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ABSTRACT are doubly linked and the non-leaf pages are not linked.

In this paper we present an efficient method to do online Over time, in§ertions_ and deletions may cause _allocations
rebuild of a B+-tree index. This method has been imple- and dealloqanorjs of index pages. As mentioned in [GR93],
mented in Sybase Adaptive Server Enterprise (ASE) Ver__most practical implementations of B-trees .do not merge
sion 12.0. It provides high concurrency, does minimal index nodes upon underflow and the same is trueT for ASE.
amount of logging, has good performance and does notndex pages may become less than half full causing a drop
deadlock with other index operations. It copies the index in the space utilization and also an increase in the number of
rows to newly allocated pages in the key order so that gooodisk reads rqquired to read the same number. of i.ndex keys.
space utilization and clustering are achieved. The old page$Urther, the index may become declustered (i.e. index keys
are deallocated during the process. Our algorithm differsWithin a key range may not be in contiguous disk space)
from the previously published online index rebuild algo- thereby degrading the performance of range queries. To
rithms in two ways. It rebuilds multiple leaf pages and then restore the cIuste_rlng, users can drop and recreate the index.
propagates the changes to higher levels. Also, while propaliowever, that typically requires holdlng a share_d table lock
gating the leaf level changes to higher levels, lebglages ~ ON the tgble ther_eby making the table inaccessible to OLTP
are reorganized, eliminating the need for a separate pasdransactions, which may not be acceptable.

Our performance study shows that our approach results inOnline index rebuildrestores the space utilization and clus-
significant reduction in logging and CPU time. Also, our tering of the index with minimal blocking of readers and
approach uses the same concurrency control mechanism agriters. It copies the index keys to fresh pages and deallo-
split and shrink operations, which made it attractive for cates the old pages. In this paper, we present an algorithm

implementation. for online index rebuild that provides high concurrency,
does minimal amount of logging, has good performance and
1 INTRODUCTION does not deadlock with other index operations. Section 2

B+-trees [Comer79] are one of the main indexin methodsdesoribes the concurrency control mechanisms in the index
9 manager. Section 3, Section 4 and Section 5 describe the

in commercial dat tems. A primary B+-tr LS : . .
used in commercial database systems primary ©Conline index rebuild algorithm. Section 6 evaluates the algo-

Yithm with respect to some desirable properties. Section 7

Bt-tree index has_ only the inddseysin the leaf pages, compares it with related work in this area and finally, Sec-
where a key consists of a key value and the ROWID of the,; . :
tion 8 gives the conclusions.

data record.%ln this paper, we consider the rebuild of a sec-
i . Wi that the leaf f the i
ondary inde e assume that the leaf pages of the mdex2 INDEX CONCURRENCY CONTROL

1. Level 1 is the level immediately above the leaf level In this section, we describe the concurrency control mecha-
nisms in the index manager.

Pefrlfgission to rglake dligital or hard_CODieStg; pé}{LOVtalfl of this We assumerow level locking Insert, delete and scan opera-
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2. However, if the primary key value is used as data ROWID in the
secondary indices, then the same algorithm can be used to rebuild
a primary index as well.
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Latchesare used for physical consistency at the page level.No locks or latches are held on higher level pages by the
To read or modify a page, an S (shared) or X (exclusive)splitter when it is splitting the leaf page. They are acquired
latch is acquired on the buffer that contains the page. Latchduring the propagation phase, as explained below.
deadlocks are prevented by requesting the latches in top

down order or left to right order. 2.3 Propagation of Split to Higher Levels

An insert may cause a split operation which consists of add-The split is propagateldottom up The latches held on the

ing a new leaf page to the chain, possibly moving some keygages at the current level are released before moving to the
to it and updating the parent and possibly higher levels.next higher level. To propagate the split to level i, split calls
Shrink operation consists of removing a leaf page from thetraversal to retrieve the appropriate non-leaf page P at level i
chain and updating parent and possibly higher levels. Alatched in X mode. (However, traversal may not start from
page is shrunk when the last row is removed from it. Split root in this case. See Section 2.6.1.) The page returned by
and shrink operations are performednasted top actions  traversal is guarenteed not to have SPLIT (or SHRINK) bit
[GR93], which means that once the operation is complete, itset on it. Here is the action to be taken on P:

is not undone even if the transaction performing it rolls ,

back If P needs a split, both P and the new page, say N, are X

latched, X locked and SPLIT bits are set on them(just

Now, we give an overview of insert, delete, split, shrink and
scan operations. We also present the pseudocode for tree
traversal routine. The deadlock issues are discussed in Sec-
tion 6.5.

