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MI3: Machine-Initiated Intelligent Interaction for Interactive
Classification and Data Reconstruction

In many applications, while machine learning (ML) can be used to derive algorithmic models to aid decision
processes, it is often difficult to learn a precise model when the number of similar data points is limited. One
example of such applications is data reconstruction from historical visualizations, many of which encode
precious data, but their numerical records are lost. On the one hand, there is not enough similar data for
training an ML model. On the other hand, manual reconstruction of the data is both tedious and arduous.
Hence, a desirable approach is to train an ML model dynamically using interactive classification, and hopefully,
after some training, the model can complete the data reconstruction tasks with less human interference. In
order for this approach to be effective, the number of annotated data objects used for training the ML model
should be as small as possible, while the number of data objects to be reconstructed automatically should be as
large as possible. In this paper, we present a novel technique for the machine to initiate intelligent interactions
to reduce the user’s interaction cost in interactive classification tasks. The technique of machine-initiated
intelligent interaction (MI3) builds on a generic framework featuring active sampling and default labelling.
To demonstrate the MI3 technique, we use the well-known Cholera Map visualization as an example as it
features three instances of MI3 pipelines. The experiment has confirmed the merits of the MI3 technique.

CCS Concepts: • Theory of computation→ Active learning; • Human-centered computing→ Inter-

active systems and tools; Visualization; • Applied computing → Data recovery; • Computing method-

ologies →Object identification.

Additional Key Words and Phrases: Data reconstruction, interactive classification, data annotation, active

learning, interaction reduction, historical visualization
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. 2019. MI3: Machine-Initiated Intelligent Interaction for Interactive Classification and Data Reconstruction.
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1 INTRODUCTION

History has left us many wonderful visualization images, such asWilliam Playfair’s time series chart
of trade-balance (1786) [32], bar chart of Scotland’s imports/exports (1786) [32], and pie chart of
Turkish Empire’s land holdings (1801) [33]; Charles Joseph Minard’s flow map of road traffic (1845)
[27], and flow map of Napoleon’s Russian campaign (1869) [28]; John Snow’s cholera map (1855)
[42]; Florence Nightingale’s coxcomb chart (1858) [31][30]; and so on. These visualization images
capture important statistics of historical events, and therefore are of great interest to scholars in
humanities and social sciences. In numerous cases, the original datasets are lost. It is desirable to
reconstruct the datasets from the visualization images.

Reconstruct a dataset manually with pen-and-ruler is laborious. Many attempts have been made
to extract data from computer-generated visualization images. Some [10, 39, 51] used hand-crafted
image processing algorithms, while others [1, 15, 19, 24, 34, 35, 40] used machine learning to derive
models for recognizing visual objects that encode data.
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1:2

However, unlike computer-generated imagery, a historical visualization image typically features
a unique visual design. In addition, the hand-drawn nature of the visualization and the deterioration
of and the damages to the papers pose further challenges to the process of recovering the data
from historical visualization images. If there were a fully-automated solution, one would have
to develop an algorithm for each image individually by programming or using machine learning.
Likely the algorithm would be unsuitable for other historical visualization images. Therefore, the
cost of manually recovering data would likely be lower than programming, and ironically would
be almost the same as the cost of preparing a training dataset before the actual machine learning
process.

A practically more effective solution would be an interactive intelligent system that is equipped
with a collection of elementary algorithms, can ask users questions intelligently, and is able to
adapt its algorithms automatically to work with a given historical visualization image. It is not an
idealized system that could recover data automatically from many different historical visualization
images, but a computerized assistant what can initiate intelligent interactions with human users
in order to adapt itself for each specific task. The design goal of “intelligent interactions” is to
minimize the number of interactions.

In this paper, we present a generic approach for machine-initiated intelligent interactions (MI3).
The approach is governed by an iterative machine learning framework that features algorithmic

sampling (active sampling) for dynamically acquiring labels from the user and algorithmic default

labelling (label propagation) for maximizing the informational value of the user’s inputs. It consists
of a collection of image processing algorithms to accommodate the needs for detecting different
types of visual objects. The goal of the MI3 approach is to perform the data reconstruction task with
as few interactions as possible. Using machine learning to train a model is primarily for supporting
the task on hand at the moment, rather than for deriving a model that can be reused for many other
visualization images (since there are seldom any similar images). The main contributions of this
work include:

• a generic approach for machine-initiated intelligent interactions (MI3) in the context for
recovering data from historical visualization images;

• a demonstration of actualizing the MI3 approach in three functional pipelines;
• a quantitative evaluation of the effectiveness of the MI3 approach in the implementation of
these three pipelines;

• a prototype system that supports data reconstruction from spatial data visualization.

2 RELATEDWORK

2.1 Chart Data Reconstruction

Reconstruction of data from visualization images has attracted research interest in the HCI and
image processing communities for the last two decades. Many valuable datasets are only available
through their visualization imagery in printed or scanned media. Manually reconstructing a dataset
from a visualization image with pen-and-ruler is accurate but laborious, and is often not scalable
for charts with many data objects, such as John Snow’s cholera map [42]. Many techniques have
been proposed to reduce human effort in data reconstruction.
Several tools [4, 11, 46] provide a digital extension of the pen-and-ruler approach by allowing

users to interactively inform the computer about where is the data to be recovered. For example,
Ycasd [11] is a tool for digitizing line charts. It requires the user to indicate the location of axes,
specify the scale of the axes, and point out individual data points. The total number of interactions
required is thus at the same scale as the number of data points to be digitized. We will compare our
MI3 approach with this computerized pen-and-ruler approach in Section 6.
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Many techniques have been proposed to process visualization images automatically, and recon-
struct data records from recognized data objects (e.g., [10, 37, 39, 51]). Each technique is constructed
based on the known visual specification of a particular type of charts. There are often human-
controllable parameters for ensuring a good match between the techniques and minor variations of
the charts within the same type group. Such techniques are suitable for those commonly-used and
computer-generated statistical charts. However, they rarely work well with historical visualization
images, typically hindered by the non-standard visual design, the distortion of the hand-drawn
shapes, and the noise due to deterioration of the paper media.

In order to ensure high-quality data reconstruction, semi-automatic image processing techniques
have been deployed in some systems [18, 26]. iVoLVER [26] is such an interactive system, with
which the user specifies how visual objects map to data. ChartSense [18] is a mixed-initiative system,
which enables users to determine image processing parameters. As our application concerns the
recovering of valuable data from historical visualization, the quality of data reconstruction is a
crucial requirement. Hence involving human users in the reconstruction process is unavoidable.
Nevertheless, we also recognize that a user’s specification of the mapping from visual objects to data
and various image processing parameters can guarantee the accuracy of data reconstruction from
historical visualization, and any trial-and-error interactions could easily incur undesirable effects
(e.g., frustration, cognitive load, and time cost). We have thus designed our user interface to focus
on the questions that users can answer easily without any explicit knowledge of the underlying
algorithms for image processing or mapping specifications. We have introduced machine learning
and machine-initiated intelligent interactions (MI3) to reduce the burden of the user.

To avoid the necessity for a precise specification of a type of charts, machine learning (ML) has
been used to construct algorithmic models and define their parameters by using human-annotated
datasets as the training data (e.g., [1, 15, 19, 24, 34, 35, 40]). Al-Zaidy and Gile applied this approach
to data reconstruction from bar charts by using decision-tree-based classifiers [1]. Poco and Heer
used SVM to classify textual elements in visualization images [34], and Poco et al. further developed
a technique for extracting the colour encoding of visualization images by recognizing the legend
[35]. The combination of machine learning and image processing presents an attractive advantage
when there are many annotated visualization images available for training a reasonably-accurate
model, and there are many more not-yet-annotated visualization images for which the trained
model can be used to recover the unknown data. Such an advantage is absent with historical
visualization images since the number of similar datasets available usually is insufficient as the
training data. By the time when all similar visualization images are annotated for training a model,
there is no need for the model anymore.
This naturally leads to the idea that one may select parts of an image to train a model with

possibly mediocre accuracy, and applied the trained model for the rest part of the image, and if
any, some other similar images. This idea is the basis of this work. We further enhance this idea by
introducing an algorithmic selection of “parts of an image” and algorithmic provision of “tentative
labels” in order to reduce the number of interactions required for interactive classification. We will
evaluate the merits of these two additions in Section 6.

