
Compile Much? A Closer Look at the Programming Behavior of
Novices in Different Compilation and Error Message

Presentation Contexts
Ioannis Karvelas

ioannis.karvelas@ucdconnect.ie
University College Dublin

Dublin, Ireland

Joe Dillane
joe.dillane@itcarlow.ie

University College Dublin
Dublin, Ireland

Brett A. Becker
brett.becker@ucd.ie

University College Dublin
Dublin, Ireland

ABSTRACT
Learning to program is a process that relies on learning theoretical
fundamentals as well as practice, and almost always involves some
type of programming environment. In order to build effective envi-
ronments that support good learning for novices, it is important to
explore the interaction between novices and these environments. A
variety of feedback mechanisms are employed by various environ-
ments in use in classrooms today. Some, such as text-based error
messages are common to almost all. Other interaction mechanisms,
such as invoking the compiler, can vary rather drastically.

In this study we investigate the difference between BlueJ 3 and
BlueJ 4, two versions of a pedagogical programming environment
that offer different mechanisms for compilation and error message
presentation. We find evidence that these differences provide users
with fundamentally different programming experiences. Specifi-
cally, we find that programming process data produced by BlueJ 3
users follow a very deterministic distribution compared to BlueJ 4.
Based on this, we present a formula that describes the behaviour of
BlueJ 3 users in terms of compilation and error metrics. Conversely,
we demonstrate that BlueJ 4 allows users to interact more freely in
terms of compilation mechanism as well as how they receive error
messages, and their quantity. Which is more beneficial to novices
however, is an open question.

CCS CONCEPTS
• Social and professional topics → Computing education; K-
12 education; CS1.

KEYWORDS
Blackbox; BlueJ; compiler error messages; CS1; editors; educational
data mining; IDE; novice programmers; programming; program-
ming environments; programming process data; tools
ACM Reference Format:
Ioannis Karvelas, Joe Dillane, and Brett A. Becker. 2020. Compile Much?
A Closer Look at the Programming Behavior of Novices in Different Com-
pilation and Error Message Presentation Contexts. In United Kingdom &
Ireland Computing Education Research conference. (UKICER ’20), September
3–4, 2020, Glasgow, United Kingdom. ACM, New York, NY, USA, 7 pages. 
https://doi.org/10.1145/3416465.3416471

This work is licensed under a Creative Commons Attribution International 4.0 License.
UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8849-8/20/09.
https://doi.org/10.1145/3416465.3416471

1 INTRODUCTION
A central focus of computing education research is the teaching and
learning of a first programming language [3]. It is also common for
educators to claim that “programming is hard” [26, 31]. However,
this has been recently called into question [30]. Regardless, parts
of this claim could be attributed to the tools and techniques used
for teaching programming, rather than the content itself. It was
stated in 1977 that computer programming could be made easier
for novices [29]. We argue that this is still true today, and novices
need to be facilitated with realistic expectations and suitable en-
vironments [25]. Novices in CS1 contexts are usually enrolled in
introductory programming courses that involve teaching funda-
mental concepts and practicing through developing solutions for
exercises using a programming environment.

Some educators encourage students to use a specific program-
ming environment – often (but not always) a pedagogical one.
These are often devoid of distracting and complex features meant
for professionals, should theoretically improve the learning experi-
ence. In cases where students are free to choose the environment
themselves, often industry-grade Integrated Programming Envi-
ronments (IDEs) such as Eclipse, NetBeans and IntelliJ are selected,
as students believe that these will better prepare them for their
careers in industry. Although we agree that familiarisation with
these environments can be beneficial, it is not clear if working with
them at early stages is optimal. The main focus of most introduc-
tory programming courses does not require industry-grade IDEs.
Spending time on learning the intricacies of such IDEs takes time
that could be better utilized focusing on the actual programming
tasks. In addition, the presence of multiple tools and features in
the environment can potentially overload cognitive channels that
could be utilized more constructively [15].

In order to build effective and evidence-based programming
tools, we must first explore the difference in the interaction be-
tween novices and the feedback mechanisms that programming
environments offer from the programmer’s point of view [32, 33].
Although research in the field of Human-Computer Interaction has
established principles for designing user interfaces based on find-
ings on human cognition, many of these principles originate from
experience and sometimes advice from experts and practitioners
in the subject domain [16]. This makes it all the more important
to examine feedback mechanisms individually and thoroughly by
studying their effect on novice programmers.

