
SMC: Alternative Smart Media Compression Techniques for
Edge Storage Offloading

Ali E. Elgazar
Carnegie Mellon University

aee@cs.cmu.edu

Khaled A. Harras
Carnegie Mellon University

kharras@cs.cmu.edu

Mohammad Aazam
Carnegie Mellon University

aazam@ieee.org

ABSTRACT
With the pervasiveness and growth in media technology, user-
generated content has become intertwined with our day-to-day life.
Such advancements, however, have enabled the exponential growth
in media file sizes, which leads to shortage of storage on small-scale
edge devices. While online clouds have been the default solution,
they raise privacy concerns, are not fully automated, and do not
adapt to different networking environments. Distributed storage
systems rely on distributed file partitioning to combat concerns over
privacy, and are adaptable to different networking environments.
Nevertheless, such systems lack optimization via compression due
to energy concerns on edge devices. In this work, we propose Smart
Media Compression (SMC), a system that can be integrated with
various distributed edge cloud (DEC) storage systems. SMC uti-
lizes both a deterministic as well as a machine learning approach
to classify the relevance of files to the user. Once classification is
performed, SMC intelligently selects which files to compress, which
files to preserve as is, and which files to offload to the distributed
edge storage system. SMC dynamically adapts its parameters in
order to reduce the amount of needless compression, thus minimiz-
ing energy consumption. It accomplishes this while also providing
faster access to user files compared to standalone DEC systems. Our
results show an improvement in average file access delay by up to
90%, while only costing an additional 14% in energy consumption.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Theory of computation→Data compression; Patternmatch-
ing.

KEYWORDS
Compression , mobile-devices, multimedia, access-patterns, energy-
efficiency

ACM Reference Format:
Ali E. Elgazar, Khaled A. Harras, and Mohammad Aazam. 2020. SMC: Alter-
native Smart Media Compression Techniques for Edge Storage Offloading .
In 16th ACM Symposium on QoS and Security for Wireless and Mobile Net-
works (Q2SWinet’20), November 16–20, 2020, Alicante, Spain. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3416013.3426454

Q2SWinet’20, November 16–20, 2020, Alicante, Spain
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8120-8/20/11.
https://doi.org/10.1145/3416013.3426454

1 INTRODUCTION
With ongoing advances in media technologies, user generated con-
tent is exponentially growing, giving rise to media storage chal-
lenges on mobile and edge devices [1–5]. These challenges have
prompted most users to resort to utilizing online clouds. However,
major centralized storage clouds (CSCs) such as Apple’s iCloud,
Dropbox, and Google Drive, have come under fire due to multiple
hacks compromising user privacy [6–8]. Given the rise of such pri-
vacy issues in CSCs, distributed edge cloud (DEC) systems have
become an alternative solution to CSCs. DECs such as Sia, Symform,
Beekup, and EdgeStore rely on their distributed nature on edge user
devices in order to reduce cost and alleviate privacy concerns [9–
12].

While the aforementioned systems promise increased privacy
and cheaper additional storage, their performance can be enhanced
by capitalizing on compression techniques to offer an improved
user experience [13, 14]. For instance, EdgeStore is a private storage
solution deployable on household devices to provide an edge-based
storage cloud for users [12]. It automatically classifies and offloads
unpopular files from a user’s smartphone/tablet to the users’ own
underutilized household devices such as desktop, laptop, or even
other smartphones or tablets. EdgeStore shows that most files are
often not accessed by the user, and thus can offload upwards of 90%
of the media files and still maintain low average access times of
roughly two seconds. However, like most CSC and DEC systems,
users may still access some files that were deemed unpopular and
therefore have been offloaded. There is a room for improvement
with respect to identifying such files, compressing them, and keep-
ing them on the device, such that if a user accesses them in the
future, the files would be quickly available. The main reason as to
why these systems lack compression-based optimization is due to
the fact that compression can consume large amounts of energy
when performed on an edge device [15, 16].

In this work, we introduce an energy-efficient media classifica-
tion and compression system, Smart Media Compression (SMC),
which can be integrated with any DEC. We propose an architec-
ture that can be integrated with DECs and centralized clouds, but
focus on integration with DECs because they are more beneficial
to a wider audience of users that may experience weaker network
connectivity; centralized clouds typically rely on stable networking
connections. SMC operates like traditional mobile storage offload-
ing and caching solutions for DECs. Due to its easy-to-integrate
architecture, it enables mobile offloading platforms that do not sup-
port caching to have lower average delays on retrieving offloaded
files, by increasing local hits on a user’s device. Furthermore, typical
caching solutions store files as-is in limited quantity, while SMC
allows many files to be retained locally via compression. This ap-
proach is typically utilized by social media platforms and messaging

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

65

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3416013.3426454
https://doi.org/10.1145/3416013.3426454
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3416013.3426454&domain=pdf&date_stamp=2020-11-16

applications such as Telegram and WhatsApp, and our work brings
some of the techniques utilized in these platforms to DECs.

SMC has two major components, the File Popularity Classifier
(FPC), and File Compression Mechanism (FCM). Employing either a
deterministic or machine learning-based approach, the first compo-
nent, FPC, automatically classifies files as popular and unpopular,
based on user access patterns. Users typically prefer their popular
files intact, and unpopular files offloaded. Our FPC further identifies
a third set of files as semi-popular; these files are not frequently
accessed, but based on temporal locality, may be accessed again
in the near future. These semi-popular files are compressed and
kept on a user’s device. Overall, with such tertiary classification,
we identify which files should be offloaded, compressed, or pre-
served as is. After the FPC classification, the second component
of SMC, FCM, intelligently decides which media files to compress,
and how to compress them. FCM determines if compression would
benefit the user in terms of overall file access delay, based on the
user’s storage requirements and access patterns. This selective com-
pression, while providing the same results in terms of file access
delay, reduces overall energy consumption cost. FCM uses simple
lossy FFmpeg re-encoding to reduce the size of the media files at
an acceptable level of loss of quality. This allows both popular and
semi-popular files to exist on the user’s device, while still meeting
the user’s storage requirements.