2.2 Interactive Classification with Intelligent User Interfaces

Data annotation is an essential, and often costly, step for any supervised learning techniques. In
several applications, intelligent user interfaces for interactive classification have been used to reduce
the cost of data annotation. Fails and Olsen proposed Crayons [8], an interactive classification
technique for image pixel classification, that learns the labels generated from user’s painting
interaction. In the area of image searching, Fogarty et al. developed a search system, CueFlik [9],
with which the user can define search criteria for a concept by using positive and negative examples
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and rank search results according to the similarity to the concept. Active learning is used to inform
the user about the images that confuse the system the most, guiding the user to provide examples
that would benefit the concept classifier the most. To support efficient iterative image searching,
Luo et al. proposed multi-class query ranking [25], a semi-supervised learning algorithm based on
manifold ranking.
In the area of computer vision, Russell et al. developed LabelMe [38], a system for annotating

objects in images. The user can specify an object contour by freehand drawing. Andriluka et al.
developed an interactive system, Fluid Annotation [2], for annotating ground-truth results for
image segmentation. It uses a neural network model trained in advance to compute an initial set of
segments in an image and ask the user to edit the geometry of the segments to correct any errors. In
our MI3 approach, the ML framework does not assume the availability of any pre-labelled training
data, and instead, it provides users with default labels to aid their annotation tasks dynamically.
Techniques for accelerating the interactive classification process in the literature are typically

categorized into active learning based methods and clustering based methods [43]. A method in
the former category attempts to select and label more informative data points and use them
to train an interim model that is used to label other data points. With an iterative process, the
interim model becomes better and better, hence reducing the number of data points needed to be
manually annotated. The latter attempt to make use of each human annotation to label more data
points. We give below several examples of clustering-based methods, and we will discuss the active
learning-based methods in the next subsection.
Cui et al. described an interactive photo annotation system, EasyAlbum [7], allowing the user

to annotate data points in a cluster-by-cluster manner. Liu et al. described a method that first
divides unlabelled data points into clusters, selects exemplars from each cluster for the user to
label, and propagates the labels to other data points in the cluster [23]. Rafailidis et al. described
the content-based tag propagation technique that propagates user-provided tags to similar items to
address the “cold start” problem and boost the accuracy of tag-based search engine [36]. Kucher
described ALVA, an interactive classification technique for text data annotation and visualization
of the annotation. ALVA exploits active learning in the process of annotating text dataset with
multiple non-exclusive labels. To visualize the label of data points, each of which is a vector of
binary values, they propose a visual representation called CatCombos that groups data points with
the same label vector [20]. Tian et al. described a hybrid method that first groups unlabelled data
points into evident clusters and a background cluster. It then allows the user to annotate each
evident cluster as a whole, and guides the user to annotate the background cluster using an active
learning-based method [44]. Tang et al. described a multi-scale method that allows the user to label
data points in a cluster-by-cluster manner, and to refine the labels in each cluster iteratively using
the same clustering-based mechanism [43]. The generic MI3 approach includes an algorithmic
default labelling component, which in principle can be an algorithmic clustering-based method, an
interactive clustering method, or any other future method for label propagation.

2.3 Active Learning and Semi-Supervised Learning

Active learning is a family of ML methods that interact with the user during a learning process,
typically (in a narrow definition) for seeking labels for unlabelled training data points, and in some
cases (in a broad definition), for seeking important decisions that can improve the quality and
performance of the ML process.

A critical feature in many active learning methods is to select data points “intelligently” to seek
labels from the user. Lewis and Catlett proposed such a method, which estimates the uncertainty
of each unlabelled data point, and selects the data point with the highest uncertainty for the user
to label [22]. Brinker introduced a batch active learning method that selects a batch of unlabelled

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Page 4 of 62

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245
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data points for the user to label [5]. Xu et al. described a batch method that selects data points for
labelling based on their relevance, density, and diversity measures [47]. Nguyen and Smeulders
described a method that makes use of clustering property of the data and selects data points in
favour of dense clusters [29]. Guo and Schuurmans described a batch method that selects the data
points in a manner that maximizes the discriminative performance of the target classifier while
minimizing the entropy of the missing labels [12]. In addition, active learning has been used for
accelerating interactive classification [14, 17].

The MI3 approach presented in this paper contains an active learning component. In particular,
MI3 actively initiate intelligent interactions by selecting a batch of data points for the user to label.
In the implementation of MI3 pipelines reported in this paper, we used the methods by Lewis and
Catlett [22] and Xu et al. [47].

Semi-supervised learning is a family of ML methods that make use of both labelled and unlabelled
data points for training amodel. For example, Chapelle et al. proposed a framework for incorporating
unlabelled data in kernel classifiers [6]. Leistner et al. extended the random forests method with a
semi-supervised mechanism [21]. They reformulated the optimization goal of maximizing multi-
class margin by making use of unlabelled data in addition to labelled data. Yarowsky proposed
self-training [48], a boosting technique, that uses pseudo-labels of unlabelled data during training.
Using a classifier learned on labelled data as an interim ML model, the technique applies the interim
model to unlabelled data, and extends the training dataset that is used to retrain the model. Blum
and Mitchell proposed co-training [3], a similar technique to self-training, that uses two interim
classifiers trained using two disjoint subsets of the data features. The predicted tentative labels on
unlabelled dataset from one of the classifiers is feed to the other to enlarge the training set. Joachims
developed the TSVM (transductive support vectormachine)method as an extension of the traditional
SVM by involving unlabelled data in addition to labelled data for margin maximization in the model
construction process [16]. Zhu and Ghahramani described a graph-based algorithm for transferring
known labels to unlabelled data points iteratively [52]. Zhou et al. described another graph-based
algorithm with a different label propagation strategy [50]. Tong and Jin described a mixed label
propagation algorithm [45] that exploits both the similarity and dissimilarity information.

Typical unsupervised methods, such as clustering, can be used for assisting in label propagation.
Therefore, an implementation of the MI3 approach may also integrate semi-supervised learning
algorithms. In particular, we designed a graph-based label propagation process based on Zhou et al.’s
method [50] as one of the optional algorithmic default labelling components in our implementation
of MI3 pipelines.

3 OVERVIEW OF THE MI3 APPROACH

In this section, we first describe an example case that illustrates the challenges in a class of data
reconstruction applications. We then outline a generic approach for supporting such applications.

3.1 Examples of Technical Challenges: John Snow’s Cholera Map

The 19th-century witnessed the boom of visualizations techniques. Among many well-known
historical visualizations created at that time, the Cholera Map, which was created by John Snow in
1854 [41], provides a telling example for illustrating the challenges in data reconstruction from
historical visualization images. As shown in Fig. 1, the map depicts the spatial distribution of
fatalities in an area during the 1854 London cholera outbreak.
The Cholera Map encodes a precious historical dataset, which can be stored as an array of

records, each of which is a tuple (x ,y, #victims). The goal of data reconstruction is thus to scan
the map, identify the location (x ,y) of each bar with at least one block, and count the number
of blocks as the value of #victims . As illustrated on the right of Fig. 1, the identification of each
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A Block

A Bar

A Base

A Root

Fig. 1. Cholera Map [41] shows the number of fatalities in the 1854 London Cholera Outbreak with a discrete
bar chart. The fatalities are distributed at more than 300 locations on the map and visualized as stacked
blocks. The right figure illustrates the visual encoding of Cholera Map. A bar aggregates the fatalities at a
location, where the number of blocks denotes the number of fatalities. A bar typically sits on a base and has
a root point that denotes its location information.

