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ABSTRACT
Anomaly detection aims to discover patterns in data that do not con-
form to the expected normal behaviour. One of the significant issues 
for anomaly detection techniques is the availability of labeled data 
for training/validation of models. In this paper, we proposed a hyper 
approach based on Long Short Term Memory (LSTM) autoencoder 
and One-class Support Vector Machine (OC-SVM) to detect anom-
alies based attacks in an unbalanced dataset, by training the models 
using only examples of normal classes. The LSTM-autoencoder is 
trained to learn the normal traffic pattern and to learn the com-
pressed representation of the input data (i.e. latent features) and 
then feed it to an OC-SVM approach. The hybrid model overcomes 
the shortcomings of the separate OC-SVM, in which its low ca-
pability to operate with massive and high-dimensional datasets. 
Additionally, we perform our experiments using the most recent 
dataset (InSDN) of Intrusion Detection Systems (IDSs) for SDN 
environments. The experimental results show that the proposed 
model provides higher detection rate and reduces the processing 
time significantly. Hence, our method provides great confidence in 
securing SDN networks from malicious traffic.
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1 INTRODUCTION
Intrusion is the main cause of a security breach, where a malicious 
user can damage or steal vital information of the network system 
in a short time. Moreover, it can cause further financial losses and 
huge damages in IT critical infrastructure. For example, $350M and
$70M are the sizes of the loss caused by Yahoo and respectively, 
Bitcoin data breach [18]. The intruder techniques have been evolved
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using sophisticated tools to create attacks exploiting vulnerabilities
in the server protocols.

For these reasons, IDSs are essential tools to guarantee the avail-
ability, confidentiality, and integrity of the data. In general, IDSs
are of two types: signature-based and anomaly-based detection
systems. In signature-based techniques, malicious traffic can be
detected based on the predefined rules. Although these techniques
are widely used in commercial products due to their high detection
rate and low false alarms, they cannot detect unknown or novel
attacks. The attacker techniques are evolved every day, and adapted
to make the anomalous activities similar to normal activities. There-
fore, any change in the attack signature, even if it is very small,
can help the attacker to bypass the defined rules easily. In addition,
with the era of IoT and big data, an extensive number of rules are
required to cover the daily attacks that can occur in the network
system, making the database that stores the defined rules relativity
large. Thus, the continuous updating of the database leads to a slow-
down in the system performance. Anomaly-based IDSs gained the
attention of the research community, due to their ability to discover
novel attacks that are not used in the training models. Machine
learning techniques are used in anomaly detection to build a model
that can differentiate between anomalies events from the rest of
the data. The anomaly detection aims to find the pattern in the
data that deviates from other observation [4]. Hence, it is applied
in several applications, including fraud detection [32], medical ap-
plications [1], video surveillance [20], data leakage prevention [5],
and intrusion detection [17]. However, the notion of anomaly dif-
fers across the various applications and contexts. For example, an
anomaly can be equipment failures in the industrial domain, credit
card fraud in the fraud detection domain, suspicious movements in
the video surveillance, etc. However, in the cybersecurity domain,
the IT administrators narrow down the meaning of anomaly, and
they consider any events that deviate from normal as anomalies, i.e.,
the anomaly is an indicator of malicious activities in the network
traffic.

There are three different techniques to train the anomaly de-
tection models, including supervised, unsupervised, and the semi-
supervised manner. The concept of supervised learning is to train
the detection model using labeled data for normal and for anomalies
events. An example of supervised detection algorithms includes
Support Vector Machine (SVM), Bayesian networks, artificial neural
networks (ANN). Although, supervised learning techniques per-
form better compared to signature-based techniques, these methods
fail to detect the zero-day attacks that can occur in the network
daily. In addition, such techniques always need balanced and labeled
data for training. However, the availability of labeled data is usually
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a major issue and usually is not available for researchers. Besides,
the labeling process can be a time-consuming task, error-prone,
and tedious. Unsupervised methods do not require any labeled data
for training. The goal of unsupervised methods is to organize the
data into separate clusters, by grouping them based on similarities
within each data cluster. One of the top limitations of using unsu-
pervised learning is that the false alarms are relativity high since no
answer labels are available. Besides, it always needs the expertise
of the user to interpret and label the classes which follow that clas-
sification. Examples of unsupervised approaches include Hidden
Markov Models, k-Means clustering, and Hierarchical clustering. In
semi-supervised learning, only the normal data is used for training.
Then, the trained model is applied in testing data, which includes
both normal and anomalies events. In practice, it is easy to obtain a
normal data class than to find anomalies data classes, where obtain-
ing the anomalies data classes is costly in most application domains.
This is the approach used by our proposed approach. In this paper,
we consider a point anomaly detection to decide whether if the
individual instance is anomaly compared to the remaining data.

