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Rapidly developing location acquisition technologies provide a powerful tool for understanding and

predicting human mobility in cities, which is very significant for urban planning, traffic regulation, and

emergency management. However, with the existing methodologies, it is still difficult to accurately predict

millions of peoples’ mobility in a large urban area such as Tokyo, Shanghai, and Hong Kong, especially

when collected data used for model training are often limited to a small portion of the total population.

Obviously, human activities in city are closely linked with point-of-interest (POI) information, which can

reflect the semantic meaning of human mobility. This motivates us to fuse human mobility data and city POI

data to improve the prediction performance with limited training data, but current fusion technologies can

hardly handle these two heterogeneous data. Therefore, we propose a unique POI-embedding mechanism,

that aggregates the regional POIs by categories to generate an artificial POI-image for each urban grid and

enriches each trajectory snippet to a four-dimensional tensor in an analogous manner to a short video.

Then, we design a deep learning architecture combining CNN with LSTM to simultaneously capture both

the spatiotemporal and geographical information from the enriched trajectories. Furthermore, transfer

learning is employed to transfer mobility knowledge from one city to another, so that we can fully utilize

other cities’ data to train a stronger model for the target city with only limited data available. Finally, we

achieve satisfactory performance of human mobility prediction at the citywide level using a limited amount

of trajectories as training data, which has been validated over five urban areas of different types and scales.
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1 INTRODUCTION

Understanding and predicting citywide human mobility are considered as important problems for
urban planning, traffic regulation and emergency management. Due to the continuing develop-
ment of location acquisition technologies, massive GPS trajectory data are generated by sources
such as mobile phones, car navigation systems, WLAN networks, and location-based social net-
works, and they provide the opportunity to solve the problem of human mobility prediction. In-
dividual human trajectory prediction has been widely studied in recent years in the field of urban
computing, but it is very difficult to expand such kind of individual modeling methodology to a
citywide level. Since there are millions of people in a big city such as Tokyo, Shanghai, and Hong
Kong, it is just infeasible to build a prediction model for each person by using his/her long histor-
ical data, which can also be an infringement on individual privacy. Moreover, crowd management
under emergency situations is considered as a direct application scenario of human mobility pre-
diction model. For this scenario, comparing with precisely mastering each individual’s location,
knowing and controlling the crowd density for any urban region is the real demand of governments
(e.g., police) or public service operators (e.g., subway/bus companies, mobile service providers).
Thus, in this study, our goal is to build one general model to effectively predict human mobility at
a citywide level. Our problem is then defined as predicting the probability distribution for locations
of a large group of people at the next time step, which can meet the demands on crowd manage-
ment. However, to implement such kind of prediction model, the following challenges need to be
addressed. (1) Citywide human mobility is a highly nonlinear and complex phenomenon with mul-
timodal distribution, and we can hardly achieve satisfactory prediction models for a large urban
area with the classical methods. (2) The human mobility data used for model training can be lim-
ited to a small percentage (e.g., 1%∼10%) of the total population, because it is impossible to collect
every citizen’s trajectory data for a large city. In our case, we have tried our best to collect up to
100,000 peoples’ mobility data of Tokyo area, which is approximately 1% of the total population of
Tokyo. To address these, we aim to design an approach to obtain a more effective representation of
human mobility using heterogeneous data and advanced AI technologies especially the emerging
deep learning technologies.

Obviously, human activities in city are closely linked with point-of-interest (POI) information,
which can reflect the semantic meaning of human mobility [3, 52, 53, 56]. By combining human
mobility data and city POI data, a more effective representation of human mobility can be ex-
pected. Moreover, although cities can have different types, scales, and developmental levels, the
POI distrubtions similar with each other. For example, a business area often has more POIs (e.g.,
offices, shopping malls, and restaurants) and locates at central part of city, while a residential area
comes in an opposite way. Human mobility in different cities generally follow the similar patterns.
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Fig. 1. Can we design an effective approach to build one urban model for predicting human mobility (future
distribution of individuals) at a citywide level with limited data? Fusing heterogeneous data (Human mobility
data and city POI data) with deep learning technologies may allow us to address this challenge.

Taking commuting pattern for example, people move from residential area to central business area
to work and then return to residential district. This provides us the possibilities to transfer human
mobility knowledge between cities via POI information. All these motivate us to fuse human mo-
bility data and city POI data to improve the prediction performance especially when the amount
of training data is small, but current fusion technologies can hardly handle these two heteroge-
neous data. Thus, in this study, we propose a deep sequential modeling architecture with a unique
POI embedding mechanism for effectively predicting human mobility at the citywide level. In this
study, an urban mesh-grid is extended to obtain an artificial POI image by aggregating the regional
POIs by categories, where POI information is utilized as geographical features. Then each trajec-
tory snippet is enriched to a four-dimensional tensor in an analogous manner to a short video. An
LSTM-on-CNN architecture is designed to simultaneously capture both the spatiotemporal and
geographical information from the enriched trajectories, where CNNs are utilized as advanced
embedding layers to replace the standard word-like embedding for each mesh-grid to get better
representations. The new embedding mechanism can work very well with transfer learning to
transfer human mobility knowledge from one city to another, so that other cities’ data can be fully
utilized to train a stronger model for the target city with only limited data available. Finally, our
learning model can achieve satisfactory prediction performance using a limited amount of trajec-
tories as training data. A brief overview of this study has been summarized as Figure 1. To the

best of our knowledge, our approach is the first attempt to fuse big heterogeneous data to enhance the

performance of citywide human mobility prediction, and our main contributions can be summarized

as follows:

• We constructed a standard deep sequence learning model for accurately predicting a prob-
ability distribution of human mobility at the citywide level.

• We proposed a novel sequential embedding method called image-like embedding that uses
city POI data to enrich the original human mobility data with geographical features, where
we applied CNNs to the standard model to obtain more effective representations.
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• Transfer learning was employed to work together with image-like embedding mechanism.
Through this, we can transfer mobility knowledge from source city to target city via POI
information, if the source city has relatively sufficient mobility data and the target city only
have limited data.

• We evaluated our approach based on multiple urban areas using different amounts of train-
ing data and demonstrated the advantages of our method compared with other baseline
approaches.

The remainder of this article is organized as follows. In Section 2, we introduce our data sources.
In Section 3, we illustrate the modeling of citywide human mobility using a deep learning architec-
ture. In Section 4, we explain the details of image-like embedding and transfer learning. We present
the results of the experimental evaluation in Section 5, and discuss the results in Section 6. Related
works are summarized in Section 7. In Section 8, we give our conclusions and future works.

2 DATA SOURCE

2.1 Human Mobility Data

“Konzatsu-Tokei (R)” from ZENRIN DataCom Co., Ltd. was used. It refers to people flow data
collected by individual location data sent from mobile phones with an enabled AUTO-GPS function
under the users’ consent, through the “docomo map navi” service provided by NTT DoCoMo, Inc.
Those data are processed collectively and statistically to conceal private information. The original
location data is GPS data (latitude, longitude) sent at a minimum period of about 5 minutes, and
does not include information (such as gender or age) to specify individuals. In this study, the
proposed methodology is applied to raw GPS data from NTT DoCoMo, Inc.