We implement SMC and integrate it with a recently developed
sample DEC, namely, EdgeStore [12]. We implement both SMC and
EdgeStore in Java, and utilize a set of real life mobile file access
traces to realistically emulate user access patterns to various media
files. These realistic access patters are utilized in SMC’s file classifi-
cation and compression. We attach SMC to EdgeStore and compare
its performance to the default EdgeStore (ES) in a metropolitan,
urban, and rural environment, where network infrastructures are
powerful, average, and poor, respectively. Our results show that
compression is much more important when a user demands a large
portion of their storage offloaded, and its impact is most beneficial
in environments with relatively weak network infrastructure. SMC
exhibits an improvement in file access delays by 28%, 61%, and 90%
in metropolitan, urban, and rural environments, respectively. This
improvement comes at an average cost of 14% energy consumption;
however, without our smart FCM energy checks, such consumption
would be upwards of 43% of the mobile device energy [15, 16].

2 SMART MEDIA COMPRESSION (SMC)
In this section, we discuss the architecture and functions of SMC,
and how it integrates with DECs. Note that a DEC to which SMC is
attached must implement any network adaptability, since SMC does
not do so itself. SMC mainly provides larger benefits in terms of
access delays to solutions which operate in challenged networking
environments.

2.1 SMC Architecture
Fig. 1 shows the architecture of SMC and how it is integrated with
a DEC. Typically, DECs have an interface that takes user input re-
garding which files to offload and how much of the user’s storage
the user wants to offload. In a DEC augmented by SMC, SMC com-
ponents are inserted between the user input and the DEC interface.

This enables SMC to dictate to the DEC which files should be of-
floaded and which should be compressed and kept based on the
user’s requests and media file access patterns.

SMC consists of two major components: 1) File Popularity Clas-
sifier (FPC) which utilizes user access patterns to classify files as
popular/unpopular/semi-popular. 2) File Compression Mechanism
(FCM) which utilizes the FPC classifications to determine which and
how files are to be compressed, and which files are to be offloaded
based on the amount of storage the user wishes to free from their
device.

2.2 File Popularity Classifier (FPC)
We utilize FPC in order to identify which files should be offloaded,
which files should be compressed, and which files should remain
intact. FPC offers two methods of file classification, the first being
a deterministic approach which builds upon an algorithm called
Pattern Based Popularity Assessment (PBPA) [2], and the second
being a machine learning approach implementing the popular Roc-
chio classifier [17]. Both approaches have benefits and downsides,
which are discussed later on in the evaluation section.

2.2.1 Deterministic Approach. Our deterministic approach builds
upon the PBPA algorithm [2] by using temporal locality to augment
PBPA. PBPA classifies files over three steps.

Identifying base unpopular files: In this step, all files that
have not been accessed recently (a dynamic parameter based on the
user’s mobile activity) are considered unpopular, and are the most
favored option for offloading.

Identifying base popular files: In this step, in the set of active
files, the top most accessed portion is considered popular and is
favored for retaining on the user’s device.

Classifying the remaining unknown files: PBPA establishes
a few metrics which are utilized to gauge a user’s unique access
pattern to a file [2]. These metrics include the number of accesses,
the intersession length (time between consecutive accesses), the
spread of accesses over the file’s timeline, and the length of the
file’s timeline itself. Using these metrics, the access patterns of the
unknown files are matched to the access patterns of base popular
files. Unknown files that match the base popular files are considered
popular, files that do not are considered unpopular.

Figure 1: SMC’s architecture attached to a DEC

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

66

Augmented PBPA: We create an algorithm, Augmented PBPA
(APBPA), which takes advantage of file temporal locality. APBPA
classifies files into three categories instead of two by modifying the
final step of PBPA (classifying the remaining unknown files). In the
final step of PBPA, files that do not match the access patterns of the
base popular files are considered semi-popular instead of unpopular.
Although semi-popular files are neither accessed frequently nor
display popular access patterns, they were recently accessed and
based on temporal locality they are likely to be accessed again [18].
As such, these files can be compressed and kept.

2.2.2 Machine Learning-Based Approach. In our machine learning-
based approach, we implement the popular Rocchio classification
algorithm [17]. Rocchio Classification is a machine learning-based
approach, which relies on nearest centroid/cluster to classify items.
In general, the Rocchio Classification algorithm is composed of two
steps: 1- Using k-means clustering to divide a data set into k clusters.
2- Using k-nearest neighbor (kNN) algorithm on each cluster to
classify new data points. We selected this approach over other more
advanced machine learning approaches due to the simplicity yet
effectiveness of it. These classification techniques are performed on
a mobile device. While mobile devices are becoming increasingly
powerful, both users and developers typically prefer to limit complex
computations on mobile devices, as they can be heavily taxing
on them. As such, a lightweight and effective approach such as a
Rocchio classifier is best suitable for such mobile devices.

k-means clustering: k-means clustering is a vector quantiza-
tion algorithm. k-means aims to divide a set of N vectors into k
clusters, with each cluster having a centroid vector being the av-
erage of all vectors in said cluster. The feature vector used in our
implementation is a four dimensional vector, utilizing the same
metrics to measure access patterns as PBPA, and can be described
as follows: 𝑣 = (𝑣𝐼𝑆𝐿, 𝑣𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 , 𝑣𝑆𝑝𝑟𝑒𝑎𝑑 , 𝑣𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒). In our imple-
mentation of Rocchio, we use 3-means clustering to create three
clusters: popular, semi-popular, and unpopular. 3-means clustering
works by starting off with three files (one for each category) as a
centroid, then using euclidean distance to those three centroids, all
other files are assigned a cluster. After this initial step the algorithm
goes through cycles of veronoi relaxation, where a new centroid
for each cluster is recalculated, and all files are reassigned based on
that centroid until the algorithm converges on three clusters. Those
clusters and centroids are what is used in classifying newly created
files using kNN.