2.1 Insert and Delete

Insert and delete call traversal module to retrieve the appro-
priate leaf page X latched. If no split or shrink is needed,
the latch is released after performing the insert or delete.

Traversal uses the famili@rabbing strategy [GR93] with

latches. An S latch is sufficient, except at the leaf level,
where an X latch is acquired. However, if a page in the path
traversed is undergoing a split or shrink by another transac-

as in leaf split). Suppose that keys >= K are moved to
N. The page P is also marked with OLDPGOFSPLIT
bit and entry [K, N] is stored on page P asde entry.
Once the side entry is established, both P and N are
unlatched and the propagation continues to the next
level. In case a concurrent traversal visits page P from
its parent before the split propagates to the parent, the
traversal uses the side entry to decide which of P or N is
the correct target page.

If no split is needed, no X lock or SPLIT bit is needed
on P. The insert is performed, and the top action is com-
pleted and P is unlatched. The SPLIT bits and the
OLDPGOFSPLIT bits are cleared and the X locks are
released.

tion, traversalmayneed to release its latches and block for pacql that setting SPLIT bit on a page blocks writes to that
the spilit or shrink to complete, as explained in the following o 46 byt not the reads. Thus a concurrent insert, delete, split
sections (Section 2.2, Section 2.3 and Section 2.6). or shrink operation that wants to traverse through P (or N) to

. a lower level page can access P (or N) after splitter has
2.2 Leaf Split released its X latch on P (or N).
To split a leaf paged? both B and the new page, sayN
are X latchedand address-lockedn X modeln addition, 2.4 Shrink
SPLIT bitsare set on both of them. The X lock acquired by Shrink is also performed as a nested top action and is propa-
the split is called anddress-locko distinguish it from log-  gated quite similar to split operation, except that SHRINK
ical locks. For the rest of this paper, unless specified Other'bits are set on the affected pages instead of SPLIT bits.
Wise, a lock refers to an address lock. While the X |atCheSA|SO, note that Setting SHRINK bit on a page blocks both
are released soon after the modification @&ﬁ’d N), the X read and write Opera‘[ions on the page.
locks and the SPLIT bits are retained till the end of the top
action. The purpose of setting the SPLIT bit on a page is to2.5 Scan
block writes to that page by concurrent transactions after th
splitter has released its X lafthThe writers block by
releasing any latches held and requesting an uncondition
instant duration S lock on the pdg&@hus the writers are
blocked till the top action is complete. However, readers can
still access for N, if they have successfully acquired an S

latch on it.

€Scan calls traversal module to retrieve the starting page for
a}he scan S latched. The scan qualifies the index keys under S

4. The SPLIT bit is similar to the SM bit in [MF92]. However, SM

bit is accompanied with a tree latch (rather than an X lock on the
page), which increases the likelihood of blocking. Also, in our ap-
proach, the bit is only an optimization of calls to the lock manager
(checking for the bit can be replaced with a request for a condition-

3. SPLIT bit does not block a writer that just wishes to modify its @l instant duration S lock).
previous page link. This optimization allows two adjacent leaf pag- 5. Although the sidekey is similar to side pointers in B-link trees
es to be split concurrently. [Ly81], it is valid only as long as the OLDPGOFSPLIT bit is set.
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latch. The page is unlatched before returning a qualifying goto retraverse;
key to query processing layer and is latched again to resume }

gualification. Also, note that depending on the isolation
level, the scan may need to acquire logical locks on qualify-
ing keys. }

return p;