The raw GPS log dataset was collected anonymously from approximately 1.6 million mobile
phone users in Japan over a three-year period (August 1, 2010, to July 31, 2013). It contains ap-
proximately 30 billion GPS records, and the total size of the data is more than 1.5 terabytes. Each
record contains user ID, latitude, longitude, altitude, timestamp and positioning accuracy level
(there are three levels due to different satellite’s signal strength, correspondingly the positioning
error would be within 100 m, 200 m, or 300 m).

2.2 City POI Data

In this study, we collected big POI data for every major city in Japan as geographical data by uti-
lizing “Telepoint Pack DB February 2014” provided by ZENRIN DataCom Co., Ltd.1 In the original
database, each record is a registered land-line telephone number with coordinates (latitude, lon-
gitude) and industry category information included. We treated each “telepoint” as one specific
POI. All the POIs were classified into 40 categories as listed in Table 1. The total numbers of POIs
for Tokyo, Osaka, Fukuoka, Sapporo and Tottori were 281,400, 153,377, 47,418, 73,635, and 17,743,
respectively, which were used as the five target cities in our experiments. Furthermore, we used
R-tree to index all of the POIs to speed up the range queries. Given an urban mesh, POIs can be
retrieved for each mesh-grid by iteratively executing range query.

3 CITYWIDE HUMAN MOBILITY MODELING

3.1 Preliminaries

Definition 1 (Human Trajectory). The human trajectory collected for an individual person essen-
tially comprises a 3-tuple sequence: (timestamp, latitude , lonдitude), which can indicate a person’s

1https://joras.csis.u-tokyo.ac.jp/dataset/show/id/14000201400.
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Table 1. POI Category Table

Fishery, Agriculture Mining Construction
Foods Textiles, Apparels Pulp, Paper
Chemicals Oil, Coal Products Rubber Products
Ceramics, Glass Steel Nonferrous Metals
Metal Products Machinery Electric Appliances
Transportation Equipment Precision Instruments Other Products
Commerce Financial Insurance Real Estate
Transportation(land) Transportation(sea) Transportation(air)
Warehousing Communication Electric Power, Gas
Technician Related Sports Facilities Sports Shop
Entertainment, Restaurant Resort Hospital
Large Retail Store Lifestyle Related Store Car Related
Education Public Organization Other
Dummy

location according to a captured timestamp. It can be further denoted as a sequence of (t , l )-pair
by simplifying timestamp as t and (latitude , lonдitude) as l .

Our raw human trajectories were collected with a minimum sampling rate of about 5 minutes,
but the record interval exceeds 5 minutes occasionally due to loss of signal or battery power.
Besides, the positioning function would be suspended when no motion is detected, in this case no
records will be uploaded. Thus, we fully conducted pre-processing to our raw human trajectory
dataset in the following step: (1) Conducting data clearning and noise reduction to filter out low-
quality trajectories or points. (2) Detecting stay points and conducting trajectory segmentation
according to the stay points. After this, redundant points (continuous points located in the same
position) will be filtered out. (3) Merge the trajectory segmentations of the same person within
24-hour (00:00∼23:59) time interval as one human trajectory. Usually trajectory is mapped onto a
mesh-grid or transportation network so that the trajectories can be handled as normal sequential
data. To cover the entire urban area, we used grid-mapping to simplify the human trajectory as
defined in the following.

Definition 2 (Grid-mapped Human Trajectory). Given a set of mesh-grids for an urban area
{д1,д2, . . . ,дK } and a raw trajectory {(t1, l1), (t2, l2), . . . , (tm , lm )}, a grid-mapped human trajectory
traj is defined as a sequence of mesh-grids:

traj = (t1,д1), (t1,д2), . . . , (tm ,дm ),∀i, li ∈ дi . (1)

A trajectory database TDB refers to a set of grid-mapped trajectories from a certain urban area.
In this study, we would like to focus on exploiting how to effectively predict the distribution of

the next step location only based on previous locations from a spatial perspective, therefore only
sequential information on the spatial axis were utilized. Then, we can treat the raw trajectories
as pure sequential data constituted by mesh-grids, and design an effective embedding mechanism
for modeling the grid-mapped trajectories, which is the core problem of this study. Trajectory
database TDB can be taken as a big corpus like a typical text database in the filed of natural
language processing (NLP). Human mobility prediction problem is defined in an analogous manner
to word/text modeling in the following.

Definition 3 (Citywide Human Mobility). Given a trajectory database TDB, we treat it as a big
text corpus to generate partial trajectories. Specifically, when observation step α is given, for each
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Fig. 2. Citywide Human Mobility Prediction.

length-m traj (m > α ), we can obtain (m-α ) length-α trajectory snippets and their corresponding
next-step trajectory snippets by setting the size of sliding window to 1. The length-α trajectory
snippet is denoted as x = д1,д2, . . . ,дα , whereas the corresponding next-step trajectory snippet is
represented as y = дα+1. Then, the observed human mobility prediction X , and the next step of
citywide human mobility Y can be represented as follows:

X = {x1,x2, . . . ,xN },Y = {y1,y2, . . . ,yN }, (2)

where N denotes for the number of samples, i.e., the number of people whose mobility data are
available for model training.

Definition 4 (Citywide Human Mobility Prediction). Given all the human mobility data X with α
steps of observations generated from TDB, citywide human mobility prediction for the next step

basically involves obtaining a predicted probability distribution P (̂Y | X ), which should be as close
as possible to the true probability distribution Q (Y | X ). Therefore, our goal is to obtain a model
with the parameters θ that satisfies

θ = argmin
θ

H (P (̂Y | X ),Q (Y | X )), (3)

where Y denotes the ground-truth for the next-step mobility distribution, ̂Y denotes the predicted
results, andH (·) represents the cross-entropy function, which is widely used to measure the diver-
gence between two probability distributions. The lower the cross-entropy is, the two probability
distributions have higher similarity. Thus, it is used as the loss function as well as the primary
evaluation metric in our supervised learning models.

It should be noted that for one person’s mobility prediction, we are concerned only about
whether the model can precisely predict the next location with the highest probability. However,
a large crowd of people can share the same observed trajectories (e.g., commuters taking the same
train) but they may go to different places after some time. Thus, for citywide human mobility pre-
diction, our model should precisely predict the overall probability distribution of the next possible
destinations. Furthermore, one trajectory snippet x is essentially representing one pattern of urban
human mobility within α observation steps, since the same mobiliy д1,д2, . . . ,дα can be observed
from a group of different people at different time peoriods. For instance, as shown in Figure 2,
we assume that 1,000 people on the same train have the same observed mobility, which is repre-
sented by a series of blue marks. We should precisely predict that around 600 people will go to
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Takadanobaba Station, 200 people to Shinjuku Station, and 100 people to Ikebukuro Station by ob-
taining the precise probability distribution (0.6, 0.2, and 0.1, respectively). With such model being
deployed as an online service, we can precisely predict and simulate how many person will enter
a certain region in real time, which can play an important role in controlling the crowd density
for a city especially when some irregular events happen.

