess 70 17 8 5
Gantt 43 28 23 6
iTrust 3 11 52 35
JHot. 36 22 29 12

Table 5: Percentages of Requirement-to-Method U traces
with Undefined trace Combinations within their Callers and
Callees

Sys. NoCallersU
NoCalleesU

Low
Comb.

Medium
Comb.

High
Comb.

Chess 42 36 20 3
Gantt 31 33 28 8
iTrust 12 22 48 17
JHot. 24 29 34 13

Negative (TNT). If our estimation is a T trace and our gold
standard is an N trace, then this is a False Positive (FPT). If
our estimation is either an N trace or a U trace and our gold
standard is a T trace, then this is a False Negative (FNT).

From the N trace perspective, we have a True Positive
(TPN) when both our estimation and our gold standard are
N traces. We have a True Negative (TNN), when both our
estimation and our gold standard are T traces. We have a
False Positive (FPN) when our estimation is an N trace and
our gold standard is a T trace. We have a False Negative
(FNN) when our estimation is either a T trace or a U trace
and our gold standard is an N trace.

We then apply the standard formulas for calculating pre-
cision (Prec.), recall (Rec.), and the F1 measure (F1), once
for T traces (Prec.T, Rec.T, F1T), and once for N traces
(Prec.N, Rec.N, F1N) as shown in Table 6.

3.5.3 The use of different combinations. We apply our tech-
nique using different combinations of complete and incom-
plete trace neighborhoods within the training set and the
test set. Table 6 shows the average precision, recall, and F1
measures of our technique when using methods with different
combinations of complete and incomplete trace neighbor-
hoods over 10 runs of each combination. We also used equal
sizes for the training set and the test set.

3.5.4 Technique Performance (Table 6). Table 6 shows the
average T trace and N trace precision, recall, and F1 measure
results obtained after applying our technique using different
combinations in the types of the training and the test sets,
as explained in Section 3.5.3 across ten iterations. The values
between parentheses within each cell apart from the headers
represent the standard deviations obtained for the precision,
recall, and F1 measures across ten iterations.

1470

Table 6: Average Precision (Prec.T), Recall (Rec.T), and F1 score T of our technique across ten iterations using different combi-
nations of complete, incomplete, and mixed trace neighborhoods. Standard deviation given in brackets.

Combination Prec.T Rec.T F1T Prec.N Rec.N F1N
1 Mixed Train. Set+Mixed Test Set 77 (3.7) 66 (2.8) 71 (1.6) 99 (0.1) 99 (0.2) 99 (0.1)
2 Comp. Train. Set+Incomp. Test Set 77 (2.1) 60 (3.0) 68 (2.0) 99 (0.1) 99 (0.1) 99 (0.1)
3 Incomp. Train. Set+Comp. Test Set 69 (8.1) 73 (14.3) 70 (4.5) 99 (0.5) 99 (0.6) 99 (0.1)
4 Incomp. Train. Set+Mixed Test Set 74 (3.4) 71 (7.7) 72 (3.2) 99 (0.3) 99 (0.2) 99 (0.1)
5 Comp. Train. Set+Comp. Test Set 87 (1.6) 63 (1.7) 73 (1.2) 99 (0.1) 100 (0.1) 99 (0.1)
6 Incomp. Train. Set+Incomp. Test Set 77 (2.5) 71 (3.6) 74 (2.4) 99 (0.1) 99 (0.1) 99 (0.1)

Table 7: Precision (Prec.T) and Recall (Rec.T) and F1T of the technique when applied separately on each project using either a
Mixed Training Set or a Complete Training Set

TrainingSet TestSet
Separate Project Learning

with Mixed Training Set
Separate Project Learning

with CompleteTraining Set
Prec.T Rec.T F1T Prec.T Rec.T F1T

Chess
Gantt 61 55 58 79 46 58
iTrust 85 70 77 88 66 76

JHotDraw 79 49 61 89 41 56

Gantt
Chess 73 73 73 72 68 70
iTrust 93 62 74 85 46 60

JHotDraw 79 53 63 89 38 53

iTrust
Chess 69 88 77 77 68 72
Gantt 46 86 60 81 43 57

JHotDraw 76 88 81 89 36 51

JHotDraw
Chess 67 74 70 68 74 71
Gantt 40 72 52 43 81 56
iTrust 46 82 59 64 75 69

PrecisionT, RecallT and F1T:
Default Combination (Combination 1): The first combina-

tion in Table 6 shows the results obtained when using a
default combination with a mixed training set and a mixed
test set. This corresponds to randomly selecting a training
set and a test set without enforcing them to have complete
or incomplete trace neighborhoods. The T trace precision,
recall, and F1 values are respectively 77%, 66%, and 71%.