location x ,y requires several object recognition processes for identifying the corresponding bar,
the blocks that form the bar, the base that determines the first block, and the root position (i.e., a
consistently-defined position in the first block).
The Cholera map consists of 579 blocks that form 321 bars. Manually acquiring the values for

the 321 records will be tedious and time-consuming. Even with an optimistic estimation, one were
to take 10 seconds to navigate to a bar, 10 seconds to count the number of blocks in the bar, 20
seconds to measure the location, and 10 seconds to type in the values into the computer, it would
take some 50 seconds per bar and more than 4 hours to reconstruct the dataset.
Naturally, one would like to automate this process as much as possible. However, data recon-

struction from historical visualizations poses several challenges. Many of such visualizations were
hand-drawn, often featuring unique visual designs and suffering from poor image quality. Any
general-purpose algorithms for detecting blocks, bars, bases or roots may deliver erroneous results
when encountering difficult patterns such as those shown in Fig. 2. In (a), a block conglutinates
with the baseline and the letters on the other side. In (b), a segment in a dashed line can easily be
confused as a block. In (c), the grouping of blocks into bars is ambiguous, even for humans. At
a glance, the highlighted pattern may be interpreted either as a bar with nine blocks or as two
bars with four and five blocks respectively. It requires careful observation of other bars in the
neighbourhood, and some logical reasoning in order for one to conclude that this is a bar of nine
blocks. In (d), a bar does not have a baseline because it is not associated with a street location.
Hence the identity of its first block is ambiguous, and so is its root position.

While one may anticipate the potential of using machine learning to train a sequence of models
for detecting blocks, grouping blocks into bars, and finding the root of each bar respectively, the
unavailability of a sufficient number of training data points poses another critical challenge. Many
historical visualizations feature unconventional visual designs. For instance, the Cholera map is
rather unique among the visualizations produced before the digital age. Given such a visualization
image, the data objects (e.g., blocks, bars, or roots) that may be pre-labelled to aid a supervised
learning process would constitute a very sparsely sampled and possibly biased training dataset,
if there were other visualizations drawn with the same visual design. Therefore, pre-labelling

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Page 6 of 62

ACM TiiS: For Review Only

Transactions on Interactive Intelligent Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Machine-Initiated Intelligent Interaction 1:7

(b) Similar non-block object(a) Segmentation difficulty (c) Ambiguous grouping (d) No baseline

Fig. 2. Some examples of challenging cases in processing the CholeraMap image [41]. (a) A block conglutinates
with background. (b) A segment of dashed line may be confused for a block. (c) The grouping of blocks is
ambiguous. (d) Blocks are not distributed close to a baseline.

the 579 blocks, 321 bars, and 321 roots would unlikely cost less than measuring the 321 tuples
(x ,y, #victims) manually and typing them into the computer.
Hence, it is highly desirable to find an approach that is neither totally automated nor totally

manual. Ideally, a software system enabling such an approach can encode some basic knowledge
about a family of plots (e.g., bar charts, discrete bar charts, pictogram bar charts). It can ask a
user questions about the difficulties and variations specific to a given visualization (e.g., noise and
distortion, and root definition), and can dynamically learn from the user’s answers and improve its
ability to handle similar difficulties and variations. Just like an intelligent assistant, it can initiate
interactions intelligently, and can learn dynamically. It is this desire that motivates the development
of the MI3 approach, where MI3 stands for “Machine-Initiated Intelligent Interaction”.

3.2 The Generic MI3 Pipeline for Interactive Classification

The goal of an MI3 Pipeline is to perform an interactive classification task. Many detection problems
in data reconstruction are inherently classification problems. For example, given a collection of
pixel-based objects in the Cholera map, to differentiate those blocks that represent fatalities from
other shapes is a typical classification problem. Evenwhen a detection problemmay not immediately
be seen as a classification problem, it can normally be decomposed into a classification problem
plus some pre-processing and/or post-processing. For example, the problem of grouping blocks
into a bar can be transformed to a classification problem for determining whether two blocks are
related (i.e., belong to the same bar), together with a pre-processing step for compiling candidates
of block pairs and a post-processing step for grouping those related blocks. Both the pre- and
post-processing steps can be reliably computed using predefined algorithms without any user
intervention. By focusing on classification problems, the MI3 approach can be applied to different
pipelines and sub-pipelines in data reconstruction workflows.

Fig. 3 depicts the MI3 approach as a generic pipeline. LetD0 be a set ofn unlabelled data objectives
at step 0 (i.e., before the iteration starts). The goal of the pipeline is to deliver a labelled dataset( D0
L0

)
after k iteration steps such that the amount of human effort in these k steps is less than that

for labelling all n data objects manually. In this work, we use the number of human-computer
interactions to approximate the amount of human effort.
In the pipeline, data pre-processing is an optional process, and it is used when the raw data has

not yet provided a set of data objects to be labelled. For example, given the Cholera Map image, one
may use a pre-processing step to extract all color connected pixel components (i.e., all connected
black pixel groups and all connected white pixel groups) as candidates of blocks. Normally, this
pre-processing step is totally automated. The subsequent processes will classify these candidates
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Fig. 3. The generic MI3 pipeline. The optional data preprocessing step transforms the raw data from the
original problem into a classification task for unlabelled data objects D0. We consider the k-th iteration of
the active learning as an instance. Here, by “active learning”, we refer to its general definition that the system
actively seeks decisions from the user to aid the ML process. The algorithmic sampling step selects the data
objects Sk to be labelled. The algorithmic default labelling step assigns default label annotation Ak for data
objects Sk . In the interactive labelling step, the user corrects the mislabelled data objects in the interface and
produces ground truth (GT) labels A′

k
. The confirmed label annotations A′

k
are then added to the labelled

dataset. An interim classifier is trained with the partially labelled dataset, which can be used to compute
default labels in the next iteration. The stoppage analysis step checks whether the interactive classification
stage should stop. If not, the next session of interactive classification starts. Else, the interim classifier can
be applied to label the remaining unlabelled data objects Dk+1 with labels Bk+1. The user goes through a
quality assurance step to verify the labels for these data objects. The data objects Dk+1 and verified labels
B′
k+1

are then added to the labelled dataset and forms the labels L0 for the whole data object set D0. An
optional postprocessing step transforms the labelled data objects into the desired final output data structure.
The MI3 pipeline is generic and its components can be implemented with application specific algorithms.

into correct categories, such as “true blocks” and “false blocks”. It is thus important in practice for
this pre-processing step to minimize false negatives.
As all data objects in D0 are unlabelled, the core of the pipeline is an iterative loop based on

active learning (according to its general definition). Considering the k-th iteration as an instance,
the data flows through various component processes as follows:

• The process algorithmic sampling selects a subset of data objects Sk ⊂ Dk . While a simple
solution can be random sampling, a more sophisticated solution can select data objects that
can inform the classifier learning more effectively.

• The process algorithmic default labelling assigns a tentative label to each object in Sk . We
denote this interim labelled subset as

( Sk
Ak

)
. It is helpful for those tentative labels to be as

correct as possible. All incorrect labels will have to be corrected by the succeeding process
manually, hence incurring more interactions.

• The process interactive labelling then initiates an interaction session, asking the user to check
the interim labelled subset and make a correction if necessary. This results in a correctly

labelled subset
( Sk
A′
k

)
. The main criterion for designing an effective user interface is to enable
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Machine-Initiated Intelligent Interaction 1:9

the checking of the tentative labels and correcting any mistakes with the minimal amount of
human effort. In this work, we focus on the number of interactions as an approximation of
human effort.

• In the process adding to labelled dataset, the labelled subset
( Sk
A′
k

)
is then combined with all

labelled subsets in the previous k−1 iterations, resulting in a larger set of labelled data objects
⋃k

0

( Si
A′
i

)
, which can be used to train a classifier while forming part of the classification results

that the pipeline is designed to deliver. Here we define the union of a series of set-pairs as
the pair of two sets, each resulting from the union of the corresponding series of sets.

• The process training classifier is an automated ML process that uses the labelled data objects
⋃k

0

( Si
A′
i

)
to train a classification model. Because this training process is iteratively invoked

with bigger and bigger training datasets, the ML models are expected to become better and
better. The interim model can be used to classify unlabelled data objects in the processes of
algorithmic default labelling and applying classifier.