2.6 Traversal Pseudocode 2.6.1 Retraversing

Here is the pseudocode for traversal. Note that a page ig, the above algorithm, retraversal starts from the root page.
latched in X mode_ onIy_ if it is at the target level and the tra- However, ASE actually uses a more efficient strategy. While
yersal was called in writer mode. In all other cases, the Pag&raversing down the tree, the pages encountered in the path
is latched in S mode. are remembered. When there is a need to retraverse, rather
traverse(searchkey, searchmode, targetlevel) than starting from the root, it starts from the lowest level

{ page in the path that &afe A page is safe if it is still at the
same level as expected and the search key is within the
range of key values on it. Same strategy is used by traversal
p = get root page latched; during the propagation of split and shrink to avoid starting
from root. Later, in Section 5.4.1, we will see that the propa-
gation phase of online index rebuild also uses traversal and

retraverse:

while (level of p > target level)

{ benefits from this strategy.

Search p to identify the child to chase;

¢ = get child page latched; 3 ONLINE INDEX REBUILD OVERVIEW

if (c has SHRINK bit set) Online rebuild runs as a sequence of transactions, with each

{ transaction performing a series of nested top actions and

each top action rebuilding multiple contiguous leaf pages in

Unlatch ¢ and p; the page chain. The top actions are caffedtipage rebuild
Wait for instant duration S lock on c; top actions. The number of pages to rebuild in a single top

action is denoted bytasize and the number of pages to

oto retraverse; o A . oo
g rebuild in a transaction is denoted Xgctsize.Rebuilding

} multiple pages in a single top action reduces logging and
if (OLDPGOFSPLIT bit is set in c) CPU time. We chose an ntasize of 32 based on our perfor-
{ mance study (Section 6.4). The significance of xactsize is

explained below.

if (searchkey >= key in side ent
It (searchkey yin s ") At the end of each transaction, the new pages generated in

{ the current transaction are flushed to disk and then the old
sibling = Get right sibling latched; pages that were removed from the tree are made available

Unlatch c; for fresh allocations.

Flushing new pages to disk before making old pages avail-
able for fresh allocations allows rebuild not to log full keys

} during the key copying. Instead, the log records contain
} only the PAGEIDs and the timestamps of the source page
and the target page and just gasitionsof the first and the
last key that were copied. Redo may have to read the source

c= sibling;

/* Now we are on the correct child */

Unlatch p; page to redo the key copying. On the other hand, if the
p=c; source page is made available for allocation before the tar-
} get page is flushed to disk, then the new contents of the
) source page could reach the disk before the target page
[* Target level is reached */ reaches the disk. If a crash occurs after the new contents of
if ((searchmode == writermode) and the source page reach the disk, but before the target page
(p has SPLIT bit set)) reaches the disk, the target page cannot be recovered.
{ While rebuilding several pages in a transaction has the
advantage of delaying the forced write of new pages, it also
Unlatch p; delays the availability of the old pages for reuse. It is desir-
Wait for instant duration S lock on p; able to rebuild a few hundred pages in a transaction.
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4 MULTIPAGE REBUILD TOP ACTION 4.2 Propagation Phase

Consider the rebuild of contiguous paggs ..., P, in a The changes are propagated to level 1 by deleting the entries

single nested top action. Suppose that PP is the previoufor P P2, iy and inserting the entries ff’rlN\'Z---' NJ”
page of R and NP is the next page of.Prhe top action  the parent(s) of P P,,..., R, The propagation may continue

involves a copy phase and a propagation phase, which ar@bove level 1. The propagation of split (shrink) can be

explained below: thought of as passing of an insert (delete) command from
one level to the next. The propagation of rebuild top action
4.1 Copy Phase can be thought of as passing multiple commands from one

. . level to the next, where each command could be an insert,
The index keys are copied from,%,..., Fyto PP and zero o100 or an update. At each level several pages could be
or more newly allocated pages, say,M,..., Ni, where k  affected. At a given level, the affected pages are modified in
>= 0. Note that k could be > n if the user has specified thatleft to right order. Also, all modifications at the current level
the new leaf pages be filled only upto a desiiléfelctor, so are finished before moving to the next higher level. For each
that some space is left free for future inserts. Copy phaseaffected non-leaf page, no more than Gaéchdeletelog
also includes fixing page linkages and deallocating the oldrecord and onéatchinsertlog record are generated. These
pages. log records contain the entire keys that were inserted or
4.1.1 Locking deleted. The propagation phase is described in detail in Sec-

X locks are acquired and SHRINK bits are set on Rp, P tion 5.

