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Abstract

In this paper, we show a tight approximation guarantee for budget-feasible mechanisms

with an additive buyer. We propose a new simple randomized mechanism with approxi-
mation ratio of 2, improving the previous best known result of 3. Our bound is tight with

respect to either the optimal offline benchmark, or its fractional relaxation. We also present

a simple deterministic mechanism with the tight approximation guarantee of 3 against the
fractional optimum, improving the best known result of (2 +

√
2) for the weaker integral

benchmark.

1 Introduction

In a typical procurement setting, a buyer wants to purchase items from a set A of agents. Each

agent i ∈ A can supply an item (or provide a service) at an incurred cost of ci to himself, and

the buyer wants to optimize his valuation for the set of acquired items taking into account the

costs of items. Because the agents may strategically report their costs, this setting is usually

considered as a truthful mechanism design problem.

These problems have been extensively studied by the AGT community. The earlier work

analyzed the case where the buyer’s valuation takes 0-1 values (see, e.g., [AT02]) in the frugality

framework, with the objective of payment minimization. A more recent line of work on the

budget-feasible mechanism design (see, e.g., [Sin10]) studies more general valuation functions

with a budget constraint of B on the buyer’s total payment. Our work belongs to the latter

category.

Research in the budget-feasible framework focuses on different classes of complement-free

valuations (ranging from the class of additive valuations to the most general class of subadditive

valuations), and has many applications such as procurement in crowdsourcing markets [SM13],

experimental design [HIM14], and advertising in social networks [Sin12]. The central problem

for these online labor markets is to properly price each task. The budget feasibility mechanism

design model is a very reasonable model that naturally captures the budget limitation on the

buyer and also uncertainty about workers costs.

This setting corresponds to the most basic additive valuation of the buyer, which is the topic

of our paper. I.e., we assume that every hired worker i ∈ W generates a value of vi ≥ 0 to

the buyer, whose total valuation from all the hired workers W is equal to v(W ) =
∑

i∈W vi.
Without any incentive constraints, this naturally defines the Knapsack optimization problem:

Find workers S ⊆ A: maxS⊆A v(S) =
∑

i∈S vi, subject to
∑

i∈S ci ≤ B.
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In the budget-feasible framework, the goal is to design truthful direct-revelation mechanisms1

that decide (1) which workers W ⊆ A to select and (2) how much to pay them under the

budget constraint. A mechanism is evaluated against the benchmark of the optimal solution to

the Knapsack problem. Over all possible choices of the value vi’s and the cost ci’s, the worst-case

multiplicative gap between the outcome v(W ) and the optimal Knapsack solution is called the

approximation ratio of this mechanism.

For the above problem with an additive buyer, Singer [Sin10] gave the first 5-approximation

mechanism. Later, the result was improved by Chen et al. [CGL11] via a (2+
√
2)-approximation

deterministic mechanism and a 3-approximation randomized mechanism, which still remain the

best known upper bounds for the problem for nearly a decade. Further, the best known lower

bounds are (
√
2+1) for the deterministic mechanisms and 2 for the randomized ones [CGL11].

Thus, there are gaps for both the deterministic mechanisms [
√
2+1, 2+

√
2] and the randomized

ones [2, 3]. Since these two intervals intersect, it is even unclear whether the best randomized

mechanism is indeed better than the best deterministic one.

Also for the above problem with an additive buyer, Anari et al. [AGN14] studied an impor-

tant special case of large markets (i.e., the setting where each worker has vanishingly small cost

compared to the buyer’s budget) and acquired the tight bound of e
e−1 .

Fractional Knapsack. Interestingly, all previous work on budget-feasible mechanisms for an

additive buyer actually obtained results against the stronger benchmark of the optimal solution

to Fractional Knapsack, i.e., the fractional relaxation of the Knapsack problem. (Nonetheless, the

lower bounds apply to the Knapsack benchmark instead of the Fractional Knapsack benchmark.)

Indeed, although Knapsack is a well-known NP-hard problem, its fractional relaxation admits

an efficient solution by a simple greedy algorithm, and generally has much better behavior than

the integral optimum. We also compare the performance of our mechanisms to the Fractional

Knapsack benchmark.

Our Results. We propose two natural mechanisms that both achieve tight guarantees against

the Fractional Knapsack benchmark. Namely, we prove a 3-approximation guarantee for a deter-

ministic mechanism and a 2-approximation guarantee for a randomized one. Given the match-

ing lower bound of 2 even against the weaker Knapsack benchmark, the guarantee from our

randomized mechanism is also tight against the standard benchmark. Our results establish a

clear separation between the respective power of randomized and deterministic mechanisms:

no deterministic mechanism has an approximation guarantee better than (
√
2+1), whereas our

randomized mechanism already achieves a 2-approximation.

Concretely, we propose a new natural design principle of two-stage mechanisms. In the first

stage, we greedily exclude the items with low value-per-cost ratios.2 Then in the second stage,

we leverage the simple posted-price schemes, based on the values of the remaining items. Both

of our randomized and deterministic mechanisms share the first stage, which stops earlier than

its analogues from the previous work. A remarkable property of the first stage, which we call

pruning (similar to the pruning approach in the frugality literature [CEGP10, KSM10]) is that,

it can be composed (in the sense of [AH06]) with any truthful follow-up mechanism that runs

on the items left to the second stage. The difference between our randomized and determin-

istic mechanisms lies in the follow-up posted-price schemes – the randomized mechanism uses

non-adaptive posted prices with the total sum below the budget, whereas our deterministic

mechanism employs adaptive pricing that depends on whether the previous agents accepted or

rejected their posted-price offers.

1Typically, there are no assumptions in the literature about the prior distribution of the agents’ costs. The truth-

fulness condition means that the strategy of reporting the true cost is ex post a dominant and individually rational

strategy for every single agent.
2This is essentially the main approach used in the previous work, had we continued until the remaining items (as

a whole) become budget-feasible.
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Intuition behind our mechanism. The pruning stage of both mechanisms allows the buyer

to reduce the choice complexity, and gives a reasonable upper bound on the payment to each

remaining agent. The value of the fractional optimum never decreases too much, especially

when the individual true cost ci of each remaining agent is a non-negligible fraction of the

budget B. We prove that the fractional optimum drops at most by a factor of two after the

pruning stage for an arbitrary set of values and costs.

