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ABSTRACT
With the increase in the complexity of software systems, the size
and the complexity of underlying models also increases propor-
tionally. In a low-code system, models can be stored in different
backend technologies and can be represented in various formats.
Tailored high-level query languages are used to query such het-
erogeneous models, but typically this has a significant impact on
performance. Our main aim is to propose optimization strategies
that can help to query large models in various formats efficiently.
In this paper, we present an approach based on compile-time static
analysis and specific query optimizers/translators to improve the
performance of complex queries over large-scale heterogeneous
models. The proposed approach aims to bring efficiency in terms
of query execution time and memory footprint, when compared to
the naive query execution for low-code platforms.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering.

KEYWORDS
Model-Driven Engineering, Scalability, Model Querying, Static
Analysis
ACM Reference Format:
Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. 2020. Effi-
ciently Querying Large-Scale Heterogeneous Models. In ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems
(MODELS ’20 Companion), October 18–23, 2020, Virtual Event, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3417990.3420207

1 INTRODUCTION
Low-code platforms use model-driven engineering (MDE) [8] pro-
cesses such as domain specific languages and code generation to
develop applications. MDE is a promising software engineering
methodology that considers models as first-class artefacts of the
software development process, further raising the level of abstrac-
tion beyond programming languages and frameworks. MDE has
been shown to provide benefits over traditional software engineer-
ing processes, not only in tackling complexity, but also in terms of
increased productivity [14, 16]. Though there are several low-code
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platforms available like OutSystems, Mendix, Google AppMaker
[1] and ZAppDev [4], there are still open challenges limiting the
broader adoption of low-code platforms in the industry. One of the
main challenges is model-driven environments, including low-code
platforms, is scalability [9, 24]. Scalability issues can be further
categorized as follows [19]:

• Scalable Domain-Specific Languages: Ability to design and
construct large models and domain-specific languages.

• Scalable Querying and Transformation: Ability to efficiently
query and transform very large models (millions of model
elements).

• Scalable Collaborative Modelling: Ability to collaboratively
work on the same models by different modelers.

• Scalable Model Persistence: Ability to store large models
efficiently with a low memory footprint.

This paper contributes to tackling the challenge of scalable querying
of large-scale heterogeneous models for low-code platforms. We
propose an architecture that helps to optimize certain classes of
queries for models stored in different backend technologies. In this
paper, the implementation of the proposed architecture is discussed
on top of the Epsilon framework [17]. We assume that the reader is
already familiar with 3-level meta-modeling architectures [3].

The remainder of this paper is organized as follow: Section 2,
presents a motivational example and identifies the performance
challenges involved. Section 3 presents an architecture for query
optimisation over heterogeneous models. Section 4 discusses the
existing work in the field of model query optimisation. Section 5
concludes the paper and presents future direction for this work.

2 MOTIVATION
In MDE, for some domains, there is a need to handle very large
models (VLMs) [25], for example, the models of the Automotive
Open System Architecture (AUTOSAR) [13], having models con-
taining millions of elements. Other areas with elements in the order
of millions include Building Information Modelling and reverse-
engineered code from complex systems [25]. While executing com-
plex and computationally expensive queries over such large models,
there is a significant performance cost in terms of execution time
[21]. Low-code platform is an instance of a generic model-driven
platform. In a model-driven platform, often, there can be a need to
access heterogeneous models concurrently. Consider a Simulink
and UML activity diagram metamodel, as an example as shown in
Figures 1(a) and 1(c). There are certain requirements and risks for
subsystems that are stored in a relational database, an excerpt of
the requirements table is shown in Figure 1(b).

Considering thesemetamodels and table in the figure, constraints
can be written in the Epsilon Validation Language (EVL) [18] as
shown in Listing 1. EVL is the validation language of the Epsilon
platform, built on-top of the OCL-based Epsilon Object Language
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(c) Excerpt of Simulink Metamodel

Figure 1: Metamodels and Excerpt of Requirements table used in Listing 1
(EOL), which is used to evaluate constraints on the models. In List-
ing 1, we have a constraint named SubsystemCounterpart (Line 1-6)
that checks that for every Activity in UML model there exists a
corresponding Subsystem in the Simulink model with the same
name and vice-versa (Line 7-10). The constraints also check that
requirements refer to valid subsystem names (Line 16-21) and that
there is at least one requirement for every subsystem (Line 11-15).
Now, if we consider evaluating this constraint over a pair of large
UML/Simulink models, it would become computationally expensive
and slow to execute, as each UML activity will be checked against
a large number of subsystems within the Simulink model. Writing
in a high-level language such as EVL makes it easy to write con-
straints over heterogeneous modeling technologies using a uniform
syntax, but on the other hand, it can also increase computational
complexity and memory footprint. The complexity of evaluating
these constraints via naive iteration for a Simulink model with N
subsystems and a UML model with M activities would be O(N*M)
for each constraint.

