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ABSTRACT
Predicting user engagement, often framed as a CTR prediction
problem, is important to maximize user satisfaction in social net-
works. The 2020 Recsys Challenge was sponsored by Twitter and
set the goal of predicting four types of user engagement using a
dataset with 160 million tweets. Our approach extracted informa-
tion from the tweet’s text tokens and built optimized user embed-
dings. We designed our model based on ideas from recommender
systems and deep learning that had been successful in CTR pre-
diction tasks. We show that our modifications to existing state-of-
the-art architectures and feature engineering improved the model’s
ability to predict user engagement. Factored’s team was called Los
Trinadores and had the 6th best submission of the challenge with
an overall score of 22. The code for our solution is available at
https://github.com/factoredai/recsys20-challenge/.

CCS CONCEPTS
•Computer systems organization→Neural networks; •Com-
puting methodologies → Information extraction.
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1 INTRODUCTION
Systems that predict whether users are going to engage with content
online are critical to optimize online advertising and maximize
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user satisfaction on social networks. Predicting user engagement
is framed under click-through rate (CTR) prediction and usually
involves overcoming the challenges of high-dimensional and sparse
data, implicit feedback, and predictions that rely on high-order
interactions between features [10, 13, 14]. Recent models used for
CTR predictions [4, 6, 9] typically have two components: one to
model low-order interactions with, for instance, generalized linear
models or factorization machines (FM) and another one to detect
high-order interactions with deep neural networks. Combining
these two types of components has proven useful when building
recommender systems for CTR prediction problems.

In this work, we describe Factored’s approach to building a CTR
prediction system for the RecSys Challenge 2020 [1], where the
objective was to predict user engagement on Twitter, the sponsor of
the challenge. We developed a model that predicts user engagement
with components that calculate high and low order interactions
using attention [15], deep neural networks, and a custom FM [12].
We designed algorithms to extract relevant topic information from
tweets and learn quality user embeddings while optimizing com-
putational resources. Our team for the challenge was called Los
Trinadores, and we had the 6th best submission of the challenge
with an overall score of 22. The source code for our solution is
available at https://github.com/factoredai/recsys20-challenge/.

2 CHALLENGE DESCRIPTION
The objective of the 2020 RecSys Challenge was to predict whether
a user will engage with a tweet with four possible types of engage-
ment: reply, retweet, retweet with comment, and like. A user could
engage in multiple ways with a tweet, so it was possible to find, for
example, a user that liked and retweeted a tweet.

The dataset contained around 160 million tweets with possible
engagements sampled over one week and 40 million tweets for the
submission sets sampled the following week. The organizers made
sure to only include information publicly available on Twitter by
creating pseudo-negative features, scrubbing deleted content, and
providing tokenized instead of raw text [3].

The metrics used to evaluate the models’ performance were Rel-
ative Cross Entropy (RCE) and Area Under the Precision-Recall
Curve (PR-AUC). RCE is calculated using Equation 1 and mea-
sures the improvement of the binary cross entropy from the model
(BCEpred ) compared to the binary cross entropy of a naive pre-
diction (BCEnaive )—e.g., the average observed engagement in the
training set.
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Table 1: Numerical, categorical, and boolean features
grouped by feature encoder.

Encoder Feature

Engager

Logarithm of follower difference with author
Logarithm of number of followers
Logarithm of number of accounts followed
Is the account verified?
Quantile of account creation date
Follows author?
5 topics with most appearances for each user
Number of appearances of 5 topics

Author

Logarithm of follower difference with engager
Logarithm of number of followers
Logarithm of number of accounts followed
Is the account verified?
Follows engager?
Quantile of account creation date

Tweet

Type of tweet (e.g., retweet or reply)
Day of the week the tweet was written
Hour the tweet was written
Language
Topic
Number of videos
Number of GIFs
Number of hashtags
Number of domains
Number of photos
Number of links

Text BERT encodings of text tokens

RCE =
BCEnaive − BCEpred

BCEnaive
(1)

3 DATA PROCESSING
The size of the dataset required a dedicated infrastructure to process
the data and create new features. We built our processing pipeline
using Spark [17] to process the dataset on an Elastic MapReduce
cluster of multiple c5.2xlarge instances on Amazon Web Services
(AWS). We additionally used a p2.8xlarge instance to create fea-
tures from the text tokens using PyTorch [11]. Table 1 details the
numerical, boolean, and categorical features created using this data
processing infrastructure.