P,,..., B, in that order. For i > 1, ifjfhas SPLIT or SHRINK - .
bit set on it, rebuild does not wait for lock. Instead, only 4.3 Advantages of Rebuilding Multiple Pages

pages B, P,,...,R.1 are rebuilt in the current top action. On in a Single Top Action
the other hand, if PP or;as SPLIT or SHRINK bit set, Insert and delete log records in ASE have not only the key

then rebuild waits for the split or the shrink to complete. being deleted or inserted but also a lot of additional infor-
mation such as transaction ID, old and new timestamps for

4.1.2 Logging . the page, position of delete or insert etc. The amount of such
Copy phase generatessimgle keycopylog record to cap-  additional information is as high as 60 bytes and is amor-
ture all the key copying that has occurred from pagges P tized by batching multiple inserts or deletes in a single
P,,..., R,to PP and the newly allocated pages. It has multiple batchinsert or batchdelete log record. Similarly, the over-
entries of the form [source pageno, target pageno, positiorhead in other log records is amortized by rebuilding multi-
of the first key copied, position of the last key copied]. It ple pages in a single top action. Besides saving log space,
also generates allocation and deallocation log records andebuilding multiple pages in a top action reduces the number
changeprevlinkog record for NP. of visits to level 1 pages significantly, reducing the calls to

. lock manager, latch manager etc. Our performance study
4.1.3 Page Deallocations reflects this (Section 6.4).

A page can be in one of allocated, deallocated or free states.
Only a page in free state is available for fresh allocations.
When the page manager is called to deallocate a page, i§ PROPAGATION PHASE OF REBUILD

logs a deallocation record and takes the page to deallocateth this section, we discuss how the rebuild of multiple leaf
state. The page manager has to be called again to free theages is propagated to higher levels. The propagation is bot-
page. The transition from deallocated state to free state igom up and the modifications to be done at the next higher
not logged by the page manager and it cannot be undone. Itevel are specified in the form gfropagation entries

the event of a crash, after the redo and undo phases, recoBefore describing propagation entries, we explain what an
ery frees up pages that are still in deallocated state. index entry is.

In the case of a shrink top action, deallocated pages aréyve assume that a nonleaf page in the B+-tree that has n
freed when the top action commits. However, in the case ofchild pointers has only n-1 key value separators. An index

multipage rebuild topaction, Fhe deaIIc_)cated pages are freeq;mry is of the form [key value, child pageid], except for the

only when the curreritansactioncommits. It uses log scan index entry for the first child, which does not have the key

to determine what pages need to be freed up. Also, note thaja|ye. An index page having n children has n index entries

if rebuild needs to abort due to lack of resources or internaICO, K1, Gl [Ko Clee[Kpp, Crogl- For 0 <i<=n-1, €

error or a user interrupt, during rollback, it needs to free UPpas index entries greater than or equal;tarid for 0 <= i <

the pages deallocated in completed top actions. Before free- . . '

ing up the old pages, the new pages need to be flushed tB'l’ G has index entries less thap.K

disk. Now, we define propagation entries and explain what propa-
gation entries are passed from the leaf and the nonleaf
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pages. Then we describe how the propagation phase praseen moved to the subtree under its left sibling.
ceeds from one level to the next. 5.3.2 Split of P

. . The inserts to be performed on page P (as a result of
5.1 Propagation Entries UPDATE/INSERT propagation entries coming from chil-
A propagation entryspecifies the following: dren of P) may cause P to be split. If so, P is split in such a

. the page P that is sending the propagation entry. manner that all the remaining inserts go to the old page or
«  operation that must be performed at the next highera” of them go to the new page. Note that one split may not

level. The possible operations are DELETE, UPDATE be sufficient to accommodate all such inserts. If the inser-
or INSERT of an index entry. ' tions cause k splits, then k siblings are generated for P and k