1 context UML!Activity {

2 constraint SubsystemCounterpart {

3 check: Simulink!`simulink/Ports & Subsystems/Subsystem`
4 .allInstances.exists(s|s.name = self.name)

5 }

6 }

7 context `simulink/Ports & Subsystems/Subsystem` {

8 constraint ActivityCounterPart {

9 check: UML!Activity.allInstances.exists(a|a.name = self.name)

10 }

11 constraint HasRequirements {

12 check: Requirements!Requirement.allInstances

13 .exists(r|r.subsystem = self.name)

14 }

15 }

16 context Requirements!Requirement {

17 constraint ValidSubsystem {

18 check : Simulink!`simulink/Ports & Subsystems/Subsystem`
19 .allInstances.exists(s|s.name = self.subsystem)

20 }

21 }

Listing 1: EVL constraint before optimisation
One possible optimization here is to translate these into their native
query languages, which are oftenmore efficient to execute in. In this
case, Simulink has a built-in index-backed findBlocks method for
looking up elements by type and properties. Here, to speed up this
query, a native query that makes use of the findBlocks method as
shown in EVL Listing 2. This constraint is semantically equivalent to

the one shown in Listing 1 but is much faster to execute. Assuming
a complexity of O(1) for a hash-based index in Simulink, this would
reduce the overall complexity of the constraint to O(M).
To reduce the complexity of the 2nd constraint, we could extend
Epsilon’s EMF driver with two new methods. A new index method
would create a property-based index of type instances in the UML
model (i.e. a name-based index of activities in line 2), which could
be then used in a find method to retrieve instances of that type by
property value (i.e. activities by name in line 12), without having
to naively iterate through them. With a complexity of O(M) for
creating the index in line 2 and a complexity of O(1) for querying it
in line 12, the complexity of the 2nd constraint would drop to O(M)
+ O(N). For the third constraint HasRequirements, the query can
be translated to the native query language of relational databases
(SQL) as shown in the Listing 2, to improve performance.

1 pre {

2 UML.index('Activity', 'name');

3 }

4 context UML!Activity {

5 constraint SubsystemCounterpart {

6 check : Simulink.findBlocks('simulink/Ports & Subsystems/Subsystem'

7 ,'name', self.name).notEmpty()

8 }

9 }

10 context `simulink/Ports & Subsystems/Subsystem` {

11 constraint ActivityCounterPart {

12 check: UML.find('Activity', 'name', s.name).isDefined()

13 }

14 constraint HasRequirements {

15 check: Requirements.runSql("select * Requirement where subsystem =

16 '+ self.name + '").size() > 0

17 }

18 }

19 context Requirements!Requirement {

20 constraint ValidSubsystem {

21 check : Simulink.findBlocks('simulink/Ports & Subsystems/Subsystem'

22 ,'name', self.subsystem).notEmpty()

23 }

24 }

Listing 2: EVL constraint after optimisation
There are two notable downsides to manually rewriting the con-
straints to make explicit use of driver/technology-specific issues
(i.e. Simulink’s findBlocks method and the EMF driver’s find and
index methods).

• This kind of optimisation requires expert knowledge of the
capabilities of the different modelling tools and drivers.
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• Model management programs that make use of these opti-
misation mechanisms are more verbose and hence difficult
to understand and maintain.

• Model management programs become tightly-coupled with
the underlying technologies. This would hinder migration
to a different modelling technology in the future (e.g. to a
non-EMF based UML tool)

The main aim of this work is to investigate how such optimisa-
tions can be performed behind the scenes, using static analysis
and automated program rewriting so that developers can express
model management programs in a technology-agnostic form (as in
Listing 1) but still benefit from technology-specific optimisations.

3 PROPOSED APPROACH
In this section, we present a framework for query optimisation
over heterogenous models in a low-code platform. The aim of this
framework is to be able to automatically rewrite expensive queries
to make them more efficient in terms of execution time. Query
rewriting/translation is based on compile time static analysis. To
our knowledge, we have not found the solution to this problem in
literature.
An overview of the proposed approach is shown in Figure 2. In
a low-code platform, the underlying metamodels can be of differ-
ent modelling technologies, as depicted in our running example.
Furthermore, model management programs, such as queries or
transformations, are compiled. At compile-time, a static analysis
component will analyze both the program and the metamodels to
which its input and output models conform and will yield a type
resolved abstract syntax graph. Static analysis after type resolution
can also produce the necessary compile-time errors based on type
compatibility as a by-product. The query optimisation block will
use the results of such static analysis.

