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ABSTRACT
To further develop the understanding of cognitive processes in the

human cortex, neuroscientists seek to simulate relevant biological

neural networks in the order of 10
9
neurons with natural densities

of 10
4
synapses per neuron. To observe long-term effects of learn-

ing, a speed-up of at least 100x with respect to biological real-time is

required while preserving deterministic results and a high temporal

resolution of 0.1ms. In this paper, we translate these objectives to

requirements for the communication architecture of a large-scale

neuroscience simulator. These requirements are based on a connec-

tivity model that includes gray and white matter as well as clustered

connections and represents essential communication requirements

of biological neural networks. In analytical and numerical analysis,

existing platforms fall short of meeting all requirements simultane-

ously even assuming modern high-speed transceivers. This paper

presents a balanced multi-hop communication architecture that

cuts latency and achieves high bandwidth efficiency. Extrapolating

from physical measurements of link performance, our work brings

the challenging communication requirements within reach of next

generation large-scale neuroscience simulation platforms.
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1 INTRODUCTION
The cognitive capabilities of the brain stimulate research across

many scientific fields. With the increase in computing performance,

artificial neural networks have surpassed human level capabilities

in specific tasks. However, the cognitive computing principles of

the neocortex still remain a mystery. After the Human Brain Project

triggered a first generation of large-scale neuroscience simulators

[16], it appears that a next system generation is required to dissect

the intricacies of dynamics on the neuron level and at large scale.

Neuroscientists envision to simulate learning processes of 𝑁 =

10
9
neurons in a connectome, accelerated by a factor of 𝑎 = 100x

[13]. Within a biological time step of ℎ=0.1ms motivated by mini-

mal axon delays, the accelerated simulation needs to finish com-

putation and communication within 1µs. Scientific experiments

therein require deterministic reproduction, flexibility in modelling

and detailed observability down to the level of individual membrane

potentials. No state-of-the-art system fulfills all of these at once.

Out of the many challenges, this paper focuses on the conception

of a communication architecture that meets the implied require-

ments in terms of bandwidth and latency. As a baseline, we con-

sider a distributed system consisting of 𝑁N interconnected compute

nodes, each simulating 𝑁𝑝𝑁 neurons of a squared, disjoint section

of neuronal tissue. We start by defining a biologically-plausible

connectivity model including white and clustered gray matter con-

nections in Section 2. State-of-the-art communication concepts and

systems are discussed in Section 3 and 4, respectively. In Section 5,

we detail quantitative assessments using analytical and numerical

techniques to evaluate the feasibility of said architectures. Finally,

we introduce a novel multi-hop architecture and multi-stage rout-

ing scheme to close the gap in target performance, as presented in

Section 6 and 7. We draw our conclusion in Section 8.

2 BIOLOGICAL SPECIFICATION
To evaluate system performance of communication architectures for

neuromorphic simulation, we need to create a representative bench-

mark. Therefore, we begin our analysis by developing a model of

the neuronal connectome based on biologically realistic, conserva-

tive assumptions which place plausible demands on communication

(cf. Tab. 1 for a summary of the resulting model).

For analyzing communication requirements, a neuron can be

treated as a black box absorbing incoming and generating outgoing

spikes with a specific rate and target distribution. The time of gen-

eration and the presynaptic neuron ID represent all relevant spike

information. This allows action potentials to be expressed in an ad-

dress event representation (AER). However, some communication

schemes might require additional information as reasoned below.

The network load is proportional to the rate of signaling events.

Various studies have shown that firing rates of cortical neurons
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span multiple orders of magnitude with a log-normal distribution,

ranging from less than 0.01Hz to over 100Hz, depending on neuron

type, recording strategy, etc. [3]. Both in-vivo and in-vitro experi-
ments suggest this distribution to be skewed towards its lower end -

the majority of cortical neurons seem to be "silent", while a minority

is responsible for most firing events [3, 26]. Regarding a network of

1 billion neurons and the accompanying immense number of firing

events, the law of large numbers suggests the average firing rate to

converge to its expected value. This value is bound by the metabolic

cost of firing to around 7±2Hz [29]. We therefore assume a cortical

mean firing rate per neuron of a = 10Hz as a conservative estimate

for upper-bound analyses of the communication load later on. This

is in line with previous studies [1, 7, 23].

