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ABSTRACT
Face multi-attribute prediction benefits substantially from
multi-task learning (MTL), which learns multiple face at-
tributes simultaneously to achieve shared or mutually re-
lated representations of different attributes. The most widely
used MTL convolutional neural network is heuristically or
empirically designed by sharing all of the convolutional lay-
ers and splitting at the fully connected layers for task-specific
losses. However, it is improper to view all low and mid-
level features for different attributes as being the same, es-
pecially when these attributes are only loosely related. In
this paper, we propose a novel multi-attribute tensor correla-
tion neural network (MTCN) for face attribute prediction.
The structure shares the information in low-level features
(e.g., the first two convolutional layers) but splits that in
high-level features (e.g., from the third convolutional layer
to the fully connected layer). At the same time, during
high-level feature extraction, each subnetwork (e.g., Age-
Net, Gender-Net, ..., and Smile-Net) excavates closely re-
lated features from other networks to enhance its features.
Then, we project the features of the C9 layers of the fine-
tuned subnetworks into a highly correlated space by using a
novel tensor correlation analysis algorithm (NTCCA). The
final face attribute prediction is made based on the corre-
lation matrix. Experimental results on benchmarks with
multiple face attributes (CelebA and LFWA) show that the
proposed approach has superior performance compared to
state-of-the-art methods.
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1. INTRODUCTION
Human face attribute estimation has received a large amount

of attention in visual recognition research because a face at-
tribute provides a wide variety of salient information, such
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Figure 1: The methods used for face attribute pre-
diction.

as a person’s identity, age, race, gender, hair style, and cloth-
ing. Recently, many researchers have used face attributes in
real-life applications, such as (i) identification, surveillance,
and internet access control [8], [18], e.g., automatic detec-
tion of juveniles on the Internet, or surveillance at unusual
hours or in unusual places; (ii) face retrieval [25], [29], e.g.,
automatic finding of person(s) of interest with provided at-
tributes in a database; and (iii) social media [23], [24], e.g.,
automatic recommendation of makeup or hair styles.

In spite of the recent progress in face attribute estimation
[16], [6], [27], much of the prior work has been limited to pre-
dicting a single face attribute or learning a separate model
to estimate each face attribute. As is known, face attributes
are strongly related, such as goatee and male, heavy makeup
and wearing lipstick and other relationships, and fully ex-
ploiting the correlation can help each task be learned better.
A joint estimation of face attributes can address this embar-
rassing situation by exploring attribute correlations [19], [2],
[7], [26], [11], and can achieve state-of-the-art performance
for some face attribute predictions. These methods can be
divided into two categories: multi-task learning (MTL) and
multi-CNN fusion. Learning tasks in parallel while utilizing
shared information to seek correlations is the main point of
MTL, and in most work, as in Fig. 1 (a), there is shared
representation from the first convolution layer to the last
fully connected layer. However, [22] proved that it is not
sensible to completely share representations between tasks,
and these approaches ignore the differences and interactions
among these attributes. In contrast, as illustrated in Fig. 1
(b), although the multi-CNN fusion method addresses the
differences and explores the correlation through the output
of the fully connected layer, it is difficult to realize end-to-
end learning and neglect the correlation between the inter-
mediate different attribute features.

Further, [12] proposed a multi-task deep convolutional
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neural network for attribute prediction via sharing the lower
layers in the CNN instead of all of its layers, and this pro-
cess achieved better performance on many attributes. It
follows that attributes and objects share a low-dimensional
representation, which allows the object classifier to be regu-
larized[15]. This approach does not fully explore the correla-
tion among the high-level features of the face attributes, and
each face attribute prediction should not only consider their
difference but also utilize attribute correlation. Motivated
by the analysis above, we propose a novel multi-task learn-
ing structure for face attributes that shares information in
the lower-level feature layers and learns the differences and
correlations among the high-level features.

At the same time, a large amount of work has proven
that each face attribute estimation can be enhanced based
on others, such as gender estimation based on smile dynam-
ics [3], age estimation combined with smile dynamics [4],
and age estimation affected by gender and race [10]. Al-
though some face attribute predictions benefit from others,
the degrees of influence on an attribute among other differ-
ent attributes are not the same, and a unified correlation
mechanism might not be appropriate. Consequently, a per-
fect face attribute should not only adequately seek the dif-
ferences and correlations among the attributes but should
also attempt to exploit the specific degrees of correlation
among them. A novel tensor correlation analysis algorithm
(NTCCA) is proposed to exploit the detailed correlations of
the high-level features from the C9 layer of the fine-tuned
subnetworks. A generalization matrix is utilized to ensure
that each projected feature space is more highly correlated,
which makes each face attribute fully exploit a maximal ben-
efit from the others. Parts of the training dataset are used
to train this matrix, and the experimental results indicate
that this operation makes the whole system more stable and
robust.

In this paper, a multi-task correlation learning neural net-
work (MTCN) is proposed to predict face attributes. The
system tries its best to capture the correlations among these
attributes, which includes sharing information in low-level
feature layers and splitting that in the high-level feature lay-
ers while extracting related information from other subnet-
works to enhance its useful features and, finally, excavating
the correlation among the C9 layers with a novel tensor cor-
relation analysis algorithm (NTCCA). The detailed process
of multi-task correlation learning is shown in Fig. 2. We first
train the subnetwork with the corresponding attributes on
CelebA or LFWA, and the fine-tuned MTCN is used to pre-
dict the attributes of CelebA or LFWA, which is our MTCN
without NTCCA. Then, the features of the fine-tuned sub-
networks for an image in the C9 layer are built into a tensor,
and NTCCA is utilized to project the original features into
the highly correlated feature space. Finally, CelebA and
LFWA are used to verify the performance of the fine-tuned
MTCN. The experimental results demonstrate that our ap-
proach significantly outperforms the state-of-the-art meth-
ods by achieving average accuracies of 92.97% and 87.96%
on CelebA and LFWA, respectively.