k-nearest neighbor: k-nearest neighbor algorithm is a vector
classification algorithm. k-nearest neighbor aims to assign a vector
to a class based on the nearest k vectors and their assigned classes. In
our implementation, we utilize 1-nearest neighbor on the centroids
of clusters produced by k-means clustering to classify newly created
files. Fig. 2 shows an example of such classification. In this figure, the
newly created red file has its vector’s euclidean distance measured
to all the clusters, and in this case, since the shortest euclidean
distance as shown in the figure is to the unpopular centroid, the file
would be classified as unpopular.

2.2.3 Benefits of Tertiary Classification. To measure the benefits
of tertiary classification versus binary classification, we utilize real
life mobile device file access traces acquired from [19]. These access
traces range from 2 to 12 weeks long, with the average trace being

Popular centroid

S-popular centroid

Unpopular centroid

New file

Figure 2: Classification of new files using 1-nearest neighbor
on cluster centroids

8 weeks long. We classify files using both APBPA and PBPA on a
snapshot of each trace at its fourth week (roughly half way through
each trace).We then calculate howmany files classified as unpopular
using PBPA are accessed in the remaining trace, versus how many
were classified as unpopular using APBPA. Using PBPA we see that
12% of files classified as unpopular are accessed, while using APBPA
we see that only 4% are accessed, giving us a 67% improvement
in classifying files. Files identified as semi-popular due to tertiary
classification are perfect candidates for compression since they are
not used frequently, but may be accessed again, thus is beneficial to
keep them on the user’s device.

2.3 File Compression Mechanism (FCM)
FCM is the main entity in SMC interfacing with DECs and respon-
sible for deciding which files are compressed, how files are com-
pressed, and which files are offloaded.

2.3.1 Compression Mechanism. In FCM, we utilize the popular li-
brary FFmpeg in order to compress media files [20]. We compared
FFmpeg to other notable compression libraries such as Video Com-
pressor used by popular messaging app Telegram [21]. We found
that FFmpeg has an associated energy cost of roughly 800 Joules
per 100MB of media compressed, while Video Compressor costs
roughly 1730 Joules per 100MB. This cost comes at a difference
in quality of the compressed files, and while Video Compressor
produced higher quality compressed files as most messaging apps
require, it consumed much more energy. Thus, libraries such as
Video Compressor used in social media/messaging apps are not
suitable for large scale compression of user data.

Note that when referring to file compression, we imply lossy
compression. As such, compressed media files lose quality but are
still accessible and view-able by the user without the need for de-
compression. Furthermore, if a file is compressed and kept on the
user’s device, the file has its uncompressed version offloaded such
that if the user needs a high-definition version of the compressed
file, they can always retrieve it.

The most important factor in compression is the compression
ratio i.e., the ratio between the size of an uncompressed file, and
its compressed version. In FCM, the compression ratio is dynamic

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

67

Figure 3: Visual representation of determining which files to
offload and compress

based on how much of the user’s storage is to be vacated, and how
much is occupied by popular and semi-popular files. However, in
order to calculate the compression ratio, first, we must decide on
which files to compress from the popular/semi-popular files, as
compressing only the semi-popular files may not be sufficient if the
user wishes to offload large quantities of their storage.

2.3.2 Selecting Files to Compress. Fig. 3 provides a visual repre-
sentation of how we decide which files to compress, and which
files to offload. If the amount of storage space a user requests to be
offloaded falls short of the size of unpopular files, then compres-
sion becomes counter-productive and consumes device energy. This
occurs when the total amount of storage minus the files the user
wishes offloaded (storage saved) is greater than the size of popular
and semi-popular files, as such, in this case no compression should
take place, set of files compressed is null. This storage requirement
check allows our system to compress only when compression is
needed, and thus, saves battery consumption. This is due to the
fact that compressing semi-popular files in this case only yields
more unpopular files being saved on the device. Thus, it minimally
benefits the average access delay time, as those unpopular files now
being kept are not accessed. Finally, if the amount of storage re-
quested exceeds the amount of unpopular files, but does not exceed
the amount of unpopular files combined with semi-popular files, we
compress semi-popular files only. Otherwise we need to compress
both semi-popular files as well as popular files.

2.3.3 File Compression Ratio. The compression ratio (CR) selection
varies based on the files being compressed. If we are compressing
semi-popular files only, we utilize the formula for CR1 shown below,
Where TS, SR, PF, and SPF are total storage, storage requested,
popular files, and semi-popular files respectively. We set the ratio
of compression dynamically to match the difference between the
size of popular files and storage saved, such that the compressed
semi-popular files fit into that difference. On the other hand, if we
must compress both popular and semi-popular files, we utilize the
formula for CR2 shown below. Naturally, wewould like tominimally
scale popular files in comparison to semi-popular files. As such, we
use 𝛼 in our formula as a weight assigned a different value based on
the category of file being compressed. If the file being compressed is
a semi-popular file, then 𝛼 = 𝑃𝐹/𝑆𝑃𝐹 , however, if the file is popular,
then 𝛼 = 𝑆𝑃𝐹/𝑃𝐹 .