• The process stoppage analysis makes an algorithmic decision as to the trained model obtained
after the k iteration steps is good enough for classifying unlabelled datasetDk+1. This decision
can be made using the information collected in the previous k iterations, e.g., the testing
measures in the process training classifier, the percentage of the labels that need to be
corrected in the process interactive labelling, and some statistical measures about the labelled
data and unlabelled data. If the trained classifier is equipped with uncertainty analysis, there
can be an additional stoppage analysis process after the process of applying classifier.

• The process applying classifier is invoked once the stoppage analysis gives the green-light. As
Sk is selected from Dk , the set of remaining data objects yet to be labelled is denoted as Dk+1.
Using the trained model, the process labels all the data objects in Dk+1, resulting in a labelled
dataset

( Dk+1
Bk+1

)
.

• The process of quality assurance is necessary for any application that demands a very high
quality of data reconstruction. It is an interactive process for a human user to inspect the
machine-labelled data objects in

( Dk+1
Bk+1

)
and correct all errors found. This results in a checked

and corrected dataset
( Dk+1
B′
k+1

)
.

• The second process of adding to labelled dataset combines
( Dk+1
B′
k+1

)
and

⋃k
0

( Si
A′
i

)
to form the

final set of labelled data objects, which is denoted as
( D0
L0

)
.

Similar to data pre-processing, data post-processing is an optional process for transforming the
labelled data objects

( D0
L0

)
to those in an intended data structure and format. In some applications, an

MI3 pipeline may be followed by another MI3 pipeline. We will see examples of data pre-processing,
data post-processing, and multiple pipelines in the following sections.

4 REALIZING MI3 PIPELINES IN PRACTICE

In this section, we use the process of designing a software system for reconstructing data from
discrete bar charts to showcase how to design an interactive classification process following
the generic MI3 pipeline in practice. The Cholera Map shown in Fig. 1 typifies such a visual
representation. The data reconstruction system consists of three pipelines, all of which were
designed and implemented following the generic MI3 pipeline. They are pipelines for (i) detecting
objects (e.g., detecting blocks in the Cholera Map), (ii) grouping components (e.g., detecting bars in
the Cholera Map), and (iii) determining key positions (e.g., detecting roots in the Cholera Map).
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4.1 Transforming a Decision Problem to a Classification Problem

In order to benefit from the generic MI3 approach, one needs to transform various decision problems
such as detecting objects, grouping components, and determining key positions to classification
problems. As shown in Fig. 3, we can use a pre-processing step to generate a list of candidates rep-
resenting potentially correct decisions. These candidates then become the inputs of a classification
pipeline, which categorizes these candidates into different label classes.

For example, when the first MI3 pipeline is activated for detecting blocks in the Cholera Map, the
pre-processing step may construct a list of candidates, each of which is a group of connected pixels.
The role of the interactive classification pipeline is then to label each candidate as a meaningful
“block” representing a victim, or a “non-block”. All candidates labelled as “block” are then passed to
the next pipeline for grouping these blocks into bars.
When the second MI3 pipeline is activated for grouping the detected blocks into bars, the pre-

processing step may generate a list of pairwise relations, each indicating that a pair of blocks
may potentially belong to the same bar. These candidate relations are then fed into the interactive
classification pipeline for labelling each candidate as “yes” for belonging to the same bar, and
“no” otherwise. In this case, a post-processing step is necessary for transforming the results of the
classification problem to the results of the original grouping problem. This can be achieved by
using a simple algorithm for converting a list of detected blocks and a list of confirmed relations to
a list of bars, each of which consists of a group of blocks linked with the confirmed relations. This
post-processing step can also count the blocks in each bar, resulting in the data value #victims for
each bar.
When the third MI3 pipeline is activated for determining the root positions of the bars, the

pre-processing step may generate a set of potential positions for each bar, such as the center of the
bar and that of each block in the bar, the middle point of each edge of the bar and its blocks, the
corners of the bar and its blocks, and so on. The classification pipeline then labels the candidate
positions to be “root” and “non-root”, while ensuring exactly one root per bar. A post-processing
step then converts the local root position relative to the bar to a global position (x ,y) relative to the
original visualization image. In combination with the data value #victims for each bar, the system
generates a list of tuples in the form of (x ,y, #victims).

If the user requires the actual geographical location (e.g., longitude and latitude, or other geodetic
systems) for each tuple, this can be done trivially using an image-specific coordinate transformation
as a post-processing step.

4.2 Variations of MI3 Pipelines

The design and implementation an MI3 pipeline in practice depends on many factors, such as
the technical availability of various algorithmic components, the knowledge and skills of the
developers, the cost and time constraint of the software life-cycle, and many other application-
specific requirements. In general, one can consider the development as an agile software engineering
approach, with a gradual introduction of better algorithms, techniques, or user interfaces for
different processes in Fig. 3. One may consider some typical variations of the processes in the
interactive classification part of MI3 pipelines:

• Variations of algorithmic sampling — Perhaps the most naive sampling method, which is
denoted as NS, is to fetch data objects to be labelled simply according to their order in the
input dataset Dk . More commonly used in ML, random sampling (RS) is considered as the
baseline sampling method, which selects data objects for labelling in a stochastic order. The
approach of algorithmic sampling (AS) selects data objects according to a predefined metric
that predicts the potential benefit of labelling a data object to the learning process. Such
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a metric may assess the potential benefit according to the uncertainty of the label [5], the
diversity of the samples [47], clustering information [29, 47], and the expected performance
of the classifier [12]. In this work, we used two methods including Lewis and Catlett’s
uncertainty-based sampling [22] and Xu et al.’s sampling method according to weighted
uncertainty, cluster density, and sample diversity score [47].

• Variations of algorithmic default labelling — When data objects are presented in a user
interface for dynamic labelling, the system may assign a default label to each data object. If
the system can predict some labels correctly, this can reduce the number of interactions that
a human user has to perform in labelling the data objects. A most naive approach is no default
labelling (ND). An alternative approach is random default labelling (RD), which assigns a
data object to one of the label classes in a stochastic manner. The approach of algorithmic

default labelling (AD) uses a model to predict the label of a data object. For example, one
may use the interim model during an ML process to label a data object. Alternatively, one
may use a label propagation algorithm (e.g., self-training [48], co-training [3], graph-based
label propagation [50, 52]) to predict the label of a data object according to those data objects
that have already been labelled. In this work, we have provided our MI3 pipelines with
the mechanisms for using the interim model (AD (Interim)) as well as a graph-based label
propagation algorithm (AD (Graph)) [50].

• Variations of interactive labelling — The approach of active learning represents a small portion
among all research papers published on ML. One can naturally consider that the baseline
approach in ML is to pre-label all data objects in the training and testing datasets, without any
interactive labelling during an ML process. This baseline approach is denoted as (PL). Since
the MI3 approach is designed for active learning, the process of interactive labelling (IL) is
expected to be present in almost all MI3 pipelines. Different designs of the user interface (UI)
for interactive labelling will impact on an MI3 pipeline differently. It is desirable to explore
many design options. In this work, we focused on the use of the simplest interaction modality
of button clicking to minimize the time and cognitive load per interaction.

• Variations of training classifier —We consider that the baseline is without any automatic and
semi-automatic ML, and all data objects will be labelled manually. We denote this brute force
approach as BF, while denoting the full automatic and semi-automatic ML approaches as
ML. In practice, there are many design options for an ML pipeline. The MI3 approach does
not impose any restriction. For example, MI3 pipelines can be instantiated with different ML
frameworks for classification, e.g., variations of neural networks, decision tree and random
forest, support vector machines, Bayesian networks. In this work, we have used decision tree,
and the transductive model learned in label propagation [50] as two options for the process
training classifier.

In Section 5, we will provide further technical details of the algorithms implemented in a
software prototype built based on the MI3 approach, and in Section 6, we will compare how
different combinations of the above variations may impact on the performance of the implemented
MI3 pipelines.