2. RELATED WORK

2.1 Tensor Canonical Correlation Analysis
The n-mode product of X with the matrix U ∈ RJn×In is

then denoted asM = X × nU , which is an I1× I2 · · · In−1×

Jn × In+1 · · · ×IN tensor with the element

M(i1, ..., in−1, jp, in+1, ..., iN ) =

In∑
in=1

X (i1, i2, ..., iN )U(jn, in).

(1)
The product of X and a sequence of matrices {Un ∈

RJn×In}Nn=1 is a J1 × J2 × · · · × JN tensor denoted by

M = X × 1U1 × 2U2 · · · ×NUN . (2)

The CANDECOMP / PARAFAC (CP) decomposition de-
composes an Nth-order tensor, X ∈ RI1×I2×···×IN , into a

linear combination of terms, a
(1)
r ◦a(2)r ◦ · · · ◦a(N)

r , which are
rank one tensors, and can be denoted as

X ∼=
R∑
r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(N)

r

= Λ× 1A
(1) × 2A

(2) · · · ×NA(N)

(3)

Given m views {Xp}mp=1 of samples, in which Xp = {xp1,

xp2, ..., xpN }∈ Rdp×N , the variance matrices are Cpp =
1
N

∑N
n=1

xpnxTpn, p= 1, 2, ..., m. Then, the covariance tensor
among all of views is calculated as

C1,2,...,m =
1

N

∑N

n=1
x1n ◦ x2n ◦ ... ◦ xmn (4)

where C is a tensor with d1 × d2 × ... × dm. According to
the traditional two-view CCA [13], exploration is performed
to maximize the correlation among the canonical variables
zp = XT

p hp, p = 1, 2, ..., m, in which {hp ∈ Rdp×1}mp=1

denotes the canonical vectors. Therefore, the optimization
problem is

arg max
{hp}

= corr(z1, z2, ..., zm)

s.t. zTp zp = 1, p = 1, ..., m
, (5)

Here, corr(z1, z2, ..., zm) = (z1 � z2 � ...,�zm)T e ex-
presses the canonical correlation, where

⊙
denotes the element-

wise product, and e ∈ RN . According to TCCA, the opti-
mization problem (5) is equivalent to

arg max ρ
{hp}

= C1,2, ..., m
−
×1h

T
1

−
×2h

T
2 ...
−
×mh

T
m

s.t. h
T
p Cpphp = 1, p = 1, 2, ..., m

, (6)

where
−
×p denotes the p-mode contracted tensor-vector prod-

uct. Let up = C̃
1/2
pp h and M = C1,2, ..., m

−
×1C̃

1/2
11 h

−
×2C̃

1/2
22 h

...
−
×mC̃1/2

mmh. Then, the optimization problem in (6) is de-
scribed as

arg max ρ
{hp}

=M
−
×1uT1

−
×2uT2 ...

−
×muTm

s.t. uTp up = 1, p = 1, 2, ..., m

, (7)

where C̃pp = Cpp + εI, ε expresses a nonnegative trade-off
parameter and I denotes the identity matrix.

According to [17], Equation (7) is equivalent to seeking
the best rank-1 approximation of the tensor M, i.e., the
best rank one CP decomposition of the tensor M. This
construct denoted as

M≈
r∑
k=1

ρku(k)
1 ◦ u(k)

2 ◦ ... ◦ u(k)
p , (8)



The alternating least squares (ALS) algorithm is used to

approximately seek the solutions. Letting Up = [u
(1)
p , ..., u

(r)
p ],

the projected data for the p’th view can be calculated as

Zp = XT
p C̃
−1/2
pp Up. (9)

The different Zp
m
p=1 are concatenated as the final repre-

sentation Z ∈ R(mr)×N for the subsequent learning.

3. PROPOSED METHOD

3.1 Low-level Feature Sharing for Face Attr-
ibutes

The convolutional layers of a typical CNN model provide
multiple levels of abstraction in the feature hierarchies [21].
The features in the earlier layers retain higher spatial res-
olution for precise localization with low-level visual infor-
mation. Because max pooling is used in the CNNs, the
spatial resolution is gradually reduced with an increase in
network depth. Therefore, the features in high-level layers
capture more semantic information and fewer fine-grained
spatial details. The face attributes (e.g., lips, nose, hair)
keep more semantic information than spatial resolution; in
other words, the high-level features extracted from a face
image are beneficial for face attribute prediction. Hence, for
face multi-attribute prediction, the low-level features can be
shared. According to [21] and [12], because the first and
second convolutional layers retain higher spatial resolution
with low-level visual information, our MTCN shares low-
level features from the input to the second convolutional
layer. Fig. 2 shows a full schematic diagram of our network
architecture.

3.2 Differentiation and Correlation in High-
level Layers

From the third convolutional layer, we split the network
into multi-subnetworks. This arrangement is chosen because
different CNNs trained by different targets can be considered
different feature descriptors, and the features learned from
them can be seen as different views/representations of the
data. These subnetworks have the same network structure
and aim to predict different face attributes.

At the same time, based on [3], [4], [10], and [6], each of
the face attribute estimations can be enhanced based on the
other attributes, and each of our subnetworks seeks useful
information from the other networks in the same layers to
enhance itself. This operation appears twice in the C7 and
C9 layers because these layers have more semantic informa-
tion.

In the first stage, as shown in Fig. 3, the convolutional
neural network is trained on datasets. In this situation, the
whole structure is an end-to-end learning network. During
the process of feed-forward processing, the low-level features
are shared until the third convolutional layer and split at the
high-level layers for task-specific losses.

