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ABSTRACT
Over the last 2 decades, several dedicated languages have been pro-
posed to support model management activities such as model vali-
dation, transformation, and code generation. As software systems
become more complex, underlying system models grow proportion-
ally in both size and complexity. To keep up, model management
languages and their execution engines need to provide increasingly
more sophisticated mechanisms for making the most efficient use of
the available system resources. Efficiency is particularly important
whenmodel-driven technologies are used in the context of low-code
platforms where all model processing happens in pay-per-use cloud
resources. In this paper, we present our vision for an approach that
leverages sophisticated static program analysis of model manage-
ment programs to identify, load, process and transparently discard
relevant model partitions – instead of naively loading the entire
models into memory and keeping them loaded for the duration of
the execution of the program. In this way, model management pro-
grams will be able to process system models faster with a reduced
memory footprint, and resources will be freed that will allow them
to accommodate even larger models.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering.
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1 INTRODUCTION
Models and modelling have always been part of the software de-
velopment process. While in traditional software development pro-
cesses, models are used primarily for documentation and commu-
nication, in Model-Driven Engineering (MDE), models play a more
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central role and are considered as first-class artefacts that drive
software development, thus enhancing productivity [10][5], main-
tainability, consistency, and traceability [11].

In MDE, models are manipulated using model management pro-
grams that carry out different tasks such as model transforma-
tion, model merging, model validation, etc [8]. These tasks can be
achieved either by general-purpose programming languages such
as Java and Python or using task-specific languages such as Acceleo
1, ATL2 or the languages of the Epsilon platform [8].

Many industrial projects attempt to represent the system with
models that minimise accidental complexity and use concepts which
are close to the domain [4][10][18]. As projects become large,
models grow large as well, and this pushes the current genera-
tion of model management tools and technologies to their limits.
When model management runs on pay-as-you-go cloud-based re-
sources, this inefficiency and reduced scalability incurs additional
cost. Hence, there is vested interest from vendors of cloud-based
low-code platforms efficient and scalable model management.

The primary reason for these limitations lies in the way that
these technologies interact withmodels. For example, when amodel
management program needs to load and process (e.g., transform,
validate) a model:

• If the model is a file-based model (e.g. XMI), as the execution
engine does not know which parts of the model the program
will access, the entire model needs to be loaded into memory.

• If the model is a repository-based model (e.g. CDO [15],
Neo4EMF [3], Hawk [1]), the execution engine does not
know which attributes/references of a model element the
program will need to access. Thus, it either retrieves all
or none of them when it retrieves the model element. If
the execution engine retrieves none, then it needs to ac-
cess the model repository every time the program needs an
attribute/reference. If the execution engine retrieves all of
them, some of them will occupy memory without ever being
accessed by the program.

• In both formats, the execution engine keeps everything in
memory until the end of the model management program,
because it does not know when the program no longer needs
certain parts of the model. This is inefficient in terms of
memory use.

To summarise, the interaction of model management program exe-
cution engines with models (file-based or repository-based) is too
“short-sighted” in the absence of static-analysis-based execution
planning mechanisms. This limitation results in increased model
loading time and increased memory consumption. This paper in-
troduces an approach that can help execution engines for model

1https://www.eclipse.org/acceleo/
2https://www.eclipse.org/atl/
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management programs to handle large models more efficiently. In
our approach, by using in-advance knowledge about the program
-provided by static analysis-, the execution engines will be able to
identify, load and process model partitions which contain model
elements of interest. This approach aims to enable model manage-
ment programs to load only parts of models that are required for
the execution of a program and eliminate the overhead of loading
and keeping in memory unnecessary parts.

The remainder of this paper is structured as follows. Section 2
provides a motivating example and Section 3 discusses the proposed
methodology. Section 4 provides an overview of the related work.
Section 5 describes our current progress and outlines our next steps
for the implementation of the proposed approach.