1.1 Contribution
The main contributions of this paper are as follows – (a) We pro-
posed a deep learning based on LSTM-autoencoder model for anom-
aly detection. The idea is to train the deep learning model using
normal data only. In this case, the model is capable of replicat-
ing the input data at the output layer with a low reconstruction
error. In the case of anomalies, the trained model fails to recon-
struct anomalous instances, given a high error rate. The error is
used as an indicator to differentiate between normal and anom-
alies instances. (b) We combined the OC-SVM algorithms with
the LSTM-autoencoder to enhance the performance of the LSTM-
autoencoder model. The lower dimension of the input data (i.e.
extracted from the LSTM-autoencoder model) are trained with the
OC-SVM algorithm to achieve better classification results, whilst
significantly reducing the training time. (c) We used the recently
generated dataset InSDN [9] to ensure an accurate evaluation of the
proposed approach, since InSDN dataset is representative of the at-
tacks specific to SDN environments. The dataset used for evaluation
is critical since the performance of IDSs relies on the quality of the
training datasets. This a significant contribution, since the current
IDSs are based on fundamentals that are not representative of SDN
environments or suffer from several shortcomings related to the
intrusion dataset generated for the classification process.(d) The
computational overhead of the proposed DL model is also evaluated
to verify the model performance for real-time intrusion detection.
Based on the experiment results, the proposed model is able to
identify anomalies with a high detection rate and solve the problem
of unbalanced and unlabeled datasets.

The structure of the remaining part of the paper is as follows:
Section 2 provides a systematic review of the various learning
models for detecting attacks in network traffic. We propose our
deep learning model for encoding the input feature space and the
binary classification framework in Section 3. Section 4 presents
our benchmarking results in the publicly available InSDN dataset.
Finally, Section 5 concludes the paper and discusses our future
work.

2 ABNORMAL EVENT DETECTION
In this section, we discuss the various machine learning and deep
learning models that have been proposed for attack detection in
network traffic. With the advent of deep learning based models,
the accuracy of attack detection has further improved. The deep
learning based methods are useful, because the discriminative fea-
tures are automatically generated, without the use of generating
hand-crafted features.

2.1 Related Work
Most of the current works based on anomaly detection methods
applied ANN for classification tasks. The labeled data is used dur-
ing the training stage, and then the learned model is applied on
testing data to classify it into one of the classes. In [28], the authors
presented a flow-based detection approach using Self Organizing
Maps (SOMs) classifier in the network environment. The evaluated
accuracy of the proposed model in the testing phase is 74.67%. For
overall evaluation, the precision, recall, and f-measure obtained
from the conducted model are 83%, 76%, and 75%, respectively.

Latah et al. [19] proposed a five-stage hybrid classifier system
to enhance the detection rate against malicious traffics inside the
network. The model combines three different machine learning
classifiers, including the K-Nearest Neighbor approach (KNN), Ex-
treme Learning Machine (ELM), and Hierarchical Extreme Learning
Machine (H-ELM). The overall accuracy of the presented approach
is 84.29%, while the percentage of precision, recall, and F1-score is
94.18, 77.18, and 84.83, respectively.

Prasath et al. [22] proposed a Novel Agent Program (NAP) frame-
work to secure a communication model of the virtual switches in
the network. The meta-heuristic Bayesian network classification
(MHBNC) approach is used to classify the incoming packets into
normal or attack traffic. The proposed MHBNC model has achieved
an overall accuracy of 82.99%. Besides, the realized precision, recall,
and f-score is 77%, 74%, and 75%, respectively.