Complete Training Set (Combinations 2 and 5): We notice
that using a complete trace neighborhood as a training set
might yield a higher precision but yields a lower recall. In-
deed, we notice through combinations 2 and 5 that the T
trace precision is respectively 77% and 87%. However, the
recall is respectively 60% and 63%. These recall values con-
stitute the two lowest ones across all of our six combinations.
The reason for this lower recall is the absence of important
information that can only be acquired thanks to the use of
an incomplete training set. This leads to a lower amount of
overall estimations made when using a complete training set,
which in turn leads to a higher precision and a lower recall.

Incomplete Training Set (Combinations 3, 4, and 6):
Higher recall values are obtained when using an incom-

plete training set (combinations 3, 4, and 6) given that the
incompleteness within the training set allows a richer learning

process that is later applied to the test set. Using an incom-
plete training set and a complete test set (combination 3)
allows us to achieve 69% of precision and 73% of recall. The
recall using combination 3 is higher than the one obtained
using combinations 2 and 5 as we are correctly retrieving a
higher amount of T traces. However, the precision is lower,
since the nature of our training set is different than the one
of the test set. The training set is incomplete while the test
set is complete, thus, this explains that some estimations are
incorrectly made.

Also, we notice that the use of an incomplete training set
and a mixed test set (Combination 4) yields higher values
of precision and recall, which are respectively 74% and 71%.
Again, these higher values are obtained thanks to the infor-
mation acquired from the incomplete training set that are
also applicable to the test set.

Finally, we notice that the last combination (combination
6), which is specific to using both incomplete training and
test sets, yields 77% of precision and 71% of recall, and yields
the highest F1T score (74%). Again, this is explained by the
relevance of the information learned from the training set to
the test set. Thus, since the training and test sets are similar
(both incomplete), the information learned from the training
set is directly applicable to the test set.

1471

PrecisionN, RecallN and F1N: We notice that the N trace
precision, recall, and F1 measures are excellent (99%) using
any of the six combinations shown in Table 6. This is ex-
plained by the fact that N traces are ten times more frequent
than T traces [13], which leads to an easier checking process
and results in an increase of the precision, recall, and F1
measures of these estimations.

3.5.5 Technique Performance for Cross Project Learning (Ta-
ble 7). Table 7 shows the results obtained after using one
project as the training set and each of the remaining three
projects as the test set. Furthermore, we show the variations
of the precision (Prec.T), recall (Rec.T), and F1 (F1T) mea-
sures depending on (1) the use of a mixed training set or (2)
the use of a complete training set. We omit N traces, given
that the precision and recall of N traces is close to 100% as
shown in Table 6.

On average, we notice that the use of a mixed training set
compared to a complete training set yields a lower T trace
precision (an average of 68% against 77%) and a higher T
trace recall (an average of 71% against 57%). This confirms
the conclusions drawn from Table 6. We notice that the T
trace precision when using a mixed training set is always lower
than the T trace precision when using a complete training
set, except for two outliers encountered when using Gantt as
a training set and using either Chess or iTrust as a test set.

Similarly, we notice that the recall obtained when using
a mixed training set is always greater than or equal to the
recall obtained when using a complete training set, except for
one outlier encountered when using JHotDraw as a training
set and Gantt as a test set.

3.6 Discussion and Lessons Learned
The use of a complete training set allows us to yield a higher
precision given that we are more successful in making correct
estimations. However, this leads to a decrease in the recall
given that we are able to retrieve less requirement-to-method
traces.

Using an incomplete training set allows us to increase
the recall obtained after applying our technique on the test
set. This is thanks to the information acquired through the
presence of incomplete trace neighborhoods. However, we
achieve a lower precision when using an incomplete trace
neighborhood compared to a complete one.

