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Growing multi-stage attacks in computer networks impose significant security risks and necessitate the de-
velopment of effective defense schemes that are able to autonomously respond to intrusions during vulner-
ability windows. However, the defender faces several real-world challenges, e.g., unknown likelihoods and
unknown impacts of successful exploits. In this article, we leverage reinforcement learning to develop an in-
novative adaptive cyber defense to maximize the cost-effectiveness subject to the aforementioned challenges.
In particular, we use Bayesian attack graphs to model the interactions between the attacker and networks.
Then we formulate the defense problem of interest as a partially observable Markov decision process prob-
lem where the defender maintains belief states to estimate system states, leverages Thompson sampling to
estimate transition probabilities, and utilizes reinforcement learning to choose optimal defense actions using
measured utility values. The algorithm performance is verified via numerical simulations based on real-world
attacks.
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1 INTRODUCTION

With growing network threats, it is of vital importance to develop effective defenses that can pro-
tect computer networks from cyber-attacks. One-stage attacks have been widely used to compro-
mise the hosts that the attacker can directly interact with. Malicious actions, e.g., probing, toehold,
and privilege escalation, are directly taken against the target machines. Examples of one-stage at-
tacks include SQL injection and cross-site scripting. In many scenarios, target machines could be
located in the interior of a computer network. However, one-stage attacks can only compromise
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Fig. 1. An example of multi-stage attacks.

machines on the periphery of the network. In contrast, a multi-stage attack can be decomposed
into a sequence of ordered actions in which each action could exploit one vulnerability to compro-
mise a machine in the network. Once a machine is compromised, it can be used as a stepping stone
to compromise its neighbor machines. The step-by-step method enables the attacker to penetrate
interior layers from the periphery.

Figure 1 shows an example of multi-stage attacks. The attacker first compromises either the
Web server by remotely exploiting IIS vulnerability in WebDAV service or the Gateway server by
exploiting untrusted cookie in OpenSSH. Then the attacker can access local desktop a from the
Gateway server by exploiting MS Video ActiveX stack buffer overflow or from the Web server by
exploiting LICQ buffer overflow. In the real world, there are two representative classes of multi-
stage attacks. One class aims to compromise as many machines in a network as possible, e.g., the
example in Figure 1, WannaCry [24], etc. The other class takes several intrusion steps to reach a
specific target inside a network. The attack in the DARPA 2000 dataset [52] is one example of this
class. Many advanced persistent threats belong to this class as well.

A traditional defense against multi-stage attacks is to discover vulnerabilities and develop
corresponding patches to remove the vulnerabilities [12]. However, the process from vulnerability
discovery to patch generation is slow and deliberative. According to the Internet threat report
[43], the top five vulnerabilities in 2014 were actively exploited by attackers for an average of
59 days before patches were available. The vacancy of effective defenses before patches are in
place necessitates the development of effective defense schemes that are able to autonomously
respond to intrusions during vulnerability windows, i.e., durations from when attacks are
launched to when patches are released [17]. One feasible solution is adaptive cyber defense (ACD)

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 6. Publication date: November 2020.



Adaptive Cyber Defense Against Multi-Stage Attacks Using Learning-Based POMDP 6:3

[8]. ACD guides the defender to identify optimal or near-optimal strategies for deploying some
effective Counter-surveillance, Diversification, Detection, or Disinfection (CDDD) measures, e.g.,
reimage of virtual machines, in a computer network using rigorous methodologies, e.g., game
theory, machine learning, and control theory. Such ACD techniques dynamically and proactively
reconfigure deployed CDDD defenses so as to increase uncertainty and complexity for attackers to
succeed during the vacancy. For example, Clark et al. [7] dynamically randomize the IP addresses
of the machines in a computer network to prevent attacks from locating the targets.

In this article, we aim to develop ACD schemes against the first class of multi-stage attacks, i.e.,
those that aim to compromise as many machines as possible during the vacancy. Graphical models
have been widely used in other works, e.g., [9, 19, 27], to model the causality among vulnerabilities
and describe how attacks progress through a network over time in a deterministic way, i.e., the
attacker definitely compromises a machine as long as the prerequisites are satisfied. Such models
work well for the defender to reason all possible attack paths, but they are not suitable for the de-
fender to synthesize effective policies as required by ACD. In reality, the probability that an exploit
fails is non-trivial even if all of the prerequisites are satisfied. To better handle the reality, Bayesian
attack graphs (BAGs) [20] were proposed to capture the uncertainties of successful exploits. In par-
ticular, BAGs are weighted graphs where the weights represent how likely exploits could succeed.
BAGs have been used as a powerful tool to model how a multi-stage attack propagates through a
network [11, 25, 48].

With BAGs, identifying optimal attack or defense strategies have been formulated as Markov
decision process (MDP) problems. In many scenarios, the defender can only observe the secu-
rity status of a subset of machines due to limited detection capabilities. These security problems
are further formulated as partially observable Markov decision process (POMDP) [2] problems.
However, the existing works of POMDP on multi-stage attacks (please refer to Section 2 for more
details) neglect two real-world challenges: (1) state transition probabilities are often unknown, and
(2) utility functions are unknown in many cases. The focus of this work is to develop a new ACD
to address the challenges. Our rough ideas are elaborated in the following.

Unknown utility function. To quantify how “secure” the network is within a defense horizon, we
need to assign a utility value to each pair of defense action and system state. After a defense action
is deployed, the defender can receive a utility value to quantify the cost-effectiveness of that action.
However, the defender is unaware of the utility function, i.e., the mapping from actions and system
states to utility values because, e.g., the locations and the impacts of vulnerabilities are not avail-
able during vulnerability windows. We propose reinforcement learning to address the challenge. In
reinforcement learning, a decision-maker selects actions on basis of its past experience (exploita-
tion) and also by new trials (exploration). The decision-maker receives numerical utility values,
which evaluate deployed actions, and guide the decision-maker to select actions that maximize
accumulated utility values in the future. The decision-maker only needs to access induced utility
values but is not required to know utility functions. This intriguing feature well matches our needs.

Unknown transition probabilities. In BAGs, the transition probabilities of system states are deter-
mined by how likely the exploits can succeed. However, the likelihoods usually are estimated after
the comprehensive study of vulnerabilities and cannot be accessed by the defender during vulner-
ability windows. In this article, we consider the scenario where the transition probabilities are
generated at the beginning of the attack and fixed but unknown to the defender. Some early works
estimate unknown parameters solely based on the observed data in history and apply optimal ac-
tions on the basis of certainly equivalence principle, i.e., the estimated parameters are treated as the
true ones. Due to lack of sufficient exploration, such approaches may lead to the convergence of the
estimated parameters to incorrect values [3, 35] and result in performance degradation. To address
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the challenge, the defender maintains a posterior distribution over the transition probabilities and
instantiates a set of estimated transition probabilities from this posterior distribution periodically.
Then the defender selects optimal defense actions according to the estimated transition probabil-
ities by resorting to, e.g., value iteration. The preceding idea is referred to as Thompson sampling
[44]. In our problem, for each state-action pair, the defender may start by assigning an arbitrary
prior probability distribution over all possible transition probabilities. After an action is taken and
the system evolves to the next state, the defender updates the posterior distribution. In particular,
the posterior distribution of each state-action pair is a distribution over the transition probability
vector where each possible successor system state is associated with one entry. In addition, the
weight of each entry is updated in proportion to the count of transitions to the corresponding tar-
get state in the history (the details of posterior update will be provided in Section 4.1). Thompson
sampling balances exploitation and exploration to estimate the transition probabilities. In other
words, when instantiating the estimates, the defender, on one hand, will probably choose the tran-
sition probabilities that are consistent with the historical transitions and, on the other hand, can
explore all possible estimates with non-zero probabilities.