. INSERT propagation entry specifies the entry to be INSERT propagation entries are .setup for inserting entries

inserted at the next level. UPDATE propagation entry O these new pages at the next higher level.

specifies the entry to replace the existing entry for that5.3.3 Key Movement Across Subtrees

page. UPDATE and DELETE propagation entries do Consider figure 1 shown below. P’ is the parent of P and L

not specify the contents of index entry to delete (pageidis the left sibling of P. [K1, L] and [K2, P] are the entries for

P uniquely identifies the index entry). L and P in P’. Consider some key movement from the sub-

tree under P to the subtree under L. If keys up to (but not

5.2 Propagation Entries Passed From a Leaf including) K are moved to the subtree under L, then the
Page entry for P in P’ needs to be changed from [K2, P] to [K, P]
to keep the index consistent. So P needs to pass an UPDATE
propagation entry [K, P] to P’. Now let us look at how to
detect such key movement and how to find the value of K.

Consider the rebuild of leaf pageg, P,..., R, in a single
top action. Let PP be the previous page paRd NP the
next page of R Here are the rules that determine what

propagation entries are passed frosinglepage R P'(parent of P)
e Suppose that k, wherk > 0, new allocations are
needed to accommodate the keys frqnTRe entry for L[KL,L], [K2, P ..
P, needs to be deleted from parent and entries for the k
new pages need to be inserted in the parent. So an / \
UPDATE propagation entry followed by k-1 INSERT L P

propagation entries are passed.

» If all the keys from Pcould be copied into the last
newly allocated page (i.eno new allocationwas
needed to accommodate the keys frojn P passes
DELETE propagation entry.

Thus, each page that was rebuilt passes one or more propa-

gation entries. All the propagation entries from®,..., R, Figure 1: Key Movement Across Subtrees
are accumulated before the propagation proceeds to level 1.

) . Let Gy, Cy,...,G, be the children of P.
5.3 Propagation Entries Passed From a Non- , _
If Cg did not pass DELETE or UPDATE propagation entry,

leaf Page
. . thenno key movement has occurred from the subtree under
A non-leaf page P passes propagation entry(s) in the follow-p 5 the subtree under L.

ing cases:

Otherwise, let ¢ where 0 <=i <= n, be the leftmost child of

e P is becoming empty (in this case P needs to be shrunk}o that did not pass DELETE propagation entry. (Such a

: :Z:: f]gltltbecomin emptv but there was some ke move-Ch“d must exist. Else, all children must have passed
g emply y DELETE propagation entries and it is the shrink case dis-

{gfetr;gﬁg the subtree under P to the subfree under Itscussed in Section 5.3.1). Since the childrep @,...,G_;

These three cases are discussed in more detail below. Not3@v€ passed DELETE propagation entries, it means all the

that the last two cases aret mutually exclusive. keys in the subtrees under thgm have been moved and they

5 3.1 Shrink of P have become empty. The entries for all of them on P need to
3. rink o

If all children pass DELETE propagation entries, then page _ _ _
P needs to be shrufikt passes DELETE propagation entry. 6. In this case, there is no need to perform the deletes. Page can di-
This means thaill the leaf rows in the subtree under P have "eCtly be deallocated.
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be deleted and;@eeds to become the first child of P.

If C; has passed an UPDATE propagation entry, say
[Ky Gl, then keys < K may have been moved from
subtree under {Cto that under its left sibling. So, P
passes UPDATE propagation entry [lR] i.e. K = K,.
Otherwise, ¢ must have passed INSERT propagation

entry(s) or no propagation entries. In either casd&gey
movement has occurred from the subtree ungéo €

subtree under its left sibling. If [KG] is the entry for
C; on P, then P passes UPDATE propagation entyy [K
P] to its parenti.e. K=K

5.4 Propagation From Level i to Level i+1

An algorithm to apply a list of propagation entries passe
from level i to level i+1 is described below.