This study builds on prior work [19–21] that investigates the
effect of exposure to different compilation mechanisms as well as
different error message presentation in the BlueJ [24] pedagogical

59

https://doi.org/10.1145/3416465.3416471
https://doi.org/10.1145/3416465.3416471
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3416465.3416471&domain=pdf&date_stamp=2020-09-03


UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom Ioannis Karvelas, Joe Dillane, and Brett A. Becker

programming environment. The current study further explores the
effects of the fundamentally different feedback mechanisms that
two BlueJ versions (version 3 and version 4) offer to novices.

BlueJ 3 features a standard “click-to-compile” mechanism that
only presents the first error message to users. Users can only eval-
uate their source code if they specifically request it from the en-
vironment by clicking the compile button. BlueJ 4, in addition to
the option of manual compilation, features automatic background
compilation when users perform certain actions, such as changing
to a different line in the source, loading the source code in the
environment, etc. However, only error indicators are displayed in
the corresponding source code areas by default; users have to hover
over the indicators or click the compile button in order to see the
error message(s) which pop up as text boxes next to the offending
code. Pressing the compile button multiple times sequentially cycles
over all the errors present in the source code (round-robin).

We select BlueJ 3 and BlueJ 4 for two primary reasons. First,
amongst the largest changes between the two versions are the
compilation and error message presentation mechanisms. Much of
the other features remain the same. This allows us to reasonably
conclude that behavioral differences that arise are due to these
factors. Second, programming process data from both versions are
automatically captured by the Blackbox data collection project [5].

1.1 Research Questions
In this study, a more detailed look at the distribution of users’ activ-
ity is presented, further supporting previous findings, and provides
insights about the way users interact with each BlueJ version. Fur-
thermore, we present a model for describing the distribution of
BlueJ 3 interaction regarding Displayed Compiler Error Messages
per Hour (DCEMpH), Compilations per Hour (CpH), and Percent-
age of Successful Compiles (PSC), defining a relationship between
them. Following this, possible implications of using each version
are discussed and further investigation is proposed. This work seeks
to answer the following research questions:
RQ1: How do different programming environments affect user

behaviour in terms of interaction with error messages and
compilation mechanisms?

RQ2: Can user behaviour profiles be modelled mathematically (or
otherwise) for different programming environments?

2 RELATEDWORK
Research on tools aimed at assisting novices typically involve the
development of full or prototype environments [11], intelligent
tutoring systems [7–9], new languages [12–14, 23], and combina-
tions of the above. Sometimes evaluation of these tools is based
on empirical evidence, but not always. Recently, it was stated that
evaluation of programming tools should involve a wide breadth
of approaches [10], urging for even more focus on exploring the
effects that different mechanisms have on novices.

2.1 Compilation Mechanisms
Little work has been performed on the effects of different compila-
tion mechanisms on novices. This is surprising given the wide ar-
ray of mechanisms employed by modern environments. Snap! [17],
Scratch [28] and other block-based environments rarely have a

dedicated compilation mechanism, but have “run”, “go” or similar
buttons which in effect compiles then executes code. Environments
for text-based languages range from similar compile-and-execute
buttons as in Visual Studio1 to compile-on-save features as in Net-
beans2. Other environments have separate compile and execute
buttons. Several IDEs, such as Eclipse, incrementally compile as
code is edited3. BlueJ 3 was a manual click-to-compile editor, but
BlueJ 4 introduced incremental compilation (automatic error check-
ing4), while retaining the manual compile button allowing both
automatic and manual compilation mechanisms.

2.2 Error Messages
Work on the effects of error message content and presentation is
more extensive than that for compilation mechanisms. Becker et
al. published an ITiCSE working group report detailing the history
of compiler error message work as well as a set of literature- and
evidence-backed guidelines for error message design [2]. Specific to
the present study is the presentation of Java error messages in BlueJ.
Java messages are notoriously difficult to understand/interpret as
noted by McCall & Kölling as: 1) different logical errors frequently
result in the same diagnostic message, and 2) the same logical error
can – depending on context – produce different messages [27].
It is important to note that although programming process data
such as errors have long been used to predict performance (for
example the error quotient [18] and repeated error density [1]),
such efforts are affected by context and replication studies show
varying results [35].