The idea behind the pruning stage is that the removed agents can be safely ignored by the

mechanism, since the remaining items suffice to get the desired approximation to the fractional

optimum. Moreover, the mechanism should naturally prefer the items with higher value-per-

cost ratios. Our pruning process is based on the value-per-cost ratio, and works specifically for

an additive-valuation buyer. That is, it is still unknown how to extend such a pruning stage to

more general classes of valuation functions.

The second stage of our randomized mechanism draws a random vector of budget-feasible

posted prices. This is the same type of the mechanism as was used by Bei et al. [BCGL17] to

establish the tight approximation ratio of 2 for a subadditive buyer in the promise version of

the problem (i.e., where the buyer is ensured to have a budget higher than the total cost of

all items). Their result holds in the Bayesian setting, which by the minimax principle implies

the existence of a randomized posted-price mechanism with the same approximation ratio in

the worst-case setting. In our problem with an additive buyer, we explicitly construct a desired

distribution over the posted-price vectors. Such posted-price schemes seem to be useful and

easily adaptable to more general classes of valuation functions.

1.1 Related Work

A complementary concept of budget-feasible mechanism design is frugality, for which the ob-

jective is payment minimization under the feasibility constraint on the set of winning agents. In

that framework, there is a rich literature studying different systems of feasible sets, including

matroid set systems [KKT05], path and k-paths auctions [AT02, Tal03, ESS04, CK07, CEGP10],

vertex cover and k-vertex cover [EGG07, KSM10, HKS18].

The framework of budget-feasible mechanism design was proposed by Singer [Sin10]. Be-

yond additive valuations, other more general classes of complement-free valuations also have

been considered in the literature:

submodular ⊂ fractionally subadditive ⊂ subadditive.

Singer gave an 112-approximation mechanism for submodular valuations [Sin10]. This bound

was improved to 7.91 and 8.34 respectively for the randomized and deterministic mechanisms

by Chen et al. [CGL11], and then to 4 and 5 by Jalaly and Tardos in [KT18]. For fractionally

subadditive valuations, Bei et al. [BCGL17] gave a 768-approximation randomized mechanism.

For subadditive valuations, Dobzinski et al. [DPS11] first gave an O(log2 n)-approximation ran-

domized mechanism and an O(log3 n)-approximation deterministic mechanism. Later, Bei et

al. [BCGL17] showed the existence of an O(1)-approximation mechanism in this most general

setting. Nonetheless, an explicit description of such a mechanism is still unknown.

There also have been many interesting and practically motivated adjustments to the origi-

nal budget feasibility model. In particular, Anari et al. [AGN14] investigated the variant with

the additional large market assumption (namely, every agent has a negligible cost compared

to the whole budget) and attained the tight result of e
e−1 for an additive buyer. Leonardi et

al. [LMSZ17] explored an additive-valuation model where the winning agents must form an

independent set from a matroid. Amanatidis et al. [ABM16, ABM17] investigated the vari-

ants with several important subclasses of submodular and fractionally subadditive valuations.

Badanidiyuru et al. [BKS12] studied the family of online pricing mechanisms in the budget

feasibility model, motivated by practical restrictions given by the existing platforms. Balkan-

ski and Hartline [BH16] obtained improved guarantees in the Bayesian framework. Goel et

3



al. [GNS14] concerned more complex scenarios on a crowdsourcing platform, where the buyer

hires the workers to complete more than one task. Balkanski and Singer [BS15] considered fair

mechanisms (instead of truthful mechanisms) in the budget feasibility model.

2 Preliminaries

In the procurement auction, there are n items for sale, each held by a single agent i ∈ [n] with

a privately known cost ci ≥ 0 and a publicly known value vi > 0 for the buyer. The buyer has

an additive valuation function v(A) =
∑

i∈A vi for purchasing a subset A ⊆ [n] of items. Due

to the revelation principle, we only consider direct-revelation mechanisms. Upon receiving bids

b = (bi)
n
i=1 of the claimed costs from the agents, a mechanism determines a set W ⊆ [n] of

winning agents and the payments p = (pi)
n
i=1 to the agents.

In the budget feasibility model, a deterministic mechanism M is specified by an allocation

function x(b) : Rn
+ → {0, 1}n (thus the winning set W

def
= {i ∈ [n] | xi(b) = 1}) and a payment

function p(b) : Rn
+ → R

n
+. We use the notation bi to denote the i-th entry of the bid vector b,

and the notation b−i the bid vector without bidder i ∈ [n]. We are interested in those truthful

mechanisms that satisfy the following properties for any b = (bi)
n
i=1 and any c = (ci)

n
i=1.

• Individual rationality: pi(b) ≥ ci and thus ui(b) = pi(b) − ci ≥ 0 for every i ∈ W , while

pi(b) ≥ 0 and thus ui(b) = pi(b) ≥ 0 for every i /∈ W . Namely, every agent i ∈ [n] gets a

non-negative utility.

• Budget feasibility: the total payment
∑

i∈W pi(b) is capped with a given budget B ∈ R+.

• Truthfulness: every agent i ∈ [n] maximizes his utility when he bids the true cost bi = ci,
namely ui(ci,b−i) ≥ ui(bi,b−i) for any ci and any b = (bi,b−i).

It is well known (see [Mye81]) that truthfulness holds if and only if: (1) the allocation function

xi(bi,b−i) is monotone in bid bi, i.e., each winning agent i ∈W keeps winning when he unilat-

erally claims a lower bid bi ≤ ci; and (2) the payment pi(b) to each winning agent i ∈W is the

threshold/maximum bid for him to keep winning, i.e., pi(b) = sup{bi ∈ R+ | xi(bi,b−i) = 1}.
In general, a mechanism can have randomized allocation and payment rules. We restrict our

attention to the mechanisms that can be described as a probability distributions over truthful

deterministic mechanisms. Namely, any realization of such a randomized mechanism is some

deterministic truthful mechanism that satisfies the above properties. A randomized mechanism

of this type is called a universally truthful mechanism. We notice that most of the previous work

on budget feasible mechanism only studies universally truthful mechanisms.