Due to the specificity of the MTCN, backpropagation is a
crucial step, and the gradients transferred from the output
to C9, C9 to C7, and C5 to C3 are difficult to compute. We
present the detailed derivations and the implementation in
the following subsections. First, we use the cross-entropy

loss function for the subnetworks, and the loss is

C = − 1

N

N∑
i=1

(yi ln pi + (1− yi)(1− ln pi)). (10)

where pi denotes the probability of an attribute produced by
our proposed network. We use yi to denote the ground-truth
of the attribute and N to denote the number of training
examples.

3.2.1 Gradients Transferred from the C9 layer to the
N8 layer

Our MTCN has two specific feature extraction stages, in
which the convolutional layer extracts features from both
its own network and from the same level layer of other sub-
networks. For this reason, the operations in the whole sub-
networks are the same in this stage, and we present only
the detailed gradient transferred in Gender-Net. K is the
number of subnetworks. We assume that the weights and
biases between C9 and the fully connected layer are wcf

and bcf and that those between the N8 layer and C9 layer
are wnc and bnc. Here, Xi

c and Xi
n express the output of

the convolutional and normalization layers of the ith sam-
ple. Although the C9 layer of Gender-Net extracts features
from multiple subnetworks, we do not design other convolu-
tional kernels for these feature maps. For example, (Xi

1, Xi
2,

..., Xi
K) denotes the corresponding feature maps of the K

subnetworks, and the outputs of the C9 layer of Gender-Net
are

Xi
c = f(Xi

1wnc +Xi
2wnc, ...,+X

i
Kwnc + bnc). (11)

Let us calculate the partial derivative of the cross-entropy
cost with respect to the weights and biases. By applying the
chain rule, we obtain

∂C

∂wnc
=

∂C

∂Xi
c

∂Xi
c

∂wnc
, (12)

∂C

∂bnc
=

∂C

∂Xi
c

∂Xi
c

∂bnc
, (13)

while

∂C

∂Xi
c

= − 1

N

N∑
i=1

(y − f(wcf , X
i
c, bcf ))f

′
(wcf , X

i
c, bcf )wcf

f(wcf , Xc
i, bcf )(1− f(wcf , Xc

i, bcf ))
,

(14)
We use the definition of the ReLU function, max(0, x),

and then f ′(x) =

{
1 x > 0
0 x ≤ 0

, where x =
∑
i

wcfX
i
c + bcf .

Thus,

∂C

∂Xi
c

=

 1
N

N∑
i=1

wcf
(y−f(wcf ,X

i
c,bcf ))

f(wcf ,X
i
c,bcf )(f(wcf ,X

i
c,bcf )−1)

x > 0

0 x ≤ 0
,

(15)
and according to equation (11),

∂Xi
c

∂wnc
= f ′(wnc, X

i
n, bnc)

K∑
j=1

Xi
j =


K∑
j=1

Xi
j x > 0

0 x ≤ 0

,

(16)

∂Xi
c

∂bnc
= f ′(wnc, X

i
n, bnc) =

{
1 x > 0
0 x ≤ 0

, (17)



Figure 2: Full schematic diagram of our network architecture. (C1, C3, ..., C9) denote the corresponding
convolutional layers, (S2, S4, S6) represent pooling and normalization operations, N8 signifies only the
normalization operation, and (F10 and F11) express the fully connected layers. The structure shares the
information from C1 to S4 but splits that in high-level features (e.g., from the third convolutional layer to
the fully connected layer). The feature maps of the C9 layers of the fine-tuned subnetworks are built into a
feature tensor, and the tensor is projected into a highly correlated space via NTCCA, based on which the
finial predictions are made.
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Figure 3: The learning process of the subnetworks.

Therefore,

∂C

∂wnc
=

 1
N

N∑
i=1

K∑
j=1

(y−f(wcf ,X
i
c,bc))wcfX

i
j

f(wnc,Xi
n,bnc)(f(wnc,Xi

n,bnc)−1)
x > 0

0 x ≤ 0

,

(18)

∂C

∂bnc
=

 1
N

N∑
i=1

(y−f(wcf ,X
i
c,bc))wcf

f(wnc,Xi
n,bnc)(f(wnc,Xi

n,bnc)−1)
x > 0

0 x ≤ 0
,

(19)
and we can update the weights and biases in this layer as
follows:

wnc = wnc + η
∂C

∂wnc
, (20)

bnc = bnc + η
∂C

∂bnc
. (21)

where η is the learning rate.

3.2.2 Gradients Transferred from the N8 layer to the
S6 layer

The partial derivative of the cross-entropy cost with re-
spect to the weights and biases from the C7 layer to the S6
layer is the same as that from the C9 layer to the N8 layer.

It is important to consider how to transfer the gradients
from the N8 layer to the C7 layer in Gender-Net because
the C9 layer extracts features from multiple subnetworks;
these features affect the gradients simultaneously because

Gender-Net is a full subnetwork. In this time, w
′
sc and b

′
sc

signify the weights and biases between the S6 layer and the

C7 layer, respectively, and Xi′
c denotes the output of the C7

layer. We apply the chain rule twice to compute the partial
derivative as follows:

∂C

∂w′
sc

=
∂C

∂Xi
c

∂Xi
c

∂Xi′
c

∂Xi′
c

∂w′
sc

, (22)

∂C

∂b′sc
=

∂C

∂Xi
c

∂Xi
c

∂Xi′
c

∂Xi′
c

∂b′sc
, (23)

due to Xi
c = f(Xi′

c wsc+ ... +bsc) and f ′(x) =

{
1 x > 0
0 x ≤ 0

,

where x =
∑
i

wscX
i
s + bsc. We can find

∂Xi
c

∂Xi′
c

= f ′
(
wsc, X

i
s, bsc

)
wsc =

{
wsc x > 0
0 x ≤ 0

, (24)

and

∂Xi′
c

∂w′
sc

= f ′(w
′
sc, X

i′
s , b

′
sc)

K′∑
j=1

Xi
j
′

=


K′∑
j=1

Xi
j
′
x > 0

0 x ≤ 0

,

(25)