5 DATA RECONSTRUCTION FROM CHART IMAGES

In order to validate the feasibility of the MI3 approach, and to study and evaluate different design
options in realizingMI3 pipelines, we have developed a prototype software system for reconstructing
data from a family of visual representations, which are composed of a collection of spatially
distributed similar data objects. Each data object depicts a data tuple (x ,y, #value). The spatial
location (x ,y) may be geographically meaningful and related to a background map or image. The
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Image Blocks Bars Roots
Block Block RootBloBB ckkk

Fig. 4. A data reconstruction procedure for spatial data visualization with three subroutines: block detection,
block grouping, and root detection. Each of the three subtasks is an interactive classification task, and is
solved with an instantiation of the generic MI3 pipeline. (1) Block Detection: Given an input image, we
use color connected components detection as a preprocessing to convert block detection into a classification
task for connected components. (2) Block Grouping: With the detected blocks, we build a graph of block
relations and classify the existence of relations to determine which pairs of blocks should be grouped in the
same bar. The confirmed relations are used to compile the detection of bars. (3) Root Detection: For each
bar, we generate candidate root points. Therefore, the task of determining the key point is transformed to
candidate root classification.

variable #value may be encoded as the size of the data object, the number of components inside
the data object, or other attributes. The Cholera Map shown in Fig. 1 exemplifies such a visual
representation. Fig. 4 shows the procedure of data reconstruction from the discrete bar chart. We
decompose the data reconstruction task into three subtasks: block detection, block grouping, and
root detection, and discuss the details in the following subsections.

5.1 Block Detection Preprocessing

Binarize Erode

a b c dDetect
Connected
Components

Fig. 5. Candidate block detection process on part of the Cholera Map [42]. Each connected component
(denoted with different colors in (d)) is a candidate block. (a) Input part of the Cholera Map. (b) Binarize the
image to reduce color variation. (c) Erode the image to reduce conglutination. (d) Color connected component
detection.

Following the generic MI3 pipeline, we need to transform the block detection problem into a
classification problem. For this transformation, we need to first generate candidate data objects, in
this case colour connected components, to be classified, and then provide feature representation
for each data object to be able to learn the interim classifier.
Candidate Data Object Detection: We design a preprocessing algorithm, as illustrated in Fig.

5. With the observation that blocks differ from the background in colour, we let colour connected
components serve as candidate blocks. Colour connected component detection generates a large
set of components to be classified, most of which are not blocks. It calls for MI3 strategies to reduce
the interaction cost in this classification task.
More specifically, the candidate block detection procedure is as follows:
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(1) Binarize the image with Otsu thresholding to eliminate minor color differences (Fig. 5(b)).
(2) Erode the binary image with 3× 3 cross kernel for two iterations to reduce the conglutination

of elements (Fig. 5(c)).
(3) Detect color connected components (Fig. 5(d)).
(4) Dilate the each connected component separately using the cross kernel for two iterations to

compensate the size shrink during erosion.

Feature Computation: For each candidate block, we compute two sets of features: 13 appear-
ance features and 14 neighbourhood features, which in total sums to 27 features. Appearance
features capture the visual appearance of the candidate block. Neighbourhood features capture the
image features of the candidate block’s neighbourhood.

Height

Width

Axis Aligned Width

Axis Aligned Height

Closest Bounding Box

Angle

Area
(Green)

Enclosed Area
(Green + Yellow)

Bounding Box Area 
(Green + Yellow + Red)

Fig. 6. Measurements related to appearance features of candidate blocks. The left shows the size features
and the angle. The right shows area definitions involved in the computation of shape features.

We compute size features, shape features, and colour features as appearance features to capture
the appearance of a candidate block. Size features include width, height, axis aligned width, axis
aligned height, and area, which are all measured in pixels. Shape features include solidity =

area
enclosed area

, convexity = area
convex hull area

, extent = area
boundinд box area

, aspect ratio = width
heiдht

, and
angle. Fig. 6 shows visual attributes used as size features and attributes used for computing shape
features. Color features include r, g, and b computed by averaging the color of all the pixels. In
total, 13 appearance features are computed.
The 14 neighbourhood features are mainly based on the distribution of pixel colours in the

neighbourhood of the candidate block. Multiple neighbourhood definitions are considered in the
computation. We describe the details of neighbourhood features in Appendix A.

5.2 Block Grouping Preprocessing

To aggregate the number of victims according to location, we need to group neighbouring blocks
into bars. We reduce the grouping problem to determining which pairs of blocks are neighbours.
If we regard each block as a node and each possible neighbouring relationship as an edge, the
grouping problem is transformed to graph edge classification, which fits the MI3 pipeline.
Candidate Data Object Detection: Each pair of blocks is potentially a pair of neighbouring

blocks. Given n blocks, there are in total n2 − n candidate relations. In practice, the quadratically
exploding number of data objects pose a computation challenge for algorithms. Therefore, we
design two heuristic filtering rules as follows:

(1) There is no relation between a pair of blocks when they are not mutually the top four closest
to the other block among all the blocks.

(2) There is no relation between a pair of blocks when the distance between two blocks is larger
than the length of the longest axis of all blocks.

Feature Computation: For each candidate neighbouring relation, we compute position distance,
color distance, and overall distance as the features. For a pair of blocks, the position distance is defined
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Fig. 7. Candidate neighbouring relation detection result on part of the Cholera Map [42]. The blocks are de-
noted with green contours. The blue dots show the center of each block. The detected candidate neighbouring
relations are shown as cyan lines linking the center of the two blocks involved.

as the Euclidean distance between the position of the two blocks (x1,y1), (x2,y2) in pixels. For a
pair of blocks, the color distance is defined as the Euclidean distance between the two blocks in the
(r ,д,b) space. The overall distance is defined as the root mean square of the position distance and
color distance.

5.3 Root Detection Preprocessing

Fig. 8. Candidate root detection result on part of the Cholera Map [42]. The bars are denoted with green
contours. Each candidate root is denoted with a cyan dot.

To reconstruct the position information of a data object in the spatial visualization, we need to
detect the representative point of the data object. To align this problem to the MI3 pipeline, we
need to generate a set of candidate roots to be classified, where a “root” refers to the key point in
the data object that corresponds to this position.
Candidate Data Object Detection: We simplify the root detection problem as finding the

centre of a block in a bar that represents the position. The root of a bar is an extreme point of the
bar that is typically closest to boundary lines in the image. Therefore, we take the centre of the
topmost and the bottommost blocks of the bar to be candidate roots. Fig. 8 shows the detected
candidate roots on part of the Cholera Map.
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Feature Computation: For each candidate root, we compute in total 9 neighbourhood features.
We observe that roots are typically close to boundary lines in the image, and that roots of multiple
bars may be aligned. Therefore, we reuse some of the neighbourhood features of block as root
features, including horizontal neighbour distance, surrounding neighbour number, surrounding fore-
ground rate, horizontal foreground rate, host area and host solidity. Besides, we compute a boolean
feature single to denote whether the block containing the root is the only block in a bar. When a
root is single, it is always a true detection. We also compute two additional neighbour distribution
features: distance to alignment line and distance to skeleton. The definition of the two features are
described in Appendix B.

5.4 Interactive Classification in Action

In the previous subsections, we illustrate how to transform subproblems of data reconstruction
into interactive classification problems that MI3 concerns. In the following, we introduce how
the two major algorithmic components of MI3, algorithmic sampling and algorithmic default
labelling, are instantiated in our implementation. We also introduce our prototype implementation
of an MI3-based data reconstruction system, which shows how the major interactive component,
interactive labelling, is instantiated. The implementations of algorithmic sampling, algorithmic
default labelling, and interactive labelling are reused for all the three subproblems.