We denote by alg the value
∑

i∈W vi derived from a deterministic mechanism, or the ex-

pected value E
[
∑

i∈W vi
]

in case of a randomized mechanism. W.l.o.g., we assume ci ≤ B for

each agent i ∈ [n], since this agent cannot win when ci > B (due to the individual rationality

and the budget feasibility constraints). If the buyer knows the private costs c = (ci)
n
i=1 of the

items, he would simply select the subset of items with the maximum total value, under the

budget constraint. Let opt denote the optimal solution to this Knapsack problem:

opt
def
= max

(xi)ni=1∈{0,1}
n

n
∑

i=1

xi · vi, subject to

n
∑

i=1

xi · ci ≤ B. (Knapsack)

We also consider the fractional relaxation of the problem, and define its optimum as

fopt
def
= max

(xi)ni=1∈[0,1]
n

n
∑

i=1

xi · vi, subject to

n
∑

i=1

xi · ci ≤ B. (Fractional Knapsack)
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Although opt is NP-hard to calculate, finding fopt is easy: one greedily and divisibly takes the

items in the decreasing order of their value-per-cost ratios,3 until the budget is exhausted or no

item is left. Under our assumption that ci ≤ B for all i ∈ [n], we have 1 ≤ fopt
opt
≤ 2.4

We say that a mechanism achieves an α-approximation against the benchmark opt, if under

whatever values v = (vi)
n
i=1 and costs c = (ci)

n
i=1, the outcome value alg is at least an 1

α -fraction

of the Knapsack solution opt. In what follows, we usually evaluate a mechanism against the

stronger benchmark fopt, i.e., the solution to the Fractional Knapsack problem.

α ≤ max
v,c,B

opt

alg
⇐ α ≤ max

v,c,B

fopt

alg
.

3 Composition of Mechanisms: Pruning

Every mechanism presented in this work can be described as a composition of two stages. In

particular, all of our mechanisms share the same first stage, called PRUNING-MECHANISM, which

serves to exclude the items with low value-per-cost ratios.

PRUNING-MECHANISM

1. Let r
def
= 1

B ·max{vi | i ∈ [n]} and S(r)
def
= {i ∈ [n] | vi

ci
≥ r}

2. While rB < v(S(r)) −max{vi | i ∈ S(r)} do:

(a) Continuously increase ratio r

(b) If vk
ck
≤ r, then discarda item k: S(r)← S(r) \ {k}

3. Return pair (r, S(r))

aIf there are multiple such items, we discard them one by one in lexicographical order,

and stop discarding items once the While-Loop meets the Stop-Condition.

Figure 1: The first stage, PRUNING-MECHANISM, shared by all of our mechanisms.

Noticeably, the set S(r) is always nonempty, since the Stop-Condition of the While-Loop is

violated when S(r) contains only one item.

PRUNING-MECHANISM possesses a remarkable composability property: the combination of it

with any truthful follow-up mechanism M running on the remaining items i ∈ S(r) is still a

truthful mechanism. More concretely, the composition mechanism M = (x,p) of PRUNING-

MECHANISM with a follow-up mechanismM = (x,p) works as follows:

MECHANISM-TEMPLATE

0. Receive the pair (r, S(r)) from PRUNING-MECHANISM

1. Run mechanism M on the set S(r):

(a) Select the winning set W from S(r) according to M
(b) Cap the payment with vi

r , i.e., pi
def
= min{pi, vi

r }, for each i ∈W

Figure 2: The template of a composition mechanismM.

Lemma 1 (Composability). If a follow-up mechanismM is individually rational, budget-feasible,

and truthful, then so is the composition mechanismM.

3Namely, the decreasing order (σi)
n

i=1 is a permutation of [n] such that
vσ1

cσ1

≥
vσ2

cσ2

≥ · · · ≥
vσn

cσn

.
4Without this assumption, the gap between the two optima fopt

opt
can be arbitrary large.
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Proof. By Step (1b) of PRUNING-MECHANISM, every item i ∈ S(r) has a value-per-cost ratio at

least r, which means ci ≤ vi
r . Thus, capping the payment with vi

r does not break the individual

rationality. The follow-up mechanismM itself is budget-feasible, and the composition mecha-

nismM can only reduce the payment for a winning item. Given these, we are left to show the

truthfulness ofM.

We claim that no winning item i ∈ S(r) may change the output of PRUNING-MECHANISM by

manipulating its bid to c′i, unless this item gets excluded from S(r) because of a too high bid

c′i. Indeed, suppose item i is still winning with the bid c′i, then item i was never removed from

the set S(r), i.e., vi
c′
i

≥ r at all times in the While-Loop of the PRUNING-MECHANISM. Given that

item i stays in the set S(r), the Stop-Condition of the While-Loop and the order in which we

discard other item do not depend on the exact bid c′i of item i.
Since the follow-up mechanismM has a monotone allocation rule, so does the composition

mechanismM. Regarding a losing item i /∈ W (i.e., item i loses inM when it bids truthfully),

reporting a higher bid c′i > ci does not help this item to pass the PRUNING-MECHANISM stage.

As we discussed above, suppose that item i passes the PRUNING-MECHANISM stage by bidding

c′i > ci, namely i ∈ S′(r′), then the two outcomes of PRUNING-MECHANISM under the two bids

c′i and ci must be the same, namely (r′, S′(r′)) = (r, S(r)). In other words, when item i reports

the true cost ci, it passes the PRUNING-MECHANISM stage as well, but then loses in the follow-up

mechanismM. Given that the follow-up mechanism M is truthful and runs on the same pair

(r′, S′(r′)) = (r, S(r)) in both scenarios, item i will lose again in the follow-up mechanismM,

when it reports the higher bid c′i > ci.
The payment pi = min{pi, vi

r } of the composition mechanism M is exactly the threshold

bid for an item i ∈ W to keep winning: (1) passing the PRUNING-MECHANISM stage requires a

bid of at least vi
r ; and (2) winning in the follow-up mechanismM (after passing the PRUNING-

MECHANISM stage) requires a bid of at least pi.
In addition, a winning item i ∈W cannot improve its utility by reporting a lower bid c′i < ci.