The trained model can generate or predict multiple steps of human mobility in an autoregressive
manner. Multiple steps of mobility can be generated one step by one step according to the proba-
bility distribution in a similar way to a text generator. For example, given the first word “how”, the
second word can be generated as “are,” then the third can be “you.” If the second was generated
as “old,” then the next two words could be “are you” with higher probability. Moreover, if one
step corresponds to 5 minutes time interval, generating next six steps of human mobility means
that we can get a next-30-minutes mobility prediction. For instance, our model can take all of the
six-step observations from 07:35∼08:00 as inputs and report the prediction result for 08:05∼08:30
at 08:00. This can help us understand how the crowd dynamics are evolving step by step under a
crowd management application scenario.

3.2 Deep Sequential Modeling Architecture

Citywide human mobility prediction is essentially defined to predict a probability distribution as
shown by Definition 4. Since citywide human mobility data comprise highly complex and non-
linear sequential data, the overall probability distribution at next step is essentially a multimodal
probability distribution, which is difficult to precisely predict using classical methods. Deep learn-
ing techniques such as long short-term memory (LSTM)-recurrent neural networks (RNNs) and
gated recurrent unit (GRU)-RNNs [6, 20] are two improved RNNs that are highly successful at
modeling highly complex sequential data such as text data and speech data. Specifically, they in-
herit the basic structure of the RNN but special computation blocks are introduced, i.e., LSTM
and GRU, respectively, to replace the ordinary neurons in an RNN. These two architectures obtain
similar performance in many deep learning tasks [8]. Hence, in this study, we used LSTM-RNN to
implement a deep sequential model to predict the complex probability distribution using a limited
amount of training data.

Word-like Embedding for Grid. Word embedding is a state-of-the-art technique for many
NLP tasks, where it is used to convert non-negative integers (i.e., word IDs) to a set of fixed-length
dense and continuous-valued vectors. It has shown to boost the performance in NLP tasks
such as syntactic parsing [45] and sentiment analysis [46]. One-hot embedding is the most naive
embedding technique to map non-negative integers to vectors. However, the dimensionality of the
vectors with one-hot embedding is equal to the size of the supported vocabulary, and these vectors
are very huge and sparse. Therefore, word embedding is employed in most natural language ap-
plication scenarios to create a more efficient vector representation for each word. It has two huge
advantages over one-hot embedding: (1) the representation vector is low-dimensional, far lower
than the total size of vocabulary; and (2) the contextual similarity of words can be better captured,
which means that if two words have similar semantic meanings, the two embedding vectors have
high similarity. In our study, the model runs on grid-mapped trajectory data, it is natural to treat
the entire urban mesh as the total vocabulary and each mesh-grid as a word. Each mesh-grid has
a unique grid ID in the same way as word ID, which is called word-like embedding for grid. Note
that comparing with a typical natural language model, it is more indispensable for our citywide
human mobility prediction model to employ the state-of-the-art word-like embedding technique.
Because the total number of mesh-grids for a big urban area can be larger than the total number
of words in one language. Taking Tokyo area as an example, it is meshed with 6,400 500 m×
500 m mesh-grids in our study, whereas there are just 2,500 to 3,000 most common words in
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Fig. 3. Deep Sequential Modeling Architecture (Word-like Embedding).

English. Thus, we utilize word-like embedding instead of naive one-hot embedding as the basic
technique to construct the mobility prediction model.

The RNN-based deep learning architecture with word-like embedding is constructed as shown
in Figure 3, which operated according to the following steps: (1) the first layer is an embedding
layer that changes an integer of grid id into a vector of continuous values by using an K ×M
embedding matrix, whereM is the embedding dimension andK is the number of mesh-grid; (2) the
second layer is an encoding layer constructed by the LSTM-RNN, where the tanh function is used
to map the α steps of the embedded mobility (e1, e2, . . . , eα ) into a single latent vector sα , which
can be taken as the auto-extracted features for the entire sequence; details about the calculation for
LSTM are listed below; and (3) the third layer is an activation layer where the So f tmax function
is used to convert the latent vector sα into a probability distribution over K different mesh-grids
{д1,д2, . . . ,дK }. This architecture can be easily applied to different urban areas by modifying the
embedding layer and the activation layer with the new mesh-grid number.

LSTM-RNN. An LSTM has three gates comprising an input gate i , an output gate o, and a forget
gate f . Hidden state sα in an LSTM is calculated iteratively from 1 to α for an input embedded
mobility (e1, e2, . . . , eα ) as follows:

iα = σ (Wieα +Uisα−1 + bi ), (4)

fα = σ (Wf eα +Uf sα−1 + bf ), (5)

oα = σ (Woeα +Uosα−1 + bo ), (6)

C̃α = tanh(Wceα +Ucsα−1 + bc ), (7)

Cα = iα � C̃α + fα � Cα−1, (8)

sα = oα � tanh(Cα ), (9)

where W and U are weight matrices, b is a bias vector, and � represents elementwise multipli-
cation. All of the model parameters are determined by applying the standard “backpropagation
through time” algorithm, which starts by unfolding the RNN through time and it then general-
izes the backpropagation for feed-forward networks to minimize the loss function, namely, cross-
entropy, as defined in Equation (3).
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4 EMBEDDING AND TRANSFERRING

A standard deep learning model is proposed for modeling the mobility data described in the previ-
ous section, which shares most of the same techniques employed by the RNN-based deep natural
language model. However, in addition to spatio-temporal information, human mobility in an urban
area can also highly rely on geographical information, which can reflect the semantic meaning of
human behavior. Thus, we consider to fuse human mobility data and city POI data to obtain a more
powerful representation for mobility prediction. A novel embedding mechanism called image-like
embedding with POI for grid is proposed to replace the naive word-like embedding for grid in the
following.

4.1 Image-like Embedding with POI

Definition 5 (Grid POI). Given a set of mesh-grids for an urban area and a set of POIs with σ
categories, the POIs inside each mesh-grid д can be aggregated by category into a σ -dimension
frequency vector as follows:

д.POI = ( f1, f2, . . . , fσ ),∀i ∈ [1,σ ],

fi = |{poi | poi .coordinate ∈ д ∧ poi .cateдory = i}|, (10)

where f represents the aggregated frequency based on each POI category. Each f is further scaled
into [0,1].

Definition 6 (Grid Region). Given an η × η window and a mesh-grid д, we can obtain an η × η
region r as follows:

r =
{
д′ | |д′.ix − д.ix | ≤ η − 1

2
∧ |д′.iy − д.iy | ≤ η − 1

2

}
, (11)

where ix and iy denote the mesh-grid coordinates in the entire urban mesh. To makeд the centroid,
η is always set as odd in our method.

Definition 7 (POI Image). According to these definitions, each region can be treated as an image
where each mesh-grid inside the region can be seen as a pixel. The category number σ corresponds
to the σ channels. Therefore, a mesh-grid д can be extended to obtain an artificial POI image ρ
represented by an η × η × σ tensor. To this end, the model input has been extended from mesh-grid
sequence {д1,д2, . . . ,дα } to poi-image sequence {ρ1, ρ2, . . . , ρα }.

This embedding mechanism has two advantages for mobility modeling: (1) geographical infor-
mation is considered because of the POI information, and (2) in addition to the mesh-grid itself, the
regional information around the mesh-grid is also taken into consideration by utilizing an η × η
window. To effectively handle such kind of POI image, we use the-state-of-the-art convolutional
neural network (CNN) to extract higher-level feature representation as the embedding vector.