5.4.1 Algorithmic Sampling. Through the algorithmic sampling process, we determines the data
object samples Sk = (xk1 , ...,xkl ), where l is the number of data objects shown in the interface at a
time. The samples will then be default labelled and presented to the user for labelling. The input to
algorithmic sampling is unlabelled data objects Dk = (x1,x2, ...,xn) as show in Fig. 3. We instantiate
algorithmic sampling (AS) with two optional sampling methods: entropy-based sampling and density,
diversity, and entropy-based sampling (abbreviated as AS (ES) and AS (DDES) respectively) based
on two sampling methods in the literature [22][47].
With entropy-based sampling, the metric of sample priority is defined as the uncertainty of the

label [22]. The higher the uncertainty of the label, the more the label information can inform
the classifier learning process, and thus resulting in less interaction cost. The uncertainty of an
unlabelled data object xi ’s labelyi is quantified by entropy asH (yi |xi ) = −

∑
j p(yi = j |xi )loд(p(yi =

j |xi )). When l instances are to be presented to the user, the top l unlabelled instances that maximize
the entropy are sampled. In reality, we do not have access to the true posteriori p(y |x) used in
entropy calculation, and therefore it has to be approximated. When the interim model trained in
the training classifier stage is a probability-based classifier, we directly use the posteriori estimated
by the classifier as the true posteriori. When the interim model is not a probability-based classifier,
e.g., decision tree, we use Zhou et al.’s algorithm [50] to train an accompanying probability-based
classifier that serves as a posteriori estimator.
Entropy-based sampling only aims to maximize the uncertainty of the samples, while density,

diversity, and entropy-based sampling sets two additional goals for optimization [47]. It requires that
in each iteration, the sampled instances should be distant from each other (diverse), and the sampled
instances should be representative in the feature space (dense). To this aim, the scoring function
of each data object’s priority is defined as score(xi ) = (1 − α − β)H (yi |xi ) + α

∑n
j=1

1
1+d (xi ,x j )

+

β
∑

j ∈Sk
(1 − 1

1+d (xi ,x j )
). It maximizes a weighted sum of label entropy, average inverse distance

to other unlabelled data objects, and distance to the data objects already sampled in this batch.
The data object with the highest score is added to the sampled set Sk and sampling is conducted
iteratively until |Sk | = l . In our implementation, we set α = β = 1

3 , and the distance function d to
measure Euclidean distance.
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5.4.2 Algorithmic Default Labelling. Through the algorithmic default labelling process, default labels
are assigned to sampled data objects, which saves the user’s effort for labelling. We instantiate
algorithmic default labelling with two implementations, including interim model-based default

(abbreviated as AD (Interim)) and graph-based default (abbreviated as AD (Graph)).
With interim model-based default, an interim classification model is trained and updated each

time a batch of newly labelled data points are added to the labelled set. The interim model predicts
the default labels for the instances to be presented to the user in the current iteration.

Algorithm 1 Transition Matrix Computation

Require: instances X = {x1, ...,xn }
Ensure: transition matrix Kn×n

1: W ← [I (i � j)exp(−
| |xi−x j | |

2

2σ 2 )]n×n

2: D ← [I (i = j)
∑n
j=1Wi j ]n×n

3: S ← D− 1
2WD− 1

2

4: K ← (I − αS)−1

5: return K

The idea of graph-based default is that data points close to each other in the feature space tend
to have the same label, and therefore labelled data objects can propagate its label to unlabelled data
objects. The closer a pair of instances are, the more likely the label can propagate between them.
Quantitatively, matrix S in the pseudo code 1 denotes the probability of propagation. Si, j is

the probability that the label of data object i can propagate to data object j. This probability is
based on the normalized link weight distance between different data objects i and j defined as

Wi j =
1
Zi
exp(−

| |xi−x j | |
2

2σ 2 ), where Zi =
∑n

j=1Wi j is the sum of unnormalized link weight between
data object i and all the other data objects. This propagation process is run for multiple iterations
until convergence. Transition matrix K denotes the transformation that transforms the initial label
distribution to the convergent state.

Algorithm 2 Label Propagation

Require: transition matrix Kn×n , labels of newly labelled instances yq1 , ...,yql , the range of class labels
{1, 2, ..., c}, label distribution in the last turn F tn×c (initialized as F 0 = 0n×c in the first turn)

Ensure: updated label distribution F t+1n×c
1: for q ∈ {q1, ...,ql } do
2: ΔF ← [I (j = yq )Ki,q ]n×2
3: F t+1 ← F t + ΔF
4: end for

5: return F t+1

Each time the user annotates a batch of l data objects, we propagate the labels using the transition
matrixK as shown in pseudocode 2 to incrementally update the default labels. Using the propagated
label distribution F , we compute the default labels by maximal likelihood.

Graph-based default can be computed very efficiently in the iterative labelling sessions, because
the incremental update algorithm 2 runs in O(n) time. The graph-based default is based on Zhou
et al.’s label propagation algorithm [50]. The original algorithm reported in the literature takes
O(n3) time to run, and does not consider how to conduct incremental update, which is not efficient
enough to support real-time interaction.
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a
b c

d

e

Fig. 9. The prototype user interface for data reconstruction. The interface consists of five parts: (a) Control
Toolbar: the user can upload the image, select the chart type, switch interface layout, and change the algorithm
parameters. (b) Image View: the user can navigate by pan and zoom, clip the image, set the scale of the
image, and manually create visual objects if needed. The reconstructed dataset is re-visualized in the Image
View and can by interacted by spatial cross-filtering with lasso selection. (c) Annotation Panel: the user can
annotate the label for data objects. (f) Dataset View: the Dataset View shows the reconstructed dataset after
the reconstruction process is finished. (e) Image Overview: the overview highlights the currently zoomed
region of the Image View.

5.4.3 The Interactive Labelling Interface. In the interface, the user first uploads a visualization
image, specify the type of chart to change the preprocessing method in the Control Toolbar (a). Then,
the user clicks the start button on the header of the Image View (b) to start the reconstruction. If
needed, the user can switch between different implementations of the MI3 algorithmic components
with the setting popup menu.

After the image is uploaded, the user can click the start button to start the data reconstruction. If
needed, the user may clip the image to focus the algorithm on a subpart. Once the reconstruction
starts, the system goes through the preprocessing, algorithmic sampling, and default labelling. The
sampled objects in each iteration are displayed in the Annotation Panel (c). After the sampling,
the Image View (b) automatically zooms to the area that the sampled objects lie in. The currently
zoomed area is highlighted in the Image Overview (e). If needed, the user can pan and zoom the
image in the Image View.

In the Annotation Panel, the user can click on the thumbnail image to flip the label of mislabelled
instances or press the corresponding number key to label. The user can also click the object in
the Image View to change the label. When the label of the object is hard to determine from the
thumbnail image, and the user’s mouse has been hovering on the thumbnail for more than 500ms,
the system automatically zooms the Image View to the corresponding object to help the user make
the judgement.

Once the sampled data objects are labelled, the user can click the confirm button in the Annotation
Panel or press the “enter” key to add the data points to the labelled set. Then, the labelling process
goes iteratively until the termination criterion is met.
After all the interactive classification pipelines for data reconstruction are gone through, the

Dataset View (d) shows the reconstructed dataset. The user can export the reconstructed dataset in
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JSON format. The reconstructed dataset will also be superimposed in the input visualization image.
This reconstructed visualization can be exported in SVG format.

6 EVALUATION

In the previous section, we introduce multiple optional implementations of MI3 components which
generate multiple instantiations of the MI3 pipeline. In this section, we evaluate the performance
of different instantiations. We consider six major variations of solutions to the classification task:

• BF — The brute force approach where the user needs to use pen and ruler to measure and
record all the data points without the system’s intelligent support.

• ML + x%-PL — A conventional ML-based system where the user pre-labels x% of the
training set. Then, a classification model is trained with the training set, and assigns default
labels for all the remaining data points.

• RS + RD + k-DL — An instantiation of the MI3 pipeline that exploits random sampling,
and random default labelling. In each interactive labelling session, k data points are
random sampled, assigned a default label randomly, and presented to the user. This provides
a reference benchmark for evaluating the algorithmic sampling and algorithmic default
labelling technique.

• AS + RD + k-DL — Similar to the above, except that algorithmic sampling is used in place
of random sampling.

• RS + AD + k-DL — An instantiation of the MI3 pipeline that exploits random sampling,
and an algorithmic default labelling strategy. In each interactive labelling session, k data
objects are randomly sampled and then default labelled according to the strategy. So the
number of interactions depends on the error rate of the AD technique as well as the number
k of data objects presented in each iteration.