As mentioned, when this winning item bids a lower c′i < ci, the PRUNING-MECHANISM returns

the same pair (r′, S′(r′)) = (r, S(r)). Since the follow-up mechanismM = (x,p) is truthful (i.e.

a monotone allocation rule and a threshold-based payment rule), item i gets the same payment

p′i = pi under either bid c′i or ci. The composition mechanism M thus has the same payment

p′i = min{p′i, vir′ } = min{pi, vir } = pi in both scenarios.

This completes the proof of Lemma 1.

We show now several useful properties of the output (r, S(r)) of PRUNING-MECHANISM.

Lemma 2 (Pruning Mechanism). Let i∗ ∈ argmax{vi | i ∈ S(r)} denote the highest-value item

or one of the highest-value items,5 and let T
def
= S(r) \ {i∗}. Then the following hold:

(a). ci ≤ vi
r ≤ B for each item i ∈ S(r).

(b). v(T ) ≤ rB < v(S(r)).

(c). fopt ≤ v(S(r)) + r · (B − c(S(r)) < 2 · v(S(r)).

Proof. Property (a). The first inequality follows from Step (1b) of PRUNING-MECHANISM; the

second inequality holds, since the ratio r is initialized to be 1
B · max{vi | i ∈ [n]}, and keeps

increasing during the While-Loop.

Property (b). We observe that the first inequality is a reformulation of the Stop-Condition

of the While-Loop. To prove the second inequality, we note that there are two possibilities that

can lead to the termination of the While-Loop, and rB < v(S(r)) holds in both cases.

• [Increase of ratio r]. Continuous increase of r implies rB = v(T ) < v(S(r)).

5When there are multiple highest-value items, we break ties lexicographically.
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• [Discard of an item k]. Value-per-cost ratio r is fixed before and after the discard.

Before the discard, in that Stop-Condition has not been invoked,

rB < v(S(r)) + vk −max{vi∗ , vk} ≤ v(S(r)).

Property (c). The second inequality follows from Property (b). We show the first inequality

based on case analysis. Let x = (xi)
n
i=1 denote the solution to the Fractional Knapsack problem.

We have either S(r) ⊆ {i ∈ [n] | xi = 1} or S(r) ⊇ {i ∈ [n] | xi > 0}. This claim holds since:

(1) PRUNING-MECHANISM discards the items in increasing order of the value-per-cost ratios;

but (2) the greedy algorithm takes the items in decreasing order of the value-per-cost ratios;

and (3) in both processes, we break ties lexicographically.

• [When S(r) ⊆ {i ∈ [n] | xi = 1}]. We notice that c(S(r)) ≤ ∑

i∈[n] xi · ci ≤ B. Namely,

regarding the Fractional Knapsack optimum, the total cost
∑

i∈[n] xi · ci is at least the cost

on the items in S(r), and is at most the budget B. In addition, every item i /∈ S(r) has a

value-per-cost ratio vi
ci
≤ r. Consequently, the total value of the items beyond set S(r) is

∑

i/∈S(r) xi · vi ≤ r ·∑i/∈S(r) xi · ci ≤ r · (B − c(S(r))).

• [When S(r) ⊇ {i ∈ [n] | xi > 0}]. We have
∑

i∈[n] xi · ci ≤ c(S(r)) and
∑

i∈[n] xi · ci ≤ B,

and every item i ∈ S(r) has a value-per-cost ratio vi
ci
≥ r. As a result, v(S(r)) − fopt =

∑

i∈S(r)(1− xi) · vi ≥ r ·
∑

i∈S(r)(1− xi) · ci ≥ r · (c(S(r)) −B).

This completes the proof of properties (a), (b), and (c).

Mechanisms in the Second Stage. Given Lemma 1, PRUNING-MECHANISM can be composed

with any follow-up truthful mechanism. Actually, we focus on the class of posted-price mech-

anisms.6 Such a mechanism is determined by a set of prices (Bi)i∈S(r) subject to the budget

constraint
∑

i∈S(r)Bi ≤ B, and naturally meets the individual rationality, the budget feasibility,

and the truthfulness.7

To illustrate how to analyze the approximability of a two-stage posted-price mechanism, and

as a warm-up exercise, below we discuss two simple mechanisms.

Warm-Up. Our first mechanism (see Figure 3) chooses the higher-value subset between {i∗}
and T as the winning set W , where i∗ ∈ argmax{vi | i ∈ S(r)} is the highest-value item and

T = S(r) \ {i∗} (see Lemma 2), by offering price vi
r to each i ∈ {i∗} or to each i ∈ T . Hence,

we deduce from Lemma 2 (c) that fopt ≤ 2 · v(S(r)) ≤ 4 ·max{vi∗ , v(T )} = 4 · alg.

FIRST-WARM-UP-MECHANISM

0. Receive the pair (r, S(r)) from PRUNING-MECHANISM

1. If vi∗ ≥ v(T ),a get item i∗ by offering price
vi∗
r

2. Else,b get items T by offering price vi
r to each item i ∈ T

aItem i∗ will accept the offer
vi∗

r
, by Lemma 2 (a) that ci∗ ≤

vi∗

r
.

bEach item i ∈ T will accept the offer vi

r
, by Lemma 2 (a) that ci ≤

vi

r
.

Figure 3: A 4-approximation deterministic budget-feasible mechanism.

Our second posted-price mechanism (see Figure 4) recovers the best known result of (2+
√
2)

by Chen et al. [CGL11]. This statement is formalized as the following theorem.