Asides the firing rate, the number of synapses per neuron can have
substantial impact on network load. It defines the fan-in and -out

of each neuron, and therefore the number of targets each generated

spike has to be transmitted to. While the exact count per neuron can

vary, the average number of synapses per cortical column appears

to be 10
3 ..104 [5, 20]. Therefore, we adopt the conservative estimate

of 𝑆𝑝𝑁 = 10
4
, following previous studies such as [7].

Beyond throughput, communication latency is the critical limi-

tation for achieving high acceleration factors. The biological propa-
gation speed 𝑣 over an axon varies: for unmyelinated axons (gray

matter) 𝑣g ≤ 2.2m/s [30, 31], and for myelinated axons (white

matter) 𝑣w ≤ 60m/s [14, 29, 30]. The latter is bound by a minimal

latency of 1ms [29]. Together with the number of neurons per node
𝑁𝑝𝑁 and the neuron density in the neocortex 𝜌N ≈ 77 × 10

9/m2

[21], these define the maximal system latency in terms of hops per

simulation step. 𝑁𝑝𝑁 is a design parameter that depends on the

capabilities of a node and the model complexity. In our analyses,

we assume that neurons are mapped to compute nodes in a way

that preserves their spatial distribution, following their biologi-

cal density. First assertions on off-the-shelf FPGAs resulted in a

number of neurons per node in the lower thousands. When not

mentioned otherwise, we therefore set 𝑁𝑝𝑁 = 10
3
. A sensitivity

analysis regarding 𝑁𝑃𝑁 will be conducted in Section 7.

Finally, we regard the spatial distribution of postsynaptic targets
for a single neuron. A basic, worst-case example would be a uni-

form target distribution across all neurons. As closer neurons have

higher probabilities to form synapses, slightly more realistic, yet

still simplified models have been introduced as well, e.g. taking

into account the locality of spikes [18]. Considering actual biolog-

ical distributions, these models neglect two important aspects of

neuronal connectivity: 1) neurons tend to have clustered groups of

targets, and 2) white matter connections enable high-speed commu-

nication between neurons. We expect both to have a large impact

on bandwidth and latency constraints which has to be addressed

and possibly leveraged by suitable communication architectures.

Based on these insights, we developed the target distribution

model sketched in Fig. 1. It is an extension of the model of [28] that

additionally accounts for the demanding high speed white matter

connections. All in all, it integrates the following three distributions:

(1) central gray matter cluster with 40% of all targets (2D normal

distribution with SD 𝜎 = 0.297mm, bounded by 𝑟c) [24, 28]

(2) 3 non-central gray matter clusters with 20% of all targets,

centers between 𝑟1 and 𝑟2, and radii of 𝑟p < 𝑟c (due to lack

𝑟c𝑟p

𝑟1

𝑟2
𝑟w

Figure 1: Connectivity model (𝒓c=0.5mm, 𝒓1=0.75mm,
𝒓2=7.75mm, 𝒓w=8mm, 𝒓p=0.25mm).

of details in literature we presume the worst-case: a uniform

distribution within these clusters) [24, 28]

(3) long-range white matter connections to 40% of all targets,

starting at 𝑟w (exponential distribution with _ = 0.11/mm,

for simplicity without cutoff) [24, 27]

The parameters derived in this section constitute an abstract

model of neuronal connectivity in the human neocortex, suitable

to pinpoint hardware bottlenecks. The heavy-tailed distributions

of connectivity and firing rates, additional modes of information

flow like neuromodulation, gap junctions and glial cells, and the

isotropic view at neurons across layers are in their entirety not neg-

ligible for understanding cognitive processes in the human brain.

However, as we aim to model communication requirements, spikes

have the most substantial impact on quantities like bandwidth and

latency. Transitioning from these biologically-reasonable estima-

tions to more realistic models can be assumed to not change the

main deductions of this work, as their effect on communication

is either minor or only relevant on computations. The complexity

of computation directly translates into the number of neurons per

node, whose effect on communication will be examined later.