CR1 =
TS-SR-PF

𝑆𝑃𝐹
CR2 = 𝛼 × TS-SR

𝑃𝐹 + 𝑆𝑃𝐹

Using the compression ratio, we scale the spacial resolution of
media files in order to allow said files to exist within the storage
requirements. Note that temporal resolution of video and audio files
are not altered. As such, the objective of FCM is to allow files that
fall in the popular and semi-popular categories, regardless of their
quantity, to exist on the user’s device while still meeting the user’s
storage requirements. As such, there is no floor as to how much a
file is compressed, and it is function of how much storage the user
requests.

3 EVALUATION
In this section, we discuss our evaluation setup and present our
results. To show the impact of Smart Media Compression on DECs,
we attach SMC to a recently developed DEC, EdgeStore, and we
compare the results between default EdgeStore (ES), and SMC inte-
grated with EdgeStore (SMC).

3.1 EdgeStore Overview
EdgeStore is a private, deployable DEC platform [12]. EdgeStore
allows users to utilize their household compute devices as a pri-
vate distributed storage cloud where they can automatically offload
files, taking advantage of the underutilized storage most users have
between their household devices. EdgeStore supports automatic
offloading of user files based on user access patterns, as such, it is
a suitable candidate for evaluating SMC, since SMC also relies on
user access patterns for file compression.

3.2 Experimental Setup
We implement EdgeStore and SMC in Java, and utilize the Java-based
ONE simulator to simulate device communication in a household
scenario [22]. The experiment is based on 90 days of in-simulation
time, in which a main mobile device access files. EdgeStore automat-
ically offloads files it deems unpopular during the simulation, while
SMC+EdgeStore compresses some files and offloads the others.

In order to account for users experiencing different network
conditions, we create three separate simulation environments ad-
dressing different networking infrastructures (rural, urban, and
metropolitan). In the rural environment, devices communicate us-
ing only direct techniques (Bluetooth, ad-hoc), while in the urban
environment devices communicate using WiFi only. In the metro-
politan environment devices utilize WiFi when it is available and
4G network otherwise.

As EdgeStore is a storage solution that utilizes household edge
devices, we utilize household mobility models to simulate user node
movement. We utilize the same mobility model utilized by previous
EdgeStore evaluation [12]. It should be noted that if users offload a
file and later lose connection to the device holding that file, they
must wait till the connection is re-established to retrieve the file.
Household mobility models generally consist of a number of hours
of communication uptime between nodes, followed by a number
of hours of communication downtime. This behavior follows the
principle that when a node is in its house, it can communicate with
the other household devices. When nodes leave the house, they

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

68

are occasionally randomly paired with other nodes from the house.
This simulates familial behavior in traveling together. Our mobility
model is based on the observations of various works in studying the
mobility of household members, as well as the mobility of members
in ad hoc networks in general [23][24][25].

3.3 Dataset
To simulate user accesses of files, we utilize the same set of real life
mobile device file access traces utilized in EdgeStore evaluation [19].
The user traces have been filtered to contain only audio, video, and
image files that are larger than a particular threshold in size (2MB
for audio and video, and 500KB for images). This filtering is done to
ensure that the files left in the traces are the ones accessed by users,
and not by the system itself (logo images, device sound clips, etc.). In
this evaluation, we use the most active data trace from all the mobile
data access traces we acquired. This active data trace contains 1417,
181, 18 images, videos, and audios, respectively, with a combined
number of 112417 accesses to said files over the 90-day trace. The
average sizes of images, videos, and audios, are 2.1, 91.4, and 5.4MBs,
respectively. During the 90-day simulation, an offloading device is
fitted with an access trace, and the offloading/compression decisions
are based on the file access patterns for that user.

3.4 Parameters and Metrics
In order to gauage the impact of our parameters individually, as we
vary a parameter, other parameters are kept at a default value. We
utilize four parameters and three metrics in our evaluations:

Percent of storage offloaded: This percentage represents the
amount of storage to be offloaded, and is typically input by the user
to SMC. We vary this percentage between 20%, 50% and 90% with a
default value of 90%.

Compression floor: This parameter represents the minimum
quality that a file can be compressed to. For example, if the com-
pression floor is set to 480p, files above that quality can not be
compressed to under 480p. This parameter can be set to any value
between floorless, 144p, and 360p with a default value of floorless.

Classification Algorithm: We compare our two file classifiers
APBPA and Rocchio in order to showcase the benefits and downsides
of deterministic and machine learning classification of user files on
our system. The default classifier for our evaluation is APBPA

Learning period: This period of time is given to both classi-
fication algorithms to learn from the users’ access patterns. This
parameter is varied between 2, 3, and 4 weeks with a default value
of 2 weeks.

Access Delay: This is the time taken for a file to be presented to
the user upon request. A file access request can either be a local hit
(available on the native device) or a miss (offloaded to another edge
device). Compression plays a huge factor in access delays as more
files are available on the user’s system instead of being offloaded.

Energy Consumption: Energy consumption is impacted by the
number and size of files compressed, as well as the communication
technology utilized. In our evaluations, we fix the throughput of
our 4G, WiFi, and Bluetooth interfaces to 75 Mbps, 40 Mbps, and
20 Mbps respectively [26]. Our tests showed that each 1MB of data
transferred consumes on average 25, 15, and 10 Joules when utilizing
4G, WiFi, and Bluetooth respectively. APBPA computations roughly

consume 550 Joules per hour. Compression using FFmpeg consumes
roughly 800 Joules per 100MB of media. These numbers are based on
tests performed on anHTCAndroid device with a 2600mAh battery;
at 5V, this is roughly 46800 Joules of energy. These values were used
to simulate battery consumption throughout the experiment. We
note that when users view a compressed file, they always opt to
retrieve the original HD version of the file, causing additional energy
usage.

User Mean Opinion Score (MOS): This metric represents an
approximated user opinion score based on previous studies into
Quality of Experience for users viewing media on their mobile
devices.