6To obtain our 3-approximation deterministic mechanism in Section 4, we actually use an adaptive posted-price

scheme. Namely, the take-it-or-leave price offered to a specific item i ∈ S(r) can change, depending on whether the

items that have already made decisions accepted or rejected their posted-price offers.
7In the case of a randomized mechanism, any realization is given by a particular set of budget-feasible posted

prices (Bi)i∈S(r), i.e., a truthful deterministic mechanism. Thus, this randomized mechanism is universally truthful.

7



SECOND-WARM-UP–MECHANISM

0. Receive the pair (r, S(r)) from PRUNING-MECHANISM

1. If vi∗ ≥
√
2 · v(T ), get item i∗ by offering price

vi∗
r

2. Else,

(a) Get items T by offering price vi
r to each item i ∈ T

(b) Offer pricea B − v(T )
r to item i∗

aNotice from Lemma 2 (b) that 0 ≤ B −
v(T )
r

<
vi∗

r
.

Figure 4: A new (2 +
√
2)-approximation deterministic budget-feasible mechanism.

Theorem 1. SECOND-WARM-UP–MECHANISM is a (2 +
√
2)-approximation mechanism (individ-

ually rational, budget-feasible, and truthful) against the Fractional Knapsack benchmark.

Proof. We only show the approximability via case analysis; the other properties are obvious.

• [Case 1 that vi∗ ≥
√
2 · v(T )]. The highest-value item i∗ is the only winner, and thus

the outcome value alg = vi∗ . Then according to Lemma 2 (c), we have

fopt ≤ 2 · v(S(r)) = 2 · (vi∗ + v(T )) ≤ (2 +
√
2) · vi∗ = (2 +

√
2) · alg.

• [Case 2 that vi∗ <
√
2·v(T )]. There are two possibilities. First, when ci∗ ≤ B− v(T )

r , all

items i ∈ S(r) together form the winning set W , i.e., alg = v(S(r)). Due to Lemma 2 (c),

fopt ≤ 2 · v(S(r)) = 2 · alg. Second, when ci∗ > B − v(T )
r , only the items i ∈ T are chosen

as the winners, i.e., alg = v(T ). Consequently,

fopt ≤ v(S(r)) + r · (B − c(S(r))) (Lemma 2 (c))

≤ v(S(r)) + v(T ) (as c(S(r)) ≥ ci∗ > B − v(T )
r )

= v(i∗) + 2 · v(T ) (as v(S(r)) = v(i∗) + v(T ))

< (2 +
√
2) · alg. (as vi∗ <

√
2 · v(T ) =

√
2 · alg).

This completes the proof of Theorem 1

We emphasizes that our SECOND-WARM-UP–MECHANISM achieves a 2-approximation, when

vi∗ <
√
2 · v(T ) and ci∗ ≤ B − v(T )

r . One might ask a natural question: is it possible to achieve

a better trade-off between this 2-approximation case and the (2 +
√
2)-approximation cases? In

the next section, we will confirm this guess by presenting a slightly more complicated adaptive

posted-price scheme, resulting in a 3-approximation deterministic mechanism.

4 Deterministic Mechanism

The warm-up mechanisms have merely a few possible outcomes, and do not adapt to the deci-

sions of the items: either the highest-value item i∗, or the remaining items T , or rarely both of

item i∗ and items T win; all the posted prices (Bi)i∈S(r) are almost equal to the maximum pos-

sible values (vir )i∈S(r). Such rigid structure hinders both warm-up mechanisms from achieving

better performance guarantees than a (2 +
√
2)-approximation.

Now we give a mechanism (called DETERMINISTIC-MECHANISM) that achieves a better ap-

proximation. This mechanism (first stage) gets the pair (r, S(r)) via the PRUNING-MECHANISM

given in Section 3, and then (second stage) applies an adaptive posted-price scheme.
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DETERMINISTIC-MECHANISM

0. Receive the pair (r, S(r)) from PRUNING-MECHANISM

1. If vi∗ ≤ 1
2 · v(T ), get items T by offering price vi

r to each item i ∈ T

2. Else if vi∗ ≥ 2 · v(T ), get item i∗ by offering price
vi∗
r to i∗

3. Else, i.e., when 1
2 · v(T ) < vi∗ < 2 · v(T ):

(a) Offer price Bi∗
def
= min{vi∗r , 2·vi∗−v(T )

v(S(r)) · B} to item i∗

(b) If ci∗ ≤ Bi∗,
a offer Bi

def
= min{vir ,

vi
v(T ) · (B −Bi∗)} to each item i ∈ T

(c) Else, get items T by offering price vi
r to each item i ∈ T

aIf ci∗ ≤ Bi∗ , item i∗ will accept offer Bi∗ . Otherwise, ci∗ > Bi∗ and item i∗ will reject offer Bi∗ , and

then each item i ∈ T will accept offer Bi.

Figure 5: The 3-approximation deterministic budget-feasible mechanism.

Theorem 2. DETERMINISTIC-MECHANISM is a 3-approximation mechanism (individually ratio-

nal, budget-feasible, and truthful) against the Fractional Knapsack benchmark.

Proof. The individual rationality and the truthfulness are easy to see, regarding the pricing na-

ture of DETERMINISTIC-MECHANISM, Lemma 1, and Lemma 2 (a). To show the budget feasibility,

we consider either Case (3b) or Case (3c) in the mechanism:

• [Case (3b)].
∑

i∈W Bi ≤ Bi∗ +
∑

i∈T
vi

v(T ) · (B −Bi∗) = B.

• [Case (3c)]. Since W = T , we know from Lemma 2 (b) that
∑

i∈W
vi
r = v(T )

r ≤ B.

We now show the approximation guarantee. Both of Case (1) and Case (2), where either

vi∗ ≤ 1
2 · v(T ) or vi∗ ≥ 2 · v(T ), are easy to analyze. Since alg = max{vi∗ , v(T )} in either case,

fopt < 2 · v(S(r)) = 2 · (vi∗ + v(T )) ≤ 3 ·max{vi∗ , v(T )} = 3 · alg,

where the first step applies Lemma 2 (c), and the third step holds since we have 2 · vi∗ ≤ v(T )
or vi∗ ≥ 2 · v(T ) in both cases.