Table 1: Considered system requirements

Description Variable Value Unit

Biology
Total number of neurons 𝑁 10

9

Synapses per neuron 𝑆𝑝𝑁 10
4

Neuron density 𝜌N 77 · 109 1/m
2

Firing rate a 10 Hz

Max. velocity in gray matter 𝑣g 2.2 mm/ms

Max. velocity in white matter 𝑣w 60 mm/ms

Simulation
Simulation step biological time ℎ 0.1 ms

Acceleration factor 𝑎 100

Implementation
Message size 𝑙m 128 bit

Neurons per node 𝑁𝑝𝑁 1000

Number of nodes 𝑁N 𝑁 /𝑁𝑝𝑁
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3 BACKGROUND
After discussing the biological parameters that define the base

requirements for the targeted system, we now turn to existing

concepts for communication architectures and technical capabilities

of modern transceivers.

3.1 Technical capabilities
Error rate. State-of-the-art wireline communication typically tar-

gets a bit error rate (BER) of 𝑝
b
≤ 10

−15
. Applying this to a neuro-

morphic simulator using a broadcasting scheme, for instance, spike

packets of 𝑙m = 128 bit lead to 𝑁 ·𝑁N ·𝑎 ·a · 𝑙m ·𝑝
b
= 128 ·103 packet

errors per second. Screening packets with n-bit cyclic redundancy

check (CRC) reduces themean time between failures (MTBF), which

is desirable in a reproducible simulation platform. Assuming n=32

bit, which leaves 2
−𝑛

undetected errors [22], the MTBF reduces to

10 hours. Including packet header and payload, this confirms the

aforementioned 𝑙m = 128 bit.

Bandwidth.Modern high-speed NRZ transceivers reach up to

32Gbit/s (e. g. [6]). Inmodern FPGAs, the resulting aggregated band-

width exceeds 8 Tbit/s (e. g. [32]). Amongst others, this is achieved

by employing more complex modulation schemes that reach higher

throughput while increasing latency. On top of that, standardized

communication protocols increase network load due to protocol

overhead (e. g. Ethernet +400% for 128 bit packets).

Latency. Ethernet and Infiniband standards move towards a la-

tency of 500 ns [17]. However, electrical signal propagation of local

system interconnects is below 1 ns. As a link bandwidth of 32Gbit/s

only adds latency of 8 ns per packet, the rest can be attributed to on-

chip processing, for example due to protocol overhead. For instance,

hop latency between FPGAs can be reduced from 400 ns to 200 ns

switching from Ethernet to a light-weight custom protocol [15].

We assert that current technical capabilities pose a lower latency

bound of around 100 ns, considering a high-speed ASIC design in

the unloaded case - the impact of network loading is covered in our

dynamic simulations, as will be detailed in Section 7.

We use the NetFPGA SUME board [33] as a representative vehicle

to validate the assessed technical capabilities. It features 32 high-

speed transceivers supporting a bandwidth of up to 13.1 Gbit/s each,

leading to an aggregated peak bandwidth of almost 420Gbit/s. We

conducted latency, bandwidth and error rate measurements using

the Xilinx Aurora core with different encodings, frequencies and

SATA/SFP+ cables of varying length (≤ 1.5m) and brand. In 8b10b

encoding, a latency of 140 ns is achieved at a data rate of 6 Gbit/s.

Larger packets using 64b66b encoding almost quadruple the latency

to 540 ns, while higher data rates as well as on-chip frequency scale

latency proportionally down to 270 ns at 12.5 Gbit/s. Finally, long-

running error rate measurements using SATA3 cables at 6 Gbit/s

and SFP+ cables at 12.5 Gbit/s confirmed a BER of 10
−15

.

3.2 Communication architectures
To structure the following evaluation, we introduce three dimen-

sions that span our design space of communication architectures.

Network topology. A network is composed of nodes and edges.

Here, each node contains all resources necessary to compute the dy-

namics of 𝑁𝑝𝑁 neurons and has a number of edges to other nodes,

commonly referred to as (out-)degree. The communication latency

in such a system is measured in hops, and therefore proportional

to the time to cross a direct physical link between two nodes.

Common network topologies for high-performance computing

are meshes (degree 4, 6 or 8), trees (binary, fat), and hypercubes.

