
A semantic-based access control mechanism
for distributed systems

Mersedeh Sadeghi

Dipartimento di Elettronica,

Informazione e Bioingegneria

Politecnico di Milano

Milano, Italy

mersedeh.sadeghi@polimi.it

Luca Sartor

Dipartimento di Elettronica,

Informazione e Bioingegneria

Politecnico di Milano

Milano, Italy

luca.sartor@mail.polimi.it

Matteo Rossi

Dipartimento di Meccanica

Politecnico di Milano

Milan, Italy

matteo.rossi@polimi.it

ABSTRACT
Access control management in a collaborative environment com-

posed of a multitude of distributed autonomous organizations is a

challenging task. To answer the challenge, in this paper we propose

a novel approach that incorporates semantic technologies in the

Attribute-Based Access Control (ABAC) approach. Building on the

basic principles of ABAC, our approach allows for a highly expres-

sive modeling of the context in which access decisions are made, by

providing mechanisms to describe rich relationships among entities,

which can evolve over time. In addition, our system works in a truly

decentralized manner, which makes it suitable for geographically

distributed enterprise systems. We show the feasibility in practice

of our approach through some experimental results.

KEYWORDS
Semantic-Based Access Control, Attribute-Based Access Control,

Distributed Access Control, Distributed Reasoning, Context-aware

Access Control

ACM Reference Format:
Mersedeh Sadeghi, Luca Sartor, and Matteo Rossi. 2021. A semantic-based

access control mechanism, for distributed systems. In The 36th ACM/SIGAPP
Symposium on Applied Computing (SAC ’21), March 22–26, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3412841.3442058

1 INTRODUCTION
Large distributed enterprise systems allow companies to consume

and offer products, and in particular data and services, through a

shared ecosystem, which in turn fosters the creation of new prod-

ucts from the combination of existing ones. This occurs, for example,

in the transport sector, where end-to-end travel solutions are built

from basic transport services to provide so-called Mobility as a

Service (MaaS). These systems are composed of large numbers of

independent public and private enterprises that need to share both

information and services among them in a carefully controlled

manner, to protect their assets and business interests. The sharing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00

https://doi.org/10.1145/3412841.3442058

occurs in a highly competitive environment in which companies

fight for market shares, but they also have complicated business re-

lationships among them that create various conflicts of interest for

involved actors. This heightens the security risks, and in particular

the need for carefully designed access control policies.

In such an environment, though, Access Control Management

poses particularly difficult challenges, since it goes beyond the IT

and software engineering aspects of constructing a safe and secure

collaborative system, and it is tightly linked to complicated relations

and associations involving real organizations (and persons), their

business preferences, and their general policies and regulations.

Yet, traditional access control mechanisms often tend to reduce

the complexity of the protection strategy to increase the efficiency

and intuitiveness of the mechanism. For example the highly popu-

lar Role-Based Access Control (RBAC) [24] is built upon a rather

modest protection model: a user is associated with a role and a role

is associated with a set of permissions, each of which grants a set of

operations on a resource. These models of access right designation

are very efficient and easy to implement, but they fail to capture, on

one side the real-world relations among actors and assets in a large

system composed of many independent and distributed agents and,

on the other side, their complex, dynamic and often ambiguous

protection strategies over their resources.

To address this issue, a higher expressiveness in access control

modeling is required; firstly, to enable a more comprehensive de-

scription of users and resources and, secondly, to inject additional

contextual information in the permission rules. In addition, given

the diversity of actors, resources, and protection motivations and

strategies in a collaborative environment, an access control model

must be flexible enough so organizations can tailor and adapt the

required contextual information based on their needs, business

models and real-world regulations and agreements. An ontology-

based approach, with its associated suite of semantic technologies,

seems well suited to tackle the issues concerning the modelling

of the wider context in which access control occurs in distributed

enterprise systems. It leverages the expressiveness of the model

and enables automated inference over data stored in the knowledge

base to extract the hidden and implicit relations existing among en-

tities. As a result, the access control system can capture the complex

relations among real-world entities with greater precision.

Another major limitation of traditional access control schemas

is their centralized nature. Almost all of the most common access

models developed in the last two decades assume—implicitly or

explicitly—a centralized authorization unit that is in charge of col-

lecting, assessing and asserting the protection policies. Clearly, such

https://doi.org/10.1145/3412841.3442058
https://doi.org/10.1145/3412841.3442058
https://doi.org/10.1145/3412841.3442058

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Sadeghi et al.

a paradigm does not suit large, collaborative distributed systems.

The creation of a fully-distributed authorization mechanism is even

more challenging when it comes to incorporating semantic tech-

nologies in an access control system. Indeed, the current state of

the art in using semantic inference to assess access requests or

to derive new knowledge has been entirely relying on reasoning

engines that assume the existence of a complete knowledge graph.

To address these issues, this paper presents a new, semantically

rich, distributed access control mechanism. The solution proposed

in this paper comprises the following parts: (i) An ontology to pro-

vide an expressive description of users, resources and their relations

in an enterprise ecosystem. (ii) A semantic-based access control
mechanism for systems of systems and collaborative multi-agent

environments that enriches the Attribute-Based Access Control

(ABAC) paradigm. (iii) A distributed mechanism for policy as-
sertion, semantic inference, and access right determination
that removes the need for any centralized authorization unit.

The proposed access control system has been developed as an

authorization mechanism to be integrated into the Interoperability

Framework [23] that is an integral part of the Shift2Rail Innovation

Programme 4 (IP4)
1
. The framework aims to enable a collaborative

ecosystem of transportation actors (transport operators, service

providers, retailers, distributors, public authorities, third-party soft-

ware developers, etc.) across the European Transport Area, which

allows them to offer, share, discover and use a wide range of mobil-

ity data and services in an interoperable manner.

The rest of this paper is structured as follows. Section 2 dis-

cusses related works. Section 3 briefly overviews the Interoperabil-

ity Framework. Section 4 presents the proposed access mechanism

in detail and Section 5 outlines the prototyped implementation and

evaluation. Section 6 concludes the paper.

2 RELATEDWORKS
Ever since their emergence, semantic web technologies have been

applied to the access control domain. Many solutions have tried to

incorporate semantic elements in various aspects of classic access

control models. For instance, [22] proposed the concept of semantic

authorization that allows semantically equivalent Roles to access

semantically equivalent Objects. It is achieved via a semantic me-

diator that maps to one another the access request formats, role

hierarchies and object descriptions defined in different organiza-

tions. Unlike our work, [22] and similar approaches [11, 12, 29],

have targeted RBAC as the base access model. Hence, the funda-

mental limitations of RBAC, which often impose crucial constraints

on complex distributed systems stemming from the static nature of

role-right assignment and role-explosion, remained unsolved.