One of the main advantages of the aforementioned techniques
is the ability to handle high-dimensional data sets with high per-
formance. However, these approaches mainly rely on labeled and
balanced data, and this is an issue. The majority of real data are
unbalanced, where the anomalies data are often challenging and
less frequently to obtain compared to normal data.

On the other side, the autoencoder, which considers a specific
kind of feed-forward neural networks, gained the research commu-
nity’s attention. The autoencoder is mainly applied in outlier based
anomaly detection rather than classification problems. One of the
first studies that involved autoencoder for outlier detection was
proposed by Hawskin et al. [12] and it is used widely in the research
community. In recent years, the number of studies using autoen-
coder as a complementary algorithm for feature reduction tasks has
increased. The autoencoder achieves great success in generating ab-
stract features of high dimensional data. It can significantly increase
the anomaly detection accuracy in comparison to linear and kernel
PCA [24]. It can detect subtle anomalies that the linear PCA fails to
detect. Furthermore, the autoencoder is easy to train and does not
require complex computation like kernel PCA. A comprehensive
study of using the autoencoder in anomaly detection approaches is
discussed in [3].
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In our previous work [8], we used the reconstruction error as a
threshold to detect anomalies on the NSL-KDD dataset. Although
the obtained results are significantly high, it seems that the experi-
ment results are more specific for the NSL-KDD dataset. However,
the traces of the NSL-KDD dataset were generated two decades ago
and the distribution of normal and malicious traffic significantly
deviates from each other. So, the simple threshold is an excellent
choice to separate between different boundaries. In contrast, in
modern traffic, the attacker can use very sophisticated tools to gen-
erate new attack classes that are extensively similar to legitimate
traffic. Therefore, some anomaly error rates are quite close to the
standard legitimate error rate, and it is not easy for anomaly de-
tection systems to detect them with a high performance rate [27].
Thus, the simple threshold is insufficient, especially for high dimen-
sion data, as the reconstruction errors are not linearly separable. In
addition, the high similarity in some normal and abnormal traffic
creates data samples with a small distance between them, which
sophisticates the use of the simple threshold in attack detection
systems.

2.2 Limitations in the Traditional Machine
Techniques

The machine learning and shallow learning techniques, such as
SVM, NB and RF have been widely deployed in intrusion detection
systems to recognize attack threats [10, 16, 26]. These approaches
attempt to learn the feature representation in network traffic data
for an effective classification. However, it is not easy to manually
handcraft and extract the discriminatory features in intrusion detec-
tion systems. Firstly, the nature of the attacks evolve everyday, and
the attacker’s techniques change with time. Secondly, the features
which are extracted for one category of attack, may not necessar-
ily be suitable for other attack classes. As a result, selecting the
significant features to identify the attack from network traffic is a
cumbersome task. Therefore, existing attack detection techniques
fail to discover all types of attacks. Furthermore, there is a high
degree of non-linearity in the dataset, and therefore the traditional
machine learning based methods fail to classify the normal and
malicious data types [7]. Elsayed et al. further established this fact
in [7] by generating the Andrews curve for the NSL-KDD dataset.
The Andrews curve represents a high-dimensional feature space
in the form of a finite Fourier series. This provides a visual under-
standing of the internal structure of the dataset. Figure 1 shows the
Andrews curve for the NSL-KDD dataset. Each curve in Fig. 1 repre-
sents an observation in the dataset. We observe that the two labels
are not clearly grouped in two separate streams. The legitimate
and malicious data curves are tangled with each other, indicating a
high-degree of inherent non-linearity in the feature space. There-
fore, traditional machine learning techniques fail to capture the
non-linearity in such datasets.

Hence, in this work we propose a deep learning technique using
LSTM-autoencoder to model the normal traffic data. This assists in
proposing a robust framework for detecting attacks in SDN network
traffic. Unlike other machine learning approaches, our proposed
technique can automatically learn the discriminatory features from
the network traffic data. However, we formulate our problem as

Figure 1: We demonstrate the Andrews curve for the InSDN
dataset. We plot the legitimate and malicious observations
in green and red curves respectively.

a binary classification problem, wherein we classify any network
data into normal and malicious type.