3.1 Topic Extraction
We considered that the tweet’s text was one of the primary sources
of information in the dataset. Information about the text was pro-
vided using an ordered list that corresponded to the text’s BERT
[5] tokenization. Our first approach was to feed the tokenized text
to HuggingFace’s BERT base multilingual cased model [16] to ob-
tain trainable encodings of the text during training and inference.
The size of the BERT model made this approach computationally
expensive in training and inference time, so we decided to create
features that encoded text information.

Our solution to balance the tradeoff between computational cost
and information quality was to use BERT to create text encodings
to use them as non-trainable input features in the model. We also
extracted the main topic from each tweet using the BERT encodings
and determined the topics that appeared the most for a specific user.
We detail the process to determine the topic of a tweet in Algorithm
1, where the number of clusters in step 3 was determined using the
elbow method. The main advantage of using Algorithm 1 and BERT
encodings as non-trainable features was that we had information
about the text while feeding only once the text tokens to the BERT
model. This approach was computationally more efficient than
updating BERT’s parameters for each batch at training time.

Each tweet had an assigned topic after running Algorithm 1,
but we also required a connection between the tweet topic and a
user. On average, a user was exposed to 5 topics in the training
data, so we chose the 5 topics—from the 150 topics list—that were
seen the most by a particular user. The number of times a user was
exposed to each of the five topics encoded information about the
most relevant topics for each user.

Algorithm 1 Extract topic from BERT tokens.
1: Encode tokens using BERT model.
2: Reduce dimensionality of encodings keeping 95% of the vari-

ance using PCA.
3: Generate 150 clusters from the reduced encodings using k-

means.
4: Assign the topic to each tweet from the corresponding cluster.

3.2 User Buckets
Building quality embeddings for the users in the dataset was impor-
tant because each user may have a particular engagement behavior.
We decided not to create an embedding for every user in the dataset
because the model would not be able to learn quality embeddings
for users that appeared only a few times in the dataset.

We devised a process to learn relevant embeddings for users
through buckets of users. The process, detailed in Algorithm 2,
assigns a bucket to a single user if the user appears more than 71
times in the dataset. Users with fewer appearances are clustered
into groups of similar users and split into buckets with multiple
users from each cluster. The user clusters were built using variables
related to users, such as the number of followers and whether
the user’s account is verified. We tuned the number of buckets
created from a cluster and found that 400 was the optimal value. The
threshold of 71 appearances was defined because more than 200k
users (around 70% of the dataset) have more than 71 appearances.

Each bucket was assigned a trainable embedding, so more than
200k users had a dedicated embedding. In contrast, the remaining
users had an embedding learned for all the users in the bucket.
The buckets allowed us to, on the one hand, reduce the number of
embeddings that the model had to learn during training. On the
other hand, we had embeddings with better quality for users that
appeared less than 71 times because we could use the data from
similar users to learn a single embedding.

Without using the user buckets, we would have had to define
a single embedding for each of the 29M users in the dataset. We
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reduced the user embeddings to around 220k and allowed the model
to learn quality embeddings using user buckets instead of single-
user embeddings.