Attribute-Based Access Control (ABAC) was introduced to ad-

dresses the rigidity and limitations imposed by previous access

control systems such as RBAC. ABAC generalizes RBAC (since the

concept of Role can be modelled as an attribute of a subject), it has

higher expressiveness than the latter, and it can eliminate the prob-

lem of role explosion that typically occurs in complex systems with

a wide variety of users. As showed in [17], ABAC requires up to 2N

rules for N attributes to achieve the same level of control obtained

in RBAC through the introduction of 2N roles for each possible

1
shift2rail.org/research-development/ip4

combination of conditions. Furthermore, ABAC offers, with respect

to RBAC, more dynamism and context-awareness, which are es-

sential for an access control schema targeting complex systems.

Similarly to our work, [32] and others (see., e.g., [1, 9]) proposed an

implementation of ABAC for distributed environments. However,

they generally focused on the basic ABAC model and pursued only

minimal improvements over it. For example, none of them used

semantic technologies to increase the range of expressible policies,

nor they tackled challenges such as the assignment of homogeneous

and interoperable attributes in a distributed system.

ABAC hinges on the properties of involved actors and, in addi-

tion, the attributes of entities are highly domain-dependent. As a re-

sult, there are few generic ABAC frameworks. Rather, many works

defined ABAC models—some of them quite feature-rich—tailored

for a particular application area, which are not applicable to other

domains. For instance, [3, 6, 10, 16, 19, 30] extend the ABAC model

in different aspects, focusing on cloud computing, smart spaces and

grid computing. However, few contributions have developed an

ABAC model for geographically- and administratively-distributed

enterprise systems. One of the motivations behind this work was to

fill this gap and propose an extended ABAC model that addresses

some of the original limitations of ABAC (see Section 4) and which

specifically tackles the requirements of this application domain.

Some works, like ours, based access control on semantic tech-

nologies. Ontology-Based Access Control (OBAC) has mainly been

used in Social Network Systems. [7] proposed an ontology, based

on the Friend-of-a-Friend vocabulary [5], to represent the various

entities in social networks, and it employed SWRL rules to state

permissions. The framework presented in [20] further expanded

the work of [7] through the provision of more detailed semantic

models and complex authorization mechanisms such as delegated

authorization. [26] shares some similarities with our work: it com-

bined ABAC with semantic technologies by using a knowledge

graph as attribute supplier; furthermore, it used semantic inference

to elaborate on the existing set of attributes and to make implicit

data explicit through the help of reasoning engines.

Our work differs from the above contributions in various aspects.

Firstly, none of them targets collaborative distributed systems. Sec-

ondly, in many cases the role played by reasoning is different than

in our work. For example, in OBAC [7, 20] and in the Semantic

Access Control (SAC) model [31] inference is used to determine ac-

cess rules, whereas in our case it is used to derive implicit relations

among organizations (see Section 4 for more details). Above all, the

most important shortcoming of these–and other—works in the area

of semantic-based access control mechanisms [8, 11, 15, 27, 29] is

their strict requirement to have a centralized and complete knowl-

edge graph in order to perform reasoning. In this direction, one

of the main contributions of our research is the realization of a

distributed inference mechanism that lets distributed nodes across

the system keep only the portion of the ontology pertinent to them.

Finally, ORDL
2
is a policy expression language that provides

an information model for the fine-grained description of policy,

permission and prohibition. Our framework currently operates

at the logical-based policy expression level, which is a common

2
https://www.w3.org/TR/odrl-model

https://shift2rail.org/research-development/ip4/
https://www.w3.org/TR/odrl-model

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

approach in ABAC. The extension of the framework to include the

ORDL policy model could be an interesting future work.

3 INTEROPERABILITY FRAMEWORK
The Shift2Rail Interoperability Framework (IF) is a solution de-

signed to leverage the digitalization and servitization in the trans-

portation domain that targets both sides of the system: the con-

sumers (e.g., mobility applications) and the producers (e.g., trans-

port service providers). From the service producer perspective, the

IF provides a shared distributed environment that enables the cre-

ation of integrated mobility solutions through the publishing, dis-

covery, sharing and use of other parties’ assets and products in a col-

laborative manner. In addition, it offers various services and utilities

fostering the automation of processes (e.g., conversion mechanisms)

that exploit semantic-based technologies to make heterogeneous

services interoperable. From the travel application/consumer per-

spective, it shields the complexity and distribution of travel services

and ICT products by: (i) offering a single logical point of interaction,

(ii) publishing a homogeneous abstraction of diverse services pro-

vided by a wide range of providers across Europe, and (iii) allowing

applications to interact with such services uniformly.

D
at

a

A
bs

tr
ac

ti
on

Se
rv

ic
e

 A
bs

tr
ac

ti
on

Triple Store Meta-data Other

IP4 ApplicationsTravel Service Providers

Interoperability
Services and Utilities

Auxiliary
Services

Interoperability Framework

User Manager

Asset Manager

Asset

Figure 1: IF Architecture.

The IF is itself a distributed system structured around IF nodes.

Figure 1 shows the high-level architecture of a single IF node, which
is responsible for handling the users and assets of a specific region.

The distribution and granularity of regions could vary from “one

IF node per EU country” (which occurs if each IF node acts as

National Access Point
3
), to “one IF node per district”, to the most

fine-grained scenario of “one IF node per major transport operator”

(e.g., SNCF). A detailed description of the architecture of the IF
is beyond the scope of this paper. Nevertheless, in the following

we provide an overview of its main components and entities. In

brief, the IF comprises a core component called Asset Manager
(AM), a User Manager, two logical layers named Data and Service
Abstraction, and two types of entities, User and Asset.

The AM plays an essential role in the IF, since it is the entry
point to the framework and it offers the basic functions for inter-

acting with the IF, including those for publishing, discovering and

3
https://www.cestrin.ro/web2014/nap_eueip/

maintaining various kinds of artifacts in the IF. The Data Abstrac-
tion mainly encompasses those aspects of the IF that deal with the

knowledge bases that are necessary to manage operations such as

collection and retrieval of transportation data, ontologies, vocab-

ularies and meta-data provided by different parties. Following a

modular and service-oriented approach, the IF includes a Service

Abstraction that manages all features related to the publishing, ad-

vertising, discovery, interaction with and deployment of a set of

self-contained and reusable services.

The User Manager is the component responsible for the opera-

tions related to User entities, such as user registration and profile

management. Furthermore, it is responsible for the storing of user

credentials and for the user authentication process (which is hence

outside of the scope of our Access Control system). In principle, a

user (i.e., the organization that the user belongs to, since user and

organization are equivalent concepts within the IF) of the IF could

register themselves as a producer or as a consumer, where only the

former can publish and own Assets.
Finally, the notion of Asset is key in the IF: it refers to any

resource that a generic actor of the transportation domain may be

interested in—to read, share and use. More specifically, an Asset is
an artifact that has a unique identifier throughout the IF ecosystem,

a description, a definable life-cycle, an owner, and it is discoverable

by users and by other Assets. Most importantly, Assets must be

protected. In other words, the main role of the Access Control

system in the IF is to manage the access of users to Assets.

