
Runtime modeling and analysis of IoT systems
Alfred Åkesson
Görel Hedin
Niklas Fors

alfred.akesson@cs.lth.se
gorel.hedin@cs.lth.se
niklas.fors@cs.lth.se
Lund University

Sweden

Rene Schöne
Johannes Mey

rene.schoene@tu-dresden.de
johannes.mey@tu-dresden.de
Technische Universität Dresden

Germany

ABSTRACT

Internet-of-things systems are difficult to understand and debug
due to their distributed nature and weak connectivity. We address
this problem by using relational reference attribute grammars to
model and analyze IoT systems with unreachable parts. A transitive
device-dependency analysis is given as an example.

CCS CONCEPTS

• Software and its engineering → Software as a service or-

chestration system; Integrated and visual development en-

vironments.

KEYWORDS

internet of things, model-driven development, reference attribute
grammars, program analysis, dependency analysis

ACM Reference Format:

Alfred Åkesson, Görel Hedin, Niklas Fors, Rene Schöne, and Johannes Mey.
2020. Runtime modeling and analysis of IoT systems. In ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems
(MODELS ’20 Companion), October 18–23, 2020, Virtual Event, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3417990.3421397

1 INTRODUCTION

Internet-of-Things (IoT) systems are heterogeneous distributed sys-
tems that include embedded devices with sensors and actuators, as
well as edge computers and/or servers. IoT systems can be even
more difficult to understand and debug than ordinary distributed
systems, since they may include mobile devices with weak connec-
tivity. This results in a dynamic topology where devices are not
always available [13].

One way of supporting better understandability and debugging
is to compute a runtime model of the IoT system, and to support
analysis of such a model [3]. For example, in a smart home, this
could allow the network of connected devices to be visualized. An
example of an analysis could be to compute which devices need to
work in order for the lights to turn on when the door is opened.

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8135-2/20/10.
https://doi.org/10.1145/3417990.3421397

Analyses like these can be useful both for debugging and for finding
problems when testing a system, before release.

For this approach to work well, the architecture has to be explicit
in the sense that communicating components and connectors can
be extracted from the system. In particular, it can be beneficial
if the connectors have first class status [10], and are not implicit
in the code of the components. In particular, if a domain-specific
language is used for specifying connectors between components,
the architecture is easy to extract. Furthermore, it is desirable to
specify analyses of the architecture in a high-level way, preferably
using a declarative approach.

It is also important to note that an IoT system might not be
defined by a single description in one location, but can emerge from
many partial descriptions on different devices. The system may be
constantly changing due to new components and connectors being
added or removed. Furthermore, because of weak connectivity, the
view of the system from any single device can be incomplete.

While most language and modeling approaches rely on concep-
tual modeling frameworks (e.g., EMF [11]) or runtime modeling
frameworks (e.g., KMF [5]), these only explicitly support specific
kinds of analysis, such as type analysis or constraint checking, and
fall back on general-purpose languages for other kinds of analysis.

Thus, in this paper we propose using Relational Reference At-
tribute Grammars [8] for modeling and analyzing IoT systems with
an explicit architecture. Reference Attribute Grammars (RAGs) sup-
port declarative analysis over abstract syntax trees and are used
for building compilers and other language-based tools. Relational
RAGs extend the abstract syntax of RAGs with relations, so that the
structure to analyze is a conceptual model rather than an abstract
syntax tree.

We evaluate the approach by developing a runtime model for
PalCom [12], an IoT middleware toolkit that uses an explicit archi-
tecture. PalCom components are called services, and connectors
are called compositions. The compositions are described by DSL
scripts that define what services to connect to, and how messages
are mediated. The toolkit provides a discovery manager that keeps
track of all connected devices, and what services and compositions
that run on them.

As an example analysis, we have formulated and implemented a
simple device dependency analysis (DDA). The DDA computes what
devices need to be available and connected in order for a specific
event to happen, such as turning on a light when a door opens.