Problem statement. Since the two challenges are rooted in the nature of the difficulty in effec-
tively defending against the first class of multi-stage attacks in the real world, simultaneously
addressing the two challenges in maximizing the cost-effectiveness of a set of CDDD measures
(the defender chooses to deploy) is an essential cyber-defense problem.

Contribution. In this article, we utilize BAG to model the multi-stage attacks in computer net-
works and formulate the defense problem of interest as a POMDP problem. Then we propose a
Thompson sampling–based reinforcement learning algorithm as a unified defense scheme to si-
multaneously address the challenges of partial observability, unknown transition probabilities,
and unknown utility function. In particular, our basic algorithm proceeds in episodes. At the ini-
tialization episode, the defender starts from arbitrary estimates of system states and transition
probabilities, randomly selects actions, and forms beliefs about the states based on induced util-
ity values and observations. With the beliefs, the defender takes the most likely state (MLS) in
the belief as the estimated state. At the beginning of each regular episode, the defender updates
the posterior distribution of the transition probabilities based on previous actions and estimated
states up to the end of the last episode, then estimates the transition probabilities by sampling
from the posterior distribution. The estimated transition probabilities are used through the whole
episode. The defender also uses latest received utility values to estimate the utility function at each
timestep within the episode. During the regular episode, the defender performs value iterations
to select optimal actions using the estimates of system states, transition probabilities, and utility
function.

A limitation of the basic algorithm is high computational complexity. To mitigate the compu-
tational complexity, we introduce a Q-learning-based algorithm, which updates one Q value per
timestep within each episode. The update time reduces by around 1,000 times with the same sizes
of action space and observation space. Further, we conduct numerical simulations based on real-
world attacks to evaluate the performance of the algorithms. The simulation results confirm that
our algorithms outperform the baseline policy, which uniformly selects defense actions, in terms
of aggregate utilities and increase their leads over time.

Preliminary results of this manuscript were published in our earlier work [14]. The early ver-
sion assumes that the transition probabilities of system states are fully known to the defender in
advance. This assumption allows the defense problem to be formulated as a belief state MDP prob-
lem. However, as discussed, this assumption is unrealistic. To relax this key assumption, the cur-
rent article proposes new algorithms that can autonomously respond to intrusions even when the
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transition probabilities are completely unknown in advance. The key innovation of the algorithms
is to treat the transition probabilities as unknown parameters to the defender and leverage Thomp-
son sampling–based reinforcement learning to estimate the transition probabilities on-the-fly. Ex-
periments are redone to evaluate the performance of the new algorithms. Additional experiments
are conducted to quantify the estimation errors. Additional experiments are conducted to quantify
the estimation errors.

The rest of the article is organized as follows. Section 2 presents the related works. Section 3
formulates the security problem of interest as a POMDP problem and identifies the challenges.
Section 4 proposes the Thompson sampling–based reinforcement learning algorithms to solve the
problem. Section 5 evaluates the performance of the algorithms. The article concludes in Section 7.

2 RELATED WORKS

CDDD. We will review recent works on CDDD measures for individual hosts and computer
networks. For example, Bigelow et al. [5] randomize the memory address layout of the programs
in individual hosts to make vulnerabilities more difficult to be exploited. In addition, Chen et al.
[6] and Xin et al. [49] randomize the layout of data structures to prevent attacks from correctly
locating target data objects and further manipulating them. For computer networks, diversity is
a widely used technique that equips computers with randomized implementations of software,
operating systems, or hardware platforms to force attackers to target each computer individually,
substantially raising the bar on network-level threats. For example, Larsen et al. [18] generate
diverse implementations of programs in the target computers to mislead the attacker, and Roeder
and Schneider [34] dynamically change hardware platforms and operating system attributes to
complicate attacks. Besides diversity, IP blocking [26] and machine reimaging [16] also introduce
uncertainties in computer networks to mitigate attacks. Although these CDDD measures could
achieve satisfactory cost-effectiveness in some real-world settings, none of them can maximize
the cost-effectiveness under the four domain-specific challenges elaborated previously.

POMDP. POMDP has been widely used to launch or defeat multi-stage attacks [15, 21, 22, 36, 50].
Hughes et al. [15] and Sarraute et al. [36] use POMDP to model the attacks that can only observe
partial information of the targets, e.g. the versions of operating systems. Yu and Brooks [50] lever-
age POMDP to optimally implement address randomization where the defender can only observe
whether the computers are compromised or not. In addition, Miehling et al. [21, 22] compute op-
timal defense countermeasures, e.g., blocking services, through solving POMDP. Although these
works address the “partial observability” challenge elaborated earlier, none of them addresses the
“unknown utility function” challenge or the “unknown transition probabilities” challenge.

Reinforcement learning. Reinforcement learning, a subclass of machine learning, has been in-
creasingly applied in ACD. Zhu et al. [56] apply learning algorithms to solve internal denial-of-
service attacks. In the work of Zhu and Başar [55], a Q-learning algorithm is proposed to solve
dynamic configuration problems of Intrusion Detection Systems (IDS). Our earlier work [53] pro-
pose a reinforcement learning scheme to defend against Heartbleed attacks. Hu et al. [13] apply a
robust adaptive learning algorithm to dynamically reconfigure platforms to defend against zero-
day attacks. In addition, Zhu and Martínez [54] propose two learning-based distributed control
algorithms to handle false data injection attacks in operator-vehicle networks. A clear limitation
of these works is that none of these works is able to address the aforementioned challenges.

3 PROBLEM FORMULATION

In this section, we model interactions between the attacker and a network as a BAG. Then the
security problem of maximizing cost-effectiveness within the defense horizon is formulated as a
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Table 1. Symbols and Notations

Notation Meaning

N , E, P Set of machines, set of edges, set of exploit probabilities

(i, j ), ρi j Exploit from machine i to j, likelihood that exploit (i, j ) can succeed

NL , N \ NL Nodes that have no in-neighbor, nodes that have in-neighbors

D̄k In-neighbors of non-leaf node k

V k
i

k-th vulnerability of machine i

si , s State of machine i , system state

T , t Time horizon, timestep

km , km m-th episode, beginning of episode Km

st , s̃t System state, estimated system state at timestep t

at , ot Action, observation at timestep t

S, A, As , O State space, action space, available actions from state s observation space

Z (o |s,a) Probability of observing o

u (s,a), vt Utility of taking action a at s , utility value received by the defender at timestep t

Û (s,a) Estimated utility of taking action a at s

P (s ′|s,a) Probability of evolving to state s ′ after taking action a at state s

dt , Dt Decision rule, set of decision rules at timestep t

π , π∗,Π Policy, optimal policy, set of all policies

Jπ
t (·), J∗t (·) Expected discounted total utility from timestep t , optimal value functions

Qt (s,a) Aggregate utility for executing action a at timestep t and following π ∗ thereafter

μt+1 (P ) Posterior distribution at t + 1 for P

N(s,a, t ) Observed counts of reaching all successor states from (s,a) between t and t + 1

Dir (α (s,a)) Dirichlet distribution

b, BU Belief state (probability distribution over the system states), belief state update law

Tt (s,a) Number of visits of state-action pair (s,a) until t

POMDP. The challenges are introduced at the end of the section. The symbols and notations used
in this article are summarized in Table 1.

3.1 BAGs Without Defense

We consider a computer network that consists of multiple machines. The attacker aims to compro-
mise as many machines as possible by exploiting reachable vulnerabilities. But each exploit can
only succeed with a certain probability. In this problem, the interactions between the network and
the attacker can be modeled by a BAG, which is formally defined as follows.