4 SEMANTIC-AWARE ABAC
In the ABAC model, the values of attributes associated with a user

determine the user privileges [13]. The core idea is to evaluate ac-

cess rights based on the relevant attributes of the requester (Subject),
the requested resource (Object) and any other pertinent conditions

(Environment). The owner of the Object ascertains the relevancy of

attributes and conditions by specifying them in a Policy script.

In ABAC, access decisions are based on the context of the use and

attributes of all involved entities at the time of the access request.

Accordingly, permissions in ABAC are not a set of static and prede-

fined privileges allotted to a Subject, but they dynamically evolve

as/if the properties of the subject, object and environment change.

This is achieved, however, without the owner of the resource need-

ing to monitor the fluctuations in the entities’ properties, or even

to be aware of them. The owner defines, once and for all, in the

policy (which is usually expressed through predicate logic formu-

lae [4]) the set of conditions under which access is granted. It is

then the responsibility of the AC system to retrieve and examine

the attributes mentioned in the policy to evaluate access rights.

The high flexibility and dynamism of the ABAC model make it

suitable for access control management in complex, distributed and

multi-agent applications. Indeed, the expressiveness of ABAC is lim-

ited only by the expressiveness of the computational language and

by the richness of the available attributes [14]. The higher flexibility,

however, results in higher complexity of attribute and policy specifi-

cations. In particular, the process of defining the relevant attributes

and the retrieval of their values for policy evaluation are some of

the most difficult parts to realize in ABAC implementations [25].

The latter is especially challenging in distributed systems.

https://www.cestrin.ro/web2014/nap_eueip/

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Sadeghi et al.

In this direction, we propose to incorporate semantic technolo-

gies in ABAC. Firstly, we use an ontology to model the attributes

of involved elements. Ontologies are a powerful mean to formalize

the contextual information in an area of concern [2]. Accordingly,

through an ontology we can model complex enterprise actors, re-

sources and their relations more accurately and comprehensively.

Secondly, the formalization of the concepts allows the system to

infer new knowledge, automatically derive new (hidden) relation-

ships and expand the knowledge graph, which in turn improves

the completeness and precision of the access control mechanism.

Finally, in a semantic-based approach attribute retrieval can be

done by querying a homogeneous (possibly distributed) knowledge

graph, rather than by collecting data from heterogeneous databases.

4.1 Reference Architecture
Although ABAC has been around for several decades [18, 21], there

is still no standardized framework for it, or an agreement on its

general architecture and components. Among others, the eXtensi-

Access
Requester

PEPaccess request

PDP

PAP

Context
Handler

PIP

Subjects

Obligations
Service

Resource

Environment

access request access decision

response

attributes

obligations

resource contentrequest required
attributes

access decision

attributes

policy

Ontology
Manager

Knowledge
Graph

ontology

attribute
request

<<realizes>>

Relationship

Relationship
Inference
Engine

attributes
meta-data

attributes
meta-data

attributes
meta-data

data

rel-pattern

new knowledge

attribute
querry

attributes ontology

attributes
querry

attributes

attributes

attributes

Extended
elements

Base
elements

Figure 2: ExtendedABACarchitecture to incorporate seman-
tic technology elements.

ble Access Control Markup Language (XACML, [28]) has attracted

a certain interest. XACML is an XML-based policy language for

describing the authorization process and the format of access re-

quests/responses. It introduces a generic authorization schema that

is not designed for a particular access control method, but that has

been adopted as the core ABAC model by the research commu-

nity [13, 32]. Hence, our proposed architecture borrows from and

extends the XAMCL architecture to include semantic technology

elements. Figure 2 shows the main components of the proposed

architecture and the flow of information among them.

As shown in the figure, the Policy Administration Point
(PAP) provides an interface for the system administrator to man-

age the policy repository and add, modify or delete policies. The

Policy Enforcement Point (PEP) receives the request from the

requester, delivers the access decision (grant/deny) concerning the

requested resource, and handles any obligations or recommenda-

tions that are specified in the policy. The Policy Decision Point
(PDP) determines the final access decision based on the policies

retrieved from the repository and the elements provided by the

Policy Information Point (PIP), and it resolves any conflicts

in policies. In core XACML, the PIP retrieves the values of the at-
tributes based on the requests received by the PDP by accessing the

attribute repository and the systems that provide the environment
conditions. Finally, the CH is an optional component that improves

the flexibility of ABAC. It brings the attributes retrieved by the

PIP in a format compatible with the policy specifications; hence, it

decouples the attribute authority from the actual representation of

attributes in the policy specifications.

The CH allows us to use an ontology to represent attributes and

store them as a knowledge graph. To this end, we introduce the

Ontology Manager component, which is a realization of the PIP.
The Ontology Manager builds and keeps the ontology updated by

(i) collecting the attributes’ meta-data of the object, subject and envi-
ronment and adding the necessary individuals, and (ii) adding new

information to the knowledge base through the initialization of the

relationship inference engine. Finally, the concept of Relationship
(among enterprise organizations), which is defined through the

Relation Pattern (Rel-Pattern), specializes the Environment
and provides extra information to make access decisions. The next

section provides more details on the concept of Relationship and

its role in our access control mechanism.

4.2 Access Control Ontology
The proposed Access Control ontology of Figure 3 describes the

Assets and the Users/Organizations associated with an IF node,

which are, respectively, the objects and the subjects in the ABAC

terminology. Also, it models environment attributes through the

concept of relationships among organizations in the real world, and

it offers a generic and extensible approach to capture the complex

inter-organization associations occurring in the enterprise system.