Table 7 reconfirms the results previously drawn from Table
6. The use of a complete training set yields an increase in
the precision but a decrease in the recall, while the use of a
mixed training set yields a decrease in the precision and an
increase in the recall. As such, we do not notice an effect of
the dataset’s amount of incompleteness on whether a mixed
or a complete training set performs better.

On the one hand, the mixed training allows our technique
to learn how to deal with U traces and thus matches more
situations, hence ultimately recommending a higher amount
of T traces, which explains the higher recall. On the other
hand, the use of a complete training set limits the amount of
information learned with respect to incompleteness, which

results in the estimations of a lower amount of requirement-
to-method T traces as our technique only matches situations
with low incompleteness. Having learned on situations with
little or no incompleteness, the technique can give then more
accurate estimations in these situations (hence the higher
precision).

3.7 Threats to Validity
Internal Validity We counter researcher bias by relying on
data originating from different open source systems and cre-
ated by developers instead of this paper’s authors. The corre-
lations between the features for the requirement-to-method
entries and their trace values were learned based on a training
set that is different from the test set.

External Validity The case studies were created by different
developers. Furthermore, these systems are representative of
software developed in industry since their complexity is high.
iTrust even includes network communication that obscures
method calls (method calls cannot be observed between the
client and the server). Even though all of our case studies have
Java in common, our technique is not only applicable to Java.
Indeed, our technique is primarily based on method calls,
which are programming constructs encountered in other not
necessarily object oriented programming languages, such as
Python, C, etc. The only cases in which our technique is not
applicable are relative to situations in which information is
not transmitted via method calls. For example, our technique
cannot be applied if information is transmitted via message
passing or data access. For all these reasons, there is no
major limitation in applying our technique to other case
studies making use of method calls and written in a language
different than Java.

4 RELATED WORK
To the best of our knowledge, no existing work addresses the
effect of incompleteness on the estimation of requirement-to-
method traces by applying machine learning in relation with
the code structure. However, there are similarities between
our technique and others. Indeed, Ghabi and Egyed [13]
present a technique for specifying incorrect or missing traces
based on method calls within the source code. Nevertheless,
Ghabi and Egyed do not investigate the effect of incomplete-
ness on the estimation of traces. Furthermore, our technique
is different from theirs, given that our technique makes esti-
mations based on 14 features specific to calling relationships.
This allows us to consider all the possible cases of trace value
combinations for a method’s calling relationships. On the
contrary, Ghabi and Egyed [13] only consider four possible
combinations for a method’s calling relationships. Therefore,
our technique makes more accurate and precise estimations
by considering all possible trace value combinations for a
method’s calling relationships. Another difference between
our technique and Ghabi’s and Egyed’s is that our technique
considers parsed method calls, as opposed to Ghabi’s and
Egyed’s technique which considers input method calls result-
ing from program execution. Using parsed method calls is

1472

cheaper than using executed method calls as the program
execution is not required. Furthermore, parsed method calls
represent a superset of the executed ones since parsed method
calls constitute the total calling relationships of a method,
while executed method calls are specific to the execution
path undertaken during the program execution. For all these
reasons, our technique has a richer set of method calls as an
input compared to Ghabi’s and Egyed’s technique. This richer
input allows our technique to make more accurate and precise
estimations. This explains our technique’s higher precision
and recall compared to Ghabi’s and Egyed’s technique.

It has been demonstrated that manually capturing traces
is an expensive and time consuming process [10, 12]. This has
prompted the need for automated trace generation techniques
that rely on information retrieval [6, 11]. Nevertheless, all
these techniques only focus on the creation of requirement-to-
class T traces and assume that all of the remaining unchecked
traces are N traces. [6, 10–12, 21]. Furthermore, these tech-
niques have a lower precision and recall compared to our
technique, since they rely on text similarities among require-
ments and source code [10].

Ali et al. present Trustrace [6], which is a technique that
uses both information retrieval and mining software reposito-
ries to generate requirement-to-class traces. However, Trustrace
is limited since its success is contingent on the quality of the
data within software repositories [6]. Other researchers [21]
rely on the use of feedback from engineers to produce requirement-
to-class traces derived from information retrieval techniques.
Again, all of these techniques only focus on the creation of
T traces, assuming that all of the unchecked traces are N
traces. Also, these techniques do not generate complete and
correct requirement-to-class traces.