Definition 1. A BAG is defined as a tuple G = (N ,E,P ).N = {1, . . . ,K } is the set of machines.
E is the set of directed edges, where each edge is an exploit and (i, j ) ∈ E if and only if machine
j can be compromised through machine i . P is the set of exploit probabilities associated with the
edges, where ρi j ∈ P represents the likelihood that exploit (i, j ) can succeed, i.e., how likely the
attacker can successfully compromise machine j after he or she compromises machine i .

Remark 1. In general, nodes in BAGs represent attack attributes such as attacker permission
levels or compromised vulnerabilities in a machine or service. Exploits are events that allow the
attackers to use their current set of attributes to obtain further attributes [21]. In this article, we
slightly modify the definition of the node in the BAG, i.e., each node represents if the corresponding
machine is compromised or not by attackers.
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Fig. 2. A simple example of BAG.

If (i, j ) ∈ E, node i is referred to as an in-neighbor of node j and node j is referred to as an out-
neighbor of node i . The nodes in a BAG can be classified into two categories: leaf nodes NL ⊆ N
and non-leaf nodes, where leaf nodes do not have in-neighbors. The probability that a leaf node
l ∈ NL is compromised is denoted by ρl . For any non-leaf node k , we formally define its in-
neighbors as D̄k � {i ∈ N |(i,k ) ∈ E}.

NIST’s Common Vulnerability Scoring System (CVSS) [37] provides a way to capture the princi-
pal characteristics of a vulnerability and produces a numerical score reflecting how easy a vulnera-
bility can lead to a successful exploit. In particular, the likelihood that the attacker can successfully
compromise machine j after he or she compromises machine i , i.e., ρi j , is quantified by the ex-
ploitability metrics of vulnerabilities in machine j. The exploitability metric of CVSS score consists
of the Access Vector (AV), Access Complexity (AC), Privileges Required (PR), and User Interaction
(UI). In particular, AV reflects the context by which vulnerability exploit is possible, e.g., the vulner-
ability can be exploited through the network, adjacent network, local access, or physical access. AC
describes the conditions beyond the attacker’s control that must exist to exploit the vulnerability,
e.g., the target configuration settings, sequence numbers, shared secrets, etc. PR describes the level
of privileges an attacker must possess before successfully exploiting the vulnerability, e.g., basic
user or administrative privileges. UI describes whether a successful exploitation of this vulnerabil-
ity requires a user to take some action. We will show a simple example of calculating likelihoods.
Let us consider a simple example of BAG in Figure 2, where machine 2 has two vulnerabilities,
denoted by V a

2 and V b
2 , and machine 4 has two vulnerabilities, denoted by V a

4 and V b
4 . In this ex-

ample, machine 2 is compromised if and only if at least one of its vulnerabilities is successfully
exploited, and machine 4 is compromised if and only if both of its vulnerabilities are successfully
exploited. We can calculate the likelihood ρ24 =

∏
j ∈{a,b } 2AV (V j

4 )AC (V j

4 )PR (V j

4 )U I (V j

4 ).
The exploitability metrics are estimated after the comprehensive study of vulnerabilities and

cannot be accessed by the defender during vulnerability windows. In this work, such likelihoods
are only needed to simulate real-world attacks in Section 5 and are unknown to the defender in
advance.

System state. The state of machine i ∈ N at time t is either compromised (value 1) or not (value 0),
i.e., si

t ∈ {0, 1},∀i ∈ N . Stacking the states of the machines, we define the system state at timestep
t as st = (s1

t , . . . , s
K
t ) ∈ S = {0, 1}K .

Attacker’s action. Here we consider an aggressive attacker who always tries to compromise all
available machines (there are many real-world attacks, e.g., WannaCry Code red [57], that behave
in this way). Upon success, the attacker can use compromised machines as stepping stones to
exploit their out-neighbors. In addition, if a machine was compromised at the previous step, it
remains compromised for the current step. The attacker stops when all machines are compromised.
The attacker will restart compromising the machines from the periphery of the network when
there is no exploitable out-neighbor.
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Fig. 3. An example of state transition.

State transition. Since defenses are not taken into account, state transitions are autonomous
given the attacker’s initial actions. In the real world, machine i ∈ N \ NL can be compromised
at t under one of two conditions: either all of the machines in D̄i are compromised or at least
one of machines in D̄i is compromised at t − 1. The choice of the conditions depends on the type
of machine i . We call machine i an And-machine if it can be compromised only all of the ma-
chines in D̄i are compromised; otherwise, we call it an Or-machine. For example, the machine
with input validation error in the SQL server (Or-machine) can be exploited from any machine
(in-neighbor) that can access this server. The Admin server with stack overflow on MS SMV ser-
vice (And-machine) can be successfully exploited when both the local user (one in-neighbor) and
the SQL server (the other in-neighbor) are compromised [31]. Figure 3 shows an example of state
transition from st−1 = (0, 1, 0, 0) to st = (0, 1, 0, 1). The state evolution can be modeled by condi-
tional probability Pr (st |st−1). In particular, if i is an And-machine,

Pr
(
si

t = 1|st−1

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏
j ∈D̄i

ρ ji if si
t−1 = 0 and s j

t−1 = 1, ∀j ∈ D̄i ,

1 if si
t−1 = 1,

0 otherwise.

(1)

If i is an Or-machine,

Pr
(
si

t = 1|st−1

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − ∏
{j ∈D̄i |s j

t−1=1}
(1 − ρ ji ) if si

t−1 = 0 and ∃s j

t−1 = 1,

1 if si
t−1 = 1,

0 otherwise.

(2)

3.2 Defense Problem: POMDP

In this section, we formulate the defense problem as a POMDP. The specifics are discussed as
follows.

POMDP, as a subclass of MDP, is a sequential decision-making problem where outcomes are
partially under the control of an agent. The agent’s goal is to deploy a sequence of actions that
enable the system to perform optimally with respect to some predetermined criterion. We give the
formal definition of POMDP as follows.
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Definition 2. A POMDP consists of a tuple (T ,γ ,S,A,As ,O, P ,u,Z): T � {1, 2, . . . ,N } is the
time horizon with N ≤ ∞, γ ∈ (0, 1] is the discount factor, S is the state space, A is the action
space, and As ⊆ A is the finite set of actions available from state s . O is the observation space,
and Z (o |s,a) is the conditional probability of observing o after the agent takes action a and the
system evolves to state s . As a result of choosing action a at state s at a timestep, the agent receives
a utility u (s,a) and the state at the next timestep is drawn from a transition probability P (·|s,a).

Defender’s actions. In this work, the agent is referred to as the defender. The defender’s actions
include detection and reimage. Formally, at timestep t , the defender’s action is at = (ar

t ,a
d
t ) ∈

Ast
⊂ P(N ) × P(N ), where ar

t are the machines that are reimaged, ad
t are the machines that are

monitored, and P(N ) is the power set of N .

Concern about high false positives. The IDS is a typical practice to implement detection. However,
IDS alerts contain too many false positives [51]. In contrast, we assume that the detection in this
work is implemented by labor analysis instead of IDS. However, labor analysis requires many more
resources like domain knowledge and analyzing time than IDS. The defender can only detect a
(small) subset of the machines in the network. We further assume that our detection on the selected
machines does not include any false positive.