Entity

Local
Type

Global
Type

Asset ID

User(org)
Type

Asset

RelID

Org ID

Relation

Thing

Label

Attribute

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a is-a

is-a

is-a

is-a

isAssignedTo

creates

defines

is-a

is-a

is-a

isAssignedTo

isAssignedTo

has

has

identifiedAs

ownerOf

hasLevel
isAssignedTo

has

has

is-a

Rel
Type

Organi-
zation

ID

Pattern

Asset
Type

Level

Figure 3: Access Control Ontology

More precisely, every element in the ontology is a member of one

of four classes: Entity, Label, Relationship or Pattern. The in-
dividuals of the Entity class constitute the elements of the system,

which are further partitioned into two classes: the Organization
class, which represents IF users, and the Asset class, which captures
the assets published through the IF.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

The ontology introduces the Label class to describe the at-

tributes that characterize Assets and Organizations. In particular,

Label could be of type identification (i.e., class ID) or description
(i.e., class Attribute). As the names indicate, the former is a type

of attribute to uniquely identify an element throughout the system,

while the latter is used to specify any other aspect characterizing

an element. As in the basic ABAC model, the ontology includes

subject and object attributes, which, in the context of the IF, corre-
spond to features of Users/Organizations and of Assets, and which

are captured through classes User(org) Type and Asset Type
in Figure 3. These attributes are automatically derived from the

information included in the Users/Organization profile and in the

Asset description, which are provided by the users/asset owner

when they register to the IF.Most ABAC models operate on a fixed

and predefined set of attributes, which imposes a major constraint

on the system, as users must identify and insert the value of those

attributes at design time. This might lead system designers to in-

clude in the ABAC model a large set of attributes, to cover a greater

number of contexts in which access rights might be evaluated. This,

in turn, increases the burden on the system, and users might find

many of those attributes irrelevant for their access policies. If, on

the other hand, the defined set of attributes is too limited, this might

compromise the precision of the access control system.

To address this limitation, our ontology enables the user to ex-

tend and customize access policies by defining their preferred set

of attributes. To this end, Asset Type elements are divided into

two groups: Global Types and Local Types. Former includes the

generic and default attributes defined by the IF that are part of the

asset’s description (e.g., the type of the asset). Then, to let the asset

owner tailor the protection policy according to their specific needs,

the ontology provides the possibility of adding attributes described

through Local Types. Such attributes are organization-specific

and would not be revealed to other organizations. This greatly in-

creases the flexibility of the access policy, since the asset owner

can customize the evaluation parameters at will. For example, an

organization might like to limit access to assets created by its R&D

department, while allowing for a less restrictive policy for the as-

sets created by the traffic management department. Then, it can

introduce the private tag of Department as a Local Type for each

asset, and set the access policy to “if the Department attribute of
the requested asset is R&D, then access is restricted”.

In addition to asset and user attributes, our system takes into

account the Relationship concept as an additional aspect to deter-

mine access rights. Hence, it extends the scope of the ABAC model

to include the semantics of complex business associations, which is

a driving motivation behind the assertion of policies in industrial

and competitive environments.

To this end, ABAC access policies are extended to include the

concept of relative attribute. A relative attribute is a characteristic
of a subject that is not absolute with respect to the subject itself,
such as its name, or its sector. A relative attribute, instead, describes
a feature of the subject with respect to the object, or to the object’s
owner, such as the relation of the requesting organization with the

asset owner organization. For example, organization O1 wants to
protect its asset A1 and allows only specific kinds of organizations

(say, train operators) to access it. In this case, organizations O2 and
O3, which are both train operators, would have access to asset A1.

Imagine that O1 and O2 are in some sort of partnership, whereas no

such partnership exists between O1 and O3. Following general busi-
ness policy, O1 managers might prefer to collaborate with partner

companies, which would result in preventing O3 from accessing A1,
while still allowing access to O2. In this case the difference between

O2 and O3 lies not in their absolute attributes (i.e., their type) but in

their characteristics with respect to O1. A typical ABAC, however,

cannot model a relative attribute of a subject because the latter

cannot be defined by the subject itself, but by the object’s owner.
For instance, in the example above, when deciding whether to grant

O3 access to A1, the access control system could not trust O3 if it
claimed to be partner of O1 (by defining a corresponding attribute),

since only O1 could declare such a relationship. In our ontology, in-

stead, class Relationship contains individuals representing actual
relationships/associations between organizations.

4.3 Relationship Pattern and Instance
The concept of Relationship included in the model allows orga-

nizations to encode in the system their real-world business associa-

tions and take them into account in the definition of access policies.

A Relationship has a RelID relating it a RelType and a Pattern
which is a data structure to formally define a relation. The Pattern
is defined as a tree structure where paths are made of a succession

of Node and Arrow structures (Figure 4 shows two examples of

Pattern definitions). Nodes embody the organizations and they are
characterized by an identifier and a set of constraints on attributes,

specifically the ID, UserType and AssetType classes. Similarly, an

Arrow characterizes the connection (i.e., relationship) between two

Nodes (i.e., organizations) in the pattern through properties in-

cluding name, type and level of relation (either directly assigned

or inferred), and an indicator of the direction of the relationship

(whether it follows the same direction as the tree, or the opposite).

An Arrow must always be followed by one Node, unless if it is a
Loop Arrow. The Loop Arrow has been introduced to simplify the

computation in the situation where an Arrow should be followed

by a Node whose identifier has already appeared along the path. In

this case, it can carry a reference to the identifier of the Node.
For example, Figure 4(A) depicts the Pattern for the Secondary

Partnership relation, which corresponds to a “partner of partner”

pattern through a composition of atomic Partnership relations. More

precisely, the pattern defines Secondary Partnership between Node
X andNode Z as a sequence of two consecutive Partnership relations
(between Node X and Node Y, and between Node Y and Node Z),
each composed of two Nodes which are connected together via

an Arrow. The Arrow indicates the direction of the relation and

specifies its type (i.e., Partnership). Figure 4(B), instead, shows the
Pattern for the Weak Partnership relation between Node X and

Node Y. The relation holds when Node Y is partner of Node X, as
well as partner of Node Z, while Node Z is competitor of Node
X. In other words, the Weak Partnership relation holds if a partner

(Node Y in Figure 4(B)) of an organization (Node X) is also partner

of a competitor (Node Z) of that organization.

4.4 Distributed Relationship Inference
A prominent feature of semantic technology is the ability of in-

ferring new knowledge. By incorporating into our access control

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Sadeghi et al.

Node
+identifier: X

Arrow
+relType: Partnership
+reversed: false
+relLevel: 0

Arrow
+relType: Partnership
+reversed: false
+relLevel: 0

Arrow
+relType: Competition
+reversed: false
+relLevel: 0

Node
+identifier: Y

Arrow
+relType: Partnership
+reversed: false
+relLevel: 0

Node
+identifier: Z

Arrow
+relType: Partnership
+reversed: false
+relLevel: 0

Node
+identifier: Z
+type: Retailer

Node
+identifier: Z

Node
+identifier: X

Node
+identifier: Y

A.

B.