∂Xi′
c

∂b′sc
= f ′(w

′
sc, X

i′
s , b

′
sc) =

{
1 x > 0
0 x ≤ 0

, (26)

Therefore,

∂C

∂wsc
=

 1
N

N∑
i=1

K′∑
j=1

(y−f(wcf ,X
i
c,bc))wcfwscX

i′
j

f(wsc,Xi
s,bsc)(f(wsc,Xi

s,bsc)−1)
x > 0

0 x ≤ 0

,

(27)



∂C

∂b′sc
=

 1
N

N∑
i=1

(y−f(wcf ,X
i
c,bc))wcfwsc

f(wsc,Xi
s,bsc)(f(wsc,Xi

s,bsc)−1)
x > 0

0 x ≤ 0
,

(28)
Then, the weights and biases between the S6 layer and

the C7 layer can be updated as

w
′
sc = w

′
sc + η

∂C

∂w′
sc

, (29)

b
′
sc = b

′
sc + η

∂C

∂b′sc
. (30)

3.2.3 Gradients Transferred from Subnetworks to a
Shared Single Network

The weights and biases between the S4 and C5 layers can
be updated based on the corresponding subnetworks. How
to transfer the gradients from the subnetworks to a single
network is another crucial problem. Due to the distinctive-
ness of our MTCN, we adopt a joint gradient transfer strat-
egy to compute the gradients. C1, C2, ..., CK denote the
cross-entropy losses of the whole subnetworks. Additionally,

w
′′
sc and b

′′
sc express the weights and biases between the S4

layer and the C5 layer, and w
′′′
sc and b

′′′
sc signify the weights

and biases between the S2 layer and the C3 layer. The joint
gradient transferred strategy is

∆w =
∂C1

∂w′′′
sc

+
∂C2

∂w′′′
sc

+ ... +
∂CK
∂w′′′

sc

, (31)

∆b =
∂C1

∂b′′′sc
+
∂C2

∂b′′′sc
+ ... +

∂CK
∂b′′′sc

, (32)

where ∂C1

∂w
′′′
sc

, ..., ∂CK

∂w
′′′
sc

and ∂C1

∂b
′′′
sc

, ..., ∂CK

∂b
′′′
sc

can be calculated

by the chain rule based on the calculation of the partial
derivatives above.

Therefore, we can update the weights and biases between
the S2 layer and the C3 layer as

w
′′′
sc = w

′′′
sc + η∆w, (33)

b
′′′
sc = b

′′′
sc + η∆b. (34)

3.3 Multi-attribute Tensor Correlation Learn-
ing Framework

In the first stage, the subnetworks not only consider the
differences among them but also extract the related infor-
mation to enhance themselves. Although this novel design
can achieve better performance than can most of the com-
pared methods, we do not fully consider the specific degrees
of correlation among the face attributes. Hence, based on
the fine-tuned network, we want to further excavate the de-
tailed correlation information, so a novel TCCA approach
(called NTCCA) is proposed to explore the detailed corre-
lations among the high-level features of these subnetworks.
Unlike TCCA, which aims to directly maximize the corre-
lation between the canonical variables of all views [20], our
proposed NTCCA maximizes the correlation of all of the
feature maps in C9 for an image.

To explore the correlation among the different types of
features in C9 for an image, we consider Xi

l = {{X1
1 , X

1
2 ,

..., X1
L}, {X2

1 , X
2
2 , ..., X

2
L}, ..., {XK

1 , X
K
2 , ..., X

K
L }}, l = 1,

2, ..., L and i = 1, 2, ..., K. The size of the feature
map in C9 is κ×κ, and Xi

l composes a 3-D tensor, X ∈

Rκ×κ×KL where KL denotes the whole feature maps. Based
on X , we redefine the feature map as {Xp}KLp=1 and Xp
={xp1, xp2, ..., xpκ} ∈ Rκ×κ. The variance matrices can be

denoted as Cdd = 1
κ

∑k
j=1 xpjx

T
pj , and the covariance tensor

among X1, X2, ..., XKL is calculated as

C1,2,...,(KL) = 1
κ

∑κ
j=1 x1j ◦ x2j ◦ · · · ◦ x(KL)j , (35)

where C is a tensor of dimension κ×κ×···×κ and ◦ expresses
the outer product.

Without loss of generality, we first obtain the canonical
correlation as Equation (36), where the canonical variables
zp = XT

p hp.

arg max ρ = corr(z1, z2, · · ·, zKL)

s.t. zTp zp = 1, p = 1, 2, · · ·, (KL),
(36)

According to TCCA, Equation (36) is equivalent to C1,2, ..., (KL)
−
× 1h

T
1

−
× 2h

T
2

−
× · · ·

−
× (KL)h

T
(KL), and the correlation can be

further calculated as

arg max ρ = C1,2, ..., (KL)

−
× 1h

T
1

−
× · · ·

−
× (KL)h

T
(KL)

s.t. hTp Cpphp = 1,

(37)

where XpX
T
p = Cpp and

−
× p denote the p-mode contracted

tensor-vector product.
According to Equations (7) and (8), the alternating least

squares (ALS) algorithm is used to seek approximate solu-

tions. Letting Up = [u
(1)
p , ..., u

(r)
p ], the projected data for the

p’th view can be calculated as

Zp = XT
p C̃
−1/2
pp Up. (38)

Then, we concatenate the different {Zp}(KL)
p=1 as the final

representation Z ∈ R(KLr)×κ. Because the method pre-
sented above is only used to calculate the correlation of
multiple attributes of an image, a generalization matrix is
utilized to ensure that the projected results exhibit more
stabilization and higher correlation. Parts of the training
dataset are used to train the matrix through algorithm 1.
Our goal is to estimate multiple attributes for an image;
thus, a joint attribute estimation model is utilized to calcu-
late the loss of the whole system. For a face image with M
attributes, a joint attribute estimation model can be formu-
lated as follows:

ε = arg min

M∑
i=1

Ci + γΦ(Wj). (39)

where Ci expresses the cross-entropy loss of the ith attribute,
Φ(·) denotes a regularization term to penalize the complex-
ity of the weights, and γ > 0 is a regularization parameter.