Some techniques are specialized in the recovery of traces
between code and artifacts other than requirements; or be-
tween requirements and artifacts other than code. For in-
stance, Cleland-Huang et al. propose a technique using web
mining by relying on the internet to get a relevant set of
indicator terms to generate traces between requirements and
regulatory codes [10]. Other techniques are specialized in
the automatic recovery of traces between requirements and
architecture [14, 19], while others recover traces between
source code and documentation [7]. Guo et al. [15] suggest a
technique based on a tracing network architecture that relies
on Word Embedding and Recurrent Neural Network (RNN)
models to generate traces among any class of artifacts (test
cases, documentation, source code, etc).

Different techniques focus on haptic feedback - for example,
Walters et al. [31] suggest using developers’ eye gazes to
generate traces. Also, Sharif et al. [28] propose generating
traces between bug reports and source code using developers’
eye gazes while they perform their work on an IDE. Such
techniques generate useful results.

Some researchers also focus on maintaining and evolving
traces across different versions of a software. For instance,
Rahimi and Cleland-Huang [24, 25] present an automated
technique for evolving requirement-to-class traces across suc-
cessive versions of a system.

Some researchers have assessed the advantages of traceabil-
ity in the software engineering lifecycle. Research shows that
traceability eases change impact analysis, regression testing,
and reverse engineering [17]. Also, trace correctness and com-
pleteness have received a lot of attention in the community.
For instance, Kong et al. [12, 16] motivate our work as they
have assessed the quality of traces after evolving them. They
assume the presence of trace information and assess the conse-
quences of trace maintenance on the quality of traces. Kong et
al. observe that subjects checking requirement-to-class traces
tend to worsen the quality of traces instead of improving
it. Such papers demonstrate that manual trace capture is
limited and should be assisted by (semi) automated trace
checking [13] if possible.

Our technique is specialized in the recovery of traces be-
tween requirements and methods, regardless of the depen-
dencies among requirements. Thus, our technique is different
from feature interaction techniques [18], concept lattices [30],
or concern graphs [27].

All the techniques previously enumerated do not inves-
tigate the effect of incompleteness on trace checking. Also,
they focus on the study of requirement-to-class traces and do
not consider requirement-to-method traces. Our technique fo-
cuses on finer-grained code regions, which offers more precise
information to engineers. Indeed, our technique focuses on
the exact method implementing a requirement, as opposed to
other researchers focusing on the entire class implementing a
requirement. Furthermore, all these techniques assume that
requirement-to-method traces are complete, which is not the
case in practice [13]. Studying the effect of incompleteness is
important as the latter could influence the technique’s per-
formance. Thus, understanding the impact of incompleteness
on trace checking could help us improve the precision and
recall of all the techniques previously enumerated.

5 CONCLUSION
We presented a study about the effect of incompleteness on
the ability to check requirement-to-method traces. To the
best of our knowledge, our study is the first and only one
that measures the variations in the precision and recall after
applying machine learning on a complete versus an incomplete
training or test set. In this paper, we show that using a
complete training set might yield higher precision. However,
it yields lower recall. Conversely, the use of an incomplete
training set might yield lower precision but yields higher recall.
Indeed, the presence of incompleteness within the training set
offers more information for the learning process that allows
the retrieval of a higher amount of requirement-to-method
traces.

ACKNOWLEDGMENTS
The research reported in this paper has been funded by
Austrian Science Fund (FWF) under the grant numbers
P31989000 and P29415-NBL as well as the Federal Ministry of
Transport, Innovation and Technology, the Austrian Federal
Ministry for Digital and Economic Affairs, and the Provinces

1473

of Upper Austria and Styria in the frame of the COMET
Competence Centers for Excellent Technologies Programme
managed by Austrian Research Promotion Agency FFG (K1-
Centres Pro2Future and SCCH).

REFERENCES
[1] [n. d.]. https://github.com/warpwe/java-chess.
[2] [n. d.]. https://sourceforge.net/projects/ganttproject.
[3] [n. d.]. https://sourceforge.net/projects/itrust.
[4] [n. d.]. https://sourceforge.net/projects/jhotdraw.
[5] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni.