Our contributions are the following:

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3417990.3421397
https://doi.org/10.1145/3417990.3421397
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3417990.3421397&domain=pdf&date_stamp=2020-10-26

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, CanadaAlfred Åkesson, Görel Hedin, Niklas Fors, Rene Schöne, and Johannes Mey

*

*

*

**

*

System

Device

CompositionService

Native Synthesized

1 System ::= Device*;
2 Device ::= Native* Composition*;
3 abstract Service;
4 Native:Service;
5 Synthesized:Service;
6 Composition ::= Synthesized*;
7 rel Composition.connectedTo* <-> Service.connectedFrom*;

Figure 1: Basic model for running PalCom system. Upper:
conceptual model diagram. Lower: Corresponding abstract

grammar.

• We present a basic runtime model for the PalCom IoT archi-
tecture, formalized using Relational RAGs (Section 2).

• We present a home automation scenario as a motivating
example (Section 3).

• We present an extended runtime model that can handle in-
complete systems (where devices can be unavailable) and
that includes composition scripts that enable more fine-
grained analyses than the basic model (Section 4).

• We introduce and formalize the Device Dependency Analysis
(DDA), and show how it can be specified using Relational
RAGs on top of our extended runtime model (Section 5)

We end with related work and conclusions (Sections 6 and 7).

2 BASIC RUNTIME MODEL

A running PalCom IoT system consists of a set of devices running
the PalCom middleware, together with a number of service and
composition instances, each hosted on a particular device. Each
service provides an API of asynchronous messages that it can send
and receive. However, a service does not set up any connections on
its own. Instead, compositions act as connectors, each connecting
to a number of services.

For this paper, all compositions are written in a domain-specific
language called ComPOS [1]. A composition mediates between
services by receiving and sending messages from/to them. A com-
position can also provide synthesized services that other composi-
tions can connect to. Ordinary services (that are not synthesized)
are called native, and are typically written in a general-purpose
language like Java.

Because all connections are available in the composition scripts,
which are easy to analyze, the complete component-connector
architecture is available without having to analyze the general-
purpose code of the native services.

Figure 1 shows the basic conceptual model of a running PalCom
IoT system, and the corresponding abstract grammar of the rela-
tional RAG. The grammar specifies containment relations using
grammar productions, and non-containment relations using the
rel construct.

Listing 1: Attributes defining derived properties

1 ↑ Device.allServices : P(Service)
2 ↓ Service.host : Device
3 ↓ Composition.host : Device
4 eq Device.allServices = Native ∪ (

⋃
c∈Composition c.Synthesized)

5 eq Device.**.host = this

A relational RAG can be extended with attributes and equations
in order to declaratively specify derived properties. Each attribute of
a node is defined by an equation, either in the node itself (labelled
by ↑), or in an ancestor in the containment hierarchy (labelled
by ↓). (In attribute grammar terminology, ↑/↓ attributes are called
synthesized/inherited respectively.)

Listing 1 shows an attribution example (syntax slightly simplified
for presentation purposes). Here, the attribute ↑allServices of
a device is defined as the union of all its native services and all
the synthesized services of its compositions. The compositions and
services have attributes ↓host that refer to the hosting device. This
attribute is defined by an equation on the Device node, which is
an ancestor of compositions and services.

3 RUNNING EXAMPLE

As a running example of IoT runtime models and their analyses,
we tell a story about the tech-savvy Mark and how he deploys an
IoT system to communicate measurements to his physician1.

3.1 A simple IoT system

Mark has a chronic illness and needs to regularly inform his physi-
cian about his body temperature. The hospital provides a database
service to which measurements can be sent from smart devices
like thermometers, blood pressure monitors, etc. All the hospital
staff have access to the database, but Mark would like only his
physician to access his data, and would therefore like to encrypt
his measurements with the public key of his physician.

Mark has a smart thermometer with a temperature service that
sends a message whenever a measurement is taken. To build the sys-
tem, Mark deploys an encryption service on the smart thermometer,
and then creates a composition in ComPOS to connect the services.
An overview of the system is shown in Figure 2.

The composition script is shown in Listing 2. It specifies what
services to use and on what devices the services run (lines 2-4).
Line 5 waits for the thermometer to send a measurement, storing it
in the variable t. Lines 6-7 sends the temperature to the encryption
service and receives the encrypted temperature. Line 8 sends the
encrypted temperature to the measurement database at the hospital.