Algorithm 2 Assign users to user buckets
1: Create 60 clusters with users that appear less than 71 times in

the dataset using k-means clustering.
2: if User appearances > 71 then
3: Assign entire bucket to user
4: else
5: Assign user to one of the 60 clusters
6: end if
7: Group clusters with less than 450 users into single cluster
8: for cluster in clusters do
9: Divide into 400 buckets using feature hashing.
10: end for

3.3 Data Split
We took special care to design our data splits with two objectives:
optimizing time spent validating the model and generalizing the
validation score to the submission score. Figure 1 shows a diagram
of how we performed the data split. We optimized the time spent on
validation by creating a validation set size of around 500k samples.
This set size was small enough to run validation multiple times per
epoch. Since the validation size was less than 1% of the training
dataset and 20 times smaller than the submission set, we had to
design our out-of-time and out-of-space criteria to guarantee that
the validation dataset measured how the model would perform on
a submission set.

We avoided data leakage through time dependence using a time
split where the validation samples were taken from the last 16 hours
from the training set. This time split was necessary because, since
all the interactions in the submission set occurred in the week after
the training set, the model had to generalize well to out-of-time
samples.

Our out-of-space criteria were tailored to the characteristics of
this dataset. The first step was to replicate the ratio of cold-start
vs. warm-start users in the submission set. We determined that
27% of users in the submission set were not present in the training
set, so we replicated this cold-start distribution in the validation
and training sets. For the validation set, we took 27% of the users
selected for validation and deleted any previous appearances they
had in the training set. Deleting the data allowed us to evaluate the
model with the right ratio of cold-start users. This type of user is
User 2 in Figure 1.

We also wanted the model to learn how to handle cold-start
users during training, so we imputed features related to previous
behavior—such as the number of appearances of each topic—for 7%
of the users in the training set as represented by User 3 in Figure 1.
We defined the imputation of the historical features to resemble a
cold-start user, so, for example, we replaced the topic clusters with
random cluster values and set the number of appearances for each
topic to zero.

Our focus was to perform well on the submission set, so we
did not include in the validation set users that appeared in the

submission set, as shown by User 4 in Figure 1. The purpose of
this restriction was to allow the model to learn as much as possible
about the users in the submission set during training.

4 MODEL
We approached the design of our architecture based on existing
models—DeepFM [6], xDeepFM [9], and AutoInt [14]—that per-
formed well on CTR predictions. Figure 2 summarizes our archi-
tecture by showing how the three interaction components receive
encoded features and output vectors used by additional layers to
calculate the probability for each type of engagement.

4.1 Encoders
The model’s encoders consist of 3 dense layers with ReLU activa-
tions and dropout rates of 0.3, based on the number of layers and
dropout rates of the deep module of the DeepFM architecture [6].
Each encoder receives the numerical and boolean features and em-
beddings that are relevant to the encoder. For example, the author
encoder receives numerical and boolean features and embeddings
for categorical variables and user bucket that correspond to the
author of the tweet. We included a batch normalization layer [8]
between each dense layer in the encoders to make our model robust
to the data shifts caused by the rapid changes in the conversation
on Twitter [3]. The input features for each encoder are detailed in
Table 1.

Figure 2 shows that we defined a skip connection that connects
the author and engager embeddings directly to the interaction com-
ponents. We used this skip connection to ensure that the learning
process of the embeddings was not affected negatively by the addi-
tional layers in the author and engager encoders. This part of the
architecture was inspired by the success of residual connections in
deeper networks that improve the model’s performance [7, 13].

4.2 Interaction Components
We included a deep learning component in our model based on the
success of DeepFM and xDeepFM in calculating high-order inter-
actions with this type of approach. The deep learning component
is the DL module in Figure 2 and includes three dense layers with
batch normalization, ReLU activation functions, and tuned dropout
rates of 0.25. We based the depth of the DL module on previous
results [6, 9] that achieved optimal performance with three dense
layers.

Our model includes an attentionmechanism based on the success
of the AutoInt models on recommendation tasks for CTR. This
attention mechanism is the Transformer component in Figure 2
and includes two transformer encoder layers [15], each with four
attention heads.