CNN. Compared with traditional neural networks, CNNs were designed specifically for analyz-
ing visual imagery [27], where the neurons in a layer are only connected to a small region of the
previous layer instead of all of the neurons in a fully-connected manner. To hierarchically capture
the spatial structural information from a POI image, convolutional layers and pooling layers are
employed in our deep sequential learning architecture as an advanced embedding component. The

convolutional feature f (conv )
i, j at pixel (i, j ) is calculated as

f (conv )
i, j = ReLU (w · pxi, j + b), (12)

wherew and b are the weight and bias matrix, and pxi, j is the input image patch centered at pixel
(i, j ). Kernel size (i.e., the size of the input image patch) needs to be specified for the convolutional
operation. In our study, kernel size is set to 3 × 3, which is widely used in many state-of-the-art
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computer vision models. ReLU is used as the activation function. The pooling feature f
(pool )

i, j is

calculated using the max-pooling operation:

f
(pool )

i, j = MaxPoolinд
(
f (conv )
m,n

)
,∀(m,n) ∈ Ri j , (13)

whereRi j is the local neighborhood around pixel (i, j ). By stacking several convolutional and pool-
ing layers (2 conv layers→ 1 pool layer→ 2 conv layers→ 1 pool layer), we can gradually extract
higher-level feature representations for a large grid region, because one convolution can only cap-
ture nearby spatial dependencies. The input POI image around the mesh-grid of Tokyo Station and
the features extracted by the CNNs step by step are visualized in the first row of Figure 4. Similarly,
the processing paths for the POI images of Shinjuku Station and Shinagawa Station are displayed
in the second/third row of Figure 4, respectively. To better illustrate how image-like embedding is
performed, the flowchart has been drawn as Figure 5 by taking a grid-mapped human trajectory
(Tokyo Station→ Shinjuku Station→ Shinagawa Station) as an example.

Originally, grid-mapped human trajectory is represented as a α × 1 vector, i.e., {д1,д2, . . . ,дα }.
Now, with image-like embedding, an input human trajectory can be represented as an α × η ×
η × σ tensor, which can be considered as an artificial video made from an α-frame η × η × σ POI
image, i.e., {ρ1, ρ2, . . . , ρα }. By replacing naive word-like embedding with CNN-based image-like
embedding, our deep sequential learning architecture essentially becomes a deep video model
as shown in Figure 6, which takes a four-dimensional shape tensor as the input. The hierarchi-
cal geographical features inside a region are extracted by stacked CNNs and fed into an LSTM
layer for sequential prediction. The LSTM is stacked on CNNs (denoted as LSTM-on-CNNs) in
combination to exploit both the geographical and sequential information related to citywide hu-
man mobility. It should be noted that we set the same CNN layers to be shared across each slice
of the total α frames, where this sharing mechanism has several advantages, such as reducing
the model complexity and making the network easier to train. The overall networks can still be
trained using the standard backpropagation algorithm. Finally, the use of multiple stacked layers
of RNNs can also be considered to boost the performance in difficult time-series modeling tasks
according to Reference [18]. LSTM-on-CNNs architecture has been proposed in the filed of com-
puter vision for visual recognition and description [11]. However, in our approach, CNNs and
LSTM are utilized as embedding component and encoding component separately for the human
mobility modeling problem. In particular, a series of CNNs are utilized to replace the standard em-
bedding matrix to generate more powerful embedding vectors for each step of the input human
mobility.

4.2 Transfer Learning via POI Embedding

Transfer learning is a powerful tool that helps deep learning models to achieve better performance
[40]. Citywide human mobility predictions for different cities are highly related tasks, which moti-
vated us to transfer the mobility knowledge learned from one city to improve the learning process
for another city. In particular, a mobility prediction model is unlikely to achieve satisfactory per-
formance if sufficient trajectory data are not collected from one urban area. However, if sufficient
human mobility data exist for another or more urban areas, we can exploit these large amounts of
data from other areas by using transfer learning to boost the performance for the target area.

Image-like embedding with POI is assumed to have good natural compatibility with transfer
learning between different cities, because: (1) the POI distributions share some common properties
between different cities, e.g., a central area often contains more POIs, including shopping malls and
offices; and (2) human mobility in different cities generally follow similar patterns and comprise
similar semantic meanings. Taking commuting pattern for example, people move from residential
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Fig. 4. Visualization of the extracted features by embedding CNNs for a 15 × 15 POI image with the grid
containing [Tokyo Station (1st row), Shinjuku Station (2nd row), Shinagawa Station (3rd row)] as its centroid.
The feature maps for each layer along the processing path are displayed in a block, where each channel or
filter is plotted as a small subfigure (40 channels, 32 filters, and 64 filters are listed with sizes of 10 × 4, 8 ×
4, and 8 × 8, respectively).

area to central business area to work and then return to residential district. All these provide us the
possibilities to transfer human mobility knowledge between cities via POI information. Moreover,
the embedding matrix used for word-like embedding must be modified for each city according to
the mesh-grid number of that city, which hinders transfer learning. Assuming that we have two
cities A,B meshed with KA and KB mesh-grids, respectively (KA < KB ), it is difficult to directly
transfer the knowledge in A-model to city B, because the integers in [KA,KB ) will not be well
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Fig. 5. Flowchart of image-like embedding using a grid-mapped human trajectory д1 (Tokyo Station)→ д2

(Shinjuku Station)→ д3 (Shinagawa Station) as an example. For each mesh-grid in the given trajectory, first
a region with the mesh-grid as its centroid will be obtained according to Definition 6, then the POIs inside
the region will be extracted to generate the POI image according to Definition 7. Through a series of CNNs,
the extracted final features from the POI image can be seen as the embedding result.

Fig. 6. Deep Sequential Modeling Architecture (Image-like Embedding).

trained or embedded due to the lack of corresponding training data in A.2 Meanwhile, the CNN
architectures for image-like embedding can remain the same for different cities. These advantages

2The index for mesh-grid starts from 0 in this study.
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of image-like embedding over word-like embedding will be further validated and discussed in
Section 6.

We tested two different transfer methods for our problem: (1) freezing the LSTM-on-CNNs
trained from the source city and training a completely new So f tmax activation layer with the data
from target city; (2) using the LSTM-on-CNNs as a pre-trained model, connecting it with a new
So f tmax activation layer, and training the overall networks again with the data from target city.
Experiments showed that the latter obtained better performance, when limiting the training data
of target city to 1%, 5%, and 10% of the total. Note that the transfer learning technique employed
here is essentially “few-shot learning” [42], namely, to build the prediction model with few training
samples. The few-shot setting originates from the motivation mentioned in Section 1, that is the
data limitation issue for training human mobility prediction model in a real-world application sce-
nario. For different cities, we may collect the GPS trajectories from different data sources, such as
taxi GPS data collected from car-hailing platform (DiDi Chuxing or Uber), bike GPS data collected
from bicycle-sharing system (Mobike, Ofo, Jump), mobile phone GPS data collected from telecom
operators (NTT DoCoMo, AU, Softbank in Japan or China Telecom and China Unicom), and geo-
tagged GPS data collected from location-based social networks (Twitter, Facebook, Foursquare).
Even for one data source, due to the user privacy issue, companies may only provide sample data
for research purposes. Thus, each data source could only cover a small portion of the total pop-
ulation of a city. For example, in our study, the data we collected through NTT DoCoMo could
cover just approximately 1% of the total population. Last, considering that our goal is to build a
prediction model based on the observed human mobility, we have to input the partial trajectories
anyway for a new city, so “zero-shot learning” may not be an appropriate setting for a mobility
prediction task like ours.