3.2 Updating the system

The system works fine, but Mark’s illness makes it difficult for him
to move around in the apartment. He therefore gets one more ther-
mometer, so he can have one in his bedroom and one in the living
room. He first updates the composition towork on any thermometer
by changing line 2 to service tmp = Temperature on this (this binds
to the device the composition is running on). He then copies the
composition to the new thermometer, and it seems to work.

To get more confidence in that the system works as it should,
he runs a device dependency analysis (DDA). With the DDA, he
1We use the example as a pedagogical tool, and thus it is not entirely realistic.

Runtime modeling and analysis of IoT systems MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

checks which devices are needed for his new thermometer to send
a store message to the database. The DDA is run on the deployed
system in order to resolve this expressions and to compute what
concrete devices the system depends on. To Mark’s surprise, the
analysis reports that not only the new thermometer and the hospital
database are needed, but the old thermometer is needed as well!

Mark looks at the composition again, and realizes that the old
thermometer is used for the encryption. While this works, it means
that the new thermometer will stop working if the old one runs out
of battery. He fixes the problem by updating the compositions on
line 3 to bind to the Encrypter on the same device (using this for
the device).

4 THE FULL SYSTEM MODEL

The full systemmodel includes support for incomplete systems (due
to unavailable devices) and composition scripts for allowing fine-
grained analyses. Both the conceptual model and its corresponding
specification using Relational RAGs is shown in Figure 3.

A System contains both a dynamic part for what is currently
known about devices, service instances, and composition instances
on the network, and a static part that contains the composition
scripts. Each composition instance is related to its corresponding
script (line 13 in the grammar). There is an abstract grammar for
the composition scripts as well, that we omit here for brevity, and
that is reused from the implementation of ComPOS [1].

The dynamic part is similar to the basic runtime model in Fig-
ure 1, but introduces handles DeviceHandle and ServiceHandle.
These are used for representing devices and service instances that a
composition (tries to) connect to, regardless of if they are available
on the network or not. The handles have optional relations to the
corresponding true Device and Service entities, that are present
in the model if they are available on the network.

Thermometer Hospital

Device

Temperature Encrypter

TemperatureToHospital MeasurementDB

Composition Native Synthesized

connectionprovide synthesized

mesurement encrypt

store

encrypted

Figure 2: Overview ofMark’s initial system. (See Figure 5 for

example with synthesized service.)

Listing 2: Composition connecting services

1 composition: TemperatureToHospital

2 service tmp = Temperature on Thermometer

3 service enc = Encrypter on Thermometer

4 service mDB = MeasurementDB on Hospital

5 when receive measurement(var t) from tmp do
6 send encrypt(t) to enc

7 receive encrypted(var et) from enc

8 send store(et) to mDB

*

*

* *

* *

**

0..1

*

*

1 0..1

*

1

System

StaticPart

ComPOSscript

...

DynamicPart

DeviceHandle

deviceId

ServiceHandle

serviceId

Device

deviceId

Composition

Service

serviceId

Native Synthesized

1 System ::= DynamicPart StaticPart;
2 DynamicPart ::= DeviceHandle*;
3 DeviceHandle ::= <deviceId> ServiceHandle* [Device];
4 Device ::= <deviceId> Native* Composition*;
5 ServiceHandle ::= <serviceId>;
6 abstract Service ::= <serviceId>;
7 Native:Service;
8 Synthesized:Service;
9 Composition ::= Synthesized*;
10 rel Composition.connectedTo* <-> ServiceHandle.connectedFrom*;
11 rel ServiceHandle.service? <-> Service.serviceHandle;
12 StaticPart ::= ComPOSscript*;
13 rel Composition.implementation <-> ComPOSscript.instances*;
14
15 ComPOSscript ::= ...

Figure 3: Full system model with diagram and grammar

(ComPOS details omitted)

System

DynamicPart StaticPart

ThermometerHandle

HospitalHandle

Thermometer

EncrypterHandleTemperatureHandle

TemperatureToHospital

EncrypterTemperature

Hospital MeasurementDBHandle

MeasurementDB

ComPOSscript

Figure 4: Object diagram over Mark’s system

4.1 Handling unavailable devices

Each device is identified by a globally unique id, deviceId, and each
running service instance has a device-locally unique id, serviceId. A
running service is globally identified with a tuple (deviceId, servi-
ceId).