During this process, the neural network is not updated,
and we only update W and b. Algorithm 1 is as follows:

CelebA and LFWA datasets are used in our experiments
[19] and they are divided into training dataset, validation
dataset, and testing dataset. Till now, our MTCN has been
fine-tuned and the training process are roughly as follows:
Step 1: Train MTCN without NTCCA on the training datasets
with the corresponding attributes and a fine-tuned MTCN
can be used to make predictions;
Step 2: Train the generalization matrix with NTCCA on



Algorithm 1 Novel Tensor Canonical Correlation Analysis

Require:
The training set: N face images;
Iterations t and max iterations tmax;
Error ε and minimum error emin; Learn rate η.

Ensure:
Output layer weight and bias: W and b.

1: Initialize the output layer weight and bias: W and b;
2: for i in range (N)
3: Map KL attribute feature space into another space

according to Equation (38);
{X1, X2, ..., X(KL)} → {Z1, Z2, ..., Z(KL) };

4: Calculate muli-attribute output: y = Z · W + b;
5: Calculate final total loss ε according to Equation (39);

6: if (ε ≤ emin) or (t ≥ tmax)
7: Use the fine-tuned model to predict the multi-

attribute tasks;
8: else Compute the modified weight coefficient:
9: ∆w = η ∂ε

∂w
;

10: Compute the modified biases coefficient:
∆b = η ∂κ

∂b
;

11: Update output weights W = W + ∆w;
12: Update output biases b = b+ ∆b;
13: end if
14: end for
15: Return updated output layer weight W and bias b.

one third of the training datasets;
Step 3: Verify the performance of the fine-tuned MTCN on
the testing datasets.

4. EXPERIMENTS

4.1 Datasets

4.1.1 CelebA
CelebA is a large-scale face attribute database [19]; it con-

tains 10K identities, and each identity has 20 images. Each
image has 40 attributes (see Table 1), such as gender, race,
and smiling, which makes it challenging for face attribute
prediction. The dataset contains 200,000 images: 160,000
are used for training, 20,000 for validation, and 20,000 for
testing. Because the CelebA dataset is so large, we do not
need to augment it in any way.

4.1.2 LFWA
LFWA is another unconstrained face attribute database

[19], and its face images are from the LFW database [14].
It has 40 attributes, which have the same annotations as in
the CelebA database. The LFWA dataset consists of 13,143
images, of which, 6,263 were used for training, 2,800 for
validation, and 4,080 for testing. If we did not augment the
training dataset, then the network would have severely over-
fit the dataset because of the large number of parameters.
We follow the data augmentation scheme presented in [12]
and we have over 75,000 images for training.

4.2 Implementation Details
Our proposed structure is implemented using the publicly

available Tensorflow [1] code. The entire network in this

Table 1: Summary of the 40 face attributes provided
in the CelebA dataset.

Attr. Idx. Attr. Def Attr. Idx Attr. Def

1 5 O’ClockShadow 21 Male
2 ArchedEyebrows 22 MouthSlighlyOpen
3 BushyEyebrows 23 Mustache
4 Attractive 24 NarrowEyes
5 BagsUnderEyes 25 NoBeard
6 Bald 26 OvalFace
7 Bangs 27 PaleSkin
8 BlackHair 28 PointyNose
9 BlondHair 29 RecedingHairline
10 BrownHair 30 RosyCheeks
11 GrayHair 31 SideBurns
12 BigLips 32 Smiling
13 BigNose 33 StrightHair
14 Blurry 34 WavyHair
15 Chubby 35 WearEarrings
16 DoubleChin 36 WearHat
17 Eyeglasses 37 WearLipstick
18 Goatee 38 WearNecklace
19 HeavyMakeup 39 WearNecktie
20 HighCheekbones 40 Young

paper is trained using an NVIDIA Tesla P100. First, we re-
size the input image to 256 × 256 pixels, and then, a 224 ×
224 crop is selected from the center of the image or the four
corners from the entire processed image. We also adopt dif-
ferent dropout measures to limit the risk of overfitting. The
network is initialized with random weights following a Gaus-
sian distribution; the mean is 0, and the standard deviation
is 0.01. A base learning rate of 10−4 is used, and it is re-
duced by 10% every 100,000 iterations. To train the MTCN,
we use batches of size 100, and we train both datasets for 30
epochs. Overall, training with NTCCA takes approximately
10 hours for the CelebA dataset and approximately 4 hours
for the LFWA dataset, and nearly 1.5 hours is required to
calculate the generalization matrix W . Each experiment is
conducted four times, and we obtain the average of the rele-
vant results. Because codes of the baseline methods used in
subsequent sections are not available in the public domain,
we directly report the results in the corresponding publica-
tions.

Table 2: Subnetwork Parameters.
Layers Parameters Layers Parameters Layers Parameters

Conv1
Num output: 96 Num output: 96 Local size: 5

Kernel size: 5 Pool1 Kernel size: 3 Norm1 alpha: 1e-1
Stride: 2 Stride: 2 beta: 0.75

Num output: 256 Num output: 256 Local size: 5
Conv2 Kernel size: 3 Pool2 Kernel size: 3 Norm2 alpha: 1e-1

Stride: 1 Stride: 2 beta: 0.75
Num output: 384 Num output: 384 Local size: 5

Conv3 Kernel size: 3 Pool3 Kernel size: 3 Norm3 alpha: 1e-1
pad: 1 Stride: 2 beta: 0.75

Num output: 384 Local size: 5 Num output: 256
Conv4 Kernel size: 3 Norm4 alpha: 0.01 Conv5 Kernel size: 3

Stride: 1 beta: 0.75 Stride: 1

4.2.1 Network Structure
The neural network of the MTCN consists of two parts:

the shared network and 40 subnetworks. The 40 subnet-
works have the same network layers, such as convolutional
layers, contrast normalization layer, pooling layer, ReLU
nonlinear function, and identical network parameters. The
detailed subnetwork configurations are shown in Table 2.
The convolutional layer is followed by ReLU, which is a max
pooling and a local response normalization layer. Every F10
layer has 4098 units and is followed by a ReLU and 50%
dropout to avoid overfitting. Each F11 layer is fully con-
nected to a corresponding F10 layer, which also has 4098



units, and it is also followed by ReLU and a 50% dropout.
The final fully connected layer connects F11 with 1000 units.