3.5 Results
3.5.1 Impact of smart compression checks. Fig. 4 shows the CDF of
delays in every environment given different percentage of storage
offloaded. Note that the X-axis starts at 100ms, as the minimum
non-zero delay on accessing any file in the simulation is higher
than 100ms. In all three environments, there is no improvement
in access delays between ES and SMC when we offload 20% and
50% of files, giving us overlapping lines between ES-20%/SMC-20%,
and ES-50%/SMC-50%. This is due to the preventative compression
checks implemented in FCM. In the trace, 62% of the files were
unpopular on average. As such, when the user chooses to offload
less than 62% of files, compression does not benefit the system, as
compressing files merely adds more unpopular files to the system
which are unlikely to be accessed. In this case, SMC’s compression
checks prevent wasteful compression and no files are compressed,
giving the same result as ES.

3.5.2 Impact of compression on access delays. When the user of-
floads 90% of their storage, delay increases significantly as more files
are offloaded and thus, need to be retrieved later. However, using
SMC, the percentage of instantaneous accesses falls around 47%,
compared to 25% when using ES. This increase in instantaneous
access causes the average delay to plummet. In the metropolitan,
urban, and rural environments, the average delay drops from 312ms
to 243ms, 432ms to 267 ms, and 2.1s to 1.1s respectively, giving us a
28%, 61%, and 90% improvement in delays on average, respectively.
These results show that while SMC provides an improvement to
storage solutions in any environment, SMC is most beneficial in
environments with low bandwidth and connectivity, where it is
more difficult to retrieve offloaded files, and thus more important
to keep them on a user’s device.

The improvements from ES to SMC are due to the fact that with
tertiary classification and compression, the user’s device offloads
less files. Those improvements are amplified in urban and rural
environments due to connection downtimes. This causes devices
using ES to have to wait prolonged periods of times until they
can retrieve files, in comparison to SMC where those files were
classified as semi-popular and compressed instead. This shows that
in the absence of a stable network connection, compressing files and
keeping them on a user’s device becomes imperative, as waiting for
a connection to retrieve a file causes the average delays on accessing
a file to skyrocket.

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

69

 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 1000 10000 100000

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Delays (ms)

ES-20%
ES-50%
ES-90%

SMC-20%
SMC-50%
SMC-90%

(a) Metropolitan environment

 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 1000 10000 100000 1x106 1x107

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Delays (ms)

ES-20%
ES-50%
ES-90%

SMC-20%
SMC-50%
SMC-90%

(b) Urban environment

 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 1000 10000 100000 1x106 1x107 1x108 1x109

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Delays (ms)

ES-20%
ES-50%
ES-90%

SMC-20%
SMC-50%
SMC-90%

(c) Rural environment

Figure 4: CDF of access delays in every environment using ES and SMC with varying percent of files offloaded

Figure 5: Access delay in SMC versus Unchecked SMC
(USMC) with varying offload percentages

3.5.3 Impact of unchecked compression on average delays. To show-
case the importance of smart compression, we disable the aforemen-
tioned checks in a few of our simulations and compare the results
using the rural environment. Fig. 5 compares SMC and Unchecked
SMC (USMC) with compression checks turned off. We observe lit-
tle benefit in USMC compared to SMC, with USMC producing an
average delay only 0.6 and 1.1% improved when we offload 20 and
50% of files. Not only is the improvement minor without compres-
sion checks, but we consume more energy as the device is blindly
compressing files without need.

3.5.4 Impact of unchecked compression on battery usage. Fig. 6
shows the comparison between ES, SMC, and USMC in terms of
energy consumption. Energy drain is bound to occur in our system
whether ES or SMC is utilized, due to the large quantities of files
being offloaded. During the simulation, there is no difference be-
tween ES and SMC when we offload less than 50% of files in terms
of energy consumption. In comparison, USMC has a much higher
energy consumption for the same amount of files offloaded. As we
can see, when we offload an amount of files more than the amount of
unpopular files (90%), the energy consumption of SMC is the same
as USMC as the checks only apply to the aforementioned specific
case. The average hourly energy consumption in all simulations for
ES, SMC, and USMC is 1415, 1660, and 2490 Joules respectively. As
such, devices running ES, SMC, and USMC ran out of battery every
33, 28, and 19 hours respectively. While SMC costs an additional
14% of energy consumption, it prevents an additional 43% energy

Figure 6: Comparison between ES, SMC, andUSMC in energy
consumption with varying offload percentages

consumption through its smart checks. For comparison, on the same
device on which these energy calculations took place, an hour of
browsing the Internet with the display brightness at 50% consumes
roughly 3600 Joules.

3.5.5 Impact of compression floor on MOS. Fig. 7 shows a file qual-
ity heatmap over time for different compression floors. The width
of a spot as well as the colour of a spot on this heatmap changes
as more files are aggregated in that spot. Fig. 7 also shows a MOS
score per user access for matching compression floors. As we de-
crease compression floors, the overall quality of files continuously
drops. However, we only see drops in MOS once we go below 360p
compression floor. This is due to the fact that typical mobile devices
have smaller screens of around 360p width, as such, resolutions
higher than 360p seem comparable on the typical mobile device
[27, 28]. Naturally, as we increase the compression floor, file access
delays are increased as less files are compressed and kept on the
user’s device, causing the device to retrieve offloaded files that are
later accessed. This shows that with a proper compression floor set
by the user based on his screen size, we can effectively compress
files to reduce file access delays while avoiding incurring a cost in
terms of MOS.