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, CanadaAlfred Åkesson, Görel Hedin, Niklas Fors, Rene Schöne, and Johannes Mey

Thermometer1

Thermometer2

Router Hospital

Temperature

TemperatureF

Encrypter

TemperatureToHospital

TempC

MeasurementDB

FtoC

TempFtoC

store

Figure 5: System with two thermometers and a router.

The PalCom middleware includes a discovery manager that can
be run on any device. It keeps track of transitively available devices,
as well as services and compositions that run on them.

To populate the model, the discovery manager is queried for
its information, adding device handles, devices, service handles,
services, and compositions. When a composition is added, it has
information about each service instance it (tries to) connect to, i.e.,
the tuple (deviceId, serviceId). If handles for the corresponding device
and/or service are not already present in the model, they are added.
At a later point in time, when new devices and service/composition
instances are discovered, the model is automatically updated.

Figure 4 shows the object diagram from the perspective of Mark’s
home. If the hospital device is unreachable, the model will not
contain the dashed elements. Devices, compositions, and services
are shown in the same colors as in the overview figure.

5 DEVICE DEPENDENCY ANALYSIS

The Device Dependency Analysis (DDA) computes what sets of
devices need to be available for a given message to be sent from a
given composition and received by a given service.

5.1 Example

Consider the IoT system in Figure 5, where Mark has added two
thermometers and moved the encrypter service to a router device.
Because Thermometer2 uses Fahrenheit, Mark has created TempC,
a synthesized service provided by TempFtoC, to convert the tem-
perature to Celsius using a native service FtoC. The DDA could, for
example, compute which devices are needed for the storemessage
to be sent. To compute this, the analysis takes into account the
control flow for both TemperatureToHospital and TempFtoC.

The analysis takes three arguments: c ,m, and s , where c is the
sending composition,m is the name of the message, and s is the
receiving service. The output of the analysis is a set of device sets
{D1,D2, ...}, where each Dk is the set of devices needed in one
control-flow that leads to c sending messagem to s .

For the system in Figure 5, the DDA for the store message,
i.e., dda(temperatureToHospital, "store", MeasurementDB),
would give the result { {t1, r ,h}, {t2, r ,h} }, where r is the router,
t1 and t2 are the thermometers, and h is the hospital server. The
result can be interpreted as a logical formula on disjunctive normal
form, in this case (t1 ∧ r ∧ h) ∨ (t2 ∧ r ∧ h), where a device is true
if it is available on the network. The store message can be sent
when this formula is true, i.e., when the router and hospital servers
are available, and at least one of the thermometers.

Listing 3: Control-flow of composition language

1 ↑ ComPOSscript.ddaC(c:Composition, m:String, s:Service) : P(P(Dep))
2 ↑ ComPOSscript.ddaS(s:SynthesizedService, m:String) : P(P(Dep))
3 eq ...

Listing 4: DDA analysis

1 ↑ System.dda(c:Composition, m:String, s:Service) : P(P(D))

2 eq System.dda(c, m, s) = let E = c.implementation.ddaC(c, m, s)

3 in let res =
⋃
E∈E

⊗
e∈E e.serviceHandle.expand(e.message)

4 in toDevices(res) ⊗ { {c.host, s.host} }

5
6 ↑ ServiceHandle.expand(m): P(P(Dep))
7 eq ServiceHandle.expand(m) =
8 this.hasService ? this.service.expand(m) : { {(this, m)} }

9
10 ↑ Service.expand(m): P(P(Dep))
11 eq Native.expand(m) = { {(this.serviceHandle, m)} }

12 eq Synthesized.expand(m) =
13 let E = this.composition.implementation.ddaS(this.serviceHandle, m)

14 in let res =
⋃
E∈E

⊗
e∈E e.serviceHandle.expand(e.message)

15 in res ⊗ { {(this.serviceHandle, m)} }

5.2 Control-flow analysis of compositions

The control-flow analysis of the composition scripts is abstracted
into two attributes ↑ddaC and ↑ddaS, that represent two kinds of
control-flow. ↑ddaC computes dependencies needed for a composi-
tion to send a given message to a given service. ↑ddaS computes
the dependencies needed for a synthesized service to send (or reply)
a given message to some composition that connects to it. By intro-
ducing these attributes, the rest of the DDA can treat the actual
composition language as a black box, see Listing 3. The equations
for these attributes are omitted for brevity.