Figure 4: Relationship Pattern for Secondary Partnership (A),
and for Weak Partnership (B).

system the ability to reason on relationship assertions, we can cap-

ture the complex relationships that exist in multi-agent enterprise

systems more precisely. In particular, we evaluate Patterns de-
fined as shown in Section 4.3 to infer new relationships among

organizations. To perform the inference, however, one needs to

overcome the problem of the distributed knowledge graph. Existing

inference engines, such as the reasoning mechanism available in

Jena and similar frameworks, operate only on complete knowledge

graphs. That is, these reasoners require that the entire ontology

be available, which in turn entails that semantic-based access con-

trol mechanisms must use a centralized storage for the ontology

and the knowledge graph. This, however, is in contrast with the

very nature of distributed environments, as it requires to move

the resources of federated nodes into a central unit. However, a

centralized architecture not only suffers from many short comings

such as single-point-of-failure issues, but it goes against the general

tendency of enterprise organizations of keeping control of their

own assets and sensitive data. To overcome these challenges, we

introduce custom Exploration/Merge procedures that perform, in a

distributed manner, inferences based on Pattern definitions.
Reasoning constantly grows the knowledge graph by inferring

new relationships based on directly added relations. Each (instance

of) a relationship in the system is classified by a so-called Level that
indicates the level of inference. Level 0 means that the organization

that defined the Relationship states its connection with a target

organization as an instance of that Relationship. Level 1 indicates
that the connection is the result of a derivation over attributes of

the involved elements or of level 0 instances. Similarly, Level n >
1 means the connection is the result of a derivation in which an

instance of Level n-1 has been considered.

A direct assignment (i.e., Level 0) is the strongest and most trust-

worthy connection since the originating organization has declared

it by indicating the target organization ID. It implies that the defin-

ing organization is acquainted with the target organization in the

real world. Indirect relationships between organizations are as-

signed by the system through inference by observing the facts and

the logic of the connections among the other organizations in the

network, to extract relationships that might have been hidden, dif-

ficult to grasp or neglected. Hence, it increases the completeness

of access decisions and reduces the manual effort needed to ex-

plicitly define relations. Finally, to balance the trade-off between

the amount of trust in a relationship and the completeness of the

access decision, the system relinquishes the full control of relation

assignment process to the user. Users can view and remove any

indirect relation assignment anytime, tune the policy to consider

as trustworthy relations only up to a certain Level, and exclude

higher-level relations from the access evaluation process.

The assignment of an instance based on a relationship pattern

consists of traversing knowledge graphs to extract any relation

that matches the pattern representation. The distributed nature

of the system can be an obstacle to achieve this goal, as the el-

ements matching the pattern might be scattered across multiple

graphs stored in separate IF nodes. To this end, we have developed

an assignment algorithm that explores the distributed knowledge

graph searching for relations that are compatible with the pattern,

then merges the partial explorations to build the final complete

result. The assignment algorithm is composed of the Exploration
and Merging procedures, and its objective is to find all sets of bind-

ings ⟨NodeID.identi f ier ;OrдanizationID⟩. That is, the algorithm
must find actual organization IDs for the identifier placeholders

(e.g., Node X, Node Y and Node Z in Figure 4) to instantiate a new

inferred relationship and add it to the knowledge graph.

Exploration andMerging are message-driven procedures. At each

step, they focus on finding the binding for a single Node of the

Pattern by exploring the part of ontology stored in a single (relevant)
IF-node. The Merging of local exploration results then creates a

global and complete view of the ontology, which in turn enables the

system to derive an extensive set of relations for each organization.

Exploration. The Exploration procedure is shown in Algorithm
1. Each exploration traverses a single path that leads from the root

Node of the Pattern to a leaf one, ignoring Loop Arrows, that are

Algorithm 1 Exploration Procedure

1: procedure Exploration
2: Input: message : ExplorationMessage, pattern : Pattern

3: Output: res : Set<ExplorationMessage>

4: if message.lastArrowReversed then
5: candidates ← query the KB for organizations with relationship

compatible with message.lastArrowData in last binding

6: else
7: candidates ← message.candidates

8: validBindinдs ← ∅
9: accepted ← query the KB for any organization satisfying the conditions

in the root node of the pattern

10: for c in candidates do
11: if c in accepted then
12: valid ← true
13: for la : LoopArrow in pattern do
14: if relationship in graph not compatible with la then
15: valid ← f alse
16: if valid then
17: validBindinдs ← validBindinдs ∪ {c }
18: if validBindinдs = ∅ then
19: r es ← empty messaдe
20: else
21: if pattern has FollowArrow then
22: for c in validBindinдs do
23: for f a : FollowArrow in pattern do
24: if f a not reversed then
25: successor ← query the KB for targets of relationship

of c compatible with f a
26: r es ← new set of exploration request messaдes
27: else
28: r es ← answer messaдe

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

treated as additional constraints. If theNode is followed by multiple

Arrows, parallel explorations can be carried out for the branches.

By definition, the binding for the root Node is forced to be the

author organization. Hence, at the starting point, the exploration

process is initiated with the IF-Node hosting the organization that

is the author of the relationship. Further explorations are triggered

upon receiving the Exploration Message (ExM). An ExM that is

received by an IF-Node contains information including the bindings

found in the previous steps, the conditions and directions of the

relations, and a list of candidates for the binding of the current

Node under exploration (referred to as root Node)4.
Upon receiving a message, two checks must be performed. First,

the direction of the relationship is checked. For a relation that is

not reversed (Follow Arrow), the algorithm (line 7) proceeds to read

the organizations in the candidate list, to find which of them could

be bound to the (current) rootNode as the previous step was able to
determine the candidates by checking the relationship of the organi-

zation bound to the explored node. In case of relation with reversed

direction (Reversed Arrow), candidates are organizations with a

relationship compatible with the data in the message directed to the

last bound organization, so they must be taken from the knowledge

graph (line 5). The second check consist of the examination of each

element in the candidate list to ensure that it respects the conditions
specified in the pattern’s Nodes (lines 10-17).

After the checks are done, invalid candidates are filtered out and

the list of valid bindings between organizations and node identifiers

is obtained. If the list is empty (line 18), it means that no binding

has been found. The procedure then sends to the previous IF-Node
an empty answer message (line 19). If the list is not empty and the

node is not a leaf, then the Exploration requires additional steps:

new ExM are created and the same process repeats (line 26).

Merging. The Merging follows the Exploration and completes

the procedure to find the sets of bindings that satisfy the entire

subtree that starts from the explored node by using the sets of

bindings that satisfy the single paths. The procedure is executed for

all the candidates obtained through the Exploration for each node,

and all the parallel branches. A binding set compatible with the

subtree following a node must be compatible with each single path.

Consequently, the list of possible solutions contains any set that is

the union of one of the provided solutions for each branch, with

the constraint that each identifier must be bound to a single value.

The Merging procedure starts when each branch has provided

an answer that lists the sets of bindings that satisfy a subtree. The

solutions are then generated by trying every combination that takes

one element for each list and creating the union set, then dropping

it if any identifier is bound to more than one value. If the list is not

empty, each set is extended with the binding of the current identifier

of the node with the considered candidate and the list is added to

the result for the merging, the level of the set is compared with

the one saved from the exploration and the higher one is assigned.