2006. Model Traceability. IBM Syst. J. 45, 3 (July 2006), 515–526.
https://doi.org/10.1147/sj.453.0515

[6] N. Ali, Y. Guéhéneuc, and G. Antoniol. 2013. Trustrace: Mining
Software Repositories to Improve the Accuracy of Requirement
Traceability Links. IEEE Transactions on Software Engineering
39, 5 (May 2013), 725–741. https://doi.org/10.1109/TSE.2012.71

[7] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea
De Lucia, and Ettore Merlo. 2002. Recovering Traceability Links
Between Code and Documentation. IEEE Trans. Softw. Eng.
28, 10 (Oct. 2002), 970–983. https://doi.org/10.1109/TSE.2002.
1041053

[8] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct.
2001), 5–32. https://doi.org/10.1023/A:1010933404324

[9] Lionel C. Briand, Yvan Labiche, and Tao Yue. 2009. Automated
Traceability Analysis for UML Model Refinements. Inf. Softw.
Technol. 51, 2 (Feb. 2009), 512–527. https://doi.org/10.1016/j.
infsof.2008.06.002

[10] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker.
2010. A machine learning approach for tracing regulatory codes to
product specific requirements. In 2010 ACM/IEEE 32nd Inter-
national Conference on Software Engineering, Vol. 1. 155–164.
https://doi.org/10.1145/1806799.1806825

[11] M. Eaddy, A. V. Aho, G. Antoniol, and Y. Guéhéneuc. 2008.
CERBERUS: Tracing Requirements to Source Code Using Infor-
mation Retrieval, Dynamic Analysis, and Program Analysis. In
2008 16th IEEE International Conference on Program Compre-
hension. 53–62. https://doi.org/10.1109/ICPC.2008.39

[12] A. Egyed, F. Graf, and P. Grünbacher. 2010. Effort and Quality
of Recovering Requirements-to-Code Traces: Two Exploratory
Experiments. In 2010 18th IEEE International Requirements
Engineering Conference. 221–230.

[13] A. Ghabi and A. Egyed. 2012. Code patterns for automatically
validating requirements-to-code traces. In 2012 Proceedings of
the 27th IEEE/ACM International Conference on Automated
Software Engineering. 200–209.

[14] Arda Goknil, Ivan Kurtev, and Klaas van den Berg. 2010. Tool
Support for Generation and Validation of Traces Between Re-
quirements and Architecture. In Proceedings of the 6th ECMFA
Traceability Workshop (ECMFA-TW ’10). ACM, New York, NY,
USA, 39–46. https://doi.org/10.1145/1814392.1814398

[15] Jin L.C. Guo, Jinghui Cheng, and Jane Cleland-Huang. 2018. Se-
mantically Enhanced Software Traceability Using Deep Learning
Techniques. (04 2018). https://doi.org/10.1109/ICSE.2017.9

[16] Wei-Keat Kong, Jane Huffman Hayes, Alex Dekhtyar, and Jeff
Holden. 2011. How Do We Trace Requirements: An Initial Study
of Analyst Behavior in Trace Validation Tasks. In Proceedings
of the 4th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE ’11). ACM, New York,
NY, USA, 32–39. https://doi.org/10.1145/1984642.1984648

[17] Patrick Mader and Alexander Egyed. 2015. Do developers benefit
from requirements traceability when evolving and maintaining a
software system? Empirical Software Engineering 20, 2 (01 Apr
2015), 413–441. https://doi.org/10.1007/s10664-014-9314-z

[18] Marius Marin, Arie Van Deursen, and Leon Moonen. 2007. Identi-
fying Crosscutting Concerns Using Fan-In Analysis. ACM Trans.
Softw. Eng. Methodol. 17, 1, Article 3 (Dec. 2007), 37 pages.
https://doi.org/10.1145/1314493.1314496

[19] M. Mirakhorli and J. Cleland-Huang. 2016. Detecting, Tracing,
and Monitoring Architectural Tactics in Code. IEEE Transactions
on Software Engineering 42, 3 (March 2016), 205–220. https:
//doi.org/10.1109/TSE.2015.2479217

[20] P. Mäder and A. Egyed. 2011. Do software engineers benefit from
source code navigation with traceability? — An experiment in

software change management. In 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE
2011). 444–447. https://doi.org/10.1109/ASE.2011.6100095