3 PROPOSED MODEL
This section presents the framework elements and the system ar-
chitecture of our proposed IDS model.

3.1 Autoencoder
An autoencoder is an artificial neural network that applies back-
propagation, to produce the output vector similar to the inputs. It
compresses the input data into a lower-dimensional space, then re-
constructs the original data again from this representation. It uses a
non-linear activation function and multiple layers to learn the non-
linear relation in the data. A simple illustration of the autoencoder
model architecture is shown in Fig. 2.

The Autoencoder is considered an unsupervised learning tech-
nique since it does not require a separate label value to train. In
practice, the autoencoder is composed of two phases: the encoder
and the decoder parts. The main objective of the encoder phase
is to reduce the dimensions of the input data X according to the
equation 1.

𝑍 = 𝜎(𝑊𝑋 + 𝑏) (1)
Here, Z is the latent dimension, 𝜎 is the activation functions,

W is the weight, and b is the bias vector. In the same manner, the
decoding phase is trained according to the equation 2 in order
to obtain the output data similar to the original space, but with
different bias, weight and possibly activation functions.

𝑋 ′ = 𝜎 ′(𝑊 ′𝑍 + 𝑏 ′) (2)
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The main goal of the autoencoder is to make the output vector
similar to the original space, by minimizing the reconstruction error
between them. The reconstruction error can be obtained using a
cross-entropy function or sum of squared errors (SSE). In this paper,
we used SSE to calculate the reconstruction error according to the
equation 3

𝑆𝑆𝐸 =
𝑛∑
𝑖=1

(
X′
𝑖 − X𝑖

)2 (3)

The decoder part regenerates the initial data based on the en-
coder output. To achieve the dimensional reduction and generate
the compressed feature vector of input data, the code layer [13] is
used at the center of the autoencoder structure. The code layer can
be utilized for classification activities or combined with another
stacked autoencoder [30].

Figure 2: An example of a single autoencoder.

3.2 RNN to LSTM
Recurrent Neural Network (RNN) is a class of artificial neural net-
work with backward connections, where the output from a network
layer is returned to either that layer or to a previous network layer.

RNN can address the problem of traditional feed-forward neural
networks [31]. As a result, it can create much powerful models
with high classification accuracy. RNN is widely applied in different
domain applications such as language processing and speech recog-
nition. Unlike the feed-forward neural networks, the cyclic connec-
tions of the RNN can be effectively used formodeling sequences [14].
In RNN, for the given input vector sequence 𝑋 = (𝑥1, 𝑥2, 𝑥3, ...., 𝑥𝑡 ),
we can compute the hidden vector 𝑍 = (𝑧1, 𝑧2, 𝑧3, ...., 𝑧𝑡 ) and output
vector sequence 𝐹 = (𝑓1, 𝑓2, 𝑓3, ...., 𝑓𝑡 ) at time t using Eq.4 and Eq.5,
respectively.

𝑧𝑡 = 𝜎(𝑊𝑥𝑧𝑋𝑡 +𝑊𝑧𝑧𝑧𝑡−1 + 𝑏ℎ), (4)

𝑓𝑡 =𝑊𝑧𝑓 ℎ𝑡 + 𝑏 𝑓 , (5)

Here, 𝜎 is the activation function,𝑊 is the weight, 𝑏 is the bias
and 𝑧𝑡−1 is the state at time 𝑡 − 1.

In this work, we use the RNN based on the nature of the input
data, where the temporal correlations of network traffic often gen-
erate time-series data [29]. For this reason, we used the RNN-based
approach to solve the problem of simple feed-forward neural net-
works, since RNN considers the previous output and the current
input at each stage. In addition, RNN has been applied efficiently
in the anomaly detection for traditional networks [2][21]. Training
the model with such methods can minimize the loss and further, it
can provide high performance.