From now on, we safely assume 1
2 · v(T ) < vi∗ < 2 · v(T ). Conditioned on either ci∗ ≤ Bi∗

or ci∗ > Bi∗ , we are only left to deal with Case (3b) and Case (3c).

[Case (3b) that ci∗ ≤ Bi∗]. We denote by U
def
= {i ∈ T | ci ≤ Bi} the set of winners in T , so

the outcome value alg = vi∗ + v(U). Of course, a losing item i ∈ (T \U) rejects the offered price

Bi = min{vir ,
vi

v(T ) · (B − Bi∗)} (by definition), since it has a too large cost ci > Bi. But this

losing item was not discarded during PRUNING-MECHANISM, so it has a high enough value-per-

cost ratio vi
ci
≥ r (see Lemma 2 (a)) and thus a cost ci ≤ vi

r . For these reasons, the price offered

to this losing item is exactly Bi =
vi

v(T ) · (B −Bi∗). We deduce that

c(S(r)) ≥
∑

i∈(T\U)

ci >
∑

i∈(T\U)

Bi =
v(T\U)
v(T ) · (B −Bi∗). (1)

By Lemma 2 (c), fopt ≤ v(S(r)) + r · (B − c(S(r))). We plug inequality (1) into it and get

fopt
(1)
< v(S(r)) + r · (v(U)

v(T ) · B + v(T\U)
v(T ) ·Bi∗)

< v(S(r)) · (1 + v(U)
v(T ) +

v(T\U)
v(T ) ·

Bi∗

B ) (Lemma 2 (b): rB < v(S(r)))
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≤ v(S(r)) · (1 + v(U)
v(T ) ) +

v(T\U)
v(T ) · (2 · vi∗ − v(T )) (as Bi∗ ≤ 2·vi∗−v(T )

v(S(r)) ·B)

= 3 · vi∗ + v(U) · (2− vi∗
v(T )) (as v(S(r)) = vi∗ + v(T ))

≤ 3 · vi∗ + 3 · v(U) = 3 · alg.

[Case (3c) that ci∗ > Bi∗]. According to Lemma 2 (a), ci∗ ≤ vi∗
r , and ci ≤ vi

r for any i ∈ T .

Since Bi∗ < ci∗ ≤ vi∗
r , we have Bi∗ = min{vi∗r , 2·vi∗−v(T )

v(S(r)) · B} =
2·vi∗−v(T )
v(S(r)) ·B.

In this case, the highest-value item i∗ rejects its offer, but all the remaining items i ∈ T
accept their offers. Thus, the winning set is W = T , and the outcome value is alg = v(T ). We

then deduce that

fopt ≤ v(S(r)) + r · (B − c(S(r))) (Lemma 2 (c))

≤ v(S(r)) + r · (B −Bi∗) (as c(S(r)) ≥ ci∗ > Bi∗)

≤ v(S(r)) · (2− Bi∗

B ) (Lemma 2 (b): rB < v(S(r)))

= 3 · v(T ) = 3 · alg. (as Bi∗ = 2·vi∗−v(T )
v(S(r)) ·B)

To conclude, we have 3 ·alg ≥ fopt in all cases, which completes the proof of Theorem 2.

4.1 Matching Lower Bound

Against the Fractional Knapsack benchmark, our DETERMINISTIC-MECHANISM turns out to have

the best possible approximation ratio among all deterministic mechanisms. To see so, we now

construct a matching lower-bound instance, which is similar to [Sin10, Proposition 5.2].

Theorem 3. No deterministic mechanism (truthful, individually rational and budget-feasible) has

an approximation ratio less than 3 against the Fractional Knapsack benchmark, even if there are

only three items.

Proof. For the sake of contradiction, assume that there is a (3− ε)-approximation deterministic

mechanism, for some constant ε > 0. Consider the following two scenarios with three items

having values v1 = v2 = v3 = 1. Let c∗
def
= B

2−ε/2 ; notice that 2c∗ > B.

• [With costs (c∗, c∗, c∗)]. Due to the individual rationality, each winning item gains a

payment of at least c∗. To guarantee the promised approximation ratio of (3 − ε) under

budget feasibility, there is exactly one winning item. W.l.o.g., we assume that the winner

is the first item.

• [With costs (0, c∗, c∗)]. By the truthfulness, item 1 wins once again, getting the same

payment of at least c∗. As a result, the budget left is at most (B − c∗) < c∗. Regarding the

budget feasibility and individual rationality, neither item 2 nor item 3 can win.

In the later scenario, the mechanism generates value alg = 1, yet the Fractional Knapsack bench-

mark achieves value fopt = 1 + B
c∗ = 3 − ε

2 > 3 − ε. This contradicts our assumption that the

mechanism is (3− ε)-approximation, concluding the proof of the theorem.

5 Main Result: Randomized Mechanism

We now present the main result of our work, a randomized mechanism (called RANDOMIZED-

MECHANISM) that achieves a 2-approximation to the Fractional Knapsack benchmark. Regarding

the matching lower bound by Chen et al. [CGL11, Theorem 4.2] against the weaker Knapsack

benchmark, this approximation guarantee is tight for both benchmarks. Our mechanism (first

stage) gets the pair (r, S(r)) from the PRUNING-MECHANISM given in Section 3, and then (sec-

ond stage) applies a randomized non-adaptive posted-price scheme.

We first verify that all quantities in RANDOMIZED-MECHANISM are well defined.
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RANDOMIZED-MECHANISM

0. Receive the pair (r, S(r)) from PRUNING-MECHANISM

1. Let q
def
= 1

2 ·
v(S(r))−rB

min{vi∗ , v(T )}

2. If vi∗ ≤ v(T ), let qi∗
def
= (12 − q) and qT

def
= 1

2

3. Else, let qi∗
def
= 1

2 and qT
def
= (12 − q)

4. Offer pricea Bi∗ to item i∗, where Bi∗ is defined as follows:

(a) With probability qi∗, let Bi∗
def
= vi∗

r

(b) With probability qT, let Bi∗
def
= B − v(T )

r

(c) With probability q, draw Bi∗ ∼ Uniform[B − v(T )
r , vi∗

r ]

5. Offer price Bi
def
= vi

v(T ) · (B −Bi∗) to each item i ∈ T

aFor every item i ∈ S(r), price Bi is well defined in range [0, vi

r
] ⊆ [0, B], by Lemma 2 (a).