2 MOTIVATING EXAMPLE
Consider the domain-specific modelling language for implementing
low-code form-based applications (from Figure 1). According to
this modelling language, every Application consists of a number
of Entity and Form elements. A Form has a reference to an Entity.
Each Entity can be composed of Properties where every Field is
assigned to at most one Property. For implementing the low-code
form-based application, Entity and Property elements are used for
generating the database schema, back-end CRUD code and web ser-
vices. Furthermore, from Form and Field elements we can generate
the front-end of the application (e.g. HTML/iOS/Android front-end
code).

forms
0…*

Application

title: String

Form

name: String

Entity

label: String

Field

name: String
Type: String

Property

documentation: String

Document

entities
0…*

entity

0…1

property

0…1

properties

0…*

Figure 1: Form-based low-code application metamodel

Let us consider the back-end code generation scenario where
a developer wishes to re-generate the back-end of an application
(or of all applications hosted in the low-code platform) and leave
the front-end intact. Assume this re-generation task involves an
optimisation in the generated back-end code or the migration to a
different database or web-services framework.

The back-end generator could be written in a model-to-text
transformation (M2T) language such as the Epsilon Generation
Language (EGL) [13] as shown in Listing 1. There is an Entity2Class
rule which transforms every Entity to a Java class using the EGL
code. EGL is a member of the Epsilon family language which is
used for generating code from a model.

Listing 1: EGL transformation rule for generating part of the
low-code application back-end

1 rule Entity2Class

2 transform e : Entity {

3 template : 'entity2class.egl'

4 target : "src-gen/" + e.name + ".java"}

In Listing 1, for every Entity (e is an instance of Entity) in the
model, the program invokes the entity2class.egl template and stores

the generated class in a .java file. The entity2class.egl template is
shown in Listing 2. In order to generate a class from Entity, the name
of class is assigned according to the name of Entity and from every
Property, a new field of the class is declared. The entity2class.egl
only accesses the name of the Entity and the names and types of
its properties but not the Form or Field elements of the model.

Listing 2: The entity2class.egl template
1 public class [%=Entity.name%]{

2 [% for (p in Entity.properties){ %]

3 [%=p.type%] [%=p.name%] = new [%=p.type%]();

4 [%}%]}

To load a model for executing this program, there are two possibili-
ties.

• If the models are file-based (e.g. XMI or XML-based), the
EGL execution engine needs to decide in advance, which
parts of them it will load in memory, as re-parsing the same
model file several times can be expensive. In the absence
of in-advance static analysis of the generator (M2T), the
UI-related parts of the application model would be loaded
as well, despite the fact that they will not be used by the
back-end generator.

• If the models are not file-based (e.g., stored in a database-
backed repository such as CDO or Hawk), the EGL execution
engine can retrieve model elements on demand. Still, in the
absence of static analysis, there is no way to tell which fea-
tures of these model elements should be retrieved from the
repository for each element. In this situation, there are two
alternatives: either greedily fetch all features in advance or
lazily fetch all features on demand. The former strategy
favours execution time over memory consumption, while
the second strategy requires less memory, but potentially
multiple round-trips to the repository (detrimental to per-
formance). Considering Listing 2 that entity2class.egl uses
the name of the Entity and the names and types of its prop-
erties but not their documentation, the two strategies are
sub-optimal:
- Greedy: The documentation of the entity and its properties
is fetched from the repository but is never used by the
generator, thus wasting memory.

- Lazy: Multiple round-trips to the repository are required
to fetch the values of the name/type features of each ac-
cessed entity and property in the model, thus degrading
performance.

A static-analysis-based execution planner could determine
which features are (not) accessed by the generator in ad-
vance and query the repository accordingly (e.g., populate
the name and type of each Field in one go, but leave out the
documentation which is not required).

As the entity2class.egl (Listing 2) only accesses features and prop-
erties of the Entity itself (i.e., it doesn’t reach out to other Entity
elements), after the execution of rule Entity2Class for a given entity,
that entity is no longer needed and could be offloaded frommemory
to reduce the overall footprint of the generator. In the absence of
in-advance static analysis, this cannot be determined by the gener-
ator. Therefore, all Entity elements will be kept in memory until
the entire generation has concluded.
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3 APPROACH
This paper introduces an approach which helps execution engines
of model management programs to handle large models more effi-
ciently. The general goal of this approach is reducing loading time
and memory footprint, which is achieved by using static analysis
for generating an execution plan. The proposed approach includes
three main steps and illustrated in Figure 2.