Once all candidates have been merged, the merging process sends

back an answer message containing the results.

Finally, the system must always take into account any change in

the relations and in the subject and object properties since it might

4
Note that each time that a binding is resolved, the corresponding Node is removed

from the pattern and the next Node is considered as the root.

affect the knowledge graph and make the current set of inferences

invalid. Accordingly, our system monitors the actions which might

produce changes in the ontology and reacts to them. We have de-

fined various categories of operations (e.g., the insertion, elimination
or modification of an entity, label or relationship) as well as the

respective required course of action for each type. For example, the

insertion of new elements would only add new data to the graph

without impacting on the set of inferred bindings. This happens

because the lack of negative constraints ensures that addition of

new data can only make an organization satisfy a constraint that

it did not satisfy before. So, the system only requires to launch

a new exploration process and expand the graph with the new

knowledge. However, a change such as a relationship elimination
forces the system to review those bindings that include any of the

two organizations involved in the removed relationship. This is

needed because any inference based on that relationship is not

valid anymore. Subsequently, the system retrieves the bindings to

be examined and recomputes them if necessary.

5 ACCESS CONTROL PROTOTYPE AND
EVALUATION

Figure 5 shows the proposed access control system incorporated

in the IF. As mentioned in Section 3, the AM component of the

IF handles the authentication process, hence the mechanism pro-

posed in this paper focuses on the evaluation of access requests

of authenticated users concerning a given Asset. The access con-
trol mechanism is launched after the discovery process by the AM,

which returns a generic description of an Asset along with its ID,

and upon direct request from a user to view a selected Asset. The
system follows the generic ABAC architecture and procedure, but

it employs an ontology to provide attributes for the evaluation of

the policies. Policies concerning the access to a particular asset are

written by the owner of the Asset following the XACML standard. A

policy is composed of one or more rules defining the general condi-

tions which are associated with two possible effects: grant or deny.

To solve and conflicts between rules, policies have a combination

algorithm to decide which decision the policy must return given

the results of the single rules. The system also implements a default

deny policy to cover the situations in which either no permission

is applicable, or the algorithm to solve conflicts is unable to reach a

decision. In addition, Asset owners can define new Patterns in the

form of XML files through the provided interfaces of the system.

The PDP and Attribute Handler(AH) modules are tied to the

evaluation of access requests and serve the same purpose as the PDP
and Context Handler(CH) components in core ABAC (Figure 2).

In particular, AH is tasked with retrieving the relationships, subject

and object attributes from the knowledge graph through the Local
Ontology Manger and Remote Ontology Manager components. It

then wraps and presents the set of attributes required for evaluation

of an access request in a format comprehensible to the PDP. As
specified in the XACML standard, the PDP module should be able

to recover the provided data by means of XPath expressions and

the module must interpret them and return the correct attributes.

The second set of modules are the ones tied to the ontology and

its management, which include the Local and, Remote Ontology

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Sadeghi et al.

Figure 5: Distributed semantic-based access control architecture

Manager and the Message Handler. The latter is in charge of han-

dling the Exploration and Merging procedures for the indirect as-

signment, and exploiting the parallelization opportunities provided

by the structure of the algorithm. Ontology managers, instead, in-

clude all the elements that build and keep up-to-date the ontology

graph. The interface offered allows external elements to add individ-

uals to the ontology, define new relationships, start the relationship

mining process and answer queries from other modules.

5.1 An application Scenario
Figure 6 depicts an example topology of the system. Organizations

Org1, to 7 are all various transportation corporations registered in

the IF and willing to use its services and benefits. Org1 operates
as a Transport Service Provider (TSP) and publishes through the

IF its Assets, including timetables and paths of owned trains. Data

provided by Org1 are interesting Assets for organizations, like Org4,
that develop and manage Travel Expert (TrEx) systems to build

travel plans for clients. Org1 and Org4 hence have the Partnership
relation to facilitate the collaborations and sharing different types

of data. Furthermore, Org1 is investing in the development of ticket

retailing software for its trains. Recently Org1 found out about

two new companies, Org6 and Org7, which are entirely focused

Retailer

ORG-3

ORG-4

ORG-1

Partner:L0

Partner:L0

Partner:L0

Partner:L0

Partner:L0

Partner:L0

Type
Type

Competition:L0

Competition:L0

Type

Type

Type

Type Type

Type
ORG-5

ORG-6

ORG-2

ORG-7 TSP

TrEx

IF-Node I IF-Node II IF-Node III

WeakPartner:L1

Figure 6: An example topology

on online transportation ticketing and retailing mainly in collab-

oration with Travel Experts. Org1 hence considers both of them

as its rivals and decides to restrict their access to its data. So, it

directly adds the Competition relation with Org6 and Org7 and

sets the corresponding policies to protect its Assets against any of

its competitions (Rule 1 in Table 1). Yet, Org1 knows that if any of

its partners are collaborating with Org6/7, then it is probable that

Org6/7 gains access to some of its Assets that are already shared

with such partners. Org1 then considers those of its partners which

are also partners of Org6/7 less trustworthy and decides to impose

on them a more restrictive sharing policy. Therefore, it defines a

Pattern for the Weak Partner relation (as explained in Section 4.3

and Figure 4(B)) and then adds Rule 2 in the Policy shown in Table 1.

The rest of the process would be executed by the system automat-

ically. It constantly monitors the entire network of organizations to

identify the Weak Partners of Org1 and subsequently protects the

travel data in case of an access request from them. To this end, the

system undergoes several Exploration and Merging steps to derive

new relationship instances and keep the knowledge graph updated.

Given the Pattern in Figure 4(B) and the current topology of

the organizations and their relations shown in Figure 6, the process

starts at IF-Node I, which is the host of Org1. By definition, variable
X is forced to bind to Org1, since it is the author of the Pattern.
Then, the process must explore two branches: one for assigning

a partner of X and its partner—i.e., respectively, Y and Z in the

top branch (Branch 1) of Figure 4(B); and another one for the

competitor—i.e., Z in the bottom branch (Branch 2). The Merging
of the two branches then completes the whole bindings forX-Y-Z
and states the Weak Partner relation between X and Y (if any).