Figure 6: The 2-approximation randomized budget-feasible mechanism.

Lemma 3. 0 ≤ q = 1
2 ·

v(S(r))−rB
min{vi∗ , v(T )} ≤ 1

2 and 0 ≤ B − v(T )
r < vi∗

r .

Proof. The first inequality is due to Lemma 2 (b) that v(S(r)) > rB. Lemma 2 further implies

rB ≥ vi∗ and rB ≥ v(T ), i.e., rB ≥ max{vi∗ , v(T )}. Now, the second inequality in Lemma 3

follows, as q = 1
2 ·

vi∗+v(T )−rB
min{vi∗ , v(T )} ≤

1
2 ·

vi∗+v(T )−max{vi∗ , v(T )}
min{vi∗ , v(T )} = 1

2 . Finally, rearranging v(T ) ≤
rB < v(S(r)) = vi∗ + v(T ) leads to the last two inequalities.

Similar to DETERMINISTIC-MECHANISM in Section 4, we also slightly abuse notations and

also refer to RANDOMIZED-MECHANISM as the composition of two mechanisms: PRUNING-

MECHANISM with RANDOMIZED-MECHANISM.

Theorem 4. RANDOMIZED-MECHANISM is a 2-approximation mechanism (individually rational,

budget-feasible, and universally truthful) against the Fractional Knapsack benchmark.

Proof. Since RANDOMIZED-MECHANISM is a posted-price scheme, it is individually rational.

Since each random realization of the prices (Bi)i∈S(r) is budget-feasible, i.e.,
∑

i∈S(r)Bi = B
by construction, the mechanism is also budget-feasible. Note that (1) all random choices in

RANDOMIZED-MECHANISM, i.e., the prices (Bi)i∈S(r), can be made before execution of the mech-

anism; and (2) for each such choice, the resulting posted-price mechanism is obviously truthful.

Due to Lemma 1, all desired properties extend to the composition mechanism, hence being in-

dividually rational, budget-feasible, and universally truthful.

In the rest of the proof, we show that RANDOMIZED-MECHANISM is a 2-approximation to fopt.

Let (xi)i∈S(r) denote the allocation probabilities, then the mechanism generates an expected

value of alg =
∑

i∈S(r) vi · xi. In order to prove the approximation guarantee, we need the

following equation (2), inequality (3), and inequality (4), which will be proved later.

rB = 2qi∗ · vi∗ + 2qT · v(T ), (2)

vi∗ · xi∗ ≥ qi∗ · vi∗ + 1
2 · (vi∗ − r · ci∗), (3)

vi · xi ≥ qT · vi + 1
2 · (vi − r · ci), ∀i ∈ T. (4)

Indeed, these mathematical facts together with Lemma 2 (c) imply that 2 · alg ≥ fopt.

fopt ≤ v(S(r)) + r · (B − c(S(r)))

11



(2)
= (vi∗ + v(T )) + 2 · (qi∗ · vi∗ + qT · v(T )) − r · (ci∗ + c(T ))

(3,4)
≤ 2vi∗ · xi∗ + 2 ·

∑

i∈T

vi · xi

= 2 · alg.

Now, we are only left to prove equation (2), inequality (3) and inequality (4).

[Equation (2)]. By the definitions of qi∗ and qT , in either case of Step (2) or Step (3),

qi∗ · vi∗ + qT · v(T ) = 1
2 · (vi∗ + v(T )) − q ·min{vi∗ , v(T )}

= 1
2 · (vi∗ + v(T )) − 1

2 · (v(S(r))− rB) (definition of q)

= 1
2 · rB.

[Inequality (3)]. It is equivalent to showing that Pr[Bi∗ ≥ ci∗ ] = xi∗ ≥ qi∗ +
vi∗−r·ci∗

2vi∗
.

• [When ci∗ ≤ B − v(T )
r ]. Item i∗ always accepts price Bi∗ , i.e., Pr[Bi∗ ≥ ci∗ ] = 1, which

gives us the desired bound of 1 ≥ qi∗ +
vi∗−r·ci∗

2vi∗
, because qi∗ ≤ 1

2 .

• [When ci∗ > B − v(T )
r ]. Due to Lemma 2 (a), vi∗

r ≥ ci∗ . We consider the random events

in Step (4a) that Bi∗ = vi∗
r and in Step (4c) that Bi∗ ∼ Uniform[B − v(T )

r , vi∗
r ]. Since

Pr[Step (4a)] = qi∗ and Pr[Step (4c)] = q, putting everything together gives

Pr [Bi∗ ≥ ci∗ ] = qi∗ + q · vi∗/r − ci∗

vi∗/r − (B − v(T )/r)
(Lemma 2 (a): vi

r ≥ ci)

= qi∗ +
1

2
· vi∗ − r · ci∗
min{vi∗ , v(T )}

(definition of q)

≥ qi∗ +
vi∗ − r · ci∗

2vi∗
. (as vi∗ ≥ min{vi∗ , v(T )} and vi

r ≥ ci)

[Inequality (4)]. The argument is similar to the above. For each item i ∈ T , we claim that

Pr[Bi ≥ ci] = xi ≥ qT + vi−r·ci
2vi

.

• [When ci ≤ vi
v(T ) · (B −

vi∗
r )]. Item i always accepts price Bi, i.e., Pr[Bi ≥ ci] = 1, which

gives us the desired bound of 1 ≥ qT + vi−r·ci
2vi

, in that qT ≤ 1
2 .

• [When ci >
vi

v(T ) · (B −
vi∗
r )]. By Step (5), Bi ≥ ci if and only if Bi∗ ≤ B − v(T ) · civi .