State transition. State transitions consist of a Markovian process and can be modeled by condi-
tional probability P (st |st−1,at−1). P (si

t = 1|st−1,at−1) represents the probability that machine i is
compromised at step t when the previous state is st−1 and the previous defense is at−1. As men-
tioned in Section 3.1, for an And-machine that was not compromised nor reimaged at the previous
step, it can only be compromised if all of its in-neighbors are compromised. In addition, for an
Or-machine that was not compromised nor reimaged at the previous step, it can be compromised
if at least one of its in-neighbors is compromised. If the machine was compromised at the previ-
ous step, it remains compromised if it was not reimaged. In other cases, the probability for this
machine to be compromised is 0. With a slight change of Equations (1) and (2), the probability is
given as follows. If i ∈ N is an And-machine,

P
(
si

t = 1|st−1,at−1

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏
j ∈D̄i

ρ ji if si
t−1 = 0, s j

t−1 = 1,∀j ∈ D̄i and i � ar
t−1,

1 if si
t−1 = 1 and i � ar

t−1,
0 otherwise.

If i ∈ N is an Or-machine,

P
(
si

t = 1|st−1,at−1

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − ∏
{j ∈D̄i |s j

t−1=1}
(1 − ρ ji ) if si

t−1 = 0 and i � ar
t−1,

1 if si
t−1 = 1 and i � ar

t−1,
0 otherwise.

Observation. Due to limited resources, the defender can only monitor a subset of machines at
each time. Thus, the defender is only aware of partial system states, which are referred to as ob-
servations. In particular, the defender receives an observation at timestep t , denoted by ot . Obser-
vation generation can be modeled by an observation kernelZ (·|st ,at−1), which presents the prob-
ability that the defender receives observation o when the previous action is at−1 and the system
state evolves to st . In this article, we simply use the states of the machines in ad

t−1 as observation,

i.e., ot = (si1
t , . . . , s

ik

t ), where i1, . . . , ik ∈ ad
t−1. The observation kernelZ (·|st ,at−1) is given by

Z (o |st ,at−1) =

{
1 if o = (si1

t , . . . , s
ik

t ) and i1, . . . , ik ∈ ad
t−1,

0 otherwise.
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Utility function. The defender aims to find a defense policy to keep the network “secure.” Utility
functions are introduced to quantify security levels of the network. At timestep t , after taking ac-
tion at in state st , the defender receives a utility value u (st ,at ) � r (st ,at ) − c (at ), where r (st ,at )
is the reward of keeping the network secure and c (at ) is the cost induced by the action at , e.g.,
resources required by reimage or detection. In particular, r (s,a) is defined according to the measur-
able confidentiality, integrity, and availability (CIA) impacts, r (s,a) � R −∑{s i ∈s |s i=1,i�ar }[IC (i ) +

II (i ) + IA (i )], and c (a) is defined according to the availability impact, c (a) � ∑{i ∈ar |s i=0} IA (i ).
Here, R represents the base security level of the clean network, e.g., the number of clean machines.
IC (i ), II (i ), and IA (i ) are the CIA impacts induced by the successful exploitation of the vulnerabili-
ties on machine i . For example, IC (i ) could be the number of suspicious read operations in machine
i , II (i ) could be the number of modified files stored in machine i , and IA (i ) could be the number of
lost new connections or the remaining disk space of machine i [29, 37]. We choose CIA impacts
because they are commonly considered as the three most crucial components of network security.

Recall that we aim to design effective defense schemes during vulnerability windows when the
defender has not fully studied the vulnerabilities and does not know their impacts. Therefore, in
this work, we assume that the defender is unaware of the utility function in advance. Instead, IDS
can measure the utility values according to the measurements in the compromised machines or
the network in real time.

Defender’s knowledge and goal. The defender knows the observation kernel, previous actions,
and observations up to t . But the system state trajectory, transition probabilities, and utility func-
tion are unknown to the defender. We formally define the information available to the defender at
time t as It � (Z,o1,a1, . . . ,ot−1,at−1,ot ). The defender aims to find a defense policy to maximize
the aggregate utility.

A decision rule prescribes a procedure for action selection in each state at a specified timestep.
We will focus on deterministic decision rules because they are easy to implement and evaluate.
A measurable mapping dt : S → Ast

is called a decision rule that specifies the action when the
system is in state st at timestep t . A sequence of decision rules π = (d1,d2, . . . ,dN ) is called a policy

or strategy. Let Dt denote the set of decision rules at timestep t , and let Π = D1 × D2 × · · · × DN

denote the set of all policies.
Let Jπ

1 (s ) � E[
∑N

t=1 γ
tu (st ,dt (st ))] represent the expected discounted total utility if policy π is

used and the system’s initial state is s . Here, γ ∈ (0, 1] is the discounted factor. The defender’s goal
is to maximize the aggregate utility over T as follows:

max
π ∈Π

Jπ
1 (s ) = E

⎡⎢⎢⎢⎢⎣
N∑

t=1

γ tu (st ,at )
⎤⎥⎥⎥⎥⎦

subject to at = dt (st ) (PA)

st ← P (·|st−1,at−1).

3.3 Challenges

In this article, we consider a special case of POMDP where the system dynamics are unknown.
In other words, the actual transition probabilities P are generated at the beginning and then
fixed but unknown to the defender. In addition, the defender is not aware of the system state
trajectory. Instead, the defender receives an observation each timestep. In addition, the defender
does not know the utility function u and can only receive a utility value at timestep t . To high-
light that u is unknown, we denote vt = u (st ,at ) as the utility value received by the defender at
timestep t .
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4 LEARNING-BASED ALGORITHMS FOR THE PROBLEM

In this section, we propose two learning-based algorithms to solve problem (PA) subject to the
aforementioned challenges.

4.1 Thompson Sampling

To deal with unknown transition probabilities, we treat P as an unknown parameter of the MDP
and focus on a Bayesian framework on this parameter [28]. In other words, we propose a learning
process to estimate the parameter P by computing the posterior distribution of P using observed
information and a prior distribution. In particular, we partition the time horizonT intoM relatively
long episodes k1, . . .kM , and at the beginning of each episode km , the parameter Pkm

is randomly
sampled from the posterior distribution, then actions are selected based on the sampled parameter
during the episode. This idea is called Thompson sampling or the posterior sampling method [44].

Formally, let μ1 be the prior distribution for P . At the end of timestep t ≥ 1, the defender takes an
action at and observes the new state st+1. Then the posterior distribution at t + 1 for P is updated
based on Bayes’ rule:

μt+1 (P ) =
μt (P )P (st+1 |st ,at )∫

P ′
μt (P ′)P ′(st+1 |st ,at )

.

However, the update law needs to compute the full posterior joint distribution over states. Unfor-
tunately, this often requires calculating intractable integrals. One way to achieve algebraic simplic-
ity is called conjugate prior. If all of the possible posterior distributions are in the same probability
distribution family as the prior probability distribution, the prior and posterior are then called con-

jugate distributions. Then the prior distribution is called a conjugate prior for the likelihood function.
Thus, if a suitable distribution family is chosen as the prior, then the posterior distribution lives in
the same family no matter what observations are received. In the MDP problem with finite states,
one common type of prior distribution is the Dirichlet distribution [28, 35, 42], which is a distribu-
tion over multinomial distributions and a conjugate prior for multinomial distribution. Since the
MDP has the Markov property, the transition probabilities associated with a state-action pair are
independent of the sequence of states and actions that lead to that state. Hence, the posterior dis-
tribution for P is represented independently for each state-action pair (s,a) as a distribution over
the transition probability vector ps,a � [ps1

s,a , . . . ,p
sn
s,a] = [P (s1 |s,a), . . . , P (sn |s,a)], where each el-

ement in the vector is the probability of transiting into a possible successor state and ps,a is a
multinomial distribution. Therefore, we choose Dirichlet distribution as the posterior distribution
for ps,a . Formally, the Dirichlet distribution for ps,a is defined as Dir (α (s1, s,a), . . . ,α (sn , s,a))
with following probability density function:

f (P (s1 |s,a), . . . , P (sn |s,a);α (s1, s,a), . . . ,α (sn , s,a)) =
Γ
(∑n

i=1 α (si , s,a)
)

∏n
i=1 Γ(α (si , s,a))

n∏
i=1

P (si |s,a)α (si ,s,a)−1,

where α (s,a) = (α (s1, s,a), . . . ,α (sn , s,a)) are positive-valued parameters and Γ is the gamma
function. Intuitively, α (si , s,a) represents the number of reaching the successor state of si from
state-action pair (s,a) [42].