A dependency dep ∈ Dep is relative to a given composition, and
is modeled as a tuple (serviceHandle, message), representing
that a given service sends a given message to the composition. Both
↑ddaC and ↑ddaS return a set of sets of dependencies, i.e., a value
of type P(P(Dep)), that we call a dependency expression, E. It can
be thought of as a logical expression in disjunctive normal form,
similarly as for devices discussed earlier, but where a variable is a
dependency.

5.3 Implementation of the DDA

We can now describe how the DDA is implemented for the concep-
tual model, using Relational RAGs, as shown in Listing 4.

To correctly analyze TemperatureToHospital and TempFtoC in
Figure 5, the analysis needs to be transitive and follow dependencies
between different compositions that are connected via synthesized
services. In our analysis, we consider transitive dependencies only
in the forward direction, when a composition sends a message
through a synthesized service. To also consider messages received
through a synthesized service, the analysis would need to be ex-
tended.

The analysis makes use of the attributes ↑ddaC and ↑ddaS to com-
pute control flow in composition scripts, and the attribute ↑expand
to compute a transitive closure of all dependency expressions. It
then projects the expanded dependency expression down to a set
of sets of devices.

The calculation of the transitive closure is done by first calculat-
ing the ddaC (line 2) and then expanding each of the dependency
sets in the resulting dependency expression. The expansion on line

Runtime modeling and analysis of IoT systems MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

3 uses the operator ⊗ : (P(P(Dep)),P(P(Dep))) 7→ P(P(Dep)),
where El ⊗ Er =

⋃
El ∈El ,Er ∈Er ({El ∪ Er }).

For synthesized services, the expansion leads to calls to ↑ddaS
for the composition containing the synthesized service (line 13).
These dependency expressions are then expanded recursively (line
14), to compute the transitive closure.

For native services, the expansion cannot go further, and just
returns the same expression that was expanded (line 11).

For an incomplete ServiceHandle (i.e., when there is no corre-
sponding Service), the expansion also stops, and the same depen-
dency expression is returned (line 8). This lack of information is also
computed, so the user can see where the analysis is not complete,
but the specification of this is left out for brevity.

The result of the DDA computation is shown on line 4: The fully
expanded dependency expression is projected to the corresponding
set of sets of devices, adding the devices of the original sending
composition and receiving service to each device set.

5.4 Discussion

The DDA analysis is not trivial, and while it would have been pos-
sible to write it using an ordinary general-purpose language like
Java, writing it using Relational RAGs gives a concise executable
high-level specification. The performance of RAGs is on par with or-
dinary general-purpose languages, and a reason for this is that RAG
evaluation is optimal in that each attribute value is computed at
most once. This is achieved by automatic memoization of attributes
during evaluation [7].

6 RELATEDWORK

A recent survey [2] of works in the area of models@run.time re-
vealed two research challenges tackled by our approach. First, only
few works directly address uncertainty, which in our work was
taken into account using handles for both services and devices.
Secondly, the need for distributed runtime models was identified,
which we tackle by incorporating the PalCom middleware.

A similar approach in the domain of smart homes was presented
in [9]. There, the problem on how to connect multiple smart home
middleware systems with different machine learning components
was discussed and a runtime model to include all necessary infor-
mation was presented as solution. Similar to our approach, RAGs
were used to describe the model. However, the distributed nature of
application in the domain of Internet of Things was not considered
and left to the middleware systems.

Hartmann presented an approach in [6] for modeling large cyber-
physical systems. Similar to our approach, the changing nature of
runtime systems was in the focus, but they use streams to split up
the complete model into atomic information and use analysis in
both time and multiple worlds to support what-if-analysis. As an
implementation basis, KMF [5] was chosen and extended to support
a fixed set of derived properties, similar to attributes of RAGs.

Dai et al. use logic programming to implement dependency anal-
ysis for workflows in [4]. Instead of having a model, they have
facts, and instead of attributes, they have rules. The use of logical
programming allows them to express different kinds of queries,
which our current approach does not support. Compared to our
work, Dai et al. do not consider distributed systems and thus can

do their analysis statically. They also explore data dependencies,
which we might want to support in the future.