We disregard the alternatives provided by graph theory because of

their complex implementation. To further reduce the exploration

space, we take a closer look at the established topologies in terms

of traffic balance and resource impact. Firstly, binary trees fail our

litmus test regarding bandwidth and latency as they generate im-

balanced traffic and excessive worst-case latency of biologically

neighbouring nodes. Fat-trees aim at balancing traffic in trees at the

expense of numerous resources without improving on latency. A

corresponding problem exists for hypercubes with their inhomoge-

neous structure. Finally, 2D meshes create bandwidth bottlenecks

towards their center. However, this is fully addressed with toroidal

connections. Meshes can be improved further by additional link in-

sertions [19]. We therefore limit the exploration to toroidal meshes

of varying degrees 𝐷 , referred to as MeshD in the following.

Casting scheme. Different messaging schemes can fan-out the

action potentials from presynaptic (source) to postsynaptic neu-

rons (targets). Unicasting (UC) sends 𝑆𝑝𝑁 messages, one per spike

and target. In contrast, broadcasting (BC) sends a single message

per spike to all nodes. Ideally, multicasting (MC) sends single mes-

sages along shared paths with on-the-fly duplication in points of

divergence, striking a source-side balance between UC and BC.

Routing algorithm. Routing paths can either be pre-computed

(offline) and contained in message headers [1] or local routing ta-

bles [7], or resolved on-the-fly in the router. Efficient heuristics in

the latter case are dimension order (DO) and longest dimension

first (LDM) routing. The former is a deadlock-free, turn-restricted al-

gorithm with a predefined direction order. [9]. The latter prioritizes

the longest dimension [4]. In all examples, we assume the system to

employ load balancing and properly sized buffers for deadlock pre-

vention. As reference, we also consider the Dijkstra (DJ) algorithm

which greedily pre-computes a shortest possible path.

4 STATE-OF-THE-ART SYSTEMS
There is a large body of literature in the field of neuromorphic

computing [25]. Neuroscience software simulators like NEST:: [8]

operate on various hardware platforms. In the following, we dis-

cuss selected systems designed to capture biological properties of

large-scale neural networks. For this assessment, we only consider

communication aspects, e.g. neglecting power consumption.

In the Neurogrid project, the group of K. Boahen developed the

design space of their 1M neuron platform along three axes: the

computation of neuron dynamics, the analog or digital implemen-

tation style, and the communication architecture [1]. They adopt

AER, mapping multiple axons on a single silicon interconnect. Pre-

computed routing paths are encoded in the package header with

optional flooding in the downward traversal of their binary tree.

Their deadlock-free routing scheme assures real-time operation

with low-precision computations mitigated by population coding.

In the BrainScaleS project, up to 200 k neurons were integrated

on a single wafer targeting 10
4
x speed-up [23]. High-speed asyn-

chronous AER signaling is realized between clusters of co-located

neurons, while pre-configuration eliminates the need for explicit
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routing. Each wafer supports 4-5 k neurons when modelling a bio-

logical fan-in of 𝑆𝑝𝑁 without synapse loss. Up to 20 wafers commu-

nicate in the system using switched Ethernet network as back-bone.

Adopting a digital design style, the group of S. Furber designed

the 1 B neuron SpiNNaker system [7] around a toroidal Mesh6.

As a bread and butter algorithm, packets are routed according to

LDM with local routing tables supporting redirections and MC.

Synchronous AER messages enable modeling of specific axonal

delays in contrast to the continuous-time analog signaling. The

trade-off between continuous and discrete arrival time is discussed

extensively in literature (e. g. [2]).

Recently, Intel’s Pohoiki 100M neuron platform [12] announced

supporting biological levels of synaptic densities. An on-chipMesh4

supports deadlock-free, node-to-node UC, DO routing with hierar-

chical consolidation on a corresponding chip-to-chip mesh.

5 ASSESSMENT OF PREVAILING
COMMUNICATION SCHEMES

To assess the capability of prevailing communication schemes to

support the diverse demands in terms of bandwidth and latency,

we define three distributions of target neurons 𝑁t:

(1) uni: uniform across all nodes,

(2) rad: uniform count per radial distance 𝑁t/𝑟max (cf. [18])

within 𝑟max = 8mm, and

(3) bio: biologically motivated distribution from Section 2.

The first two lend themselves to analytical evaluation, while the

latter requires an empirical approach.