Starting from Branch 1, the first variable is Y, and the candidates

to be bound to it are Org4 and Org5 since they both are a partner of

Org1 (See Figure 6). The exploration continues on IF-Node II, and
IF-Node III which are hosting Org5 and Org4, respectively. The
Nodes in the Pattern present no constraints and the absence of

Loop Arrows shows that no further constraint needs to be analysed.
That means both possible bindings ⟨Y = Org4⟩ and ⟨Y = Org5⟩
can be accepted. The fact that it exists a following arrow means

that there is the need for a further exploration step. For the first

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Table 1: A Policy Definition

Conflict Resolution deny-override algorithm

Rule 1
IF subject relation: Competition
THEN DENY

Rule 2
IF object attribute:TravelData
and subject relation: WeakPartner
THEN DENY

group of bindings, then, the candidates for the next variable—i.e.,

Z—are Org3 and Org6, which are both partners of Org4. Similarly,

for the second group of bindings the candidates for Z are Org1 and
Org2, which are partners of Org5. The Exploration messages are

then sent to the IF-Nodes that are the host of each organization

and selection of the binding for Z continues. Ultimately, Org1 and
Org3 could not be accepted as bindings for Z, sinceOrg1was already
bound to variable X, and Org3 is an organization of Type TSP that

is violating the constraints stated in the Pattern for Z in Branch 1.
In other words, the Pattern targets only those partners of Y which
are a Retailer (and hence they are potential competitors of X). So
the final values for Branch 1 are as follows:
Branch 1 : ⟨Y = Org4, Z = Org6⟩ and ⟨Y = Org5, Z = Org2⟩

In parallel, the search for the bindings of Z in Branch 2 has started
and there are two candidates for that: Org6 and Org7, which are

organizations with the competition relation with Org1. Here, both
candidates are acceptable, so the result of this branch is as follows:

Branch 2 : ⟨Z = Org6⟩ and ⟨Z = Org7⟩

The Merging process then starts when both branches have been

explored as explained above. The second binding pair of Branch 1
cannot be merged with any of the two results in Branch 2 as Node
Z appears in both members of the pair and it is bound to different

individuals. For the same reason, the first pair of Branch 1 cannot be
merged with the second binding of Branch 2, but it can be merged

with the first one. The result of the merging happening in Node X
is a single path with the bindings: ⟨Y = Org4, Z = Org6⟩ of level
0, which is to be extended with the candidate in Node X resulting
in the final binding as follows.

Final Binding : ⟨X = Org1, Y = Org4, Z = Org6⟩

After the Exploration and Merging processes are completed, the

system updates the knowledge graph with the new relationship

assignment (shown as the red arrow in Figure 6). Afterwards, when

a request for accessing travel data assets of Org1 is received, the
system queries the graph to retrieve all the organizations related

to Org1 through either the Competition relation—i.e., Org6 and

Org7—or the Weak Partner relation—that is, Org4. Then if the

subject organization (i.e., the requester) is among them the access

is denied, otherwise it is granted!

5.2 Evaluation
The prototype system has been developed in Java and employs

Apache Jena as triple-store. Its initial setting runs over an auto-

matically generated ontology containing 100 organizations. Our

current prototype implementation focuses on the realization of

the access control part. The communications with a network of IF

nodes has been simulated by a special-purpose module that mimics

the required procedure to interact with other IF nodes. Further-

more, the integration with the IF (or any other enterprise ecosys-

tem and framework) is achieved through various interfaces that

are supposed to communicate with the Access Control module for

dispatching the access request and other required data and inputs.

The evaluation presented here focuses on the examination of

the novel aspect of the proposed the system, i.e., the automatic

relation assignment algorithm that continuously grows the knowl-

edge graph by inferring new relations among organizations.
5
In

particular, we aimed to verify the correctness of the algorithm and to

analyze the increase in computation time depending on the variation
of the size of the ontology and on the complexity of the relationships

patterns. Several tests have been carried out on multiple ontologies

that have been randomly populated to avoid the insertion of bias,

and for the three relationships Partner, Secondary Partner and

Weak partner.
The first set of experiments aims to verify the correctness of

the algorithm, that is, to check whether all and only the correct

sets of bindings ⟨Node-identifier; organizationID⟩ are retrieved

from the complete knowledge graph for each pattern. To prove

that the algorithm provides every possible set, it is sufficient to,

first, show that the exploration step takes into consideration any

organization known to the IF node and discards those violating

the constraints. Second, to verify that the merging process, during

the building of the superset, does not add any binding that is not

necessary to satisfy at least one of the branches following the node,

except for the binding of the node itself. The correctness tests

were executed by searching for the relationship Weak Partner and
Secondary Partner on a small ontology of 20 organizations to

allow human verification, and the algorithm has been able to yield

the correct results every time.

Figure 7: Observation of Number of Relations and Compu-
tation time as number of organization grows

The next validation was focused on the examination of the com-
plexity of the algorithm that can be determined as a function of

5
The other aspects of the system have been tested and showed satisfying results as well

(e.g., the average computation time for access right determination upon a particular

request is below 1 second); for reasons of space, we leave the complete evaluation

report to a future extended version of the paper.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea M. Sadeghi et al.

the number of successive exploration steps taken during the com-

putation. That is because each step can be a request to a remote

node, which makes it the most time-consuming part of the pro-

cedure. The message-driven nature of each step allows a massive

parallelization for the exploration steps by having each candidate

checked in parallel, and for different branches starting from the

considered node.

Under the condition that there is a sufficient amount of threads

for the elaboration of the requests, the complexity defaults to the

length of the longest path leading from the root to a leaf node. To

prove these considerations, the three relationships have been sub-

mitted to the system on different, randomly populated ontologies.

According to the results shown in Figure 7, the computation time for

the relationship Partner (that is the simplest one) is significantly

lower than the other relationships. Yet, interestingly, relationships

Weak Partner and Secondary Partner behaved very similarly,

despite the fact that Weak partner requires an additional merging

procedure. So, a more complicated pattern would not necessarily

consume a longer computation time to be resolved. In other words,

we do not observe a proportional ratio between computation time

and complexity of the pattern. Possibly, the topology of the network

and shape of the relations among individuals have more impact on

the computation time than the complexity of the pattern. Finally,

an interesting observation is that the computation time increases

with much lower rate compared to the increase in the size of the

knowledge graph and in the number of relationships, which makes

the algorithm suitable for large scale applications.

6 CONCLUSIONS
This paper presented a semantic-based and distributed access con-

trol mechanism to address the authorization challenge in distributed

enterprise systems. The key features of the proposed mechanism

are, firstly, the ontology-based modeling of the complex concepts

and relations of organizations in a collaborative ecosystem and,

secondly, a reasoning procedure to infer implicit contexts. Further-

more, our proposed solution follows a federated access control

mechanism and an exploration procedure for each replica of the

system that traverses and carries the search of a pattern in the

partial graphs and incrementally harvests the results.

To demonstrate the applicability of the proposed system a proto-

type implementation has been developed. In particular, we have im-

plemented the system as the access control module of the Shift2Rail

Interoperability Framework for the transportation domain. The

experiments proved that the procedure is lightweight and highly

parallelizable, and it allows multithreaded implementations.