5 EXPERIMENT

Experimental Setup: We randomly selected two consecutive weeks as our experimental pe-
riod and conducted evaluations in five cities of Japan. As we all know, Japan is a stratovolcanic
archipelago consisting of about 6,852 islands. The main islands, from north to south, are Hokkaido,
Honshu, Shikoku and Kyushu. The Ryukyu Islands, which include Okinawa, are a chain to the
south of Kyushu.3 Tokyo and Osaka, as the two biggest cities of Japan, were chosen as the repre-
sentatives of Honshu. Fukuoka and Sapporo were included as the representatives of Kyushu and
Hokkaido, respectively. By utilizing these four cities, we would like to verify our proposed frame-
work could be effective among multiple isolated areas. Additionally, Tottori City was selected to
verify the effectiveness of our framework in rural areas from Tottori Prefecture of Honshu, which
is the least populous prefecture in Japan.4 More geographical details about these five areas are
summarized as Table 2. Python and some Python libraries such as Keras [7] and TensorFlow [1]
were used in this study. The experiments were performed on a GPU server with a GeForce GTX
1080Ti graphics card installed.

Parameter Settings: We treated the 24-hour (00:00∼23:59) GPS log of each individual person as
one trajectory, and after pre-processing (e.g., data cleaning, noise reduction, etc.). 33,261, 22,182,
26,425, 24,727, and 7,268 trajectories were generated for Tokyo, Osaka, Fukuoka, Sapporo, and
Tottori, respectively, where the average trajectory lengths (number of points) were approximately
85.0, 76.5, 69.3, 67.7, and 58.2. We set the observation step α as five to obtain length-5 trajectory
snippets as inputs and their corresponding next locations as outputs. Total number of generated
snippet samples for each city was summarized and listed in Table 3. We randomly selected 60% of

3https://en.wikipedia.org/wiki/Japan.
4https://en.wikipedia.org/wiki/Tottori_Prefecture.
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Table 2. Geographic Details of Experimental Cities

City Geographic Interval No. of Grids
Tokyo Lonд. ∈ [139.50, 139.90], Lat . ∈ [35.50, 35.82] 6,400
Osaka Lonд. ∈ [135.35, 135.65], Lat . ∈ [34.58, 34.82] 3,600
Fukuoka Lonд. ∈ [130.20, 130.50], Lat . ∈ [33.46, 33.70] 3,600
Sapporo Lonд. ∈ [141.22, 141.47], Lat . ∈ [43.00, 43.16] 2,000
Tottori Lonд. ∈ [134.12, 134.32], Lat . ∈ [35.44, 35.56] 1,200

Table 3. Data Information of Experimental Cities

City No. of Trajectory Average Trajectory Length No. of Samples (x-y pair)
Tokyo 33,261 85.0 2,658,077
Osaka 22,182 76.5 1,584,579
Fukuoka 26,425 69.3 1,697,885
Sapporo 24,727 67.7 1,545,297
Tottori 7,268 58.2 386,751

the data as the training dataset, 20% of the data as the validation dataset, and the remaining 20%
as the testing dataset for every city. The mesh size was set to ΔLonд.=0.005, ΔLat .=0.004 (approx-
imately 450 m × 450 m) for each city. Finally, 6,400, 3,600, and 3,600 mesh-grids were generated
for the Tokyo area, Osaka area, and Fukuoka area. 2,000 and 1,200 mesh-grids were generated for
the Sapporo area and Tottori area. So the Softmax activation layer output the probability distri-
bution over the corresponding number of mesh-grids for each city. The RMSprop algorithm was
employed to control the overall training process, where the batch size was set to 1,024 and the
learning rate to 0.001. The training algorithm was stopped early if the loss stopped decreasing
based on the validation dataset for five consecutive epochs. All of the learning settings were kept
the same for each model and each city.

Baseline models: We considered the following models as baseline models for comparison.

(1) N-Gram. N-Gram is a widely used algorithm for modeling sequential data, especially for
text and speech data. Tri-Gram was found to be the most appropriate for our problem.

(2) KNN. A KNN-based learning model [9] is a type of instance-based learning where classi-
fication is computed from a simple majority vote of the nearest neighbors of each point.

(3) DecisionTree. A decision tree [41] is built to predict the target value by learning simple
decision rules.

(4) RandomForest. A random forest [32] is constructed with a multitude of decision trees to
gain better performance. For (2)∼(4), these classical methodologies are extended to output
the probability distribution over mesh-grids. One-hot encoding was utilized to encode the
K mesh-grids for each city, then the grid-mapped trajectories with α steps were converted
to α × K-dimension vectors as the final input features.

(5) Grid-POI Vector. This model only considered the POIs inside each grid. According to Def-

inition 5, we could count the frequencies of each POI category and get a 40-dimension
POI vector for each grid. Each trajectory snippet was then represented by a sequence of
40-dimensional POI vectors. The vectors were scaled into [0,1]. To handle these POI-vector
sequences as inputs, an LSTM-RNN layer with 256 hidden units was utilized as the embed-
ding layer. An additional LSTM-RNN layer with 256 hidden units followed as the encoding
layer.
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Table 4. Parameter Description Table

Parameter Relevant Component Tuned Value
ΔLonд. ΔLat . Mesh Size ΔLonд.=0.005, ΔLat .=0.004
α Observation Step 5
σ POI Categories 40
η Window Size of Grid Region 15
Embedding Dimension Word-like & Image-like Embedding 256
Encoding Dimension LSTM-RNN Encoding 256
Output Dimension (K ) Softmax Activation Tokyo:6,400 (etc. in Table 2)
Learning Rate RMSprop Optimizer 0.001
Batch Size Training Process 1024

(6) Grid-POI Vector+Transfer. This model applied transfer learning to “Grid-POI Vector”
model mentioned above. The embedding layer (1st LSTM-RNN layer) was pre-trained with
sufficient data from other urban area. Then the model was continuously trained with the
limited data from the target area. The other settings on transfer learning were kept the
same as “Word-like Embedding+Transfer” (8).

(7) Word-like Embedding. This is the deep learning model shown in Figure 3 with a typical
word-like embedding. An embedding layer, which is essentially an embedding matrix,
embedded each grid id into a continuous 256-dimensional vector space. The subsequent
LSTM-RNN layer shown in Figure 3 also contained 256 hidden units.

(8) Word-like Embedding+Transfer. This model applied transfer learning to “Word-like Em-
bedding” model mentioned above. We assumed that a limited amount of data could be
retrieved from one urban area, whereas a large amount of data could be obtained from
another urban area. The embedding layer and the encoding layer in model (7) were pre-
trained with the sufficient data from other urban area and they were then continuously
trained with the limited data from the target area. Specifically, “TransferO” denotes per-
forming transfer learning based on Osaka model, which is pre-trained with the whole
training dataset of the Osaka area (60% of all). And “TransferT” denotes performing trans-
fer learning based on Tokyo model, which is pre-trained using the whole training data
of the Tokyo area (60% of all). The network settings were kept the same as those in
model (7).