As stated in Section 1, BlueJ 3 presents only one error message at
a time [34]. This was a design decision that was carried over from
Blue, described in detail in [22]. This has two immediate benefits:
simplicity, and avoiding multiple error messages and issues they
bring (such as cascading and spurious messages) [4]. BlueJ 4 on
the other hand, can present multiple error messages, but not all
at once (thus, still avoiding issues such as cascading and likely
most spurious messages). In BlueJ 4, only error indicators (squiggly
red underlines) are displayed by default in each compilation, and
clicking the compile button (without altering the source) causes
the next message to be displayed, and so on. If the final message is
being displayed and the compile button is clicked again, the first
message is displayed (again), and so on. In addition, hovering over
an error indicator in the source will present a pop-up with an error
message (which is occasionally truncated).

2.3 Comparing BlueJ Versions
In [21], programming activity of users using BlueJ 3 and Blue 4 was
analyzed to identify potential differences in the frequency ofmanual
compilations, error messages as well as percentage of success of
manual compilations. To explore these, three metrics were created
and calculated for each user: Displayed Compiler Error Messages
per Hour (DCEMpH), manual Compilations per Hour (CpH), as well
as Percentage of Successful manual Compilations (PSC). Statistical
tests showed significant differences between the two BlueJ versions.

1docs.microsoft.com/en-us/visualstudio/windows/?view=vs-2017
2netbeans.org/kb/docs/java/quickstart.html#run
3www.codejava.net/ides/eclipse/why-does-eclipse-use-its-own-java-compiler
4 bluej.org/versions.html

60

https://docs.microsoft.com/en-us/visualstudio/windows/?view=vs-2017
https://netbeans.org/kb/docs/java/quickstart.html#run
https://www.codejava.net/ides/eclipse/why-does-eclipse-use-its-own-java-compiler
https://bluej.org/versions.html


Compile Much? A Closer Look at the Programming Behavior of Novices UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom

In particular, in BlueJ 4 users seem to be exposed to more compiler
error messages, and compile manually less frequently – but when
they do, they seem to have higher rates of compilation success.

3 DATA
The data that were used in this study were retrieved from the
Blackbox dataset [6]. Blackbox records programming process data
from BlueJ sessions if users agree to contribute the first time they
launch BlueJ. All programming activity is recorded in the form of
programming events with different labels depending on the event
type. The following sections outline the process of retrieving and
processing the data, step by step.

3.1 User Cohorts
The initial step was to identify all users who used BlueJ 3.x or BlueJ
4.x exclusively. In other words, all users were selected except those
who used both versions. From all the users retrieved, 3500 were
picked randomly from each of the two sets (BlueJ 3 and BlueJ 4).

3.2 Compiler Version
As one of the primary aspects of analysis in this work is compiler
error messages, we restricted the data to events associated with
Java version 8. This is because different Java versions are known
to produce variations in numbers and content of messages [6].
This is in accord with the prior work [21], ensuring consistency in
methodology.

4 METHODOLOGY
4.1 Data Filtering
For consistency with the methodology discussed in [21], the events
were also reduced in post-processing to only include activity be-
tween the 14th of January 2016 and the 24th of May 2019.

4.2 Programming Time
The first information constructed from the programming activity
was howmuch time (in hours) users spend on BlueJ. This is essential
as programming time (H) is used as a component for the metrics
that are examined in this study. However, Blackbox is known to
have missing events for a large number of programming sessions.
This can be caused by disruptions of the Internet connection or
by system interruptions from the user’s end. Thus, to calculate
the programming time of users, the last event recorded in every
session is assumed to be the terminating event for that session
regardless of it being the “true” final event (e.g. a Blackbox end
session event). The difference in each session’s first and final events
were calculated for each user. This is a known Blackbox issue, and
is noted as a potential threat to validity in Section 6.

4.3 Metrics
For every user, the programming time spent on BlueJ was used
to construct the Displayed Compiler Error Messages per Hour
(DCEMpH) and manual Compilations per Hour (CpH) metrics. Per-
centage of Successful manual Compilations (PSC) was also con-
structed (all metrics were calculated based on the methodology
presented in [21]). Briefly, the construction of the metrics involved

counting the numbers of displayed compiler error messages, man-
ual compilations and successful manual compilations and dividing
them appropriately.