4.3 Results
The results obtained for CelebA and LFWA by the pro-

posed approach and several state-of-the-art approaches [19],
[28], [12], [11], [9], and [5] are presented in Table 3. The
MTCN with NTCCA outperforms [19], [28], [12], [11], [9],
and [5] for most of the 40 face attributes in both the CelebA
and LFWA. For the CelebA results, in terms of the average
accuracies, our MTCN with NTCCA improves on [19] by
5.67%, on [28] by 2.03%, on [12] by 1.68%, on [11] by 0.37%,
on [9] by 1.96%, on [9] (unaligned) by 2.65%, and on [5] by
1.74%. For the LFWA results, our MTCN with NTCCA
improves on [19] by 4.11%, on [12] by 1.65%, and on [11] by
1.81%. Although our MTCN achieves better performance
among these compared methods, we do not know how much
of an effect our MTCN with NTCCA has on the performance
of the whole or some attribute predictions and whether our
MTCN has worked on the related face attributes. There-
fore, we conduct a further analysis based on Table 3 in the
following sections.

4.3.1 Ablation Analyses on the CelebA Dataset
We do not expect to see an increase in performance with

MTCN for every attribute because some attributes do not
have strong relationships with others, but most attributes
achieved better estimations compared to the state-of-the-art
methods. From the prediction presented in Table 3, these
attributes can be divided into three major categories based
on the results of our method: I) attributes (] 1, 5, 6, 7, 10,
11, 14, 15, 16, 17, 18, 21, 23, 25, 27, 30, 31, 36, 39) that
are relatively easy to predict using our MTCN; most of the
results exceed 95%, but those achieved using the compared
methods are lower than 95%. Each of these attributes is cor-
related with one or more other attributes, and our MTCN
excavates these correlations in different levels, which is one
of the most important reasons that it can obtain the best
performance of all; for example, ] 25 (NoBeard) relates
to {] 2 (ArchedEyebrows), 3(BushyEyebrows), 6(Bald),
7(Bangs), 10(BrownHair), 11(GrayHair), 12(BigLips),
18(Goatee), 19(HeavyMakeup), 20(HighCheekbones),
22(Male))}; II) the estimation of attributes (] 26 and 28)
is less than 80%; they are easily influenced by the shooting
angle and pose, and few of the attributes are highly related;
and III) these attributes are related to the attributes in
I. Most of the time, the attributes in III can enhance the
features of the attributes in I, while those of III benefit
less from those of I. For example, {] 2 (ArchedEyebrows)
and ] 25 (NoBeard)}, {] 3 (BushyEyebrows) and ] 25
(NoBeard)}, {] 20 (HighCheekbones) and (] 25 (NoBeard),
32 (Smiling))}.

Table 4 presents the average accuracies of the methods
for the three categories. For category I, the average ac-
curacies of our MTCN without NTCCA are 96.46%, which
improves on [19] by 13.04%, on [28] by 1%, on [12] by 0.83%,
on [9] by 0.99%, on [9] (unaligned) by 1.32%, and on [5] by
0.83%. With NTCCA, MTCN improves the average accu-
racy by 1.12% compared to that without NTCCA, and it
shows better performance than does [11]. Then, for cate-
gory II, for the average accuracies of [19], [28], [12], [11],
[9], [9] (unaligned), [5], our MTCN without NTCCA, and
our MTCN with NTCCA are 77%, 76.1%, 76.66%, 78%,

75.31%, 75.56%, 76.19%, 77.08%, and 78.49%, respectively.
We find that our MTCN with NTCCA achieves the best per-
formance. Finally, for category III, the average accuracy of
MTCN with NTCCA is 89.88%, which improves the average
accuracy by 0.99% compared to MTCN without NTCCA,
and it exceeds all of the compared methods listed above.

Based on the analysis above, we can learn that if the face
attribute relates to the others and MTCN is trained with a
large enough dataset, the proposed method can show good
performance via excavating the correlations among these at-
tributes, such as the performance on categories I and III.
Without NTCCA, the performance of our MTCN is nearly
the same as that of the state-of-the-art methods, mostly be-
cause of the novel design of the network, which not only fully
considers the differences among the face attributes but also
extracts related information to enhance itself. Further, it
attempts to maximize the correlation among the high-level
features through the NTCCA. Compared with the state-of-
the-art methods on CelebA, our method not only improves
the average accuracy of the attributes taken as a while but
also greatly increases the poor accuracies of single attributes
predicted by the compared methods; for example, the pre-
dictions for the attribute Bangs are nearly 72%, while that
of our MTCN is 95.44%.

4.3.2 Ablation Analyses on the LFWA Dataset
Compared with CelebA, LFWA is a relatively small dataset,

so all of the average accuracies are lower than those on
CelebA. Although our MTCN achieves the best performance
of all of the compared algorithms, the trends in the accu-
racies of some of the attribute predictions are not the same
as those in CelebA. For example, the accuracy of Bangs (]
7) on LFWA is 84.51%, and it belongs to category II, but
Bangs is in category I on CelebA, and BlondHair (] 9)
is in category I on LFWA but belongs to category II on
CelebA. Although LFWA is a small dataset, the accuracies
of most of the attributes decrease slightly compared with
those on CelebA. The augmentation scheme on LFWA is an
important reason, but a more important reason is attributed
to the novel structure of considering the correlations of the
attributes in different levels.