(9) Image-like Embedding. This is our proposed image-like embedding model without trans-
fer learning. We set the window size to 15 and each trajectory snippet was expanded to
a video where each frame comprised a 15 × 15 POI image. A six-layer CNN was utilized
in this model, where the first two convolutional layers used 32 filters of 3 × 3 and the
third layer was a 2 × 2 max-pooling layer. The subsequent two convolutional layers used
64 filters of 3 × 3 and the sixth layer was a 2 × 2 max-pooling layer. Using these settings,
each mesh-grid could be embedded into a 256-dimensional vector and an LSTM-RNN layer
with 256 hidden units followed in the same manner.

Our proposed model is denoted as Image-like Embedding+Transfer. “TransferO” and
“TransferT” follows the same meaning as mentioned above. The network settings were kept the
same as those in method (9). The embedding layer and the encoding layer were pre-trained with
the same transfer learning settings mentioned in (8). All the parameter settings of the experiments
are summarized as Table 4.
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Table 5. Performance Evaluation of Citywide Human Mobility Prediction for Tokyo

Model (Tokyo) 1% data 5% data 10% data 50% data
N-Gram 7.06 4.43 3.42 1.91

KNN 7.07 3.54 2.81 1.95
DecisionTree 7.28 4.11 3.02 1.74
RandomForest 5.07 2.68 2.37 1.77

Grid-POI Vector 5.86 3.13 2.57 1.88
Grid-POI Vector + TransferO 4.43 2.72 2.33 1.82

Word-like Embedding 4.52 2.21 1.73 1.23

Image-like Embedding 3.10 1.73 1.53 1.25
Word-like Embedding + TransferO 4.27 2.18 1.75 1.28

Image-like Embedding + TransferO 2.75 1.65 1.51 1.28

Table 6. Performance Evaluation of Citywide Human Mobility Prediction for Osaka

Model (Osaka) 1% data 5% data 10% data 50% data
N-Gram 7.07 4.51 3.52 1.97

KNN 7.19 3.61 2.87 2.03
DecisionTree 7.19 4.06 2.96 1.73
RandomForest 4.90 2.60 2.30 1.75

Grid-POI Vector 5.76 2.90 2.31 1.69
Grid-POI Vector + TransferT 4.22 2.48 2.12 1.64

Word-like Embedding 4.49 2.08 1.63 1.19

Word-like Embedding + TransferT 3.96 2.03 1.65 1.23
Image-like Embedding 2.85 1.63 1.45 1.21

Image-like Embedding + TransferT 2.62 1.56 1.40 1.21

Evaluation metric: We evaluated the performance of the proposed models using Cross-
entropy, which describes the predicted loss between the ground-truth and the prediction. Pre-
dicting a spatial probability distribution of next step in a large urban area is the goal of our study.
Thus, it is used as the primary metric in the evaluation, which is defined as follows:

CrossEntropy =
1

n

n∑
i

K∑
k

−y (k )
i log

(
ŷ (k )

i

)
(14)

where n is the number of samples, K is the mesh-grid number for each urban area, y (k ) and ŷ (k )

are the true probability and predicted probability based on each mesh-grid, respectively.
Overall performance: We compared the performances of the baselines and our proposed

model using different amounts of training data. The overall evaluation results are summarized
in Table 5∼9, which shows that based on all five cities: (1) our model performed better than the
others when the amount of training data was small (1%, 5%, and 10%); (2) embedding the trajectory
into a POI-vector sequence simply by considering the POIs inside each grid was not sufficiently
effective; (3) when training data was small (1%, 5%, and 10%), deep learning models using work-like
embedding could not be effectively trained either; (4) when 50% of the data were used as training
data, deep-learning models using word-like embedding performed better than the other models;
(6) even without transfer learning, image-like embedding still performed better than word-like
embedding or Grid-POI vector with small training datasets, where the advantage increased as the
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Table 7. Performance Evaluation of Citywide Human Mobility Prediction for Fukuoka

Model (Fukuoka) 1% data 5% data 10% data 50% data
N-Gram 6.47 3.78 2.91 1.77

KNN 5.28 3.30 2.66 2.10
DecisionTree 5.63 3.44 2.52 1.66
RandomForest 3.49 2.23 2.00 1.70

Grid-POI Vector 3.96 2.19 1.83 1.43
Grid-POI Vector + TransferT 3.31 2.06 1.78 1.42

Word-like Embedding 3.04 1.66 1.44 1.21

Word-like Embedding + TransferT 2.93 1.73 1.49 1.23
Image-like Embedding 2.20 1.55 1.43 1.25

Image-like Embedding + TransferT 2.10 1.50 1.39 1.24

Table 8. Performance Evaluation of Citywide Human Mobility Prediction for Sapporo

Model (Sapporo) 1% data 5% data 10% data 50% data
N-Gram 6.37 3.16 2.40 1.58

KNN 4.42 2.53 2.20 1.70
DecisionTree 5.39 2.53 2.08 1.62
RandomForest 3.88 2.00 1.75 1.52

Grid-POI Vector 4.01 2.04 1.67 1.25
Grid-POI Vector + TransferT 3.11 1.85 1.56 1.23

Word-like Embedding 2.78 1.50 1.30 1.09

Word-like Embedding+TransferT 2.56 1.53 1.32 1.11
Image-like Embedding 2.09 1.47 1.33 1.14

Image-like Embedding+TransferT 1.95 1.39 1.28 1.14

Table 9. Performance Evaluation of Citywide Human Mobility Prediction for Tottori

Model (Tottori) 1% data 5% data 10% data 50% data
N-Gram 5.66 2.75 2.12 1.41

KNN 4.30 2.54 2.09 1.52
DecisionTree 4.59 2.54 2.09 1.49
RandomForest 3.85 2.03 1.72 1.43

Grid-POI Vector 4.33 2.06 1.67 1.24
Grid-POI Vector + TransferT 3.08 1.87 1.58 1.22

Word-like Embedding 2.86 1.45 1.22 0.99

Word-like Embedding+TransferT 2.73 1.50 1.26 1.01
Image-like Embedding 2.17 1.36 1.22 1.02

Image-like Embedding+TransferT 2.07 1.31 1.17 1.01

amount of training data became smaller. In general, we achieved consistent experiment results on
all five cities. Our proposed methodology had a clearer advantage for larger urban areas (Tokyo
and Osaka) when using less training dataset (1%∼10%).