The main issue in RNN is the vanishing gradient problem. The
gradient is used to update the weight values of the learned model.
However, in case the gradient is very small, the model can not
learned efficiently. Thus, layers that get a small gradient update
in RNN will stop learning, and usually, this issue happens in ear-
lier layers. The LSTM algorithm [11] was explicitly proposed as a
solution to avoid the vanishing gradient problem. The LSTM uses
the mechanism of gates to regulate the flow of information. LSTM
composites of three control gates: forget, output, and input gates.
The forget gate keeps a fraction of previous state information, while
output gate is responsible for choosing how much of an informa-
tion we output and the input gate is responsible for getting new
information.

3.3 One-Class SVM
OC-SVM [25] approach is a special case of support vector and
widely used to discover anomalies in an unsupervised fashion. It
is trained only on the ‘normal’ data to learn the boundaries of
these points. Then, it is able to classify any points that lie out-
side the boundary i.e. outliers. The main difference between the
standard SVM and one-class SVM is that the OC-SVM provides a
hyperparameter “nu”, which is used to control the sensitivity of the
support vectors, instead of the normal hyperparameters like C in
the standard SVM, which is used for tuning the margin.

Here, let the training samples (𝑥1, 𝑥2, 𝑥3, ...., 𝑥𝑙 ), belonging to one
known class X (i.e. “normal driving”). Let 𝜙 is a kernel map function
that transform the training samples into another space. We need to
solve the following objective function of one-class SVM to separate
the data set from the origin [23]:

𝑚𝑖𝑛
1
2
∥𝑤 ∥2 +

1
a𝑙

𝑙∑
𝑖=1

Y𝑙 − 𝜌, (6)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝑤𝜙(𝑥𝑖 ) ≥ 𝜌 − Y𝑖 , 𝑖 = 1, 2, 3, 4, ...., 𝑙, Y𝑖 ≥ 0 (7)

where w is a decision hyperplane, 𝜌 is the bias term and Y𝑖 is a
Nonzero slack variables. The meta-parameter a 𝜖 (0, 1) is used to
control the number of samples contained in the hyper sphere. The
decision function corresponding to w and 𝜌 is:

𝑓 (𝑥 ) = 𝑤𝜙(𝑥 ) − 𝜌 (8)

The main objective is to find a hyper sphere, which contains
most of the training samples obtained consequently from the tar-
get region. After training, the decision boundary may allow us to
choose the most appropriate candidate region.
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3.4 InSDN Dataset
The performance of the IDSs techniques relies on the quality of the
training datasets. One of the main challenges in the deployment
of the detection mechanisms is the lack of available up-to date
real-world datasets. The main reason for the lack of public datasets
for the intrusion detection domain returns to privacy and legal
issues. In this work, we are using the InSDN dataset to evaluate our
proposed deep learning model. The InSDN dataset was generated to
overcome the shortcomings of the existing datasets in the context
of SDN network [9].

The InSDN dataset contains various attack scenarios and attack
classes such as DoS, DDoS, Web attacks, Password-Guessing, Bot-
net, Exploitation, and Probe attacks. Besides, the normal traffic
in InSDN includes various popular application services such as
HTTPS, HTTP, DNS, Email, FTP, SSH. The source of attacks in the
dataset comes from internal and external network to mimic the real
attack scenarios. It contains more than 80 statistical features in CSV
file format such as Protocol, Duration, Number of bytes, Number
of packets, etc. The total number of dataset instances are 343,939
for normal and attack traffic, where the normal data brings a total
of 68,424, and attack traffic contains 275,515 instances.

Using InSDN dataset for the evaluation of our proposed model
it provides more accurate results, since the nature of attacks in the
SDN is different from those commonly affecting the conventional
networks. When the OpenFlow switch receives any unknown flow
packets, it will send these flows to the SDN controller in the form of
packet-In message for further processing. Since the normal and
malicious traffic is forwarded to the SDN controller for decision
making, the attack traffic mimics the same normal behavior. More-
over, the centralized view of the SDN network and separation of
the data plane from the control plane creates a new opportunity
for the attacker to carry out various types of attacks compared
to the conventional network. These attacks are not easy to detect
as the intruder is connected to the victim server in an authorized
manner. As a result, using such dataset for the model evaluation
can be a good indicator to reflect the real-world scenario. In addi-
tion, the InSDN dataset does not contain any redundant records,
which prevents the learner model to bias towards the most frequent
records.