5.1 Bandwidth
Fundamentally, the spike generation per node drives bandwidth:

𝐵g = 𝑁𝑝𝑁 · a · 𝑎 · 𝑙m . (1)

For a BC approach, each packet is simply distributed once to all 𝑁t

nodes in biological reach:

𝐵BC = 𝐵g · 𝑁t . (2)

In uni and bio distributions (𝑁t = 𝑁N − 1), this resolves to 𝐵BC ≈
128 Tbit/s. In the case of UC, each target receives a dedicated packet
that travels ℎavg hops on average:

𝐵UC = 𝐵g · 𝑆𝑝𝑁 · ℎavg . (3)

The derivation of ℎavg as function of topology follows the method

of [10]. For the uni distribution and a Mesh4 topology, for instance,

the average hop count computes as ℎavg ≈
√
𝑁N

2
. This results in a

bandwidth requirement for UC of 𝐵UC,uni = 640 Tbit/s.
Both bandwidth requirements clearly exceed any reasonable

technical capability. However, clusters present in the other two dis-

tributions can be exploited to reduce the network load. For instance,

as the number of possible target neurons in the rad distribution

is limited by a cut-off radius, BC messages only need to be trans-

mitted to 𝑁𝑡 = 𝜋 · 𝑟2𝑚𝑎𝑥 · 𝜌𝑁 /𝑁𝑝𝑁 nodes. If this is accounted for

in the message distribution scheme, bandwidth requirements are

substantially reduced to 𝐵
BC,rad ≈ 2 Tbit/s. This plainly highlights

the potential of leveraging properties of the biological distribution.

Standing out, MC can ideally provide minimal network load.

Stressing the constraint of maximal latency, an exemplary heuristic

uni rad bio uni rad bio uni rad bio
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Figure 2: Required link bandwidth andmessage propagation
speed for UC, MC, BC in toroidal mesh topologies.

yielding near optimal results could consist of first computing op-

timal paths offline using DJ, and then merging overlapping paths.

In our case, DJ results in an almost optimal bandwidth reduction

because messages from the same node travel on paths which split

comparatively late. Since MC bandwidth requirements and bio dis-

tributions are hard to assess analytically, we developed a tool that

enables empirical calculations of bandwidth and latency require-

ments [11]. It assumes an isotropic topology, choosing one node

as the initial point for calculations and drawing targets randomly.

The bandwidth requirements and maximum latency are computed

based on the numerical evaluation of number of hops taken by each

packet. Its accuracy was validated against the analytical results

obtained from Equations 1 – 3.

As depicted in Fig. 2, the bandwidth requirement is significantly

affected by the target distribution, with our latency-optimized MC

heuristic defining the lower bound. For uni and bio distributions,

all schemes exceed the current technical capabilities. However,

accounting for 𝑟max in a rad distribution improves BC by over 98%,

highlighting the advantage of exploiting proximity in clusters.

5.2 Latency
To ensure deterministic results, on time delivery of spike packets

is essential. We assume latencies to be constrained by biological

distance and axonal speed. As each node represents a square tis-

sue section of a biological neural network with a side length of√
𝜌N/𝑁𝑝𝑁 , this translates to a number of hops each spike has to

travel per simulation step, referred to as speed requirement.
Assume for example white matter connections in a Mesh8 topol-

ogy. Then, this translates to a requirement of traversing 𝑣w · ℎ ·√
𝜌N/𝑁𝑝𝑁 ≈ 53 nodes per time step, i.e. 53 hops/step in this case.

Numerical assessments using the aforementioned tool show the

speed requirement to span a range from 50 to 75 hops/step for

Mesh4, Mesh6 and Mesh8. At the targeted acceleration, a hop la-

tency of less than 20 ns would be required to meet this demand,

which is considered technically infeasible with current technology.

6 PROPOSED COMMUNICATION SCHEME
The discussion in the previous section has shown that systems using

established communication architectures are by design not capable

of reaching the targeted acceleration when accounting for the bio-

logically realistic model from Section 2. Bandwidth requirements of
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Figure 3: Exemplary construction of a homogeneous
Mesh4(1,3) network.

e.g. over 10 Tbit/s for MC inMesh6 as used in SpiNNaker, and a very

low transmission latency of less than 20 ns can hardly be achieved

with today’s technology. This section introduces a communication

scheme designed to address the identified limitations.