It is proven in the work of Friedman and Singer [10] that Dirichlet distribution can be used as
an incremental parametric posterior for multinomial distributions. At timestep t , we can learn the
parameters based on historical transitions up to t . In particular, let us denote the learned param-
eters at t by α (s,a, t ) = (α (s1, s,a, t ), . . . ,α (sn , s,a, t )) and the posterior distribution of ps,a at t
by μt (ps,a ) = Dir (α (s,a, t )). Let N(s,a, t ) = (Ns1 (s,a, t ), . . . ,Nsn

(s,a, t )) be the observed counts
of reaching all successor states from (s,a) between t and t + 1, then the posterior distribution is
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updated as follows

μt+1 (ps,a ) = Dir (α (s,a, t ) + N(s,a, t )).

The update rule avoids the calculation of intractable integral in Bayes’ rule. Note that the update
of the posterior distribution requires the information of system states, which are unknown in our
problem. In what follows, we introduce how to estimate the states.

4.2 State Estimation

One might simply take an observation as the state and then come up with decision rules that
map from O to As . However, the transitions of the observations might not necessarily be Mar-
kovian, because multiple states could be mapped to the same observation under different ac-
tions. As a result, an optimal policy directly based on observations may not perform well. To
address the challenge, the defender maintains a probability distribution over the states, which
is called the belief state. Let B be the belief state space (the set of all possible probability distri-
butions over S) and b (s ) be the probability assigned to state s when the belief state is b. The
belief state at t assigns probability to each state s given all available information in history,
i.e., bt (s ) = Pr (s |a0,o1,b0, . . . ,at−1,ot ,bt−1). In addition, the belief state update law, denoted as
BU , incorporates the latest action and observation. The output of the update law is written as
BU (bt−1,at−1,ot ), which takes the last belief state bt−1, action at−1, and the current observation ot

as inputs and generates the updated belief state bt as follows:

Pr (s ′|at−1,ot ,bt−1) =
Pr (ot |s ′,at−1,bt−1)Pr (s ′|at−1,bt−1)

Pr (ot |at−1,bt−1)

=
Z (ot |s ′,at−1)

∑
s ∈S P (s ′|s,at−1)bt−1 (s )∑

s ′ ∈S Z (ot |s ′,at−1)
∑

s ∈S P (s ′ |s,at−1)bt−1 (s )
. (3)

With the belief state, we propose a simple state estimation rule according to the idea of the MLS
[38]. In other words, we take the state with the highest probability in the current belief state as
the estimated state:

s̃t = arg max
s ∈S

bt (s ).

4.3 Utility Function Estimation

To address the challenge of unknown utility function, we use the latest received utility value to
estimate the value ofu (s,a) for any state-action pair (s,a). In particular, we maintain an estimated
function Û (s,a) � u (s̃τ ,aτ ), where τ ≤ t is the last time when s̃τ = s and aτ = a. The reasons for
using only the latest received utility value are as follows. First, the utility function is deterministic
in this problem. Second, we optimistically assume that the estimated state s̃t will approach the real
state st as time goes by. In Section 5, we experimentally show that the estimated Û (s,a) can be
close to u (s,a).

4.4 Main Idea

Given the fact that the belief states provide sufficient statistics of the history [40], the defender
would select actions on the basis of belief states [2, 39]. With a slightly abused definition of the
decision rule and the policy, i.e., dt : B → A, the defender might want to solve the following
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problem:

max
π ∈Π

Jπ
1 (b) = E

⎡⎢⎢⎢⎢⎣
N∑

t=1

γ tU (bt ,at )
⎤⎥⎥⎥⎥⎦

subject to at = dt (bt ) (PB)

bt ← Bt (·|bt−1,at−1),

where Bt (·|b,a) is the belief transition probability at t and U (b,a) =
∑

s ∈S b (s )u (s,a) is the ex-
pected immediate utility from executing action a at state s given the belief state b. The transition
probability from belief state bt−1 to bt ∈ B is defined as follows:

Bt (bt |bt−1,at−1) =
∑

{o∈O |BU (bt−1,at−1,o)=bt }
Pr (o |at−1,bt−1),

where

Pr (o |at−1,bt−1)

=
∑
s ′ ∈S
Z (o |s ′,at−1)

∑
s ∈S

P (s ′|s,at−1)bt−1 (s ).

If there is no o ∈ O such that BU (bt−1,at−1,o) = bt , then Bt (bt |bt−1,at−1) = 0. In addition, it is
shown that the process of updating the belief state is Markovian [2], i.e., the current belief state
depends only on the latest belief state and action.

The update of belief state requires the knowledge of transition probability P . As mentioned
before, we can use sampled transition probability Pkm

and treat it as the actual transition prob-
ability in episode km . With Pkm

, we can solve (PB) within one episode. Here, Jπ
t (b) is the ex-

pected discounted total utility from any timestep t ∈ km to the end of km if policy π is used
and the belief state at t is b. Then the defender aims to compute the optimal value functions
J ∗t (b) � maxπ ∈Π Jπ

t (b),∀b ∈ B, and ∀t ∈ km . By the principle of optimality [4], the optimal value
function at t can be calculated backward from the optimal value function at t + 1 as follows:

J ∗t (b) = max
a∈A

⎡⎢⎢⎢⎢⎣
U (b,a) + γ

∑
o∈O

Pr (o |a,b) J ∗t+1 (BU (b,a,o))
⎤⎥⎥⎥⎥⎦
.

We can use dynamic programming (DP) to get the estimates of the optimal value functions J ∗t . Let
us consider the special case where the episode length is infinite. The optimal value functions can
be rewritten as J ∗ (b) � maxπ ∈Π E[

∑∞
t=1 γ

tU (bt ,dt (bt ))], where π = (d1,d2, . . .). We begin with
any initial estimated value function J 0 (b), then the n-th estimated value function is constructed
from the (n − 1)-th by the recursive equation:

Jn (b) = max
a∈A

⎡⎢⎢⎢⎢⎣
U (b,a) + γ

∑
o∈O

Pr (o |a,b) Jn−1 (BU (b,a,o))
⎤⎥⎥⎥⎥⎦
. (4)

By applying (4) repeatedly over n, Jn will converge to the fixed point J ∗ [4].
However, the value iteration (4) cannot be carried out because B is infinite. An approximation

idea called point based [30, 39] was proposed. In other words, perform the value iteration only on
a finite and incrementally expanded subset of belief states instead of the whole belief state space
B. There are several ways to construct the set. For example, Pineau et al. [30] start from the initial
belief state, compute all possible successors of each belief state, and then the furthest successor of
each belief state is added. Such expansion doubles the size of the set at each timestep and attempts
to cover the space of reachable belief states as best as possible. But this method requires significant
computational effort because computing all successors for each belief state requires O ( |O| |A|)
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belief state update operations described in (3), where each belief state update operation requires
O ( |S|2) products. This method did not show the ability to handle a large number of states, actions,
and observations. In our evaluation, the update requires more than 1010 products and takes more
than 2 hours to finish one timestep. Another method [41] also starts from the initial belief state
but expands the set by adding the new belief states that appear over time. The estimated value
function Jn can converge only when the value of each Jn (b) gets updated infinitely often. This
method only adds one successor into the set at each timestep. That means this method needs a
(relatively) large number of timesteps to visit enough belief states. Thus, if no belief states are
revisited during an episode, Jn (b) does not work well. In addition, for each belief state, it could
have O ( |O| |A|) successors. In our evaluation, it could take more than 600,000 timesteps to revisit
a belief state.