4.4 Removing Outliers
As BlueJ is a free and widely used tool, it is expected that substantial
noise will be present in the data. Thus, a significant portion of
the analysis is spent on identifying and removing activity that
seems irregular. First, BlueJ 3 users that exceeded in programming
time the maximum programming time of users in BlueJ 4 were
removed from the data in order to eliminate a handful of users
who had unrealistic amounts of time spent on BlueJ 3 (i.e. tens
of thousands of hours). Additionally, users whose programming
time and DCEMpH exceeded a threshold three standard deviations
above their means were also removed. The thresholds for DCEMpH
and H were distinctly calculated.

5 RESULTS
The final groups after data pre-processing included 727 users in
BlueJ 3 and 536 users in BlueJ 4. We discuss the results presented
here in Section 7.

5.1 RQ1: Distributions
Research question 1 was: How do different programming environ-
ments affect user behaviour in terms of interaction with error messages
and compilation mechanisms?

Displayed Compiler Error Messages per Hour (DCEMpH) are
higher for BlueJ 4. Manual Compilations per Hour (CpH) are higher
in BlueJ 3. The Percentage of Successful manual Compilations (PSC)
is higher in BlueJ 4. Table 1 shows a detailed description of the
distributions including exact values for the above. While there are
notable variations in the data, the differences at most quartiles of
the distributions are consistent with the differences in the means.

Figures 1-3 show the relationship for all three possible pairs of
these metrics.

0 25 50 75 100 125 150 175 200
DCEMpH

0

25

50

75

100

125

150

175

200

Cp
H

DCEMpH=CpH
BlueJ 3
BlueJ 4

Figure 1: Displayed Compiler Error Messages per Hour
(DCEMpH) and manual Compilations per Hour (CpH) for
BlueJ 3 and 4. Each data point represents a user.

In Figure 1, the Cartesian space is bisected by they = x linewhich
represents the lower bound of the relationship between DCEMpH

61



UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom Ioannis Karvelas, Joe Dillane, and Brett A. Becker

Table 1: Descriptive statistics for programming time in Hours (H), Displayed Compiler Error Messages per Hour (DCEMpH),
manual Compilations per Hour (CpH) and Percentage of Successful manual Compilations (PSC) for BlueJ 3 and BlueJ 4.

H DCEMpH CpH PSC
BlueJ 3 BlueJ 4 BlueJ 3 BlueJ 4 BlueJ 3 BlueJ 4 BlueJ 3 BlueJ 4

M 18.604 30.485 10.657 17.102 21.873 11.625 0.515 0.761
SD 53.952 69.172 10.805 23.109 19.204 14.993 0.207 0.205
min 0.033 0.049 0.015 0.003 0.024 0.005 0.027 0.091
25% 0.670 0.908 3.253 2.451 8.367 2.910 0.357 0.626
50% 1.556 3.833 7.056 8.278 17.050 7.165 0.500 0.800
75% 8.008 19.058 14.402 21.601 29.336 15.173 0.668 0.930
max 437.732 488.914 58.752 134.44 136.667 201.948 1.000 1.000

0 20 40 60 80 100 120 140
DCEMpH

0.0

0.2

0.4

0.6

0.8

1.0

PS
C

BlueJ 3
BlueJ 4

Figure 2: Displayed Compiler Error Messages per Hour
(DCEMpH) and Percentage of Successful manual Compila-
tions (PSC) for BlueJ 3 and 4. Each data point represents a
user.

and CpH for BlueJ 3. This is due to the relationship between the
number of compilations and the number of errormessages displayed
- for instance, a BlueJ 3 user can’t see more than one error message
per compilation. There is overlap between BlueJ 3 and BlueJ 4 for
small values of CpH and DCEMpH. However, as values increase, it
can be seen that the two distributions diverge, with BlueJ 4 moving
along the DCEMpH axis, and BlueJ 3 along the CpH axis. The
divergence of the distributions can also be seen in Figure 4, which
we discuss later.

Figure 2 shows that BlueJ 4 users see more compiler error mes-
sages per hour than BlueJ 3. Additionally, a large number of BlueJ
4 users have high percentages of successful manual compilations
(PSC), often 100%. Interesting, as manual compilations are not re-
quired in BlueJ 4. It is possible that students only manually compile
as reassurance that there are no errors, when that appears to be the
case (from a lack of other error indicators).