3.5.6 Comparison between deterministic and machine learning ap-
proaches. We compare APBPA to Rocchio classifier given three
different lengths of learning period. We create two versions of SMC:
1- APBPA-SMC. and 2- Rocchio-SMC, andwe simulate both versions
in the Rural environment with 90% of files offloaded. Fig. 8 shows

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

70

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80

R
es

ol
ut

io
n

Day

 0

 200

 400

 600

 800

 1000

 1200

 1400

N
um

be
r

of
 f

ile
s

(a) no floor compression heatmap

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80

R
es

ol
ut

io
n

Day

 0

 200

 400

 600

 800

 1000

 1200

 1400

N
um

be
r

of
 f

ile
s

(b) 144p compression heatmap

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80

R
es

ol
ut

io
n

Day

 0

 200

 400

 600

 800

 1000

 1200

 1400

N
um

be
r

of
 f

ile
s

(c) 360p compression heatmap

(d) no floor compression user MOS (e) 144p compression user MOS (f) 360p compression user MOS

Figure 7: File quality heatmaps and user MOS of compressing files using no floor, 144p, and 360p floors

this comparison. As we extend the learning period for APBPA, the
increase in performance is negligible. However, the increase in per-
formance for Rocchio is more substantial and as the learning period
increases, it seems that Rocchio’s results converge to that of APBPA.
This can be explained by examining the percentage of classifications
for each class of files given different weeks.

Fig. 9 shows the percentage of classification as different training
periods are utilized. We see that the Rocchio classifier approaches
similar classification to APBPA as the training period grows, with
the initial 2 week period (R-2W) being the most stringent in its
classification. Since Rocchio classifies more files as unpopular in
R-2W, it offloads more files and must retrieve more files, leading to
longer access delays.

While the machine learning approach provides longer access
delays, it has the benefit of providing better MOS. Fig. 10 shows
the MOS when performing floorless compression and utilizing the
Rocchio classifier. In comparison, Fig. 7d shows the MOS For floor-
less compression while utilizing APBPA. We can see that Rocchio
provides better MOS than APBPA, and this is mainly due to the fact
that Rocchio compresses less files and offloads more files.

4 RELATEDWORK
The goal of Edge/Fog computing is to mainly improve the perfor-
mance of applications such as smart homes [29–31], mhealth [32,
33], vision-based systems, and augmented reality systems [34, 35],
that demand higher compute resources, but cannot tolerate cloud
latency. Thus, contributions in this domain have primarily focused
on task and computational offloading solutions [36–40]. This work,

however, focuses on storage-based challenges in these Edge envi-
ronments. We therefore focus our related work on edge storage
systems and compression in edge networks.

4.1 Edge Storage Systems
Early work in the field, such as Symform [10] succeeded in providing
a worldwide distributed storage platform. This platform provided
incentives for users to volunteer their unused devices as storage
caches, which users from across the world could utilize. Unfortu-
nately, as of 2016, Symform has officially been shut down, leading
many of their patrons to seek alternatives.

Following that, the Sia platform [9] now provides an online,
decentralized cloud platform, where user files are broken apart,
encrypted, and offloaded to many storage caches all over the world.
This approach makes it extremely difficult for malicious hackers to
compromise the safety of a user’s file. Other work such as Rizzo et
al. propose a storage offloading system called “Beekup”, based on
Tahoe-LAFS, a distributed file system [41]. Beekupwas designed as a
distributed offloading solution very similar to Sia. Although Sia and
Beekup are both excellent examples of well-made distributed storage
solutions, neither platforms support any ease-of-use features such
as automatic offloading, or capitalize on data gathered from user
access patterns. These platforms merely provide a storage dump for
files to users.

More recent work, examined the potential of automating user
file offloading through an edge storage offloading system called
EdgeStore [12]. Utilizing a file popularity classification algorithm,
EdgeStore classified files in a binary fashion as either popular or
unpopular based on the file usage patterns, and unpopular files
were automatically offloaded to underutilized devices at the user’s

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

71

 20
 30
40

 50
 60
 70
 80
 90

 100

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Delays (ms)

APBPA-2weeks
Rocchio-2weeks

 102 103 104 105 106 107 108 109

(a) 2 week learning period

 20
 30
40
 50
 60
 70
 80
 90

 100

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Delays (ms)

APBPA-3weeks
Rocchio-3weeks

 102 103 104 105 106 107 108 109

(b) 3 week learning period

 20
 30
40
 50
 60
 70
 80
 90

 100

 102 103 104 105 106 107 108 109

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Delays (ms)

APBPA-4weeks
Rocchio-4weeks

(c) 4 week learning period

Figure 8: CDF of access delays comparing SMC with APBPA, versus SMC with Rocchio classifications.

Figure 9: APBPA (A-XW) versus Rocchio (R-XW) classifica-
tion percentage given different weeks.

home. Our work however, determines that a binary classification
system is not sufficient, and that such automated systems can benefit
tremendously from a tertiary classification scheme. Such schemes
allow files which are not exactly popular for the user, but are likely
to be used again, to be kept on the user’s system in a compressed
state.

4.2 Compression in Edge Networking
Compression in order to reduce network traffic is no novel idea.
Work in the early 2000s discussed different techniques in compress-
ing media files in order to reduce network traffic. For example, Arici
et. al. discuss PINCO, a pipelined scheme for compressing data as it
is transmitted from wireless distributed sensor networks [42].

More recently, as the definition of “Edge” became less opaque,
research began re-visiting old compression techniques and apply-
ing them to complex topics such as deep learning at the edge [15].
However, regardless of the applied topic, the object of such work
has almost always been reducing network traffic at the edge, and
typically revolved around caching data chunks at nearby edge de-
vices for fast and low-latency access [43, 44]. Our work is distinct in
that our focus is to automatically compress files on a user’s system,
in order to increase local hits when accessing files on a user’s de-
vice. In that spirit, our work combines file classification, automated
offloading, and cache-like local compression into a platform that
can be easily integrated with any offloading system to provide it
with these benefits.