3.5 Dataset Preparation
In this paper, we focus our attention on a binary classification prob-
lem, and do not delve further into classifying the various types of
attacks. The observations belonging to any attack class are catego-
rized as anomalous traffic data. The first phase before training the
IDS model is preparing the dataset for proper use. Few steps are
taken for pre-processing the entering flows, as follows:

• The generated dataset contains the socket information such
as Source IP, Destination IP, flow ID, etc. We remove all
socket features to avoid the overfitting problem, where such
data can be changed from network to network. The final
dataset includes 77 various features, besides the traffic cate-
gory. Table 1 shows the flow samples that are used for train-
ing and testing during our model training. We randomly
selected some samples from the entire dataset, where the

size of training and testing records are not very large. Thus,
the time is taken for the model training can stay reasonable.

• The features have different ranges so they need to be stan-
dardized.

• We use one-hot encoding to convert the labeled string to
numerical values. In this model, we consider only binary
classification to identify the malicious and normal traffic
from input data. Therefore, we are encoding the normal
string to a binary value of 0 and respectively, all malicious
traffic of 1.

3.6 Modeling the normal traffic data
This section introduces the proposed architecture model for detect-
ing network attacks. We know that deep learning can assist us in
representing large-scale network traffic with a more discriminatory
feature space. Such technique uses multiple processing layers to
model the input feature properly. This is advantageous as com-
pared to traditional hand-crafted feature descriptors, because deep
learning techniques can automatically extract the discriminatory
features, as compared to manually generating the features. Our
proposed approach can estimate a good representation of the input
feature space. Figure 3 describes our proposed architecture to model
the normal network data.

We use the RNN and autoencoder architectures based on the
nature of the input data, where the temporal correlations of net-
work traffic often generate time-series data [29]. For this reason,
we used the RNN-based approach to solve the problem of simple
feed-forward neural networks since RNN considers the previous
output and the current input at each stage. In addition, RNN has
been applied efficiently in the anomaly detection for traditional
networks [2, 6, 21]. Training the model with such methods can
minimize the loss and further, it can provide high performance. Ad-
ditionally, the autoencoder has the advantage in number of classifi-
cation problem. The reason that we decided to use the autoencoder
in our proposed model for anomaly detection is the fact that the
autoencoder is trying to learn the best parameters to reconstruct
the input at the output layer. Moreover, we adapted the LSTM al-
gorithm for our model to solve the issues of the standard RNN
technique, such as vanishing and exploding gradient problems [15].

Figure 3: Proposed model to encode the input features. We
use blocks of encoder and decoder comprising LSTM layers.

Additionally, our model uses LSTM with autoencoder to learn
the representations of the network dataset in a simi-supervised
fashion, as depicted in Fig. 4. It contains multiple layers of encoder
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# Type No. of Training Instances No. of Testing Instances
1 Normal 57956 10468
2 Probe 12586 2639
3 DoS-Network\Transport layer 3160 612
4 DoS-Application layer 18462 13166
5 DDoS 9440 503
6 Brute_force_attack 1117 288
7 Botenet 164 -
8 Web Application Attack 174 18
9 Exploitation (U2R) 14 3
Total - 103,073 27,697

Table 1: Traffic Flows for Training and Testing.

and decoder stages and each stage consists of multiple LSTM units.
The input data X𝑡 is encoded via the encoder block to generate a
fixed range feature vector Z𝑡 . The input data X𝑡 ∈ IR77×1 is the
initial encoded feature vector generated from the dataset. We set
timestamp = 1 for our LSTM blocks. We used the LSTM blocks for
individual events, and not for time series. The encoder block se-
quentially reduces the dimension of the 77 dimension initial feature
vector. The dimensions are reduced to 128, 64, 32, and 16, after the
first, second, third and fourth layers of the encoder respectively. The
final encoded feature vector Z𝑡 ∈ IR16×1 represents the compressed
input data. The low-dimensional representation of the input data
Z𝑡 is trained with OC-SVM for anomaly classification. The model
is trained using normal traffic only, so the malicious traffic will be
considered as outliers.