Reduce Memory Footprint, Reduce Loading Time

Execution Engine

Model

Conforms 
to

Memory

Loading important parts of model from memory 
and keep necessary parts of model

Static 
Analyser

Effective Meta-model
Model Management

Program

1

2

3

Output

Figure 2: The proposed approach

(1) Static Analyser
In the first step of our approach, a model management program is
provided as input to a static analyser. The role of the static analyser
is compiling the program and analysing it using the Abstract Syntax
Graph. Static analysis of Epsilon started in [16] where the Abstract
Syntax Tree of an EOL program is computed, then resolution al-
gorithms including variable resolution (e.g., resolving identifiers
to their definitions) and type resolution (e.g., primitive types and
collection types) applied to derive an Abstract Syntax Graph. Thus,
using the Abstract Syntax Graph, the static analyser can extract
relevant information (i.e., types and properties accessed by the
program). Type inference is a pre-process activity which helps the
static analyser to extract useful information for execution planning.
The execution plan contains the information which helps the ex-
ecution engine to load and process models efficiently (e.g., what
part of the model should be loaded each time, which parts should
be disposed of from memory, when each of these activities should
occur). A part of execution plan is in the form of an effective meta-
model which is considered as an output of the static analyser. The
effective metamodel is a subset of the model’s metamodel which
consists of only types and properties of interest [16] (see below).

To illustrate how every step of the approach works, we use the
motivating example of Section 2. Considering Listing 2, the model
management program entity2class.egl only uses the name of the
Entity and the names and types of its properties; the remaining
information in the model is not required for executing this program
(such as their documentation). In the motivating example, the static
analyser detects the elements of the model that are necessary for
executing the EGL program. Since EOL is the core language of the
Epsilon platform, our approach applies to all model management
languages of the platform. Also, the underlying principles, subject
to suitable technical modifications, can be applied to the other
modelling languages, e.g., ATL. Hence, instead of loading all model

elements, we need to load only instances of Entity and Property
and only the values of their name/type fields. This information is
obtained by static analysis facilities of the EGL program.

It is worth noting that using static analysis is not only about
extracting information to load model elements on demand. Using
static analysis is useful to define the disposing strategy as well. By
using the execution plan, the execution engine can detect which
parts of the model are needed and how long this information should
be kept in memory. In this way, the execution engine has a plan
for executing the program to keep the parts of the model until the
program needs them for execution. After that, if the program does
not need elements anymore, the execution engine could unload
them from memory (see memory management part).
(2) Effective Metamodel
The output of static analyser is in the form of an effective meta-
model for each model involved in the program. The concept of
effective metamodel was introduced in [17] in order to support
partial loading of XMI files. As for partial loading, we need only
the parts of the model which are accessed by the program. In our
approach, we load each model according to its effective metamodel
instead of the original one.

The structure of effective metamodel is presented in Figure 3.
It consists of two classes: EffectiveMetamodel class with name and
nsuri attributes and EffectiveType with name, attributes and refer-
ences. The EffectiveMetamodel class connects to an EffectiveType
by allOfKind, allOfType and types references. Figure 4 illustrates
the effective metamodel of the EGL program from our motivating
example. In comparison with the original metamodel, the effec-
tive metamodel does not include any additional information such
as Field and Form classes and their properties. Thus, loading the
model according to effective metamodel is expected to be more effi-
cient. The attributes of EffectiveMetamodel class are filled by the
original metamodel, which are the name and namespace URI (i.e.,
unique ID in terms of EMF terminology) of the metamodel. Two
effective types refer to classes which are necessary for executing
the EGL program; Entity and Property in this case. The attributes
of classes are according to the attributes which are needed to access
the code (e.g., name). Thus, in this step, the static analyser helps
the execution engine in extracting elements of the model which are
necessary for executing the program at compile time in the form
of an effective metamodel.