Our future work will concentrate on extending the prototype

implementation and deliver the actual integration with the Interop-

erability Framework. In addition, user interactions with the system

will be improved mainly by the development of more sophisticated

GUIs for pattern and policy insertion, and provision of more de-

fault relationship patterns to reduce the need for manual pattern

creation.

Acknowledgments. This work was supported by Shift2Rail and the

EU Horizon 2020 research and innovation programme under grant

agreement No: 826172 (SPRINT).

REFERENCES
[1] Claudio Agostino Ardagna, Ernesto Damiani, Sabrina De Capitani di Vimercati,

and Pierangela Samarati. 2006. A web service architecture for enforcing access

control policies. Electronic Notes in TCS 142 (2006), 47–62.
[2] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. 2007. A survey on

context-aware systems. Int. Journal of Ad Hoc and Ubiquitous Computing (2007).

[3] Luciano Baresi and Mersedeh Sadeghi. 2018. Fine-grained context-aware access

control for smart devices. In 8th Int. CSIT Cont. IEEE, 55–61.
[4] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. 2016. Label-based access

control: An ABAC model with enumerated authorization policy. In Proceedings
of the 2016 ACM International Workshop on Attribute Based Access Control. 1–12.

[5] Dan Brickley and Libby Miller. 2007. FOAF vocabulary specification 0.91. (2007).

[6] Daniel J Buehrer and Chun-Yao Wang. 2012. CA-ABAC: Class algebra attribute-

based access control. In Int. Conf. WI-IAT. IEEE.
[7] Barbara Carminati, Elena Ferrari, and et al. 2009. A semantic web based frame-

work for social network access control. In Proc. of ACM sym. on Access control
models and technologies.

[8] Lorenzo Cirio, Isabel F Cruz, and Roberto Tamassia. 2007. A role and attribute

based access control system using semantic web technologies. In OTM Confeder-
ated Int. Conf." On the Move to Meaningful Internet Systems". Springer, 1256–1266.

[9] Ni Dan, Shi Hua-Ji, Chen Yuan, and Guo Jia-Hu. 2012. Attribute based access con-

trol (ABAC)-based cross-domain access control in service-oriented architecture

(SOA). In Int. Conf. on Computer Science and Service System. IEEE, 1405–1408.

[10] Marwah Hemdi and Ralph Deters. 2016. Using REST based protocol to enable

ABAC within IoT systems. In 2016 IEEE 7th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON). IEEE, 1–7.

[11] Shohreh Hosseinzadeh, Seppo Virtanen, Natalia Díaz-Rodríguez, and Johan Lilius.

2016. A semantic security framework and context-aware role-based access control

ontology for smart spaces. In Proc.of the Int. Workshop on Semantic Big Data. 1–6.
[12] Luokai Hu and Ying at al. 2009. Towards an approach of semantic access control

for cloud computing. In Int. Con. on Cloud Computing. Springer.
[13] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,

Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen

Scarfone, et al. 2013. Guide to attribute based access control (abac) definition and

considerations (draft). NIST special publication 800, 162 (2013).

[14] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey Voas. 2015.

Attribute-based access control. Computer 48, 2 (2015), 85–88.
[15] ASM Kayes, Jun Han, and Alan Colman. 2013. An ontology-based approach to

context-aware access control for software services. In International Conference
on Web Information Systems Engineering. Springer, 410–420.

[16] Florian Kerschbaum. 2010. An access control model for mobile physical objects.

In Proc. of the ACM symp. on Access control models and technologies. 193–202.
[17] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. 2010. Adding attributes

to role-based access control. Computer 43, 6 (2010), 79–81.
[18] Bo Lang, Ian Foster, and et al. 2009. A flexible attribute based access control

method for grid computing. Journal of Grid Computing 7, 2 (2009).

[19] Bo Lang, Hangyu Li, and Wenting Ni. 2010. Attribute-based access control for

layered grid resources. In Int. Conf. on FGCN. Springer.
[20] Amirreza Masoumzadeh and James Joshi. 2010. Osnac: An ontology-based access

control model for social networking systems. In 2010 IEEE Second International
Conference on Social Computing. IEEE, 751–759.

[21] Catherine JensenMcCollum, Judith RMessing, and LNotargiacomo. 1990. Beyond

the pale of MAC and DAC-defining new forms of access control. In Proc. on
Research in Security and Privacy. IEEE, 190–200.

[22] Chi-Chun Pan, Prasenjit Mitra, and Peng Liu. 2006. Semantic access control for

information interoperation. In Proceedings of the eleventh ACM symposium on
Access control models and technologies. 237–246.

[23] Mersedeh Sadeghi, Petr Buchníček, and et al. 2020. SPRINT: Semantics for

PerfoRmant and scalable INteroperability of multimodal Transport. In TRA 2020.
[24] Ravi S Sandhu. 1998. Role-based Access Control. InAdv. in comp.Vol. 46. Elsevier.
[25] Daniel Servos and Sylvia L Osborn. 2017. Current research and open problems

in attribute-based access control. ACM Computing Surveys (CSUR) 49, 4 (2017).
[26] Haibo Shen. 2009. A semantic-aware attribute-based access control model for

web services. In Int. Conf. on Alg. and Arch. for Parallel Processing. Springer.
[27] Alexander Smirnov, Alexey Kashevnik, Nikolay Shilov, and Nikolay Teslya. 2013.

Context-based access control model for smart space. In Int. Conf. CYCON. IEEE.
[28] OASIS Standard. 203. extensible access control markup language (xacml) V. 3.0.

(203).

[29] Lili Sun, Hua Wang, Jianming Yong, and Guoxin Wu. 2012. Semantic access

control for cloud computing based on e-Healthcare. In Proc. of Int. Conf. CSCWD.
[30] Zhiguo Wan, Robert H Deng, et al. 2011. HASBE: a hierarchical attribute-based

solution for flexible and scalable access control in cloud computing. Transactions
on information forensics and security (2011).

[31] Wang Xiaopeng, Luo Junzhou, Song Aibo, and Ma Teng. 2005. Semantic access

control in grid computing. In Int. Conf. ICPADS’05), Vol. 1. IEEE.
[32] Eric Yuan and Jin Tong. 2005. Attributed based access control (ABAC) for web

services. In Proc.of Int. Conf. on Web Services (ICWS).

	Abstract
	1 Introduction
	2 Related Works
	3 Interoperability Framework
	4 Semantic-aware ABAC
	4.1 Reference Architecture
	4.2 Access Control Ontology
	4.3 Relationship Pattern and Instance
	4.4 Distributed Relationship Inference

	5 Access Control Prototype and Evaluation
	5.1 An application Scenario
	5.2 Evaluation

	6 Conclusions
	References