One difference between our architecture and CTR models is that
CTR models usually do not include additional layers between the
interaction modules and the output probability. These additional
layers motivated using a component with a FM that had a vector and
not a scalar as an output. The first choice for a FM-based component
with a vector output was the Compressed Interaction Network (CIN)
[9] of the xDeepFM architecture. However, the known shortcoming
of the CIN’s time complexity made it more efficient to rely on the
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Figure 1: Diagram showing our out-of-space and out-of-time splits: User 1 simulates a warm-start user for validation; User 2
simulates a cold-start user for validation; User 3 simulates a cold-start user for training; User 4 shows how we did not include
in the validation users that appeared in the submission set; User 5 shows cold-start users that only appeared in the submission
set.

Figure 2: Summarized architecture of our model. All features are grouped through dense layers into encodings of the relevant
entities of the problem and are passed to the three interaction components. The output from the three modules is passed to
the final layers to output a probability for each of the engagements.

other interaction modules for high-order interactions and develop
a modified FM with the dot product of the classical FM [12].

The modified FM is similar to the classical FM, but we do not sum
over the dot products between the encodings. Instead, the output of
the modified FM is a vector built from each of the dot products as
shown in Equation 2, wherem is the total number of encodings and
y
(i, j)
FM is the dot product between the latent vectors of encodings i
and j. Having a vector output from the FM component allowed us
to keep information about the interactions in vector form that was
useful for dense networks in the output layers.

yFM =
[
y
(1,2)
FM ,y

(1,3)
FM , . . . ,y

(m,m−1)
FM

]
(2)

4.3 Output Layers
Our data exploration showed that the correlation between retweet
and retweet with comment engagements was higher than all the
correlations between engagement types. We defined three modules
before the model’s output layer to leverage the correlation between
retweet and retweet with comment such that the RT & RT w/ comment
module shares the weights of the dense layers before calculating
the output probability for each engagement.

5 EXPERIMENTS
We built our model using TensorFlow [2] and ran training and
inference on AWS using a c5d.4xlarge EC2 instance—an instance
with 16 vCPU cores and without a GPU. We chose multiple CPUs
over a GPU because the bottleneck was loading the data to feed
the model, not the forward or backpropagation steps. Using the
c5d.4xlarge allowed us to solve the data loading bottleneck and
optimize the cost of training the model.

Table 2 summarizes the impact of the main components in the
architecture by measuring the percentage change in binary cross
entropy (BCE) when we removed a component of the model. We
used BCE to compare performance because, as shown in Equation 1,
a minimum in BCE is a maximum in RCE for any naive prediction
used as a reference. The results show that it was useful to use batch
normalization to make the model robust to data shifts and to keep
the output of the FM in vector form. In contrast, our experiments
show that the Transformer module was not relevant to improving
the model’s performance.

We also ran an experiment where we trained the model without
the topic features described in Section 3.1, and the best BCE we
obtained was 0.8694: a percentage change of 2.07% compared to
the model trained with the topic features. The BCE we obtained
without topics shows that, compared to the results in Table 2, using
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Table 2: Impact of components in the architecture. We re-
moved a single component of the architecture and compared
the BCE of the model without the component with the BCE
of the model with all the components (Full Model).

Model BCE ∆BCE from Full Model

Full Model 0.8523 –
Without Batch Normalization 0.8763 2.88%
Without DL module 0.8588 0.82%
Without custom FM 0.8565 0.55%
Without weight sharing 0.8547 0.34%
Without transformer 0.8512 -0.07%

the information in the text tokens was one of the most important
contributions to improve the model’s performance.

6 CONCLUSIONS
In this article, we presented Factored’s approach to building a CTR
prediction system for the 2020 RecSys Challenge. We extracted top-
ics from text tokens and defined user buckets to optimize training
time while encoding relevant information. We designed our archi-
tecture based on ideas of deep learning and recommender systems
that had been successful in CTR prediction tasks. We showed that
our feature engineering and additions to state-of-the-art architec-
tures—especially topic features and making the model robust to
data shifts—improved the model’s performance and led us to have
the 6th best submission of the challenge.
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