Figure 3 shows that BlueJ 3 users havemore manual compilations
per hour (as this is their only option), and again that the percentage
of successful compilations is lower as in Figure 2.

5.2 RQ2: Modelling
Research question 2 was: Can user behaviour profiles be modelled
mathematically (or otherwise) for different programming environ-
ments?

In Figures 4a and 4b it is shown that the BlueJ 3 distribution
is localised to a nearly planar surface. We decided to model this
distribution using the bivariate quadratic polynomial (see Eq. 1)
to represent the relationship between the three metrics. Figure 5
shows a visualisation of the polynomial of Eq. 1 (the nearly planar
surface) where x = PSC , y = CpH , z = DCEMpH , and coefficients
a-f are described in Table 2.

z = f (x ,y) = ax2 + by2 + cxy + dx + ey + f (1)

The surface produced by the polynomial (see Figure 5) provides
a robust fit for the data and the equation can be used to describe
the relationship between the three metrics when users program
using BlueJ 3. This relationship seems to be restricted due to con-
ditions imposed by BlueJ 3, such as the fact that users can not see
more compiler error messages than they have compiles. BlueJ 4
interaction seems to be more complex.

6 THREATS TO VALIDITY
Blackbox usage data are anonymous, and without manual inspec-
tion of the source code, it is impossible to know either the nature
of the tasks that users are programming or the level of mastery
required to tackle them. Thus, these data are devoid of contextual
information outside of environmental context. However, since this
study focuses on an abstract level of interaction involving a large

0 50 100 150 200
CpH

0.0

0.2

0.4

0.6

0.8

1.0

PS
C

BlueJ 3
BlueJ 4

Figure 3: Manual Compilations per Hour (CpH) and Percent-
age of Successfulmanual Compilations (PSC) for BlueJ 3 and
4. Each data point represents a user.

62



Compile Much? A Closer Look at the Programming Behavior of Novices UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom

DCEMpH

01020304050607080

CpH

0
20

40
60

80
100

120

PSC

0.0
0.2
0.4
0.6
0.8
1.0

BlueJ 3
BlueJ 4

(a)

DCEMpH

0 10 20304050607080

CpH
020406080100120

PSC

0.0
0.2
0.4
0.6
0.8
1.0

BlueJ 3
BlueJ 4

(b)

DCEMpH

0 10 20 30 40 50 60 70 80

CpH

0
20

40
60

80
100

120

PSC

0.0
0.2
0.4
0.6
0.8
1.0

BlueJ 3
BlueJ 4

(c)

DCEMpH0 10 20 30 4050607080
CpH 020406080100120

PSC

0.0

0.2

0.4

0.6

0.8

1.0

BlueJ 3
BlueJ 4

(d)

Figure 4: Three-dimensional scatter-plots describing Displayed Compiler Error Messages per Hour (DCEMpH), Compilations
per Hour (CpH), and Percentage of Successful manual Compilations (PSC) from different angles. Each data point represents a
user. The nearly planar form of the BlueJ 3 distribution is visible in (a) and (b). This is shown in more detail in Figure 5.

Table 2: Coefficients of Eq. 1.

Coefficient Value 95% confidence interval

a -1.106 (-3.63, 1.418)
b -0.0006824 (-0.0008652, -0.0004997)
c -0.8647 (-0.8944, -0.8349)
d -1.236 (-4.016, 1.545)
e 0.9655 (0.9444, 0.9867)
f 0.7388 (-0.065, 1.543)

number of users, we believe that this is not a significant threat. We
do plan on investigating the role that tasks play in the future.

Additionally, as mentioned in Section 4.2, there is an assump-
tion regarding the actual time that users spend programming in
BlueJ. Disruptions on the client side can cause Blackbox to stop
recording events for a session. Since the present study regards the
last recorded event as a final event of user activity for a session, it
is possible that the retrieved data are incomplete. However, since
we examine both BlueJ versions and the main point of the current
study is a comparison between the two, we can hypothesize that

this issue is factored out as the probability of having an incomplete
session is the same in both versions. Regardless, this is an issue
inherent in Blackbox which affects all studies using these data.