• AS + AD + k-DL — Similar to the above, except that algorithmic sampling is used in place
of random sampling.

Although it is useful to run user studies, the numerous system design options would require a
large number of subjects and trials in the study, which makes it hard to carry out in practice. To
evaluate different options of instantiating the MI3 pipeline, we adopt Zhang et al.’s simulation-based
evaluation method [49]. Precisely, the number of interactions needed to finish the data reconstruc-
tion task serves as the evaluation metric, and is estimated by the simulation. The simulation-based
evaluation method makes it possible to gather a large number of repeated trials, and the result does
not suffer from the variance of human subjects.

6.1 Dataset

We use John Snow’s Cholera Map [42] as the dataset for evaluation. In the Cholera Map, there are
579 rectangular blocks that form 321 bars. As illustrated in the previous sections, to reconstruct
data from this image, the user needs to carry out three interactive classification tasks, i.e., classify
candidate blocks, relations, and roots as true or false detections.
For the block detection problem, there are 4416 candidate marks to be classified detected by

the preprocessing algorithm based on colour connected component detection. Among the 4416
candidates, 533 are positive (true detections), and 3883 are negative (false detections). Note that there
are 46 marks missed by the preprocessing algorithm. Therefore, for all the interactive classification
pipelines, the user needs to spare additional efforts to annotate these 46 marks. For the relation
classification problem, there are 868 candidates relations to be labelled where 258 are positive, and
610 are negative. For the root classification problem, there are 450 candidate roots to be labelled
where 321 are positive, and 129 are negative.
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6.2 Experiment Design

ComparedMethods In the simulation, we compare the aforementioned six solutions to interactive
classification tasks: (i) BF, (ii) ML + 20%-PL + NeD + 6-DL, (iii) RS + RD + 6-DL, (iv) AS + RD +

6-DL, (v) RS + AD + 6-DL, and (vi)AS + AD + 6-DL. Note that in the block detection dataset, most
of the data objects are false detections. For the ML + x%-PL solution using conventional ML-based
system with x% data points pre-labelled, we can enhance it by always pre-labelling data points
to have negative default (NeD). Therefore, in the experiment, we substitute the conventional ML
solution withML + x%-PL + NeD + k-DL, which is a more competitive benchmark. Specifically,
we set the pre-label rate x% to be 20%. For all the solutions, we fix the number of data objects k
presented in each interactive labelling session to be 6. For conciseness of the result, we fix entropy-
based sampling to be the instantiation of the active sampling (AS (ES)), and interim decision tree
model to be the model for algorithmic default labelling (AD (Interim)).
Evaluation Metric In the experiment, for all the three subtasks of data reconstruction, we mea-

sure the interaction cost for each method to achieve 100% accuracy for the interactive classification
task. For example, in the block detection problem, there are 579 true blocks. The preprocessing
pipeline detects 4416 data points to be classified where 533 are true detections. For the BF solution
using pen-and-ruler or its digital equivalent, it would take a minimal 579 interactions to measure
and record all the data objects. For the conventional ML solution with ML + 20%-PL + NeD +

6-DL, it would require 883 ≈ 4416 × 20% data points to be labelled in the pre-labelling session.
Approximately 12% of the data points are true detections. Therefore, the negative default strategy
(NeD) would produce incorrect default labels for 12% of the 883 data points. It needs 108 ≈ 883×12%
interactions for correction of incorrect default labels, and 148 ≈ 883/6 interactions for clicking
the confirm button to register the corrections. An additional 46 interactions is needed to correct
missing blocks in the preprocessing. Our initial testing result shows that with 883 data points
labelled, the model achieved 98.837% accuracy for the remaining 3533 = 4416 − 883 data points.
Therefore, 41 ≈ (1 − 98.837%) × 3533 interactions is needed to correct the misclassification. In
total, the number of interactions to achieve 100% accuracy for ML + 20%-PL + NeD + 6-DL is
343 = 108 + 148 + 46 + 41.
We can estimate the interaction cost for other solutions to interactive classification similarly.

Note that for the four instantiations of MI3, the interaction cost is dependent on the number of
interactive labelling sessions conducted. The more sessions, the more data points labelled, and
therefore the more interactions needed for default label correction. Meanwhile, the more data
points labelled, the higher the accuracy of the model, which reduce the interaction cost to quality
assure and correct the labels for the remaining data points. In the experiment, we consider these
dynamics and represent the overall interaction cost as a function of the number of interactions in
interactive labelling sessions. For the block detection problem, we run 75 repeated measures and
average the results. For the relation and root detection problem, we run 90 repeated measures and
average the results.

6.3 Results and Analysis

Fig. 10 shows the experiment results in block detection with the six methods. In the following, we
discuss patterns observed in the experiment result. For conciseness, we refer to the total interaction
cost to finish the interactive classification task (i.e., achieve 100% accuracy) to be the “overall cost”,
the interaction cost in the iterative labelling sessions to be the “active learning cost”, and the
interaction cost in the quality assurance session to correct mislabelled data objects to be “quality
assurance cost”.
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Fig. 10. Comparison of the 6 interactive classification methods on the block detection problem. The curves
on the left show the change of interaction cost to achieve 100% accuracy with regard to the interaction cost
on active learning. The bar chart compares the performance of the methods at 35, 70, 105, and 140 active
learning interactions. The correspondence between and curve and bar with the methods is: blue for the brute
force approach (BF); orange for the conventional ML-based approach with 20% data objects pre-labelled with
negative default labelling (ML + 20%-PL + NeD + 6-DL); green for random sampling with random default
labelling (RS + RD + 6-DL); red for algorithmic sampling with random default labelling (AS + RD + 6-DL);
purple for random sampling with algorithmic default labelling (RS + AD + 6-DL); brown for algorithmic
sampling with algorithmic default labelling (AS + AD + 6-DL). All the methods except BF shows 6 data
objects in each labelling session, and therefore, we drop the 6-DL in the method names in the legend.

1. Performance of MI3 pipeline instances follows a U-shaped curve. The overall cost
of RS + RD, AS + RD, RS + AD, and AS + AD follows the same trend of first decrease and
then increase with the active learning cost. Such a pattern emerges because the overall cost is
comprised of the active learning cost and quality assurance cost. The quality assurance cost typically
experiences a rapid decrease during the first few interactive labelling sessions, because the accuracy
of classifier typically grows fast at the beginning with the training set size. With more interactions
spent on active learning, the rate that quality assurance cost decreases gets slower as the interim
classification model’s performance reaches a plateau. At some point, the increased contribution of
active learning cost to the overall cost would overcome the decrease of the quality assurance cost,
making the overall cost increase again.
Because of this pattern of the overall cost, for each labelling method, there is an optimal point

of the labelling interaction that minimizes the overall cost. For example, for RS + RD (green), the
optimal point is when 68 interactions are spent on active learning. The lower the overall cost at
the optimal point, the better. The overall cost at the optimal point depicts the performance of the
method when the iterative labelling sessions terminates at a suitable time point as determined by
the termination criterion. Therefore, we compare different methods mainly by the lowest point of
the curve in the following.
2. MI3 pipeline instances outperform the brute force approach and the conventional

machine learning pipeline. The optimal overall cost of RS + RD, AS + RD, RS + AD, and AS

+ AD are smaller than the overall cost of BF and ML + PL + NeD. For the block detection task,
it takes BF 579 interactions to record all the blocks. It takes ML + PL + NeD 343 interactions to
detect all the blocks with 100% accuracy. By comparison, the other four MI3 instances have optimal
overall cost between [150, 300] interactions.
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3. Algorithmic sampling (AS) reduces interaction cost. For MI3 instances with the same
default labelling strategy, the instance with an algorithmic sampling strategy outperforms the
instance with random sampling. Specifically, the overall cost of RS + RD (green) reaches its
minimal, 280 interactions, with 68 active learning interactions and then gradually increases. When
the sampling method is fixed as RD, after incorporating algorithmic sampling, RS + RD transforms
to AS + RD (red). The optimal overall cost reduces to 230 interactions, which is achieved at 76
active learning interactions. Similar differences are observed between RS + AD (purple) and AS +

AD (brown). We interpret the smaller overall interaction cost as algorithmic sampling manages to
continuously explore informative samples for the algorithmic to learn, which sustainably decrease
the number of errors and reduce the interaction cost to correct.
4. Algorithmic default labelling (AD) reduces interaction cost. For MI3 instances with the

same sampling strategy, the instance with an algorithmic default labelling strategy outperforms
the instance with random default labelling. With algorithmic default labelling, a lower overall cost
can be achieved with the same number of interactions compared with random default labelling.
For example, the overall cost of RS + RD (green) at the optimal point is 280 interactions, and is
larger than that of RS + AD (purple), which is 196 interactions. The reason is that algorithmic
default labelling is typically more accurate than random default. Therefore, algorithmic default
labelling enables more data points to be labelled with the same active learning cost. Thus, the
quality assurance cost of algorithmic default labelling is less than that of random default labelling
when the active learning cost is the same.