7 CONCLUSION

We have presented how Relational RAGs can be used for modeling
and analyzing IoT systems with weak connectivity. The approach
was evaluated by developing a runtime model for the PalCom IoT
middleware, and implementing a forward transitive device depen-
dency analysis as an example. The analysis can be implemented in
a high-level compact way using the Relational RAGs.

In the future, we plan to use this work as a basis for exploring
different kinds of analysis in IoT systems, such as information
flow and placement of compositions, and thus helping developers
find problems before making their systems available. It would also
be interesting to implement the DDA in a conventional model
transformation tool, for comparison.

ACKNOWLEDGMENTS

This workwas in part supported by theWallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation and in part by the Swedish Foun-
dation for Strategic Research, grant RIT17- 0035. It is also partly
supported by the German Research Foundation (DFG) as part of Ger-
many’s Excellence Strategy – EXC 2050/1 “CeTI” and the project
“HybridPPS” (project number 418727532), and using tax money
based on the budget approved by the Saxon state parliament for
the project “PROSPER”.

REFERENCES

[1] A Åkessson, G Hedin, B Magnusson, and M Nordahl. 2019. ComPOS: Composing
Oblivious Services. In 2019 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops). 132–138.

[2] N Bencomo, S Götz, and H Song. 2019. Models@run.time: a guided tour of the
state of the art and research challenges. Software & Systems Modeling 18, 5 (Jan.
2019), 1619–1374.

[3] G Blair, N Bencomo, and R B. France. 2009. Models@run.time. Computer 42, 10
(Oct. 2009), 22–27.

[4] W. Dai, D. Covvey, P. Alencar, and D. Cowan. 2009. Lightweight query-based
analysis of workflow process dependencies. Journal of Systems and Software 82,
6 (2009), 915 – 931.

[5] F Francois, G Nain, B Morin, E Daubert, O Barais, N Plouzeau, and J-M Jézéquel.
2014. Kevoree Modeling Framework (KMF): Efficient modeling techniques for
runtime use. http://arxiv.org/abs/1405.6817

[6] T Hartmann. 2016. Enabling Model-Driven Live Analytics For Cyber-Physical
Systems: The Case of Smart Grids. PhD Thesis. University of Luxembourg.

[7] M Jourdan. 1984. An Optimal-time Recursive Evaluator for Attribute Grammars.
In International Symposium on Programming, 6th Colloquium (LNCS), Vol. 167.
Springer, 167–178.

[8] J Mey, R Schöne, G Hedin, E Söderberg, T Kühn, N Fors, J Öqvist, and U Aßmann.
2020. Relational reference attribute grammars: Improving continuous model
validation. Journal of Computer Languages 57 (2020), 100940.

[9] R Schöne, J Mey, B Ren, and U Aßmann. 2019. Bridging the Gap between Smart
Home Platforms and Machine Learning using Relational Reference Attribute
Grammars. In Proceedings of the 14th International Workshop on Models@run.time.
Munich, 533–542.

[10] M Shaw. 1993. Procedure calls are the assembly language of software intercon-
nection: Connectors deserve first-class status. In WSSD 1993, Studies of Software
Design (LNCS), Vol. 1078. Springer, 17–32.

[11] D Steinberg, F Budinsky, E Merks, and M Paternostro. 2008. EMF: Eclipse Modeling
Framework (2 ed.). Addison-Wesley Professional.

[12] D Svensson Fors, B Magnusson, S Gestegård Robertz, G Hedin, and E Nilsson-
Nyman. 2009. Ad-hoc composition of pervasive services in the PalCom archi-
tecture. In Proceedings of the 2009 international conference on Pervasive services.
ACM, 83–92.

[13] A Taivalsaari and T Mikkonen. 2017. A roadmap to the programmable world:
software challenges in the IoT era. IEEE Software 34, 1 (2017), 72–80.

http://arxiv.org/abs/1405.6817

	Abstract
	1 Introduction
	2 Basic runtime model
	3 Running example
	3.1 A simple IoT system
	3.2 Updating the system

	4 The full system model
	4.1 Handling unavailable devices

	5 device dependency analysis
	5.1 Example
	5.2 Control-flow analysis of compositions
	5.3 Implementation of the DDA
	5.4 Discussion

	6 Related work
	7 Conclusion
	Acknowledgments
	References