The error message presentation mechanism of BlueJ 4 is not
limited to a maximum of one error message per compilation like
BlueJ 3. However, users have to perform certain actions in order
to see the error messages: either by clicking the compile button
(possibly multiple times) or by hovering over the area of the error
indicator(s). There is also a possibility that users trigger a shown
error message if they click on the offending code to fix it, even if
they didn’t want to, or need to, see the message. In fact, we don’t
know that such messages are read even when they are displayed.
Future work will focus on isolating these instances from the shown
error messages that were triggered on purpose.

7 DISCUSSION
Each of the metrics used in the current study describes an aspect
of the programming process when using an environment (which
are not necessarily limited to, or unique to, BlueJ). Programmers
provide the system with code, the system processes this code, and
produces output in the form of error messages in the case of errors.

63



UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom Ioannis Karvelas, Joe Dillane, and Brett A. Becker

(a) (b)

Figure 5: Displayed Compiler Error Messages per Hour (DCEMpH), manual Compilations per Hour (CpH), and Percentage of
Successful manual Compilations (PSC) from a 3D perspective. The surface represents the fitting of BlueJ 3 using Eq. 1.

Thus, CpH represents the user request for evaluation, DCEMpH
the output of the system, and PSC represents a form of evalua-
tion of this interaction. Note that this evaluation is not necessarily
representative of the user’s effectiveness, but an evaluation of the
interaction between the system and the user. Although, ultimately
the aim is to define a system which maximises the effectiveness of
the user in the smallest amount of time possible (while quality of
learning is the same or better). This study explores users’ actions,
how they are constrained by the system, and aims to make some
hypotheses about this interaction.

We can choose to view the three-dimensional space created by
the three metrics as an enclosure of all the possible combinations
of the metrics that in the end define a reasonable portion of the
spectrum of possible interactions between user and the program-
ming environment. The distributions of the two BlueJ versions are
substantially different based on our findings in Section 5. In BlueJ 4,
users see more error messages (either with intent or inadvertently
as outlined in Section 6), and they do so by compiling manually
less frequently. Additionally, their manual compilations are more
often successful when compared to BlueJ 3 users.

BlueJ 3 interactions regarding manual compilations, their suc-
cess rate, and the frequency of displayed error messages can easily
be modelled as a nearly planar surface, while BlueJ 4 interactions
are more complex and not easily represented by a single polyno-
mial formula. This is mainly due to the fact that BlueJ 3 inherently
restricts the behavior of the user by providing a maximum of one
error message per compilation. This creates a bound for the amount
of information sent by the system to the user. In BlueJ 4 this restric-
tion does not occur, because the system allows users to have more
displayed error messages than compilations.

We do observe many BlueJ 4 users with high numbers of dis-
played error messages, yet some of these also have high percent-
ages of successful manual compilations (that producde no error

messages). It is worth noting again that BlueJ 4 users need not
manually compile. The reasons behind this are currently unknown.
As mentioned in [21], manual compilations in BlueJ 4 could serve
as psychological reassurance. If users don’t see any compiler error
messages, they may want to make sure that their code is syntacti-
cally correct.

The results of this study bring about a general observation and a
corresponding question which we are working towards answering.
The observation is: Given the freedom to explore an interaction
space as they wish, users seem to choose to act in more complex
ways. The question is: Which is more effective, a system that is
more restrictive in terms of possible user actions, or one that allows
more complex interactions?

While these findings provide useful insights for studying novice
programming behaviour, more work is needed to infer any superi-
ority of using one version over the other. Future work will focus on
types of error messages that students are exposed to in each BlueJ
version, as well as exploring the interaction before and after users
manually compile. We will also investigate the resolution time of
errors in each version.