In summary, instantiations of the MI3 pipeline outperforms the brute force approach (BF) and
the conventional machine learning pipeline (ML + 20%-PL + NeD + 6-DL). Moreover, among
different instantiations of the MI3 pipeline, we find that for the sampling component, pipelines
using algorithmic sampling (AS) performs better than those using random sampling (RS). For the
default labelling component, pipelines using algorithmic default labelling (AD) is better than those
using random default labelling (RD). Among the implemented MI3 instances, the one with the best
performance, AS + AD, requires a minimal 162 interactions to accomplish the classification task
with 100% accuracy, which is less than one-third the cost of the brute force approach, and less than
half the cost of the conventional machine learning pipeline.

Fig. 11. Comparison of the 6 methods on the relation detection and root detection. The curve shows the
change of overall interaction cost with regard to the labelling interaction cost.

Aside from the block detection problem, we also evaluate the six pipelines on relation detection
(block grouping) and root detection. The experiment results are shown in Fig. 11. We observe that
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similar to the result of block detection, MI3 pipeline instances outperform the brute force approach
and the conventional machine learning pipeline. However, for these two subtasks, algorithmic
sampling (AS) and algorithmic default labelling (AD) bring insignificant benefits. We interpret it
as the result that the two subproblems are much simpler than the block detection problem, as both
block detection and position decoding can be accomplished with less than 30 interactions.

7 DISCUSSION AND CONCLUSION

We propose MI3, a generic pipeline for interactive classification tasks that reduces user’s interaction
effort. MI3 is especially useful for interactive classification applications where there is not sufficient
data to learn a precise classification model. In this work, we introduce two components of MI3 for
interaction saving: algorithmic sampling and algorithmic default labelling. We demonstrate how to
instantiate the generic MI3 pipeline in practice. Specifically, we demonstrate that the scenario of
data reconstruction from historical visualization, which seemingly is not a classification problem,
can be decomposed and transformed into three interactive classification subtasks. All the three
subtasks fit into the MI3 pipeline and can make use of MI3 components for interaction saving.

Based on the decomposition, we develop a prototype software system for data reconstruction from
spatial data visualizations which can be regarded as an instantiation of MI3’s interactive labelling
component. To evaluate the usefulness of our instantiation of MI3 in the data reconstruction
application, we use the simulation-based approach and compare the number of interactions needed
for different solutions to accomplish the interactive classification tasks in data reconstruction.
The simulation result shows that MI3’s algorithmic sampling and algorithmic default labelling
components manage to reduce the required number of interactions. For specific subtasks of data
reconstruction, an instantiation of the MI3 pipeline can save up to half of the interactions compared
with a conventional ML pipeline.

There are a few aspects and limitation of this work that we aim to address in the future. In this
work, we only inspect one specific application scenario, namely data reconstruction, to examine the
usefulness of the generic MI3 pipeline, and we are working on exploring other application scenarios
for MI3. For the algorithmic components of MI3, we aim to investigate more optional algorithm
designs. For the interactive component of MI3, we only develop one interface as an instantiation,
and we are working on exploring the design options of the interface. In the evaluation, we use a
simplistic assumption that the interaction cost is proportional to the number of button clicks. The
validity of this assumption can be investigated in future user studies. We also assume that with the
termination criterion, the interactive labelling session can determinate at a point that approximately
minimizes the overall interaction cost. In practice, a naive termination criterion, such as setting a
fixed sample rate, may not be able to achieve this goal. It calls for better termination strategies.
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A BLOCK NEIGHBOURHOOD FEATURES
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Fig. 12. Neighbourhood definitions and measurements. Horizontal neighbourhood refers to the union of
10 pixels horizontally extending outward the candidate in two directions. The definition of vertical and
centralized neighbourhoods are similar. Surrounding neighbourhood refers to the union of pixels within 5
pixels’ distance from the border of the candidate.

In some cases, true detections and false detections of blocks are not differentiable from their
appearance. For example, dashed lines in the Cholera Map and blocks look identical. To handle
such cases, we define neighbourhood features, to capture the image features around the candidate
blocks. Fig. 12 illustrates some of the defined features.

Firstly, we compute neighbour distribution features to depict the distribution of other connected
components around the candidate. The horizontal neighbour distance and vertical neighbour distance
captures the distance to the nearest component in the horizontal direction and vertical direction
respectively. The surrounding neighbour number feature denotes the number of adjacent components
to the candidate.
Secondly, we compute neighbourhood foreground rate features to capture the distribution of

foreground pixels in the neighbourhood of the candidate where foreground pixels are defined as the
white pixels in the binarized image. Surrounding foreground rate is defined as the rate of foreground
pixels within 5 pixels’ distance from the candidate’s border. Horizontal foreground rate and vertical

foreground rate are defined as the rate of foreground pixels within 10 pixels’ distance from the
candidate’s border in the horizontal direction and vertical direction, respectively. Similarly, central
horizontal foreground rate and central vertical foreground rate measures the rate of foreground pixels
in the two directions, while the difference is that central foreground rates concern the pixels within
10 pixels’ distance from the candidate’s centre instead of the border.

Thirdly, We also compute neighbour features to capture the appearance of the neighbours of the
candidate. Horizontal neighbour area and vertical neighbour area measures the area of the closest
neighbour in the horizontal and vertical direction. Host width, host height, host area, and host solidity
measure the width, height, area, and solidity of the connected components containing the candidate.
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B ROOT NEIGHBOURHOOD FEATURES

Binarize
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Blocks

Alignment
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Components
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Fig. 13. The first row shows the process of computing alignment lines which are then used for computing the
distance to alignment line feature. The second row shows the process of computing the skeletons which are
then used for computing the distance to skeleton feature.

Distance to alignment line captures how well the candidate is aligned with other candidate roots.
For each candidate root, we define the extending line of the medial axis of its closest bounding box
as the alignment line that it generates. For all the alignment lines generated by all the candidate
roots, we merge the alignment lines that are close to each other. Quantitatively, the pair of lines
whose farthest pair of points is smaller than the minimum width and height of blocks are merged.
For the merged lines, we refit the line with linear regression of the central point of the roots that
generate the lines. Then, we filter the lines that cannot be merged with any other lines. This process
of computing the alignment lines is shown in the first row of Fig. 13. With the merged lines (Fig. 13
top right), we can measure the distance to alignment line of each candidate root.

Distance to skeleton captures whether the candidate is close to a boundary line in the image. As
shown in the second row of Fig. 13, to compute this feature, we detect the skeleton of the binarized
image using Guo and Hall’s thinning algorithm [13]. To remove noise for skeleton detection, we
further adopt two strategies. Firstly, we filter all the pixels occupied by blocks that are not candidate
roots before the skeleton detection. In this way, the pixels occupied by these blocks will not be
mistaken for the skeleton. Secondly, after the skeleton detection, we filter the detected skeletons
that are too small. We compute the connected components formed by the skeleton pixels using
8-connectivity and filter the connected components whose diagonal of the axis-aligned bounding
box is shorter than twice the maximal width and height of blocks. Using the filtered skeleton, we
measure the distance to skeleton of each candidate root.
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