Network topology.The challenging latency requirements posed

by long-distance high-speed white matter connections can be tack-

led by adapting the network topology. Starting with a toroidal mesh,

the existing connections between direct neighbours must remain to

cover small latencies between nearby neurons. We propose to super-

impose a homogeneous network of long-distance connections on

such a mesh to meet both the low latency requirement of neighbor-

to-neighbor communication and the high-speed of white matter

connections (see example Mesh4(1,3) in Fig. 3). At the expense of

more outgoing links, this structure incorporates shortcuts to nodes

further away that contain neurons with tough latency requirements.

This also applies to trees and hypercubes. However, both topolo-

gies contain adjacent nodes with no direct connections, leading to

load imbalances and a higher speed requirement. In contrast, the

proposed long hop networks have the same outgoing connections

for each node, which additionally facilitates the distribution of mes-

sages in the network. Reasonable choices of the range and number

of these long hops are determined in Section 7.

Casting schemes. The presented long hop connections can help
to reduce bandwidth requirements in a network as messages have to

be forwarded less frequently. However, this applies only to directed

casting schemes such as UC or MC, because the total bandwidth

caused by BC is independent of topology and hence much larger

than the alternatives, as reasoned in Section 5. MC would be close

to optimal in this regard, but the need for offline calculation and

routing tables introduces substantial effort we strongly want to

avoid for a network size of one billion neurons. Therefore, we

consider MC as a reference to which the following alternatives

should get as close as possible.

Biologically-realistic connectivity models assume tightly con-

nected clusters in the brain, as described in Section 2. To take

advantage of the resulting locality, the distribution of action poten-

tial can follow a two stage approach. In the first stage, messages

are sent as UC to the center nodes of such clusters. Within their

predefined area, messages are then broadcasted in a second stage.

This reduces the resulting bandwidth requirements in a similar

way to MC. However, the clusters are typically unknown before-

hand and need to be located by applying cluster analyses for each

Figure 4: Functionality of BCF in a network with the topol-
ogy shown in Fig. 3. The first stage (BC) is indicated in blue,
the second (UC) in green.

source neuron. Furthermore, clusters in white matter connections

are not yet well understood. An architecture based on conservative

estimates should therefore not take advantage of them.

A more flexible two-stage approach without the need for prior

knowledge of cluster locations is the inverse scheme, in the follow-

ing called BroadcastFirst (BCF) as illustrated in Fig. 4. The first stage

is a network BC, exclusively over certain long hop connections with

length 𝑙 . This causes a uniform distribution of messages to single,

equidistant nodes in the network that strains only a subset of nodes

and links. Since in a homogeneous network each node has identical

outgoing long hop connections, the bandwidth load caused by this

step is distributed evenly and results in only 1/𝑙2 of the total load
of a conventional BC. In the second stage, the nodes reached by

the BC perform a UC to their 𝑙2 − 1 surrounding neighbors which

are accessible via very short paths. This step is analogous to the

splitting of MC packets which is used in other solutions [7], but

does not require special routing tables.

The second approach is applicable as a pure online variant, with-

out any pre-calculations or need for routing tables. It is less efficient

for certain distributions when prior knowledge about cluster loca-

tions is available, but on the other hand it can efficiently handle a

very wide range of different distributions including the worst case

scenario of a uniform distribution.

While memory accesses are not within the scope of this work,

they pose another important challenge for accelerated neuromor-

phic simulations. Casting schemes, in which no synaptic informa-

tion about source and target neuron is contained within the sent

messages, require many short random memory accesses to query it.

In BCF, each memory entry contains information about the entire

neuronal neighbourhood, resulting in significantly fewer accesses.

Future work will examine this more closely.

Routing algorithm. The high quality of offline computed rout-

ing paths and neuron mappings is only limited by run-time require-

ments. However, implementing routing tables in the envisioned

system poses a major challenge: both, the required capacity and the

need for run-time adaption to accommodate plasticity, complicate

their design. In contrast, on-the-fly routing algorithms are free of

routing tables. Their design is limited by latency and lack of global
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oversight, being merely heuristics. Still, implementing lightweight,

yet prevailing algorithms like the aforementioned DO and LDM

routings might mitigate these downsides. Only small modifications

are necessary to have them work with long hop connections and

Mesh6 networks. However, since we expect these generic algo-

rithms to not fully exploit long hops, we introduce two additional

online routing schemes that inherently support them.