3.1 Compile-time Static Analysis
We will use Epsilon for the implementation of our approach, as
Epsilon supports different modelling technologies in a modular
way through its Epsilon Model Connectivity (EMC) abstraction
layer. Epsilon is divided into two main parts a) Task-Specific i.e.
Epsilon family of languages b) Technology specific drivers i.e. EMC.
Epsilon is a model agnostic technology. It seamlessly accesses and
manages several underlying model persistence technologies (EMF,
MySQL, Spreadsheets etc.). Epsilon supports these technologies
through several EMC drivers which is extensible, any new models
persisted in other technology can be implemented and added to the
EMC layer as a driver. We implemented static analysis in Epsilon to
pre-populate a field known as ResolvedType for every expression in
the program at compile-time. For instance, consider the following:

1 Simulink!Block.all().collect(f|f.name="Commonly Used Blocks")

When an EOL program containing this expression is compiled,
the static analyser will populate the value of resolved type. In this
case, the ResolvedType of Simulink!Block.allInstances() will be Collec-
tion<Block>. Then static analyser set the ResolvedType of expression
Simulink!Block.allI().collect(f|f.name="Commonly Used Blocks")) to
Collection<String> .The compile-time static analysis will yield type
resolved AST (Abstract Syntax Tree), which will be used by the
query optimizer. For the whole process of query optimization, let
us consider the running example, as shown in Listing 3. For static

analysis, a metamodel is extracted from database schema with the
following rules:

• Each Database D is mapped to a respective metamodel MM.
• Each Table T in Database D would be mapped to a meta-class
of that metamodel MM.

• Each Column C in a table T is mapped to a structural feature
or attribute of meta-class Class of that metamodel MM.

To access models at compile-time for the purpose of static analysis,
we useModelDeclarationStatement. The syntax of model declaration
system is shown in Listing 3. Model declaration statement specifies
model’s local name, model’s type (in this case MySQL), as well as
a set of model-type- specific key-value parameters (in this case
server, port, database, username, password, name) that is used to
fetch the model’s metamodel. This model declaration statement for
static analysis is technology-agnostic i.e. we can specify different
modelling technologies.

1 model Requirements driver MySQL {

2 server = "localhost",port = "3306",database = "requirements",

3 username = "root",password = "",name= "Requirements"};

4 Requirements!Requirement.allInstances.exists(f|f.subsystem

5 = self.name);

Listing 3: Syntax of Model Declaration Statement
Static analysis of the program in Listing 3 would yield the type
resolved abstract syntax graph, as shown in Figure 4. It should be
noted that all the fields of resolved type are now populated using
static analysis.

3.2 Query Translation
The query optimisation block will have specific optimizers for each
back-end technology such as MySQL or Simulink. The architecture
supports several orthogonal optimizers as all optimisers operate on
the same AST, so it is possible that they may interfere with each
other. If there is just one optimiser then it would have to know
about all the other models accessed by the program in question.
Every back-end technology can provide different optimizing strate-
gies that can be utilized for efficient querying. For instance, if a
program queries three different models conforming to different
modelling technologies concurrently, then three individual opti-
mizers for each back-end technology would be invoked. They will
each be responsible for the optimisation of queries on their models.
These optimizers would translate queries written in high-level lan-
guages such as the Epsilon Object Language and automatically
rewrite them in the native query language of their model persis-
tence technology. Query translation and rewriting would be differ-
ent for different model formats (such as database-backed models,
Simulink). All modeling technologies supported by the Epsilon
(drivers) implement an EMC-provided Java interface IModel. For
instance, in the running example, we want to do query optimisation
for two types of models, Simulink, and database-backed models.
Now, both these drivers already implement IModel. We created a
new interface for query optimisation known as IRewriter. Both these
drivers will now implement this IRewriter interface. We introduce
a new method rewrite() in this interface IRewriter which will take
in an IEolModule as a parameter. In EOL, programs are organized
in modules i.e. EolModule that implement the IEolModule interface.
Each EolModule defines a main body and a number of operations.
Now all model drivers that support compile-time optimisation, will
implement the IRewriter interface and its rewrite() method. One
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Figure 2: Proposed query optimisation architecture