Figure 10: User MOS with Rocchio classification

5 CONCLUSION AND FUTUREWORK
In this paper, we have argued the need for a private and automated
edge storage systems, and how intelligent automated file classifi-
cation and compression can benefit such systems. We proposed a
distributed edge cloud integratable system, SMC, which aids in auto-
mated offloading and compression of media files and smart devices.
We showed how tertiary file popularity classification can be more
advantageous than binary. We have also demonstrated how SMC
accounts for dynamic factors, such as the amount of storage the user
requests offloaded and the ratio between popular and semi-popular
files in the user’s system. Lastly, we have examined the impact of
such compression techniques on user mean opinion scores, and we
showed how up to a certain degree, there is no noticeable impact
on user opinion from compression, due to the nature of viewing
media files on mobile devices which have smaller screen sizes.

For future work, we intend to examine pre-fetching techniques
to reduce the need for compression, thus reducing energy waste.
Additionally, we will investigate the possibility of having variable
compression ratios based on the popularity of the files, instead of
treating files in the same category as equals. For example, we intend
to make it such that every single file in the system has its own
compression ratio whether or not it’s popular or unpopular. We also
plan to more extensively evaluate the system potentially through a
real deployment with real users at a decent scale.

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

72

REFERENCES
[1] G. Shao, “Understanding the appeal of user-generated media: a uses and gratifica-

tion perspective,” Internet Research, vol. 19, no. 1, pp. 7–25, 2009.
[2] A. Elgazar, K. Harras, M. Aazam, and A. Mtibaa, “Towards intelligent edge stor-

age management: Determining and predicting mobile file popularity,” in 2018
MobileCloud. IEEE, 2018, pp. 23–28.

[3] A. Saeed, M. Ammar, K. A. Harras, and E. Zegura, “Vision: The case for symbiosis
in the internet of things,” in Proceedings of the 6th International Workshop on
Mobile Cloud Computing and Services. ACM, 2015, pp. 23–27.

[4] M. Ibrahim, M. Gruteser, K. A. Harras, and M. Youssef, “Over-the-air tv detection
using mobile devices,” in IEEE ICCCN, 2017, pp. 1–9.

[5] A. Saeed, A. Abdelkader, M. Khan, A. Neishaboori, K. A. Harras, and A. Mohamed,
“Argus: realistic target coverage by drones,” in ACM/IEEE IPSN, 2017.

[6] “Dropbox hacking,” https://tinyurl.com/jzptkee.
[7] “Apple hacking gets worse,” http://www.zdnet.com/article/icloud-accounts-

breach-gets-bigger-here-is-what-we-know/.
[8] “Google cloud hacking,” http://searchengineland.com/after-the-googlehack-

33508.
[9] D. Vorick and L. Champine, “Sia: Simple decentralized storage,” Technical Report,

Sia, 2014, Tech. Rep., 2014.
[10] Y.-Y. Teing, A. Dehghantanha, K.-K. R. Choo, T. Dargahi, and M. Conti, “Forensic

investigation of cooperative storage cloud service: symform as a case study,”
Journal of Forensic Sciences, 2016.

[11] F. e. a. Rizzo, “Beekup: A distributed and safe p2p storage framework for ioe
applications,” in ICIN 2017. IEEE, 2017, pp. 44–51.

[12] A. Elgazar, M. Aazam, and K. Harras, “Edgestore: Leveraging edge devices for
mobile storage offloading,” in IEEE CloudCom, 2018, pp. 56–61.

[13] C. M. Sadler and M. Martonosi, “Data compression algorithms for energy-
constrained devices in delay tolerant networks,” in Embedded networked sensor
systems. ACM, 2006, pp. 265–278.

[14] T. Ma, M. Hempel, D. Peng, and H. Sharif, “A survey of energy-efficient com-
pression and communication techniques for multimedia in resource constrained
systems,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 963–972,
2013.

[15] C. Hardy, E. LeMerrer, and B. Sericola, “Distributed deep learning on edge-devices:
feasibility via adaptive compression,” in 2017 NCA. IEEE, 2017, pp. 1–8.

[16] J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy efficient iot data
compression approach for edge machine learning,” FGCS, vol. 96, pp. 168–175,
2019.

[17] Rocchio classification. Retrieved on (2019-9-12). [Online]. Available: https:
//nlp.stanford.edu/IR-book/html/htmledition/rocchio-classification-1.html

[18] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “Dulo: an effective buffer cache
management scheme to exploit both temporal and spatial locality,” in 4th confer-
ence on USENIX File and Storage Technologies, vol. 4, 2005, pp. 8–8.

[19] R. Friedman and D. Sainz, “File system usage in android mobile phones,” in 9th
SSC. ACM, 2016, p. 16.

[20] Ffmpeg. Retrieved on (2019-9-12). [Online]. Available: https://www.ffmpeg.org/
[21] Telegram video compressor. Retrieved on (2019-9-12). [Online]. Available:

https://github.com/lalongooo/VideoCompressor
[22] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evalu-

ation,” in STT. ICST, 2009, p. 55.
[23] V. A. Davies et al., “Evaluating mobility models within an ad hoc network,” Mas-

ter’s thesis, Citeseer, 2000.
[24] J. P. Gliebe and F. S. Koppelman, “A model of joint activity participation between

household members,” Transportation, vol. 29, no. 1, pp. 49–72, 2002.

[25] T. F. Golob, “A model of household demand for activity participation and mobility,”
1996.