REFERENCES
[1] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for

Novice Programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education (Arequipa, Peru) (ITiCSE ’16).
Association for Computing Machinery, New York, NY, USA, 296–301. https:
//doi.org/10.1145/2899415.2899463

[2] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19).
ACM, New York, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

[3] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal About
Our Expectations of Introductory Programming Students?. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,

64

https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/3344429.3372508


Compile Much? A Closer Look at the Programming Behavior of Novices UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom

USA, 1011–1017. https://doi.org/10.1145/3287324.3287485
[4] Brett A. Becker, CormacMurray, Tianyi Tao, Changheng Song, Robert McCartney,

and Kate Sanders. 2018. Fix the First, Ignore the Rest: Dealing with Multiple
Compiler Error Messages. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE ’18). ACM,
New York, NY, USA, 634–639. https://doi.org/10.1145/3159450.3159453

[5] Neil C. C. Brown, AmjadAltadmri, Sue Sentance, andMichael Kölling. 2018. Black-
box, Five Years On: An Evaluation of a Large-Scale Programming Data Collection
Project. In Proceedings of the 2018 ACM Conference on International Computing
Education Research (Espoo, Finland) (ICER ’18). Association for Computing Ma-
chinery, New York, NY, USA, 196–204. https://doi.org/10.1145/3230977.3230991

[6] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
223–228. https://doi.org/10.1145/2538862.2538924

[7] Elizabeth Carter. 2015. Its Debug: Practical Results. J. Comput. Sci. Coll. 30, 3
(Jan. 2015), 9–15.

[8] Elizabeth Carter and Glenn D Blank. 2013. An Intelligent Tutoring System to
Teach Debugging. In International Conference on Artificial Intelligence in Education.
Springer, Springer, Berlin, Heidelberg, 872–875.

[9] Elizabeth Carter and Glenn D. Blank. 2014. Debugging Tutor: Preliminary Evalu-
ation. J. Comput. Sci. Coll. 29, 3 (Jan. 2014), 58–64.

[10] Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2018.
Interdisciplinary Programming Language Design. In Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Boston, MA, USA) (Onward! 2018). Association for
Computing Machinery, New York, NY, USA, 133–146. https://doi.org/10.1145/
3276954.3276965

[11] Natalie J Coull. 2008. SNOOPIE: Development of a Learning Support Tool for Novice
Programmers Within a Conceptual Framework. Ph.D. Dissertation. University of
St Andrews.

[12] Evan Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. Senior thesis,
Harvard University 30 (2012).

[13] Joe Dillane. 2020. Frame-Based Novice Programming. In Proceedings of the 2020
ACM Conference on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery, New
York, NY, USA, 583–584. https://doi.org/10.1145/3341525.3394007

[14] Linda Farragher and SimonDobson. 2000. Java Decaffeinated: Experiences Building
a Programming Language From Components. Technical Report. Trinity College
Dublin, Department of Computer Science.

[15] Christoph Hannebauer, Marc Hesenius, and Volker Gruhn. 2018. Does Syntax
Highlighting Gelp Programming Novices? Empirical Software Engineering 23, 5
(01 Oct 2018), 2795–2828. https://doi.org/10.1007/s10664-017-9579-0

[16] H. Rex Hartson. 1998. Human–computer Interaction: Interdisciplinary Roots
and Trends. Journal of Systems and Software 43, 2 (1998), 103 – 118. https:
//doi.org/10.1016/S0164-1212(98)10026-2

[17] Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
SNAP! (Build Your Own Blocks) (Abstract Only). In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (Denver, Colorado, USA)
(SIGCSE ’13). Association for Computing Machinery, New York, NY, USA, 759.
https://doi.org/10.1145/2445196.2445507

[18] Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compilation
Behaviour. In Proceedings of the Second International Workshop on Computing
Education Research (Canterbury, United Kingdom) (ICER ’06). Association for
Computing Machinery, New York, NY, USA, 73–84. https://doi.org/10.1145/
1151588.1151600

[19] Ioannis Karvelas. 2019. Investigating Novice Programmers’ Interaction with
Programming Environments. In Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education (Aberdeen, Scotland Uk)
(ITiCSE ’19). Association for Computing Machinery, New York, NY, USA, 336–337.
https://doi.org/10.1145/3304221.3325596

[20] Ioannis Karvelas, Joe Dillane, and Brett A. Becker. 2020. Compiler Error Mes-
sages: Their Content and Accessibility in Novice Programming Environments. In

Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 1310. https://doi.org/10.1145/3328778.3372617

[21] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation
Mechanisms and Error Message Presentation on Novice Programmer Behavior. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 759–765. https://doi.org/10.1145/3328778.3366882

[22] Michael Kölling. 1999. The Design of an Object-oriented Environment and Lan-
guage for Teaching. Ph.D. Dissertation. Basser Department of Computer Science,
University of Sydney.