5.4.1 Algorithm Propagate_to_level

Input: List L = [Eq, E,,..., By] of all propagation entries to
be applied to level i+1 pages (these were passed from level
pages)

Output: List L, of propagation entries passed to the next
higher level from level i+1 if any

d

Side Effect: The modifications specified by the input propa-
gation entries are applied on level i+1 pages

propagate_to_leve(l, i+1)
Initialize L, to empty list;
while (L is not empty)
{
e = first propagation entry in L;
C = page that propagated e;
K =Anykey from page C;
/* Get the parent of C X latched. Note that
** traversal uses same strategy as described in
** retraversal section earlier to avoid starting
** from root (See Section 2.6.1).
*/
P = traverse(K, writer, i+1);
[* identify all the propagation entries that
** were sent by children of P (they are
** guaranteed to be contiguous in L).
*/
e’ = last propagation entry in L that was
passed by a child of P;
Delete propagation entries e through e’
from L;
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[* apply the propagation entries e through

** @’ on P(See Section 5.4.2).

*/

Modify P;

Append the propagation entries passed by P
if any to{

Release any latches held;

}

5.4.2 Modification of Page P

The propagation entries passed by the children of P are
applied on page P in two phases, the delete phase followed
by the insert phase. In the delete phase, the index entries for
all the children that passed DELETE or UPDATE status are
deleted. All such index entries will be contiguous. In the
insert phase, the index entries specified by the
INSERT/UPDATE propagation entries coming from chil-
dren of P are inserted. The index entries inserted will also be
contiguous.

Traversal would have retrieved page P latched in X mode.
However, latch alone is not sufficient. The address locking
mechanism used by split or shrink top actions is used here
and the SPLIT and SHRINK bits are overloaded. P is locked
in X mode. A SHRINK bit is set on P if traversals through P
need to be blocked. If modifications to P need to be blocked
but not the traversals through P, a SPLIT bit is set on it. The
rules for deciding which bit needs to be set are mentioned
below.

If any delete is performed on a page (i.e. atleast one
child passed a DELETE or UPDATE status), SHRINK
bit is set.

If only inserts are performed on a page (i.e. no deletes
and no splits), then SPLIT bit is set.

If P needs to be split, a SHRINK bit is set on it. The
new page is also X locked and SHRINK bit is set on it.
There is no need to establish a side entry as traversals
through P are being blocked anyway. X latch needs to
be retained only on the page where the rest of the
inserts in the insert phase need to be performed.

These rules are very conservative. Traversals are being
allowed through the page only in the insert-only case, as no
keys in the subtree under the page would have been moved
to the subtree under its left or right sibling in that case. (See
Section 6.2 for a possible improvement).

5.5 Reorganizing Level 1 Pages

Consider the propagation from leaf level to level 1. In
the propagation algorithm that has been described, while

applying propagation entries on a level 1 page P, the insert
phase inserts the index entries specified in
UPDATE/INSERT propagation entries sent by the children
of P. However, it is better to perform as many of those



L/ P L/
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07| 10| |22 (30 07] [10] [22] [30
09 |11 |25 |35 09 |11 |25 |35
15| |26 15 [26
20 20
21 21
PP N1 NP PP P1 NP
Propagation to level 1: Propagating to level 2:
The three reorganized The entry [15, P] is
pages P1, P2, P3 all have deleted. The propagatlo'r
the same parent P. In the is complete and the to
delete phase, the entries for action is committed.
N1 all these pages need to be

Leaf pages P1, P2 and P3 are reorganizegk|eted. In the insert phase,
Assuming five rows fit into a leaf page, al[22 N1] needs to be

of P1's rows and some of P2's rows argnserted. However, this
moved to PP. The remaining rows from PZnsert is performed on the
are moved to the new page N1. All of P3'revious page L. Since all
rows are moved to N1. P1 passes a DELETfge entries in P need to be
propagation entry as it did not cause allocayeleted and there are no
tions. P2 passes UPDATE propagation entrserts to perform on P,
with [22, N1] as the index entry to replacepg| ETE propagation
the entry for P2 at the next higher level. P3ntry is passed.

also passes DELETE propagation entry.

Figure Z: Multipage Rebuild Top Action

inserts as permitted by space on the immediate left siblingallocate a new page from a chunk of large contiguous free

of P that is not being shrunk in the current top action. Notedisk space. After all the pages in the chunk are used up, it

that this can only be done if the first child of P is getting again looks for a chunk of large contiguous free disk space.

deleted in the delete phase (i.e. it passed aAs the index keys are moved to the newly allocated pages in

DELETE/UPDATE status). Otherwise, it would violate the the increasing key order, the new leaf pages are expected to
index key ordering at level 1. be well clustered.