Case Study: Cross Entropy is a widely used measurement for comparing distributions, and
we also aim to evaluate our model in a more intuitive way through some case studies. The
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Table 10. Case Study on Shinjuku Station Area (Tokyo)

Model (Tokyo)
1% data 5% data

Err RE Err RE
N-Gram −2,003 12.67% −386 2.44%

KNN 1,160 7.34% 985 6.23%
DecisionTree −3,887 24.60% −295 1.87%
RandomForest 430 2.72% 288 1.82%

Grid-POI Vector −1,276 8.07% 105 0.66%
Grid-POI Vector+TransferO 915 5.79% 87 0.55%

Word-like Embedding 448 2.83% 45 0.28%
Word-like Embedding+TransferO 1,838 11.63% 384 2.43%

Image-like Embedding 403 2.55% 49 0.31%
Image-like Embedding+TransferO 122 0.77% 8 0.05%

ground-truth probability can be represented more intuitively through the density of the popu-
lation. Therefore, two additional metrics regarding density were employed in the case studies to
check the ground-truth density and the predicted density for selected areas in the city. With these
metrics, it will be easier for us to understand if the system is overshooting or undershooting the
numbers/densities. They are defined as follows:

Err = d̂ar ea − dar ea , (15)

RE =
|d̂ar ea − dar ea |

dar ea
, (16)

where dar ea and d̂ar ea are the true density and predicted density on a selected area. Err repre-
sents the prediction error, positive number (+) means overshooting and negative number means
undershooting (-). RE represents the relative prediction error in percentage. By iteratively check-

ing each sample in Ŷ and Y , we can get the ground-truth density dд and the prediction density d̂д

for each mesh-grid. The density of a selected area can be calculated by adding up the densities of
the mesh-grids belonging to the area.

Using the metrics Err and RE, we conducted three case studies to compare the ground-truth
density and predicted density. The first case study is on Shinjuku Station area (Tokyo), which can
be seen as a typical central business area. This area consists of 6 × 6 neighboring mesh-grids,
with Shinjuku Station locating at the central mesh-grid. The results conducted with 1% and 5%
training data are listed as Table 10, from which we can also see that our proposed model Image-

like Embedding+Transfer could achieve the best performance. The second case study listed
as Table 11 is on The University of Tokyo area (Tokyo), which is taken as a typical educational
area (containing 5 × 5 neighboring mesh-grids). The third case study as shown in Table 12 is on
the Odori Park area (Sapporo), which is a famous sightseeing spot located in the center of Sap-
poro City (containing 5 × 5 neighboring mesh-grids). Similar results were achieved on these two
case studies as the first one. Moreover, when using 1% training data, we plot the locations of the
mesh-grids on our proposed model Image-like Embedding+Transfer could achieve the best
prediction performance based on the metrics Err and RE. Three cities Tokyo (red marker), Osaka
(green marker), and Sapporo (yellow marker) are taken as three examples illustrated as Figure 7.
Through it, we could observe that Image-like Embedding+Transfer was the most effective
model on most of the urban area when training data was limited to 1%.
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Table 11. Case Study on Tokyo University Area (Tokyo)

Model (Tokyo)
1% data 5% data

Err RE Err RE
N-Gram −636 13.00% −183 3.74%

KNN 69 1.41% −129 2.64%
DecisionTree −2,833 57.91% −469 9.59%
RandomForest 232 4.74% 207 4.23%

Grid-POI Vector 305 6.23% 88 1.80%
Grid-POI Vector+TransferO −70 1.43% 294 6.01%

Word-like Embedding 942 19.26% −95 1.94%
Word-like Embedding+TransferO 761 15.56% 171 3.50%

Image-like Embedding 495 10.12% −137 2.80%
Image-like Embedding+TransferO 44 0.90% 64 1.31%

Table 12. Case Study on Odori Park Area (Sapporo)

Model (Sapporo)
1% data 5% data

Err RE Err RE
N-Gram −1,925 8.89% −769 3.55%

KNN 179 0.83% 1,331 6.14%
DecisionTree −1,677 7.74% 606 2.80%
RandomForest 1,044 4.82% 839 3.87%

Grid-POI Vector 986 4.55% 297 1.37%
Grid-POI Vector+TransferT 927 4.28% 802 3.70%

Word-like Embedding −495 2.29% 94 0.43%
Word-like Embedding+TransferT 570 2.63% 530 2.45%

Image-like Embedding 726 3.35% −93 0.43%
Image-like Embedding+TransferT −128 0.59% 59 1.31%

Fig. 7. Visualization of the locations on which Image-like Embedding+Transfer could give the best pre-
diction performance based on Err and RE when using 1% training data. The locations are represented with
colored marker. From left to right, Tokyo, Osaka, and Sapporo are given as three examples, represented with
red, green, and yellow marker, respectively.
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Fig. 8. Learning curves of transfer learning on three cities.

6 DISCUSSION

First, we continue to verify the performance of transfer learning by checking the learning curve
obtained by each deep-learning model based on different amounts of training data. The verification
results for the Tokyo area, Osaka area and Fukuoka area are presented in Figure 8. Through it, we
could clearly see transfer learning brought the original models with lower start loss, lower final
loss, and higher learning slope, especially with small datasets. Thus, a positive transfer between
different urban areas was verified for human mobility predictions. Especially when the training
data are limited to 1%, the advantages of Image-like Embedding+Transfer become much more
noticeable.

Then, we further discuss the advantages of image-like embedding over word-like embedding as
follows:
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Table 13. Comparison of Word-like Embedding and Image-like Embedding
on Capturing the Similarity between Cities

Cosine Similarity Word-like Em. Image-like Em.

Tokyo Station vs Osaka Station 0.004 0.177

Shinjuku Station vs Nanba Station 0.118 0.224

Tokyo Disneyland vs Universal Studios Japan 0.120 0.273

Fig. 9. Visualization of word-like embedding and image-like embedding for “Tokyo Station→ Shinjuku Sta-
tion→ Tokyo Disneyland Station” and “Osaka Station→ Nanba Station→ Universal Studios Japan.” Word-
like embedding results are listed on the top, and the image-like embedding results are listed at the bottom.
The 256-dimension vector of word-like embedding is reshaped to a 2 × 2 × 64 tensor so that it can be visual-
ized in a similar way with image-like embedding.

(1) Based on public recognition, corresponding relationships between some places from two
different cities can be set up. Taking Tokyo and Osaka as example, Tokyo Station can cor-
respond to Osaka Station, because both of them can be seen as the city center. Shinjuku
Station of Tokyo can correspond to Nanba Station of Osaka, because they both can be seen
as the sub city center. Similar relationship can also be established between Tokyo Disney-
land and Universal Studios Japan, which are the two most famous theme parks in Japan
located in Tokyo and Osaka, respectively. A good embedding method should be capable
of capturing the similarity between those corresponding places of two cities. Therefore,
we trained two Tokyo models using the whole training dataset (60% of the data) based
on the two different embedding methodologies. Two Osaka models were built and trained
in the same way. Transfer learning was not applied between the cities and other settings
were kept the same as described in Section 5. The cosine similarity between those corre-
sponding places of two cities was calculated and summarized as Table 13, from which we
can see that image-like embedding could better capture the similarity. The reason behind
this is that POI distributions in different cities share some similarity to some degree. The
word-like embedding and image-like embedding results of those corresponding places of
Tokyo and Osaka were visualized as Figure 9. And some basic statistic values are listed as
Table 14 to further elaborate the difference between word-like embedding and image-like
embedding. Through Table 14, we could see the standard deviation of image-like embed-
ding is larger than word-like embedding.