Figure 4: The diagram flow of the proposed method using
InSDN data set.

The encoded data is then fed into the decoder block for gen-
erating the output feature vector. We represent the input feature
vector of the decoder block as Ẑ𝑡 . The layers in the decoder block
are arranged in the reverse order as that of the encoder layers. The
encoded features Ẑ𝑡 are then fed via a series of LSTM blocks to gen-
erate the output feature vector X̂𝑡 . The dimensions are increased to
16, 32, 64, 128, after the first, second, third and fourth layers of the
decoder respectively. Finally, the final layer of the decoder block is
fed to a fully connected layer to generate the output feature vector
X̂𝑡 . We attempt to reconstruct this output feature vector X̂𝑡 to be
as close as the input feature vector X𝑡 . We use the mean square
error (MSE) to calculate the estimation error between input data
X𝑡 and output representation X̂𝑡 .

The LSTM-autoencoder network is used to model the normal
traffic data using the discriminatory feature X̂𝑡 . The reconstruction
error for normal traffic data will be less as compared to that of
anomalous traffic data. This behavior will greatly help in detecting
the anomalous traffic since its corresponding error value will be
considerably higher.

4 EVALUATION AND RESULTS
This section details the evaluation process of our technique and
shows that our method provides great confidence in securing the
networks from malicious traffic.

4.1 Loss trend of our proposed model
We use the generated feature X𝑡 to train our model, such that
the reconstruction loss is minimum. We use a learning rate of
0.0001, batch size of 32, tanh activation function, and train the
model using Adam optimizer. We train our model for 100 epochs.
Table 2 summaries the choice of the different hyper-parameters.
Figure 5 describes the trend of training and validation loss over
the number of epochs. We observe that the loss trend is similar
for training and validation sets, and converges after a few tens of
epochs.

4.2 Performance Metrics
We use precision, recall, f-Score, and accuracy to evaluate our model
performance. The mathematical representation of these metrics are
calculated as follows:
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Parameters Best Values
Hidden layers 4
Hidden layer size (neurons) 128, 64, 32, and 16
Optimizer Adam
Loss function MSE
Activation function Tanh
Learning rate 0.0001
Number of epochs 100
Batch size 32

Table 2: We mention the values of the several hyper-
parameters. We conducted different experiments to get the
best values of hyper-parameters for model initiation. Dur-
ing these experiments, we change the value of learning rate,
hidden layers size, epochs, and batch size that provide a high
accuracy rate.

Figure 5: Trend of training and validation loss over the num-
ber of epochs.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(9)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(10)

F-score =
2 × Precision × Recall
Precision + Recall

(11)

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(12)

where TP (True Positive) represents the number of instances
correctly classified as an attack; TN (True Negative) represents
the number of instances correctly classified as normal; FP (False
Positive) represents the number of instances incorrectly classified
as an attack; FN (False Negative) represents the number of instances
incorrectly classified as normal.

4.3 Anomaly detection with a simple
Threshold

We train our deep learning model using traffic data that are labeled
as normal. We compute the ℓ2-norm error between the original
feature X𝑡 and the output feature X̂𝑡 in order to compute the recon-
struction error. The ℓ2-norm error 𝑒 = ∥X𝑡 − X̂𝑡 ∥2 will be low for
normal traffic data, and high for anomalous traffic data. Therefore,
we use a fixed threshold in the reconstruction error for the binary
classification of normal and anomalous traffic data. The threshold
value is used as a decision boundary for detecting anomalous data.
The observations that have a reconstruction error greater than the
threshold will be classified as anomalous, whereas the ones with
reconstruction error less than the threshold as normal traffic data.

We illustrate the efficacy of the proposed approach by reporting
different threshold values and represent their impact on precision,
recall, F-score, and accuracy. Table 3 summarizes the performance
of different threshold values in terms of evaluationmetrics. The best
performance is obtained at a threshold value 0.07. Then the evalua-
tion metrics drop dramatically with the increase in the threshold
value.