Therefore, in this work, we do not select actions on the basis of belief states. Instead, we select
actions based on the estimated states. As mentioned before, we perform Thompson sampling to
deal with unknown transition probabilities. In particular, we make no major assumptions and
start with a uniform distribution (a special case of Dirichlet distribution with all α equal to 1) for
P and then maintain a posterior distribution for P according to the estimated system states. At the

beginning of each episode, we randomly sample Pkm
� [pkm

s1,a1
, . . . , pkm

s |S|,a |A| ]
T from the posterior

distribution. The details of how to maintain the posterior distribution is provided in Section 4.1.
With a slightly abused definition of estimated value function Jn

m , we perform the following value
iteration repeatedly in episode km : Jn

m (s ) = maxa∈As
[Û (s,a) + γ

∑
s ′ ∈S Pkm

(s ′|s,a) Jn−1
m (s ′)]. Then

we select an action that maximizes Jn
m at the n-th timestep in episode km .

4.5 Algorithm Statement

Let tm be the first step of the episode km and N(s,a,m) = (Ns1 (s,a,m), . . . ,Nsn
(s,a,m)) be the

observed counts of reaching all successor states from (s,a) during episode km . Algorithm 1 starts
from an arbitrary belief state b1 (line 1) and draws a transition probability p

k1
s,a from uniform

distribution (line 5). For the initial episode (lines 7 to 15), the defender uniformly selects an action
for each timestep (line 8), updates the belief state (line 12), and estimates the successor state
(line 13). The counts of reaching the estimated successor states from current state-action pairs
are recorded (lines 14 and 35). Then the posterior distribution for pps,a is updated accordingly
(Line 18). After an action is selected, the value of state-action pair (s̃t ,at ) in Û is updated by the
received utility value of vt (lines 10 and 29). During each episode km (m ≥ 2), the initial values of
J 0
m are set based on Û for all states s ∈ S (line 21). In addition, the estimated value function Jn+1

m

is updated with latest Û (line 30).
The defender might choose the action greedily, i.e., choosing the action that maximizes the es-

timate of value function (Û (s̃t ,a) + γ
∑

s ′ ∈S Pkm
(s ′|s̃t ,a) Jn

m (s ′) in line 27). However, the estimated
value function Jn

m can deviate from the optimal value function J ∗t greatly because greedy pol-
icy only visits a portion of state-action pairs. To address this issue, Algorithm 1 follows the idea
of “ϵ-greedy exploratory policy” [1, 23, 45]. In particular, the defender chooses a random action
with a diminishing probability ϵ (t ) ∈ [0, 1] (the exploration phase) and chooses the greedy ac-
tion arg maxa∈As̃t

[Û (s̃t ,a) + γ
∑

s ′ ∈S Pkm
(s ′|s̃t ,a) Jn

m (s ′)] otherwise (the exploitation phase). The
exploration ensures that all state-action pairs are visited infinitely often. With the exploration,
the algorithm avoids being trapped in the sub-optimal actions. By decreasing ϵ (t ) over time, the
defender will rely more on the exploitation.

4.6 Computational Complexity

We proceed to discuss the computational complexity of the update of the estimated value functions
Jn+1
m (line 30 of Algorithm 1). The update of Jn+1

m (s ) for all s ∈ S needs O ( |S| |As |) products. The

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 6. Publication date: November 2020.



Adaptive Cyber Defense Against Multi-Stage Attacks Using Learning-Based POMDP 6:15

ALGORITHM 1: Thompson sampling with unknown utility function and states

1: Assign initial belief b1 and arbitrarily choose a1;
2: Assign prior distribution μ1 (ps,a ) = Dir (α (s1, s,a, 1) = 1, . . . ,α (sn , s,a, 1) = 1)) for all (s,a) ∈ S × A;
3: Estimate initial utility values Û (s̃,a) = 0,∀(s,a) ∈ S × A;
4: Estimate initial state s̃1 = arg maxs ∈S b1 (s );

5: Sample p
k1
s,a ∼ μ1 (ps,a ) for all (s,a) ∈ S × A;

6: N(s,a, 1) = (0, . . . , 0) for all (s,a) ∈ S × A;
7: for t ∈ k1 do

8: Uniformly select an action at ∈ As̃t
and execute at ;

9: Receive utility value vt = u (st ,at );
10: Update Û (s̃t ,at ) = vt ;
11: Receive observation ot+1;
12: Update belief state bt+1 = BU (bt ,at ,ot+1);
13: Estimate successor state s̃t+1 = arg maxs ∈S bt+1 (s );
14: Ns̃t+1

(s̃t ,at , 1) = Ns̃t+1
(s̃t ,at , 1) + 1;

15: end for

16: m = 2;
17: whilem ≤ M do

18: μtm (ps,a ) = Dir (α (s,a,m − 1) + N(s,a,m − 1)) for all (s,a) ∈ S × A;
19: N(s,a,m) = (0, . . . , 0) for all (s,a) ∈ S × A;
20: n = 0;
21: Jn

m (s ) = maxa∈As
Û (s,a) for all s ∈ S;

22: Sample p
km
s,a ∼ μtm (ps,a ) for all (s,a) ∈ S × A;

23: for t ∈ km do

24: With probability ϵ (t ):
25: Uniformly select an action at ∈ As̃t

;
26: With probability 1 − ϵ (t ):
27: at ∈ arg maxa∈As̃t

[Û (s̃t ,a) + γ
∑

s ′ ∈S Pkm
(s ′|s̃t ,a) Jn

m (s ′)];
28: Receive utility value vt ;
29: Update Û (s̃t ,at ) = vt ;
30: Jn+1

m (s ) = maxa∈As
[Û (s,a) + γ

∑
s ′ ∈S Pkm

(s ′|s,a) Jn
m (s ′)], for all s ∈ S;

31: n = n + 1;
32: Receive observation ot+1;
33: Update belief state bt+1 = BU (bt ,at ,ot+1);
34: Estimate successor state s̃t+1 = arg maxs ∈S bt+1 (s );
35: Ns̃t+1

(s̃t ,at ,m) = Ns̃t+1
(s̃t ,at ,m) + 1;

36: end for

37: m =m + 1;
38: end while

computational complexity could be very high when the state space is large. We propose a Q-
learning version of Algorithm 1 that can reduce the computational complexity significantly.

4.7 Q-Learning-Based Algorithm

We introduce an intermediate state-action value function called the Q-function:

Qt (s,a) = u (s,a) + γ
∑
s ′ ∈S

P (s ′|s,a) J ∗t+1 (s ′).

Qt (s,a) is the aggregate utility for executing action a at timestep t and following the optimal
policy π ∗ thereafter. The relation betweenQt (s,a) and J ∗t (s ) is given by J ∗t (s ) = maxa∈As̃t

Qt (s,a).
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ALGORITHM 2: Q-Thompson sampling with unknown utility function and states
...

20: n = 0;
21: Let Q̂n

m (s,a) = Û (s,a) for all (s,a) ∈ S × A;
22: for t ∈ km do

23: With probability ϵ (t ):
24: Uniformly select an action at ∈ As̃t

;
25: With probability 1 − ϵ (t ):
26: at ∈ arg maxa∈As̃t

[Q̂n
m (s̃t ,a)];

27: Receive a utility value vt ;
28: Update Û (s̃t ,at ) = vt ;
29: Observe ot+1;
30: Update belief state bt+1 = BU (bt ,at ,ot+1);
31: Estimate successor state s̃t+1 = arg maxs ∈S bt+1 (s );

32: Q̂n+1
m (s̃t ,at ) = (1 − βm )Q̂n

m (s̃t ,at ) + βm

[
vt +maxa′ ∈As̃t+1

Q̂n
m (s̃t+1,a

′)
]
;

33: n = n + 1;
34: end for

...