Without loss of generality, we still divide these attributes
into three categories according to the results of our MTCN
on LFWA. Comparing the three categories with those on
CelebA, we can learn that our MTCN is effective in the case
of a small number of images. The details are as follows: I)
for attributes (] 5, 6, 9, 10, 11, 16, 18, 19, 20, 21, 23, 27, 30,
32, 35, 36, 37, 38, 40), most of the results exceed 90%, but
those of the compared methods are lower than 90%; II) the
estimation of attribute (] 26) is less than 80%; and III) for
attributes (] 1, 2, 3, 4, 7, 8, 12, 13, 14, 15, 17, 22, 24, 25,
28, 29, 31, 33, 34, 39), all results exceed 80%. Table 5 shows
the detailed average accuracies of the three categories.

In terms of the attributes in category I, those on CelebA
include attributes (] 1, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 21,
23, 25, 27, 30, 31, 36, 39), while LFWA has attributes (] 5,
6, 9, 10, 11, 16, 18, 19, 20, 21, 23, 27, 30, 32, 35, 36, 37,
38, 40). This result indicates that attributes (] 1, 7, 14, 15,
17, 25, 31, 39) do not belong to category I from CelebA in
LFWA but that attributes (] 9, 19, 20, 32, 35, 37, 38, 40)
are in category I, which belongs to III in CelebA. The size
of the dataset affects the predictions of attributes (] 1, 7,
14, 15, 17, 25, 27, 31, 39), but our MTCN minimizes that



Table 3: Attribute estimation accuracies (in %) for the 40 binary attributes (see Table 2) on the CelebA
and LFWA databases by the proposed approach and the state-of-the-art methods [19], [28], [12], [11], [9],
and [5]. The average accuracies of [19], [28], [12], [11], [9], [9](unaligned), [5], and the proposed approach are
87.30%, 90.94%, 91.29%, 92.60%, 91.01%, 90.32%, 91.23%, 91.95%(Ours), and 92.97%(Ours), respectively,
on CelebA, and the average accuracies of [19], [12], [11], and the proposed approach are 83.85%, 86.31%,
86.15%, 86.81%(Ours), and 87.96%(Ours), respectively, on LFWA. The highest accuracy for each attribute
is in bold.

Approach
Attribute index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
e
le

b
A

LENet+ANet [19] 84.00 82.00 83.00 83.00 88.00 88.00 75.00 81.00 90.00 97.00 74.00 77.00 82.00 73.00 78.00 95.00 78.00 84.00 95.00 88.00
MOON [28] 94.03 82.26 81.67 84.92 98.77 95.80 71.48 84.00 89.40 95.86 95.67 89.38 92.62 95.44 96.32 99.47 97.04 98.10 90.99 87.01

MCNN+AUX [12] 94.51 83.42 83.06 84.92 98.90 96.05 71.47 84.53 89.78 96.01 96.17 89.15 92.84 95.67 96.32 99.63 97.24 98.20 91.55 87.58
DMTL [11] 95.00 86.00 85.00 85.00 99.00 99.00 96.00 85.00 91.00 96.00 96.00 88.00 92.00 96.00 97.00 99.00 99.00 98.00 92.00 88.00

AFFACT [9] 94.21 82.12 82.83 83.75 99.06 96.05 70.88 83.82 90.32 96.07 95.50 89.16 92.41 94.41 96.18 99.61 97.31 98.28 91.10 86.88
AFFACT Unaligned [9] 94.09 81.27 80.36 84.89 97.82 95.49 71.42 81.83 85.88 95.17 94.52 87.72 90.59 95.10 95.94 99.38 97.21 97.89 90.82 86.11

PaW [5] 94.64 83.01 82.86 84.58 98.93 95.93 71.46 83.63 89.84 95.85 96.11 88.50 92.62 95.46 96.26 99.59 97.38 98.21 91.53 87.44
MTCN without NTCCA 94.68 84.92 84.71 85.11 98.05 97.73 86.04 84.18 90.42 95.47 95.13 88.48 91.37 95.49 96.18 99.03 98.42 98.10 91.47 87.19

MTCN with NTCCA 95.46 86.02 86.23 85.97 99.12 99.42 95.44 86.03 91.14 96.82 96.44 89.28 92.00 96.32 97.16 99.68 98.73 98.59 92.34 88.95

L
F

W
A

LENet+ANet [19] 84.00 82.00 83.00 83.00 88.00 88.00 75.00 81.00 90.00 97.00 74.00 77.00 82.00 73.00 78.00 95.00 78.00 84.00 95.00 88.00
MCNN+AUX [12] 77.06 81.78 80.31 83.48 91.94 90.08 79.24 84.98 92.63 97.41 85.23 80.85 84.97 76.86 81.52 91.30 82.97 88.93 95.85 88.38

DMTL [11] 80.00 86.00 82.00 84.00 92.00 93.00 77.00 83.00 92.00 97.00 89.00 81.00 80.00 75.00 78.00 92.00 86.00 88.00 95.00 89.00
MTCN without NTCCA 80.59 85.14 82.35 83.78 92.01 92.78 80.64 84.51 92.17 97.28 87.97 80.91 83.00 79.01 80.24 91.67 85.58 88.74 95.72 88.63

MTCN with NTCCA 81.68 86.23 83.01 84.33 92.16 93.44 84.51 85.17 93.20 98.09 89.47 81.83 84.52 83.27 82.00 92.84 87.12 89.81 96.41 89.75

Approach
Attribute index

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
e
le

b
A

LENet+ANet [19] 94.00 82.00 92.00 81.00 79.00 74.00 84.00 80.00 85.00 78.00 77.00 91.00 76.00 76.00 94.00 88.00 95.00 88.00 79.00 86.00
MOON [28] 98.10 93.54 96.82 86.52 95.58 75.73 97.00 76.46 93.56 94.82 97.59 92.60 82.26 82.47 89.60 98.95 93.93 87.04 96.63 88.08