Threshold Precision Recall F1-measure Accuracy
0.05 0.652 0.986 0.785 0.664
0.06 0.6919 0.986 0.813 0.718
0.07 0.7111 0.983 0.825 0.741
0.08 0.690 0.847 0.7611 0.669
0.09 0.667 0.760 0.710 0.615
0.1 0.587 0.539 0.562 0.477
0.2 0.584 0.438 0.500 0.456
0.3 0.202 0.065 0.099 0.257

Table 3: Evaluation Metrics with different threshold values.

However, using the reconstruction error as an anomaly threshold
cannot significantly separate the normal and malicious data. The
high degree of similarity in some malicious and legitimate traffic
makes the reconstruction error rates for both traffic are relatively
close to each other i.e. are not linearly separated. To overcome this
gap, we integrate the One-Class SVM algorithm with the LSTM-
Autoencoder to better characterize the network traffic; hence, the
detection rate can significantly improve.

4.4 LSTM-Autoencoder-OC-SVM for Attack
Detection

As mentioned in the previous section, the simple threshold does not
perform well in our experiments. The complexity of attacks in the
employed dataset and the high similarity of some attack traffic with
legitimate one are the main concern to use the simple threshold for
anomaly detection works, especially in SDN environments.

This section analyzes the detection performance of the LSTM-
AE-OC-SVM approach. In this paper, we focus our attention on a
binary classification problem, wherein we classify each observation
as normal and anomalous traffic data. We analyse the precision,
recall, F-score, and accuracy values for all methods considered.
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The results are presented in Table 4. For the OC-SVM model, the
parameters gammas=0.001, nu=0.4 and a Radial Basic Function
(RBF) kernel are choosen for the experiment. Our approach has
the best performance in terms of F-score and accuracy values. The
OC-SVM technique fails to have competitive F-score and accuracy
values.

Algorithm Precision Recall F1-measure Accuracy (%)
OC-SVM 0.89 0.93 0.91 87.5
LSTM-Autoencoder-OC-SVM 0.93 0.93 0.93 90.5

Table 4: The Evaluation Metric Comparison. We report the
precision, recall, F-score and accuracy for the different both
algorithms.

We also check the efficacy of our proposed method in terms of
computational time. The computational time is very important to
evaluate a classifier’s performance, especially with the era of big
data since massive amount of data is needed for the classification
in real-time. The table 5 represents the training and testing times
of the OC-SVM algorithm and hybrid approach. We observe the
consumed time by the OC-SVM algorithm is significantly high
compared to the hybrid approach for both training and testing.

Algorithm Training Time (s) Testing Time (s)
OC-SVM 479.748 38.355
LSTM-Autoencoder-OC-SVM 147.548 13.546

Table 5: The Training and Testing Time for Both Algorithms

4.5 Receiver Operating Characteristic (ROC)
Further, we use the receiver operating characteristic (ROC) curve
for checking the performance of the proposed approach. The ROC
curve represents the relation between false positive and true pos-
itive rates. The area under the curve indicates the efficacy of the
binary classifier. The binary classifier gives perfect measures when
the area under curve (AUC) is near to the 1. In contrast, the model
has the worst measures during AUC near to the 0. The AUC value of
the presented model are shown in Figure 6. We obtained the value
of 0.906, which indicates that our model can successfully separate
90.6% of positive and negative rates.

5 CONCLUSION AND FUTUREWORK
Network data can often be compromised because of malicious at-
tacks initiated by intruders. A good practice to protect against these
attacks is to deploy machine learning based frameworks to detect
anomalies caused during the attacks. In this paper, we highlighted
the existing problems in exiting techniques and proposed solutions
to address them. We proposed a deep learning framework based
on LSTM-autoencoder and OC-SVM that can model the normal
traffic data efficiently. Our experiments shows that our proposed
model can efficiently detect the anomalies presented in network
traffic data. In our future work, we plan to apply the proposed IDS
framework in one or more realistic network settings to evaluate its
performance in real-world scenarios and test its impact with regard
to latency. We also plan to extend the binary classification problem

Figure 6: Receiver Operating Curve (ROC) of our proposed
approach.

into a multi-class classification problem, in order to identify the
type of network attacks.
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