In addition, we estimate the Q-functions Qt instead of the optimal value functions J ∗t by applying
Q-learning [47] in Algorithm 2. In particular, let Q̂n

m be the n-th estimate of Q-function in episode
km , then the (n + 1)-th estimate is updated from Q̂n

m by the recursive equation shown in line 32 of
Algorithm 2. The recursive equation makes a correction of Q̂n

m (s̃t ,at ), i.e., the value of state-action
pair (s̃t ,at ), based on the newly received utility value vt .

The defender chooses the action that maximizes the estimate of Q-function by also following
ϵ-greedy exploratory policy. Algorithm 2 updates Q̂n+1

m asynchronously. In other words, it updates
the value of Q̂n+1

m for a single state-action pair at each timestep.
Compared with Algorithm 1, Algorithm 2 only updates one value of Q̂n+1

m . Therefore, Algo-
rithm 2 only requires at most |As̃t+1 | comparisons for the update at timestep t .

5 EVALUATION

In this section, we conduct numerical simulations to evaluate the performance of Algorithms 1
and 2. The simulations are based on the following real-world settings of the ACD problem on
BAGs.

5.1 Evaluation Setup

We setup a test network similar to the one in the work of Poolsappasit et al. [31], which is shown
in Figure 1. The network consists of 10 machines located in two subnets. The Web server and
Mail server are located in the DMZ network while the local desktops, the Gateway server, the
SQL server, the DNS server, and the Admin server are located in the local network. A firewall is
installed to prevent remote access to the internal hosts. All communications to external parties
are delivered through the Gateway server. The vulnerabilities are chosen based on the work of
Poolsappasit et al. [31] and listed in Table 2. These vulnerabilities can produce multiple attack
scenarios. In the evaluation, we use a BAG to simulate one attack scenario where the attacker
starts from the Gateway server, the Mail server, or the Web server and tries to compromise the
whole network. From one of the three entrances, local desktop a can be compromised by exploiting
MS Video ActiveX buffer overflow. From the Web server, local desktop b can be compromised by
exploiting LICQ buffer overflow. With local user privilege, local desktop c can be compromised
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Table 2. Vulnerabilities in the Test Network

Machine Vulnerability CVE#

Gateway server Untrusted cookie in OpenSSH 2007-4752
Mail server Error message information leakage 2008-3060
Web server IIS vulnerability in WebDAV service 2009-1535

Local desktop a MS Video ActiveX stack buffer overflow 2009-0015
Local desktop b LICQ buffer overflow 2001-0439
Local desktop c Remote login 2008-3610
Local desktop d Remote code execution 2008-0840

DSN Server DNS cache poisoning 2008-1447
SQL server SQL injection 2008-5416

Admin server MS SMV service Stack buffer overflow 2008-4050

Fig. 4. BAG of the test network.

by exploiting remote login. The SQL server can be compromised through any of the three local
desktops by exploiting SQL injection. Finally, with information in local desktop b and the SQL
server, local desktop d can be compromised with root privilege; with local user privilege of desktop
c, the DSN server can be compromised by exploiting DNS cache poisoning, and with information
in local desktop c and the SQL server, the Admin server can be compromised by exploiting MS
SMV service Stack buffer overflow.

BAG. We simulate the preceding attack scenario with the BAG shown in Figure 4. The Web
server and the Gateway server are leaf nodes and accessible to the remote attacker. The remaining
machines are non-leaf nodes. The edges show the possible exploits in the network. For example,
the local desktop b can only be attacked after the Web server is compromised. As mentioned in
Section 3.1, the exploit probabilities are calculated based on the exploitability metric of CVSS
scores. For each (i, j ) ∈ E, we calculate the exploit probability as follows:

ρi j = 2 ×AV (j ) ×AC (j ) × PR (j ) ×U I (j ),
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whereAV (j ),AC (j ), PR (j ), andU I (j ) are the corresponding scores of the exploitability components
of the vulnerability on machine j.

System state. The system state space has |S| = 210 = 1,024 states. Each state reflects which ma-
chines are compromised.

Attacker’s knowledge and action. The attacker wants to compromise as many machines as pos-
sible. The attacker stops when the whole network is compromised. In the evaluation, the attacker
chooses one of the leaf nodes to start the attack and he or she knows the states of the machines. If
the attacker has no non-leaf nodes to exploit for the next timestep, e.g., all machines are recovered,
he or she will restart the attack from the leaf nodes again.

Defender’s action. Recall that we use labor analysis to implement detection. Therefore, the de-
fender can only detect a subset of the machines in the network due to limited resources. In
the simulations, each defender’s action is to detect 3 out of 10 machines and to reimage at

most 3 out of 10 machines. There are a total of |O| = 23 ×
(

10
3

)
= 960 observations and |A| =(

10
3

)
× (
(

10
0

)
+
(

10
1

)
+
(

10
2

)
+
(

10
3

)
) = 21,000 actions.

Utility. As mentioned in Section 3.2, utilities are introduced to quantify security levels of the net-
work. In the evaluation, we use the utility function u (s,a) = r (s,a) − c (a) defined in Section 3.2,
which consists of a reward part and a cost part. In the simulation, we do not have real measure-
ments in the machines or network, e.g., the disk space, modified files. Here we use the impact
scores of CVSS to simulate the CIA impacts. Each impact score is a real number scaling from 0 to
10, and a higher score means that the network is less secure. Recall that we use a constant R to
represent the base security level where all of the machines are clean. In this network, R = 100. To
represent the reward of keeping the network secure, we subtract the total impact score of compro-
mised machines in the network from R. Therefore, a higher value of r represents that the network
is more secure and vice versa.

5.2 Simulation Setup

Based on the evaluation setup, we simulate the interactions among the attacker, network, and
defender in Python. All simulations are conducted on an Intel Core i7 machine with 16 GB of
memory running OS X 10.15.5.

5.3 Results

Let N(s,a, t ) = (Ns1 (s,a, t ), . . . ,Nsn
(s,a, t )) be the observed counts of reaching all successor states

from (s,a) between t and t + 1.
To evaluate the performance of our algorithms, we introduce a baseline policy. The baseline

policy uniformly chooses one action at each timestep and is referred to as the uniform selection
policy. We also compare the performance of our algorithms with two policies: the optimal pol-
icy and the “solely history” policy. The optimal policy is the solution of (PA) if the defender fully
knows the system state, utility function, and transition probabilities. The solely history policy is
the same as Algorithm 2 except for the transition probability estimation part. The solely history
policy estimates the transition probabilities based solely on the observed transitions in history.
In other words, up to timestep t , the defender observes that the aggregate count of reaching suc-
cessor state si from the state-action pair (s,a) is

∑t
τ=1 Nsi

(s,a,τ ), then the transition probability

is estimated as P (st+1 = si |s,a) =
∑t

τ=1 Nsi
(s,a,τ )∑

s′∈S
∑t

τ=1 Ns′ (s,a,τ )
. In general, there is no restriction on the ac-

tion space, i.e., As = A for all s . However, in this particular ACD problem, the defender has no
incentive to reimage clean machines. Thus, we restrict the available actions to those that only
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Fig. 5. Aggregate utilities of short-duration simulations.