EffectiveMetamodel

name: String
nsURI: String

EffectiveType

allOfKind

allOfType

0…*

0…*

types
0…*

name: String
attributes: String[]
references: String[]

Figure 3: The structure of effective metamodel [17]

(3)Memory management
In the next step, the effective metamodel and the model that con-
forms to it are sent to the execution engine as inputs. Loading only
relevant parts of a model into memory is an efficient way to reduce
the time of loading but the way that the engine plans to load these
parts of model is important.
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EffectiveMetamodel

EffectiveType

name : lowcode
nsURI : http://lowcode

name : Entity
attributes :{name}
references : {properties}

EffectiveType
name : Property
attributes :{name, type}
references : {}

allOfKind

types

0…*

0…*

Figure 4: Effective metamodel of EGL code

Considering the motivating example (Listing 1), for applying the
Entity2Class rule on every Entity, one way to partition the model
is by Entity. Based on this partitioning plan, the execution engine
could load every Entity, process it and dispose it every time the pro-
gram finishes using that Entity. The engine could load each Entity
in every network connection (when model is stored in repository)
which is efficient in memory but an unsuitable way in terms of
performance. On the other hand, the execution engine can load
all Entity elements in one connection to the network. Loading all
Entity elements of model in memory is not efficient as all elements
should be kept in memory during the program execution, incur-
ring additional memory consumption. Thus, the execution engine
should consider a trade-off between performance and memory con-
sumption for loading model partitions. Consequently, there is a
need for intelligent partitioning of models underpinned by sophis-
ticated strategies that use information extracted from code (model
management programs) at compile time.

In addition to loading the necessary partitions of the model,
another concern is memory consumption. When loaded model ele-
ments are no longer needed by the model management program, a
sophisticated strategy is required for disposing them from memory.
In Listing 1, if the execution engine executes the program for all
entities, after the Java class of an entity is generated, there is no
need to keep that entity in memory any more. Hence, the mem-
ory consumed by that entity can be freed or become available for
loading more elements.

The last phase of this approach is producing an output after
executing the program. As there are different types of model man-
agement programs, the output would be a model (executing a model
transformation program) or code (executing a code generation pro-
gram). Using this approach, we expect that the program output
will be produced more efficiently with reduced loading time be-
cause of using intelligent loading strategies and with less memory
consumption due to unloading unnecessary model parts.

4 RELATEDWORK
Providing infrastructure for storing and indexing large models is
an essential aspect of scalable MDE. The common format which
is currently used for storing models is XML Metadata Interchange
(XMI). While XMI is a suitable way of storing small models, it has
some limitations when it deals with large models.

In the case of XMI alternatives, Jouault et al. [6] introduced an
open binary format known as Binary Model Syntax (BMS), and they
claimed that BMS files are three times smaller than corresponding

XMI files. So, it can be a high-performance alternative to XMI.
However, while BMS was introduced in 2009, there has not been
any update or release of this format in the public domain until now.

To achieve partial loading, some of the related works propose
database-backed persistence technologies. The mature ones are
CDO [15], Morsa [12] and Neo4EMF [3].

The Connected Data Object (CDO) is a model repository for
EMF models. Metamodels and models can be stored in all kinds
of database backends like major relational databases or NoSQL
databases. It is also a framework built on top of the EMF, which
provides the persistence of large models. CDO supports scalability,
which is achieved by object loading based on on-demand strategies
and caching them in the application. Hence, it does not keep the
objects which are no longer referenced by the application, and
they are collected from the memory automatically. Although CDO
claims to be able to load models up to 4GB, experimental evaluation
with Intel CoreI5 760 PC at 2.80GHz with 8GB of physical RAM in
[12] reported an upper bound of 271MB.

Morsa is a persistence solution for storing and accessing large
models based on on-demand strategies, which is supported by the
NoSQL database. Morsa uses MongoDB, a document-oriented data-
base, as its persistence backend. Morsa provides clients with a
partial load of large models using a load on-demand mechanism.
Morsa satisfies scalability requirements, but it is just a prototype,
and there is no update that they plan to consider crucial issues like
security in order to deploy this prototype in an industrial context
[9]. Also, choosing the cache policy is manual, and the user should
select the policy using a GUI [12].