(2) As mentioned in Section 4, word-like embedding will not work well with transfer learning
due to the different numbers of mesh-grids for different cities (e.g., 6,400 mesh-grids for
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Table 14. Basic Statistics of Embedding Vectors for “Tokyo Station→ Shinjuku Station→
Tokyo Disneyland Station”

Word-like Embedding Image-like Embedding
Min Max Mean Std Min Max Mean Std

Tokyo Station −1.27 1.18 0.05 0.47 0.00 27.00 0.87 2.68
Shinjuku Station −0.83 0.84 0.06 0.37 0.00 8.19 0.44 1.17

Tokyo Disneyland −1.00 0.84 0.02 0.28 0.00 3.22 0.32 0.66

Table 15. Verification of ID Problem of Word-like Embedding

Osaka Model
Before Training After Training Difference
Min Max Min Max L1-norm L2-norm

ID1=6113 ∈ [3600, 6400) −0.05 0.05 −0.05 0.05 8.62 0.66
ID2=6399 ∈ [3600, 6400) −0.05 0.05 −0.05 0.05 8.86 0.68
ID3=1770 ∈ [0, 3600) −0.05 0.05 −0.88 0.80 78.08 5.83

ID4=1821 ∈ [0, 3600) −0.05 0.05 −0.85 0.77 67.14 5.14

Tokyo and 3,600 mesh-grids for Osaka). When using word-like embedding with transfer
learning, the Osaka model had to be built with a 6,400 × 256 embedding matrix instead
of a 3,600 × 256 embedding matrix so that transfer learning from Osaka to Tokyo could
work. If not so, then mesh-grid IDs of Tokyo in [3,600, 6,400) cannot be taken as input by
the model. However, the IDs in [3,600, 6,400) will not be well trained or embedded due to
the lack of corresponding training data in Osaka. Four test cases were listed as Table 15.
We verified how the minimum and the maximum of the embedding vector were updated
before and after training. We also measured the difference between the updated value and
the initial value with L1-norm and L2-norm. From Table 15, we could see those two IDs
in [3,600, 6,400) were not well embedded by the Osaka model with word-like embedding.

(3) Word-like embedding requires more parameters than image-like embedding. Using the
settings mentioned above, for the Tokyo area, the word-like embedding layer contained
around 1.6 million parameters whereas the image-like embedding layer (CNNs) only re-
quired around 0.07 million parameters in total. As the target urban area increased in size,
more parameters were required to construct the embedding layer, whereas image-like em-
bedding method could use the same network architecture with the same number of pa-
rameters to model different urban areas. This allowed transfer learning to work better as
well as enhancing the interpretability and usability for the embeddings between different
urban areas.

7 RELATED WORK

The existing researches on the human mobility prediction have been conducted from multifold
perspectives. On the techniques, there are traditional pattern-based methods as well as emerging
deep learning leveraged models. On the research scale, both individual-level behaviors and city-
level mobility have been extensively studied throughout recent years. Furthermore, given different
definitions of problems, the citywide mobility forecasting task derives various applications (e.g.,
emergency management, traffic conditions).

Trajectory-pattern-based methodologies have been proposed to predict future movement of in-
dividual person [23, 28, 38]. An approach based on nonlinear time series analysis of the arrival and
residence times of users has been proposed, which focused on predicting most important places
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of each user [43]. Zheng [55] proposed an unsupervised learning algorithm for location predic-
tion. Social-LSTM [2] is an advanced multi-agent model, which builds a separate LSTM network
for each person. ST-RNN by Reference [34] utilizes time/distance-specific transition matrices to
model spatio-temporal contexts. However, the model does not explicitly take semantic meaning
into consideration. SERM [50] is recurrent model designed for semantic trajectory. A RNN archi-
tecture similar with our word-like embedding model was proposed in Reference [12] for destina-
tion prediction task. Reference [16] focused on human mobility prediction from the sparse and
lengthy trajectories. These models focused on individual mobility and were validated with small-
scale trajectory dataset, which are difficult to be applied to our urban mobility modeling task. Some
collaborative approaches have been proposed to take social relationships of users into account for
location prediction and recommendation [33], but they utilized big check-in data from location-
based network services [29–31, 39, 48]. Similarly, graph-liked embedding has been applied in Ref-
erences [10, 49] to capture latent data representations for tasks in location-based recommendations
and social networks.

Predicting citywide human mobility under some rare events such as live concerts or disasters
is a related problem, but it built an online prediction model using real-time current observed data
[13, 15, 25]. Furthermore, modeling human mobility for very large populations [22, 24] and simu-
lating human emergency mobility following disasters [47] are other topics that are close to ours.
However, all of these approaches had different problem definitions and modeling methods. For
example, the approaches [47] required disaster information such as intensity of earthquake and
damage level as additional input data; the deep learning model [24] needed to be built based on
dynamic city Region-of-Interest (ROI) discovered from massive human mobility data. Forecasting
the citywide crowd density [19, 54] is another related problem, but a time-series model was built
to predict the crowd density for each region of a city, whereas our system predicts the mobility for
millions of individuals based on short-term observations. Population prediction model [26, 44] was
built for urban dynamics and city-scale irregularity prediction using transit app logs. Moreover,
some studies also applied deep learning to predict the traffic flow, traffic speed, congestion, and
taxi demand [4, 5, 21, 35–37, 51].

CityCoupling [14] first utilized massive human mobility data to discover the corresponding lo-
cations between the source city and the target city, then generated the mapped human trajectories
in the target city under event situations like a big earthquake. Reference [17] also generated the
human mobility in a new city by generating the Origin-Destination (OD) pairs and paths from
a learned mobility intention model. CityCoupling [14] generates trajectories for a special situa-
tion of the target city, and Reference [17] generates trajectories for a newly built city. These two
studies fall into the category of trajectory simulation and generation, while ours is still a problem
of trajectory prediction, with specific constraints, namely, limited training data. In summary, our
work distinguishes from others in three aspects. First, it innovatively fuses big heterogeneous POI
data with citywide human trajectories to accurately predict a probability distribution of human
mobility at city level. Besides, a generic image-liked embedding mechanism is proposed to capture
latent semantic representations to enrich vanilla human mobility data. Moreover, transfer learning
gets involved to share the knowledge learned from city to city with similar POI components, to
improve the predicting power with limited mobility data.

8 CONCLUSION

In this article, we studied the citywide human mobility prediction problem using big GPS trajec-
tory data and POI data. We proposed image-like embedding with POIs to represent a trajectory
like an artificial video. We also designed an LSTM-on-CNNs architecture to simultaneously capture
both the spatio-temporal and geographical information from citywide human mobility. Transfer
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learning was employed to work with image-like embedding to further boost the performance by
exploiting the data obtained from different cities. The experimental results obtained based on mul-
tiple urban areas demonstrated the superior performance of our proposed model compared with
the baseline methods especially when the training data are limited.

However, our method can be improved or extended in the following ways. (1) In addition to
POI data, transportation network data and other types of heterogeneous data such as the popu-
lation density can be utilized as geographical features. (2) Current framework only takes spatial
information into account, temporal information could also be used to improve the performance,
and conduct the time-series modeling for citywide human mobility. (3) Current problem setting is
few-shot learning on trajectory prediction, and we would like to challenge the zero-shot learning
on trajectory generation or simulation as the next research direction.
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