Table 3. Time Consumption

Algorithm Time Consumption per Step (s)

Algorithm 1 (Value iteration) 563.98292
Algorithm 2 (Q-learning) 5.55842

The uniform selection policy 0.00067

reimage the compromised machines based on the estimated state. In particular, for an estimated
state s = (s1, . . . , sK ), As � A \ {a ∈ A|∃i ∈ ar s .t .si = 0}.

5.3.1 Preliminary Results. We first present preliminary results of short-duration simulation.
For instance, the duration of the simulation (from the time the attack begins until the time the
attack ends) is 100 timesteps and is partitioned into 10 equally long episodes. Figure 5 shows that
Algorithm 1 and Algorithm 2 have similar aggregate utilities. As mentioned in Section 4.6, the
computational complexity of Algorithm 1 could be very high when the state space is large. To
experimentally show the computational complexity of different algorithms, we compare the time
consumptions of Algorithm 1, Algorithm 2, and the uniform selection policy. The comparison
results shown in Table 3 validate that Algorithm 2 can reduce the computational complexity sig-
nificantly. Notice that Algorithm 2 requires much more time to execute than the uniform selection
because it still needs to update the estimated Q-function Q̂n+1

m .

5.3.2 Cost-Effectiveness. We evaluate the cost-effectiveness of our algorithms with long-
duration simulation. In what follows, the duration is 10,000 timesteps and partitioned into 100
equally long episodes. Since Algorithm 1 and Algorithm 2 have similar cost-effectiveness but Al-
gorithm 2 is much more computationally efficient than Algorithm 1, we will not consider Algo-
rithm 1 for the rest of the evaluation. Figure 6 compares the aggregate utilities of Algorithm 2,
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Fig. 6. Aggregate utilities of long-duration simulation.

Fig. 7. State estimation errors.

the uniform selection, the solely history policy, and the optimal policy. As expected, Algorithm 2
cannot compete with the optimal policy, which has all of the information needed. However, Al-
gorithm 2 outperforms the uniform policy and the solely history policy. Further, the aggregate
utility of Algorithm 2 is well approximated by a linear function with a slope around 50, whereas
the counterpart of the solely history policy is around 30 and the counterpart of the uniform policy
is around 40. Thus, the lead of Algorithm 2 increases over time. The results indicate that the lack
of sufficient exploration in the solely history policy may lead to the convergence of the estimated
parameters to incorrect values. We will validate this conjecture in the next part.

5.3.3 Estimation Errors. Next we validate the estimation performance of Algorithm 2.

State estimation errors. As mentioned in Section 4.2, the defender estimates the system state
based on its belief over all states. We use Manhattan distance to define the estimation errors, i.e.,
D(s, s̃ ) � (

∑K
i=1 |si − s̃i |x ). Under our evaluation setup, the maximum state estimation error is 10.

Figure 7 shows that the state estimation errors of Algorithm 2 oscillate at the beginning and reduce
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Fig. 8. Average state estimation errors.

to a relatively low level as time goes by. The possible reason for the phenomenon could be that the
algorithms randomly collect information at the early stage (exploration) and then lean to the best
estimates in history (exploitation). As a comparison, the solely history policy keeps oscillating at
a relatively high level. In addition, we evaluate the average error over time to focus on the central
tendency of errors in history (shown in Figure 8), i.e., 1

t

∑t
τ=0 D (sτ , s̃τ ). The average distance of

Algorithm 2 oscillates at the beginning and then reaches the steady state around 1.5, whereas that
of the solely history policy keeps oscillating and is above 3 for most of the time.

Transition probability estimation errors. We also quantify the estimation error of the sampled
transition probability Pkm

at each episode km by using the distance between Pkm
and P . In par-

ticular, Pkm
= [pkm

s1,a1
, . . . , pkm

s |S|,a |A| ]
T contains |S × A| row vectors. Similarly, the actual transition

probability P contains |S × A| row vectors. In the evaluation, we compute the Manhattan distance
between each pair of row vectors (indexed by (s,a)) that has been visited in the history and use
the average of the vector-wise distances to quantify the estimation error of Pkm

as follows:

D(Pkm
, P ) �

∑
s,a (
∑ |S |

i=1
��Pkm

(si |s,a) − P (si |s,a)��)1{Tt (s,a)>0}∑
s,a 1{Tt (s,a)>0}

,

where Tt (s,a) is the number of visits of state-action pair (s,a) until t , and 1{condit ion } = 1
when condition is true and 1{condit ion } = 0 otherwise. Under our evaluation setup, the maxi-

mum distance between a pair of row vectors in Pkm
and P is 2, because

∑ |S |
i=1 |Pkm

(si |s,a) −
P (si |s,a) | ≤ ∑ |S |i=1 ( |Pkm

(si |s,a) | + |P (si |s,a) |) with
∑ |S |

i=1 |Pkm
(si |s,a) | = 1 and

∑ |S |
i=1 |P (si |s,a) | = 1.

Figure 9 shows that the estimation error of Algorithm 2 exponentially decreases and reduces by
around 9.52% after 100 episodes, i.e., 10,000 timesteps, whereas that of the solely history policy de-
creases at the beginning and then keeps increasing as simulation goes on. This comparison result
validates that Thompson sampling can balance exploitation and exploration to estimate the transi-
tion probabilities and avoid converging to incorrect parameters by solely exploiting the observed
data in history.
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Fig. 9. Transition probability estimation errors.

Fig. 10. Utility estimation errors.

Utility estimation errors. As mentioned in Section 4.3, we use the latest received utility values
Û (s,a) to estimate the values of u (s,a) for all state-action pairs (s,a) ∈ S × A. Here we quantify
the estimation error of the utility values. In particular, we only consider the elements of visited
state-action pairs in Û and u. Here we use the average of the element-wise distance to quantify
the estimation error as follows:

D(Û ,u, t ) �
∑

s,a |Û (s,a) − u (s,a) |1{Tt (s,a)>0}∑
s,a 1{Tt (s,a)>0}

.

Figure 10 shows that the steady-state estimation error of Algorithm 2 is around half of the peak es-
timation error, whereas the estimation error of the solely history policy decreases at the beginning
and then keeps increasing as simulation goes on.
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6 DISCUSSION AND LIMITATIONS

In this work, we propose a Thompson sampling–based reinforcement learning algorithm to bal-
ance exploitation and exploration. The exploitation requires that the transition probabilities are
generated at the beginning of the attack and fixed all the time. But in a real network, how likely an
exploit can succeed might change in dynamic environments. For example, dynamic network traffic
flows might change the attacker’s AC. One of our future works is to estimate dynamic transition
probabilities.

We test our algorithm in a 10-machine network. Although the 10-machine network does not
seem very large, its state-action space is huge. In fact, the simulations of the 10-machine network
have reached the memory limit of our computer. In addition, curse-of-dimensionality and curse-
of-history are well-known challenges for POMDP. For larger networks, one can use approximate
solutions [30, 39, 41] or compression techniques [32, 33, 46]. For example, Spaan and Vlassis [41]
perform the value iteration only on a finite and incrementally expanded subset of belief states
instead of the whole belief state space. Virin et al. [46] compress the state space by clustering
the system states based on their optimal Q-values, i.e., states with similar Q-values are grouped
together. However, such solutions only work for the scenarios where transition probabilities and
reward functions are known. It is highly non-trivial to extend the aforementioned schemes to deal
with unknown transition probabilities and reward functions. We leave this as a future work.

7 CONCLUSION

This article proposes Thompson sampling–based reinforcement learning algorithms to effectively
defend against a class of multi-stage attacks during vulnerability windows with partial observ-
ability, unknown transition probabilities, and unknown utility function. The cost-effectiveness of
the algorithms is verified in numerical simulations based on real-world attacks on a computer
network.
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