[26] Throughput comparison. Retrieved on (2019-9-12). [Online]. Avail-
able: http://www.bandwidthplace.com/internet-speed-test-3g-4g-lte-and-wifi-
who-wins-article/

[27] M. H. Jofri, M. F. M. Fudzee, M. N. Ismail, S. Kasim, and J. Abawajy, “Quality of
experience (qoe) aware video attributes determination for mobile streaming using
hybrid profiling,” Ph.D. dissertation, Universiti Tun Hussein Onn Malaysia, 2016.

[28] Mobile resolutions. Retrieved on (2020-9-12). [Online]. Available: https:
//gs.statcounter.com/screen-resolution-stats/mobile/worldwide

[29] H. Abdelnasser, K. Harras, and M. Youssef, “A ubiquitous wifi-based fine-grained
gesture recognition system,” IEEE Transactions on Mobile Computing, vol. 18,
no. 11, pp. 2474–2487, 2018.

[30] H. Abdelnasser, K. A. Harras, and M. Youssef, “Magstroke: A magnetic based
virtual keyboard for off-the-shelf smart devices,” in IEEE SECON, 2020, pp. 1–9.

[31] M. A. Shah, K. A. Harras, and B. Raj, “Sherlock: A crowd-sourced system for
automatic tagging of indoor floor plans,” in IEEE MASS, 2020.

[32] M. F. Al-Sa’D, M. Tlili, A. A. Abdellatif, A. Mohamed, T. Elfouly, K. Harras, M. D.
O’Connor et al., “A deep learning approach for vital signs compression and energy
efficient delivery in mhealth systems,” IEEE Access, vol. 6, pp. 33 727–33 739, 2018.

[33] A. Emam, A. A. Abdellatif, A. Mohamed, and K. A. Harras, “Edgehealth: An
energy-efficient edge-based remote mhealth monitoring system,” in IEEE WCNC,
2019, pp. 1–7.

[34] A. Saeed, A. Abdelkader, M. Khan, A. Neishaboori, K. A. Harras, and A. Mohamed,
“On realistic target coverage by autonomous drones,” ACM Transactions on Sensor
Networks (TOSN), vol. 15, no. 3, pp. 1–33, 2019.

[35] A. Saeed, M. Ammar, E. Zegura, and K. Harras, “If you can’t beat them, augment
them: Improving local wifi with only above-driver changes,” in IEEE ICNP, 2018.

[36] K. Habak, E. W. Zegura, M. Ammar, and K. A. Harras, “Workload management
for dynamic mobile device clusters in edge femtoclouds,” in ACM/IEEE SEC, 2017,
pp. 1–14.

[37] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds: Leveraging
mobile devices to provide cloud service at the edge,” in IEEE CLOUD, 2015, pp.
9–16.

[38] K. Habak, C. Shi, E. W. Zegura, K. A. Harras, and M. Ammar, “Elastic mobile
device clouds: Leveraging mobile devices to provide cloud computing services at
the edge,” Fog for 5G and IoT, p. 159, 2017.

[39] H. K. Gedawy, K. Habak, K. Harras, and M. Hamdi, “Ramos: A resource-aware
multi-objective system for edge computing,” IEEE Transactions on Mobile Com-
puting, 2020.

[40] H. Gedawy, K. A. Harras, K. Habak, and M. Hamdi, “Femtoclouds beyond the
edge: The overlooked data centers,” IEEE Internet of Things Magazine, vol. 3, no. 1,
pp. 44–49, 2020.

[41] Tahoe-lafs. Retrieved on (2019-9-12). [Online]. Available: https://en.wikipedia.
org/wiki/Tahoe-LAFS

[42] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu, “Pinco: A pipelined in-network
compression scheme for data collection in wireless sensor networks,” in 2003 IEEE
CCN. IEEE, 2003, pp. 539–544.

[43] L. Liu, X. Chen, Z. Lu, L. Wang, and X. Wen, “Mobile-edge computing framework
with data compression for wireless network in energy internet,” Tsinghua Science
and Technology, vol. 24, no. 3, 2019.

[44] V. Aggarwal, Y.-F. R. Chen, T. Lan, and Y. Xiang, “Sprout: A functional caching
approach to minimize service latency in erasure-coded storage,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 6, 2017.

Session 3: QoS Q2SWinet '20, November 16–20, 2020, Alicante, Spain

73

 https://tinyurl.com/jzptkee
http://www.zdnet.com/article/icloud-accounts-breach-gets-bigger-here-is-what-we-know/
http://www.zdnet.com/article/icloud-accounts-breach-gets-bigger-here-is-what-we-know/
 http://searchengineland.com/after-the-googlehack-33508
 http://searchengineland.com/after-the-googlehack-33508
https://nlp.stanford.edu/IR-book/html/htmledition/rocchio-classification-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/rocchio-classification-1.html
https://www.ffmpeg.org/
https://github.com/lalongooo/VideoCompressor
http://www.bandwidthplace.com/internet-speed-test-3g-4g-lte-and-wifi-who-wins-article/
http://www.bandwidthplace.com/internet-speed-test-3g-4g-lte-and-wifi-who-wins-article/
https://gs.statcounter.com/screen-resolution-stats/mobile/worldwide
https://gs.statcounter.com/screen-resolution-stats/mobile/worldwide
https://en.wikipedia.org/wiki/Tahoe-LAFS
https://en.wikipedia.org/wiki/Tahoe-LAFS

	Abstract
	1 Introduction
	2 Smart Media Compression (SMC)
	2.1 SMC Architecture
	2.2 File Popularity Classifier (FPC)
	2.3 File Compression Mechanism (FCM)

	3 Evaluation
	3.1 EdgeStore Overview
	3.2 Experimental Setup
	3.3 Dataset
	3.4 Parameters and Metrics
	3.5 Results

	4 Related Work
	4.1 Edge Storage Systems
	4.2 Compression in Edge Networking

	5 Conclusion and Future Work
	References