MCNN+AUX [12] 98.17 93.74 96.88 87.23 96.05 75.84 97.05 77.47 93.81 95.16 97.85 92.73 83.58 83.91 90.43 99.05 94.11 86.63 96.51 88.48
DMTL [11] 98.00 94.00 97.00 90.00 97.00 78.00 97.00 78.00 94.00 96.00 98.00 94.00 85.00 87.00 91.00 99.00 93.00 89.00 97.00 90.00

AFFACT [9] 98.26 92.60 96.89 87.23 95.99 75.79 97.04 74.83 93.29 94.45 97.83 91.77 84.10 85.65 90.20 99.02 91.69 87.85 96.90 88.66
AFFACT Unaligned [9] 97.29 92.82 96.89 87.15 95.33 74.87 96.97 76.24 91.74 94.54 97.46 90.45 82.17 83.37 90.33 98.66 92.99 87.55 96.43 86.21

PaW [5] 98.39 94.05 96.90 87.56 96.22 75.03 97.08 77.35 93.44 95.07 97.64 92.73 83.52 84.07 89.93 99.02 94.24 87.70 96.85 88.59
MTCN without NTCCA 98.43 93.89 96.59 88.97 96.71 76.35 97.04 77.81 93.92 95.78 97.91 93.07 84.98 86.54 90.17 98.91 93.18 88.76 97.00 89.95

MTCN with NTCCA 98.52 94.61 97.18 89.42 97.31 78.52 97.18 78.47 94.35 96.00 98.34 93.91 85.49 87.00 91.04 99.10 94.00 89.31 97.26 90.71

L
F

W
A

LENet+ANet [19] 94.00 82.00 92.00 81.00 79.00 74.00 84.00 80.00 85.00 78.00 77.00 91.00 76.00 76.00 94.00 88.00 95.00 88.00 79.00 86.00
MCNN+AUX [12] 94.02 83.51 93.43 82.86 82.15 77.39 93.32 84.14 86.25 87.92 83.13 91.83 78.53 81.61 94.95 90.07 95.04 89.94 80.66 85.84

DMTL [11] 93.00 86.00 95.00 82.00 81.00 75.00 91.00 84.00 85.00 86.00 80.00 92.00 79.00 80.00 94.00 92.00 93.00 91.00 81.00 87.00
MTCN without NTCCA 93.68 85.64 94.31 82.49 82.00 77.58 92.47 84.09 85.84 87.13 82.71 91.80 79.03 81.00 95.00 91.49 94.68 90.73 81.06 86.84

MTCN with NTCCA 94.21 86.73 95.67 83.51 82.43 78.85 93.68 84.93 87.00 88.39 84.11 92.77 80.00 81.45 95.73 92.38 95.69 91.75 82.00 88.04

Table 4: The average accuracies of the three cate-
gories on CelebA.

Methods Category I Category II Category III

LENet+ANet[19] 83.42% 77% 85%
MOON[28] 95.46% 76.1% 87.99%

MCNN+AUX[12] 95.47% 75.31% 88.18%
DMTL[11] 95.14% 75.56% 87.06%

AFFACT[9] 95.63% 76.19% 88.41%
AFFACT Unaligned[9] (unaligned) 95.63% 76.66% 88.5%

PaW[5] 97.31% 78% 89.42%
MTCN without NTCCA 96.46% 77.08% 89.01%

MTCN with NTCCA 97.58% 78.49% 89.88%

Table 5: The average accuracies of the three cate-
gories on LFWA.

Methods Category I Category II Category III

LENet+ANet[19] 89.17% 74% 79.76%
MCNN+AUX[12] 91.38% 77.39% 82.39%

DMTL[11] 91.67% 75% 81.95%
MTCN without NTCCA 91.81% 77.58% 82.96%

MTCN with NTCCA 92.77% 78.85% 84.26%

influence by making full use of the correlations among the
attributes. Additionally, to the advantage of our system, the
predictions of attributes (] 9, 19, 20, 32, 35, 37, 38), which
are relatively difficult to predict, are not strongly affected
by the size of the dataset.

In conclusion, face attributes are related, and the degrees
of correlation among the different attributes are different.
Excavating the related information at different levels can im-
prove the performance of the attribute predictions. MTCN
attempts to capture the correlation from different levels of
features among the different attributes, such as sharing in-
formation in low-level feature layers and splitting it in the
high-level feature layers while extracting related information
from other subnetworks to enhance its own useful features
and excavating the correlations of high-level features. These
are the main reasons why our MTCN can achieve better
performance on a relatively small dataset, even if it is used
without NTCCA, and why the overall performance of our
system on LFWA is close to that for the same attribute on
CelebA. Because of its novel design compared with other
methods, MTCN not only achieves the best performance,
but also greatly improves the accuracies of the predictions
on some single attributes, such as Bangs and Blurry.

5. CONCLUSIONS
This paper presents a novel multi-task tensor correlation

neural network (MTCN) for facial attribute prediction. Com-
pared to the existing approaches, the proposed method fully
explores the correlations at different levels, including shar-
ing information in the low-level feature layers, splitting that



in the high-level feature layers while extracting related in-
formation from other subnetworks to enhance its features
and excavating the correlation of high-level features with
NTCCA. Then, our MTCN makes final decisions for each
attribute prediction. Extensive experiments demonstrate
the effectiveness of our proposed system. The experimen-
tal results show that fully exploiting the correlations among
the face attributes can achieve better performance, even if
the training dataset is not large enough. In the future, we
will improve the hybrid systems to achieve better prediction
performance for the attributes in categories II and III.

6. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

[2] A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia.
Multi-task CNN model for attribute prediction. IEEE
Transactions on Multimedia, 17(11):1949–1959, Nov
2015.
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