«interface»
IRewriter

implements
implements

Figure 3: IRewriter interface architecture
example of this approach is shown in Figure 3. At compile-time,
the rewrite method is called for all declared models to perform
technology-specific query optimisations. In the rewrite() method,
theAST of each statement is passed, which is then translated/rewrit-
ten to its native query language, and is replaced with the original
AST in EOLModule.
Now, we will explain by an example how the type resolved abstract
syntax graph can be used to translate certain types of EOL expres-
sions to SQL. For the query translation process, we will consider
the running example in Listing 3. In particular, the EOL expression
can be translated to more efficient SQL representations:
.allInstances is a property that retrieves all records
from a table of database. In translation process Require-
ments!Requirement.allInstances would be translated to select *
from Requirement. .exists() is a FirstOrderOperationCallExpression
that returns true if there is atleast one instance in the collection
that satisfies the given condition. In translation process Re-
quirements!Requirement.allInstances.exists(f|f.subsystem=self.name)
would be translated to Requirement.runSql(select * from Requirement
where subsystem = ’+ self.name + ’").size() > 0
4 RELATEDWORK
We can classify related model querying approaches into two main
categories. (i) Native Querying (ii) Backend Independent Querying.
Native querying is efficient as it is tailored for the specific backend
persistence technology: the native language of the model backend
is used. If a model is stored in a relational database, SQL would be
used as a query language. The most prominent advantage is this
efficiency, as native query languages can have index-based methods,
but it also contains several drawbacks [6]: i) Query conciseness:
Native queries can sometimes be wordy, difficult to understand. ii)
Query abstraction level: Native queries are technology-specific if
backend technology is changed, often requiring considerable effort
to change queries.
Another common way is the use of high-level languages that ab-
stract over model representations and persistence formats. ATL
(Atlas Transformation Language) [15], OCL (Object Constraint Lan-
guage) [28], EOL (Epsilon Object Language) are some examples of
such high-level languages. They make use of intermediate layers
(such as the OCL pivot metamodel and the Epsilon model con-
nectivity layer) to shield developers from the complexity and par-
ticularities of the underlying persistence technologies. The OCL
pivot metamodel only supports EMF-based models, while EMC sup-
ports several model persistence formats (such as relational database,
spreadsheets, Simulink, and EMF-based models). Epsilon offers a

driver-based approach, so new technologies can easily be integrated
by adding a driver that implements the IModel Java interface.
In [20], the authors discuss the challenges of running OCL based
queries on relational database-backed models and propose an ap-
proach for translating queries written in higher-level query lan-
guages (EOL) to native query languages (such as SQL) at run-time.
In [11, 12] authors have proposed ways to generate SQL from OCL
expressions. In the Hawk model index [7], an approach has been
introduced based on derived features. Authors suggest to precom-
pute such features and cache them in the model index itself. Results
have shown a decrease in execution time by using such derived
attributes and references, but it has certain shortcomings as well.
Firstly, it adds an overhead of computing these derived attributes,
which increases the model insertion time containing derived at-
tributes, as well as the overhead of updating the values of these
features when the model changes.
Another approach for query optimisation as proposed in [27] is to
efficiently compute calls to allInstances() queries. The allInstances()
operation retrieves a collection containing all the members of the
element (type) the operation is invoked on. This approach is based
on greedy computation instead of on-demand computation. It uses
metamodel introspection and compile-time static analysis of queries
to: 1) Check if the program makes multiple calls to allInstances() 2)
If yes, then precompute all allInstances() collections. Cache all the
precomputed collections in one pass.
In [21], the authors present how combining three optimization tech-
niques (parallelization, lazy evaluation, and short-circuiting) can
significantly increase the performance of queries over large models.
In [10], a tool called Mogwai is proposed for efficient and scalable
querying. Mogwai translates OCL and ATL expressions to Gremlin
scripts- a query language for NoSQL databases. This shifts the com-
putation of queries at the database (persistence) side, and it makes
use of the benefits of optimisation strategies of the specific backend
technology for large models. To address scalability challenges in
MDE, one solution is through the use of distributed systems. Pagan
et al. [23] propose an efficient query language: MorsaQL (Morsa
Query Language) for the MORSA repository [22] – a repository
for storing large models in NoSQL databases. The design of Mor-
saQL is based on the SQL SELECT – FROM – WHERE schema.
SELECT describes the type of resulting element, FROM specifies
search scope, and WHERE specifies the constraints or condition.
Experimentation has shown better performance as compared to
OCL, EMF Query, and Plain EMF in terms of efficiency and usability
for queries over models stored in Morsa repositories.
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Figure 4: The Abstract Syntax Graph of Program in Listing 3

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have discussed how in a low-code platform, models
stored in various backend formats, often need to be accessed con-
currently in a model management program. It is essential to have
a query optimization strategy for this scenario so that large-scale
models can be queried efficiently.We have argued that compile-time
static analysis and query translation can deliver benefits both in
terms of memory footprint and execution time of complex queries.
Query translation is used to take benefit from each backend tech-
nology’s specific optimizations.
In the future, we plan to extend this static analysis and query rewrit-
ing for various other formats to evaluate the performance over large
models extracted by reverse engineering existing Java code, i.e.,
Grabats [2] models. We also plan to evaluate the proposed approach
on synthetic and publicly available (e.g., on GitHub) Simulink and
Building Information Models (BIMs)[5].
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