Best neighbour (BN) routing is a lightweight heuristic greedily
selecting the link that minimizes the remaining distance to the

target. Therefore, it dynamically calculates the distance from each

reachable neighbour to the message destination and selects the

smallest one. Due to its flexibility, the algorithm is easily applicable

without change to systems where the final topology is not yet

known or should remain variable. As a less complex alternative,

Longest direction first (LDR) routing simply chooses the longest

outgoing connection that reduces euclidean distance to the target

by at least one hop. It is easy to compute since it relies on a static

list containing outgoing links sorted by their covered distance.

Synchronization. Late arrival or loss of spikes, which is toler-

ated in some state-of-the-art systems, would violate the require-

ment of determinism in the simulation. To prevent this, each node

has to wait for all neighbours to finish transmission of relevant

spikes. We propose an asynchronous boundary synchronization to

ensure a lower bound of propagation speed. More precisely, each

node sends a synchronization message to all its neighbors as soon

as all spikes are transmitted, which were either generated by the

node itself in the current time step or received in the last time step.

Redirecting newer messages still continues after synchronization to

further accelerate simulation. The number of synchronizations per

time step defines the minimum number of hops per time step each

message will cover. The actual achieved number of hops per time

step can be significantly higher. This local synchronization scheme

implicitly decouples areas of nodes, therefore accommodating for

spatial and temporal variation in spike rates.

7 EVALUATION
Building on the presented concepts, this section provides an evalu-

ation and refinement towards the 100x acceleration, based on the

empirical computation tool mentioned in Section 5. Unless stated

otherwise, calculations assume the bio distribution.

Benefit of long hops. To judge the benefit of long hops, we

start with three standard topologies (Mesh4/6/8) and expand them

with increasing numbers of additional connections. Initial findings

showed that lengths of the power of 3 yield reasonably good results

(cf. Fig. 5). Thereby, routing paths are determined using MC with

DJ to be independent of the routing quality.

Taking the example of Mesh8, the required bandwidth per node

drops from 10.6 Tbit/s to 1.3 Tbit/s, and the speed requirement from

50 hops/step to 2 hops/step adding only four long hops. In case of

UC, the relative improvement has shown to be evenmore significant.

While requirements decrease with increasing network degree, the

additional need for routing resources has to be carefully weighed.

Impact of approximate routing algorithms. In this evalu-

ation, we compared pure Mesh4, Mesh6 and Mesh8 topologies

including long hops, and two superpositions of different meshes.

These were selected to challenge routing algorithms with different
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Figure 5: Trade-off of long hops with MC, DJ shown as vari-
ation in cost, i. e. bandwidth per node (in Tbit/s) or speed re-
quirement (in hops/step) vs. number of connections.

conditions. We started selecting long hops by first defining the

longest hop by considering propagation speed in white matter (cf.

Section 5), and then shorter hops as fractions thereof. Afterwards,

we fine-tuned these to precisely match required speed and improve

bandwidth for the most promising routing algorithms. Here, we

constrained the connections per node to 32 links as provided by

the NetFPGA SUME board.

As reference, basic BC would require 128 Tbit/s independent of

topology. A detailed break-down is given in Fig. 6, displaying the

bandwidth and speed requirements. The lowest speed requirement

we achieved is 2 hops/step.

As expected, DJ provides bandwidth for UC and BCF as a reason-

able lower bound. In the case of MC, BN utilizes more shared paths,

resulting in lower bandwidth requirements. Overall, LDR proves a

reasonable option, while the low-effort methods DO and LDM suf-

fer as they can’t adapt direction to exploit long hops. Better results

at gradually increased complexity are achieved by BN routing. It is

comparable to DJ in all cases, and in a few cases even surpasses it.

Discussion. As expected, MC dominates the solution space due

to its global oversight of target connectivity while introducing the

aforementioned technical challenges. The next best contender is

BCF with BN routing. Both methods excel in the Mesh8(1,3,11,31)

topology with a speed requirement of only 2 hops/step.