We consider the random events in Step (4b) that Bi∗ = B − v(T )
r and in Step (4c) that

Bi∗ ∼ Uniform[B − v(T )
r , vi∗

r ]. Because Pr[Step (4b)] = qT and Pr[Step (4c)] = q,

Pr [Bi ≥ ci] = qT + q · (B − v(T ) · ci/vi)− (B − v(T )/r)

vi∗/r − (B − v(T )/r)

= qT + q · v(T )

v(S(r)) − rB
· vi − r · ci

vi
(as v(S(r)) = vi∗ + v(T ))

= qT +
1

2
· v(T )

min{vi∗ , v(T )}
· vi − r · ci

vi
(definition of q)

≥ qT +
vi − r · ci

2vi
, (Lemma 2 (a): vi

r ≥ ci)

This completes the proof of Theorem 4.
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6 Conclusion and Open Question

In this work, we proposed a budget-feasible randomized mechanism with the best possible

approximation guarantee for an additive buyer. In addition, our deterministic mechanism still

leaves some room for improvement: the best possible approximation guarantee is somewhere

between
[√

2 + 1, 3
]

. However, our instance from Theorem 3 clearly demonstrates that quite

a different approach that is specifically tailored to the real Knapsack optimum (rather than the

fractional relaxation solution) is needed.

The class of additive valuations is the most basic class of valuations in the research agenda

for budget-feasible mechanisms. We hope that our results may lead to new mechanisms and

improved analysis for broader valuation classes. Indeed, given the same factor 2-approximation

result of [BCGL17] for the promise version of the problem for a subadditive buyer, we are even

so bold as to conjecture that the true approximation guarantee for a subadditive buyer is still 2
(leaving all computational considerations aside).

Our composition approach has a lot of resemblance to the pruning ideas from the frugality

literature. This demonstrates that ideas and approaches from one area of reverse auction design

might be beneficial to another. We believe that there could be more interesting connections

between these two complementary agendas.

Finally, our mechanisms use posted prices in the second stage. Besides the practical interest

and motivation of posted-price mechanisms in the prior work, our work gives additional support

to study this family of mechanisms in budget-feasible framework from a theoretical viewpoint.

Acknowledgements. We are grateful to the anonymous reviewers for their dedication in care-

fully reading through this paper; they offered many invaluable comments and suggestions.
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[AT02] Aaron Archer and Éva Tardos. Frugal path mechanisms. In Proceedings of the Thir-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San

Francisco, CA, USA., pages 991–999, 2002.

[BCGL17] Xiaohui Bei, Ning Chen, Nick Gravin, and Pinyan Lu. Worst-case mechanism design

via bayesian analysis. SIAM J. Comput., 46(4):1428–1448, 2017.

13



[BH16] Eric Balkanski and Jason D. Hartline. Bayesian budget feasibility with posted pricing.

In Proceedings of the 25th International Conference on World Wide Web, WWW 2016,

Montreal, Canada, April 11 - 15, 2016, pages 189–203, 2016.

[BKS12] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a

budget: posted price mechanisms for online procurement. In Proceedings of the 13th

ACM Conference on Electronic Commerce, EC 2012, Valencia, Spain, June 4-8, 2012,

pages 128–145, 2012.

[BS15] Eric Balkanski and Yaron Singer. Mechanisms for fair attribution. In Proceedings of

the Sixteenth ACM Conference on Economics and Computation, EC ’15, Portland, OR,

USA, June 15-19, 2015, pages 529–546, 2015.

[CEGP10] Ning Chen, Edith Elkind, Nick Gravin, and Fedor Petrov. Frugal mechanism design

via spectral techniques. In 51th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 755–764,

2010.

[CGL11] Ning Chen, Nick Gravin, and Pinyan Lu. On the approximability of budget feasi-

ble mechanisms. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,

2011, pages 685–699, 2011.

[CK07] Ning Chen and Anna R. Karlin. Cheap labor can be expensive. In Proceedings of the

Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New

Orleans, Louisiana, USA, January 7-9, 2007, pages 707–715, 2007.

[DPS11] Shahar Dobzinski, Christos H. Papadimitriou, and Yaron Singer. Mechanisms for

complement-free procurement. In Proceedings 12th ACM Conference on Electronic

Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011, pages 273–282, 2011.

[EGG07] Edith Elkind, Leslie Ann Goldberg, and Paul W. Goldberg. Frugality ratios and im-

proved truthful mechanisms for vertex cover. In Proceedings 8th ACM Conference on

Electronic Commerce (EC-2007), San Diego, California, USA, June 11-15, 2007, pages

336–345, 2007.

[ESS04] Edith Elkind, Amit Sahai, and Kenneth Steiglitz. Frugality in path auctions. In

Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 701–709,

2004.

[GNS14] Gagan Goel, Afshin Nikzad, and Adish Singla. Mechanism design for crowdsourcing

markets with heterogeneous tasks. In Proceedings of the Seconf AAAI Conference on

Human Computation and Crowdsourcing, HCOMP 2014, November 2-4, 2014, Pitts-

burgh, Pennsylvania, USA, 2014.

[HIM14] Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan. Budget feasible mechanisms

for experimental design. In LATIN 2014: Theoretical Informatics - 11th Latin Amer-

ican Symposium, Montevideo, Uruguay, March 31 - April 4, 2014. Proceedings, pages

719–730, 2014.

[HKS18] Mohammad Taghi Hajiaghayi, Mohammad Reza Khani, and Saeed Seddighin. Frugal

auction design for set systems: Vertex cover and knapsack. In Proceedings of the 2018

ACM Conference on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018,

pages 645–662, 2018.

14



[KKT05] Anna R. Karlin, David Kempe, and Tami Tamir. Beyond VCG: frugality of truthful

mechanisms. In 46th Annual IEEE Symposium on Foundations of Computer Science

(FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 615–626,

2005.

[KSM10] David Kempe, Mahyar Salek, and Cristopher Moore. Frugal and truthful auctions

for vertex covers, flows and cuts. In 51th Annual IEEE Symposium on Foundations of

Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages

745–754, 2010.
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