Neo4EMF is a persistence layer for EMF models. It is built on top
of the graph-based database Neo4j, as these databases are able to
manage large-scale data on highly distributed environments. More-
over, Barmpis and Kolovos [2] suggest that NoSQL databases would
provide better scalability and performance than relational databases
due to the interconnected nature of models. Neo4EMF is similar
to Morsa in several aspects (notably in on-demand loading), but it
aims at exploiting the optimized navigation performance offered by
graph-databases. While Neo4EMF is a more performant alternative
to XMI due to high-performance access and on-demand loading,
its raw performance does not surpass a more mature solution like
CDO [3].

SmartSAX is another prototype which was introduced in [17].
It supports partial loading of XMI model files. The main idea is
providing in-advance knowledge of a program (which kind of model
elements and which of their properties are accessed by the model
management program) can be used to partially load only a subset
of XMI based EMF model into memory.

SmartSAX also has some limitations. First, it just supports read-
only XMI files (does not support changes made to partially loaded
models). Also, as partial loading can affect the internal structure
of the XMI model, elements should have IDs that do not depend
on their position in the containment hierarchy. Finally, SmartSAX
currently does not support loading models that are persisted in
multiple XMI files. Also, it does not support garbage collection to
unload unnecessary parts of model from memory.

Although recent research has made advancements in this area,
existing solutions has clear shortcomings in accessing and process-
ing large models. The first shortcoming is about loading models.
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Repositories such as Morsa, CDO provide remote accessing of large
models and store them in a graph-based or relational database. Still,
as some tools are based on EMF, and the common format for storing
models is XMI, there is a need for partial access to XMI models,
which loads models using on-demand strategies. In addition, load-
ing and storing models by elements is not an efficient way, so the
second challenge is about partitioning models. Intelligent strate-
gies for grouping model elements as a partition are needed. Finally,
intelligent unloading strategies are needed. Keeping part of models
loaded into memory that will not be used further increases the
memory footprint unnecessarily. Hence, unloading them when the
program does not refer to them anymore would be a solution for re-
ducing the memory consumption of model management programs.

5 CURRENT PROGRESS AND NEXT STEPS
We presented a new approach that will enable model management
languages and engines to eliminate the overhead of loading unim-
portant parts of models (i.e. parts that they will never access) and
of unnecessarily keeping obsolete parts (i.e. parts that have already
been processed and are guaranteed not to be reaccessed) in memory.

The proposed approach has three main steps. We have made
significant progress in implementing the first step. The static anal-
yser for EOL language, which is the core language of Epsilon, was
started in [16]. Building on this preliminary work, we added new
features to the EOL engine to get more information such as return
type compatibility, type compatibility of context and parameters
from code at compile time. Compile-time errors are the by-product
of its implementation, which shows that we have more accurate
information about code.

According to the designed approach, we use a static analyser for
extracting the effective metamodel, which has information about
referenced model elements in code. We are currently working on
extracting the effective metamodel in order to detect relevant model
elements starting from the incomplete algorithm introduced in [17].

Now that a static analyser has been implemented for EOL, we
plan to extend this facility to other specific languages of the Epsilon
framework like the Epsilon Validation Language (EVL) [7]. For
models which are stored in repositories, we need to load model
elements based on intelligent partitioning of models. Hence, there
is a need for finding an algorithm to partition the model in order to
load every part of model in an efficient way. This algorithm would
be useful in the way that enables the engine to remove elements
that are no longer used from memory and only keep parts that are
required for executing the rest of the program.

In order to evaluate our project, we will compare our approach to
other recent works like Neo4EMF and CDO. The goal of this work
is to propose methods for reducing the time of loading and memory
footprint when model management tasks are applied on large size
models. Hence, memory footprint and loading time are the factors
that we compare by runningmodel management programswith and
without the intelligent model partitioning and disposal facilities.
We have considered the models proposed in the GraBaTs 2009
contest as test cases [14]. Themodels conform to the JavaMetamodel
metamodel. There are five models, from Set0 to Set4, each one larger
than its predecessor (from a 8.8MB XMI file with 70447 model
elements representing 14 Java classes to a 646MB file with 4961779
model elements representing 5984 Java classes).
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