Let’s recall the tremendous improvements of BC requirements in

a rad distribution brought by simply limiting message distribution

to the biological radius. The bio distribution shares a similar charac-

teristic, having a local centered cluster containing 40% of all targets

which is not yet exploited by BCF. As a final optimization step, we

therefore introduce BC
2
F𝑙 . It extends BCF with an additional local

BC limited to a biological distance 𝑙 .

The quantitative results shown in Fig. 7 highlight the improve-

ments w.r.t. BCF. As expected, MC yields the best results for the

rad and clustered bio distributions. The latter requires a bandwidth

of only 1.3 Tbit/s which is less than half of BCF. The optimization

BC
2
F improves bandwidth requirements by approx. 30% compared
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of 1G neurons.

to BCF, loading a node with 2.3 Tbit/s and featuring good general

capabilities despite its biological motivation. Results for the uni

distribution are comparable.

Scaling of NpN. So far, we neglected memory accesses and

computational effort. As these directly limit 𝑁𝑝𝑁 , we now consider

its effect on bandwidth requirements. Fig. 8 shows a sweep of 𝑁𝑝𝑁

from 100 to 10
5
indicating a common trend independent of topology

and routing algorithm converging towards nodal bandwidth of BC.

We conclude that 𝑁𝑝𝑁 has no significant impact on the quality

of the found solution. Furthermore, the sublinear trend indicates

that choosing the largest 𝑁𝑝𝑁 within the mentioned limitations

reduces overall system bandwidth.

Dynamic simulation. In order to capture the effect of syn-

chronization and network loading on acceleration, we developed

a dynamic simulator. It is written in SystemC, validated against

the calculation tool from Section 5 and runs a cycle and bit true

model including transceivers, routers and buffers. Fig. 9 presents

the achievable acceleration factor as function of one hop latency for

incremental changes in the assumptions. All simulations assume a

clock frequency of 500MHz.

When accounting for a speed requirement of 2 hops/step which

necessitates 2 synchronization events per time step, acceleration ap-

pears as expected slightly below𝑎 ≈ ℎ/(2·ℎ𝑜𝑝 𝑙𝑎𝑡𝑒𝑛𝑐𝑦). Accounting
for the need to compute neuron updates, available communication

time is halved to 500 ns during simulation of one wall-clock time

step ofℎ/𝑎 = 1µs. Lastly, the effect of bandwidth limitation is added.

Using the theoretical bandwidth requirement per node of 2.3 Tbit/s

(BC
2
F), the resulting 72Gbit/s per cable would drop acceleration to

81x. Each of the 32 cables would have to provide 92.5 Gbit/s (+28%)

to support 100x acceleration at a node-to-node latency of 100 ns.

Conversely, with 50% more bandwidth, an acceleration of 100x can

even be reached at 200 ns latency.

8 CONCLUSION
A major challenge in computational neuroscience is the wide-

ranging level of detail it addresses, from bio-chemical processes

of single ion channels to networks of billions of neurons. This ap-

pears familiar to IC design combining nanometer structures with

billions of ‘active’ devices. But neuroscience requires more than

off-the-shelf servers and tools due to the brain’s intricate structure.

In discussions with neuroscientists, we first gathered their vi-

sionary expectations for a neuromorphic simulator and translated
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Figure 9: Achievable acceleration factors depending on cable
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these to a quantitative specification. Applying analytical and numer-

ical techniques, we then showed that prevailing concepts fall short

of making the step from today’s real-time capable simulators to

significantly accelerated simulation of large-scale networks. The re-

sults highlighted the importance of adopting a biologically-inspired

specification from the very beginning of design.

As a result, we extended the established set of topologies and

routing algorithms, and introduced a multi-hop communication

topology. Quantitative results, underpinned by bit and cycle ac-

curate simulation, showed that our proposed method brings the

envisioned system within the realm of today’s off-the-shelf tech-

nical communication capabilities. Ultra-low node-to-node latency

in the range of 100 ns to 200 ns in combination with nodal band-

width of up to 4.5 Tbit/s appears sufficient to approach the 100x

acceleration with a 0.1ms resolution in biological time. As these re-

quirements are already met by today’s off-the-shelf compute nodes

(see Section 3.1), systems supporting the presented network topol-

ogy can push the acceleration factor of neuroscience simulations

at the targeted scale by two orders of magnitude.
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