[23] Michael Kölling, Neil C. C. Brown, Hamza Hamza, and Davin McCall. 2019. Stride
in BlueJ – Computing for All in an Educational IDE. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (Minneapolis, MN,
USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, USA,
63–69. https://doi.org/10.1145/3287324.3287462

[24] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg.
2003. The BlueJ System and its Pedagogy. Computer Science Edu-
cation 13, 4 (2003), 249–268. https://doi.org/10.1076/csed.13.4.249.17496
arXiv:https://doi.org/10.1076/csed.13.4.249.17496

[25] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education
(Arequipa, Peru) (ITiCSE ’16). Association for Computing Machinery, New York,
NY, USA, 284–289. https://doi.org/10.1145/2899415.2899432

[26] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic Liter-
ature Review. In Proceedings Companion of the 23rd Annual ACM Conference on In-
novation and Technology in Computer Science Education (Larnaca, Cyprus) (ITiCSE
’18). ACM, New York, NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[27] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer
Errors. ACM Trans. Comput. Educ. 19, 4, Article 38 (July 2019), 30 pages. https:
//doi.org/10.1145/3335814

[28] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: Programming for All. Commun. ACM 52, 11
(2009), 60–67.

[29] ME Sime, AT Arblaster, and TRG Green. 1977. Structuring the Programmer’s
Task. Journal of Occupational Psychology 50, 3 (1977), 205–216.

[30] Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gon-
salvez, Juho Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. 2019.
Pass Rates in Introductory Programming and in Other STEM Disciplines. In Pro-
ceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19). Association for
Computing Machinery, New York, NY, USA, 53–71. https://doi.org/10.1145/
3344429.3372502

[31] Juha Sorva. 2019. Splashing the Surface of Research: A Study of Koli Abstracts.
In Proceedings of the 19th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’19). Association for Computing
Machinery, New York, NY, USA, Article 26, 2 pages. https://doi.org/10.1145/
3364510.3366148

[32] Andreas Stefik, Bonita Sharif, Brad. A. Myers, and Stefan Hanenberg. 2018. Evi-
dence About Programmers for Programming Language Design (Dagstuhl Seminar
18061). Dagstuhl Reports 8, 2 (2018), 1–25. https://doi.org/10.4230/DagRep.8.2.1

[33] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. https://doi.org/10.1145/2534973

[34] Kelsey Van Haaster and Dianne Hagan. 2004. Teaching and Learning with BlueJ:
an Evaluation of a Pedagogical Tool. Issues in Informing Science & Information
Technology 1 (2004).

[35] Daniel Zingaro, Michelle Craig, Leo Porter, Brett A. Becker, Yingjun Cao, Phill
Conrad, Diana Cukierman, Arto Hellas, Dastyni Loksa, and Neena Thota. 2018.
Achievement Goals in CS1: Replication and Extension. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
687–692. https://doi.org/10.1145/3159450.3159452

65

https://doi.org/10.1145/3287324.3287485
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3276954.3276965
https://doi.org/10.1145/3276954.3276965
https://doi.org/10.1145/3341525.3394007
https://doi.org/10.1007/s10664-017-9579-0
https://doi.org/10.1016/S0164-1212(98)10026-2
https://doi.org/10.1016/S0164-1212(98)10026-2
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/3304221.3325596
https://doi.org/10.1145/3328778.3372617
https://doi.org/10.1145/3328778.3366882
https://doi.org/10.1145/3287324.3287462
https://doi.org/10.1076/csed.13.4.249.17496
https://arxiv.org/abs/https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3335814
https://doi.org/10.1145/3335814
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/3364510.3366148
https://doi.org/10.1145/3364510.3366148
https://doi.org/10.4230/DagRep.8.2.1
https://doi.org/10.1145/2534973
https://doi.org/10.1145/3159450.3159452

	Abstract
	1 Introduction
	1.1 Research Questions

	2 Related Work
	2.1 Compilation Mechanisms
	2.2 Error Messages
	2.3 Comparing BlueJ Versions

	3 Data
	3.1 User Cohorts
	3.2 Compiler Version

	4 Methodology
	4.1 Data Filtering
	4.2 Programming Time
	4.3 Metrics
	4.4 Removing Outliers

	5 Results
	5.1 RQ1: Distributions
	5.2 RQ2: Modelling

	6 Threats to Validity
	7 Discussion
	References