[21] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A. De Lucia. 2013. When and How Using
Structural Information to Improve IR-Based Traceability Recovery.
In 2013 17th European Conference on Software Maintenance and
Reengineering. 199–208. https://doi.org/10.1109/CSMR.2013.29

[22] David Lorge Parnas. 1994. Software Aging. In Proceedings of the
16th International Conference on Software Engineering (ICSE
’94). IEEE Computer Society Press, Los Alamitos, CA, USA,
279–287. http://dl.acm.org/citation.cfm?id=257734.257788

[23] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos
Noguera, and Lionel Seinturier. 2015. Spoon: A Library for
Implementing Analyses and Transformations of Java Source
Code. Software: Practice and Experience 46 (2015), 1155–1179.
https://doi.org/10.1002/spe.2346

[24] Mona Rahimi and Jane Cleland-Huang. 2018. Evolving software
trace links between requirements and source code. Empirical
Software Engineering 23, 4 (01 Aug 2018), 2198–2231. https:
//doi.org/10.1007/s10664-017-9561-x

[25] M. Rahimi, W. Goss, and J. Cleland-Huang. 2016. Evolving
Requirements-to-Code Trace Links across Versions of a Software
System. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 99–109. https://doi.org/
10.1109/ICSME.2016.57

[26] M. P. Robillard, W. Coelho, and G. C. Murphy. 2004. How
effective developers investigate source code: an exploratory study.
IEEE Transactions on Software Engineering 30, 12 (Dec 2004),
889–903. https://doi.org/10.1109/TSE.2004.101

[27] Martin P. Robillard and Gail C. Murphy. 2002. Concern Graphs:
Finding and Describing Concerns Using Structural Program De-
pendencies. In Proceedings of the 24th International Conference
on Software Engineering (ICSE ’02). ACM, New York, NY, USA,
406–416. https://doi.org/10.1145/581339.581390

[28] Bonita Sharif, John Meinken, Timothy Shaffer, and Huzefa Kagdi.
2017. Eye movements in software traceability link recovery. Em-
pirical Software Engineering 22, 3 (01 Jun 2017), 1063–1102.
https://doi.org/10.1007/s10664-016-9486-9

[29] Yonghee Shin and L. Williams. 2006. Work in Progress: Exploring
Security and Privacy Concepts through the Development and
Testing of the iTrust Medical Records System. In Frontiers in
Education 36th Annual Conference. IEEE Computer Society, Los
Alamitos, CA, USA, 30–31. https://doi.org/10.1109/FIE.2006.
322599

[30] Paolo Tonella. 2003. Using a Concept Lattice of Decomposition
Slices for Program Understanding and Impact Analysis. IEEE
Trans. Softw. Eng. 29, 6 (June 2003), 495–509. https://doi.org/
10.1109/TSE.2003.1205178

[31] Braden Walters, Timothy Shaffer, Bonita Sharif, and Huzefa
Kagdi. 2014. Capturing Software Traceability Links from Develop-
ers’ Eye Gazes. In Proceedings of the 22Nd International Confer-
ence on Program Comprehension (ICPC 2014). ACM, New York,
NY, USA, 201–204. https://doi.org/10.1145/2597008.2597795

1474

https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1109/TSE.2012.71
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.infsof.2008.06.002
https://doi.org/10.1016/j.infsof.2008.06.002
https://doi.org/10.1145/1806799.1806825
https://doi.org/10.1109/ICPC.2008.39
https://doi.org/10.1145/1814392.1814398
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1145/1984642.1984648
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1145/1314493.1314496
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/ASE.2011.6100095
https://doi.org/10.1109/CSMR.2013.29
http://dl.acm.org/citation.cfm?id=257734.257788
https://doi.org/10.1002/spe.2346
https://doi.org/10.1007/s10664-017-9561-x
https://doi.org/10.1007/s10664-017-9561-x
https://doi.org/10.1109/ICSME.2016.57
https://doi.org/10.1109/ICSME.2016.57
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1145/581339.581390
https://doi.org/10.1007/s10664-016-9486-9
https://doi.org/10.1109/FIE.2006.322599
https://doi.org/10.1109/FIE.2006.322599
https://doi.org/10.1109/TSE.2003.1205178
https://doi.org/10.1109/TSE.2003.1205178
https://doi.org/10.1145/2597008.2597795

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