With this enhancement, level 1 pages are filled as much as
possible without requiring a separate pass. An example of0-2 Concurrency
multipage rebuild top action with this enhancement is Although rebuilding multiple pages in a top action has the

shown in figure 2. disadvantage of keeping many leaf pages locked at a given
time, it significantly reduces the number of visits to a level 1
6 EVALUATION page and the total duration of exclusive access to it. It also

significantly reduces the CPU time for the rebuild operation
which in turn reduces the negative impact of the operation
on the throughput of the system.

Here, we evaluate the algorithm with respect to some impor-
tant metrics.

6.1 Restoration of Clustering Here are some possible enhancements to reduce the

o . . . impact on concurrent index operations:
When online index rebuild begins, the page manager tries to P P
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* In the propagation phase, setting SHRINK bit on all bytes and the results are shown belowd-is the ratio of
nonleaf pages on which a delete was performed is pesiog space required when ntasize of 1 is used to the log space
simistic. Rebuild deletes contiguous index entries on required at the specified ntasizggfg is defined similarly
nonleaf pages. Suppose that all index entries betweenqo, cpy time. Although our experiments were performed
[Ki, Gl and [K;, G] are deleted. There is no reason 10 \ith 2K page sizes, speaking analytically, the numbers for
block traversals through the page that are looking for <|og space are expected to be valid for a wide range of page

Kj or >= K. Thus thepositionsof these index entries

sizes. However, the ratio of log space required to that of the

could possibly be established on the page (just as a splitndex size is expected to be inversely proportional to index
establishes a side entry) to benefit concurrent traversalspage size. From Table 1, it is desirable to choose a large
This enhancement only helps in those cases where théumber for ntasize (32 to 64 pages).

propagation continues above level 1.

+ Consider the rebuild of P P,,..., B, in a single top
action. Let PP be the previous page p&Rd NP be the
previous page of P As the address locks are acquired
on the pages being rebuilt, SPLIT bits (rather than the
SHRINK bits) could be set on them (except on PP) so
that only writers are blocked and not the readers. Once
the contents oéll the n pages have been copied to PP
and possibly one or more newly allocated pages, the
SPLIT bits could be modified to SHRINK bits (under
an X latch). Now the next page pointer of PP and previ-
ous page pointer of NP can be set so that the old pages
are effectively unlinked and new pages are linked into
the chain.

k_ey avg non_-leaf n_ta— Lratio | Cratio
size | rowsize | size

) 10 32| 73 | 24
p 10 64 8 2.4
20 | 20 32| 49 | 37
20 | 20 64| 5.4 4

Table 1: Log Space and CPU Time

6.5 Deadlocks

6.3 Disk 1/0

Our concurrency control protocols are such that the index

One scan of the old index is performed in the page chainoperations never get into a deadlock involving latches or
order and the new pages are written out to disk once. Whileaddress locks or both. The only possible deadlock is one
the page size is 2KB, the buffer manager allows the user tdhat involves only logical locks. The following rules ensure
configure buffer pools with 4K, 8K or 16K buffer sizes. this:

Online rebuild requests buffer manager to use the largest
size buffers available for reading old pages and for writing
new pages to reduce disk 1/O.

6.4 Logging and CPU Time

We performed some experiments to see how the log spacé
used and the CPU time consumed vary wnthsize Our
experiments are performed under the following conditions

« The space utilization in the index being rebuilt is about
50% and the rebuild specified a fillfactor of 100%.

» The cache is cold (i.e. all pages had to be read from
disk).

* The page size is 2KB but the buffer pool is configured
with 16KB buffers so that 16KB 1/O size is used for
index page reads and writes as well as log writes.

e Sun Ultra-SPARC machine running SunOS 5.6 is used.

For a given number of leaf pages in the old and the new

index, the log space required varies primarily with the aver-

age nonleaf row size. The index manager in ASE uses suffix
compression which reduces the nonleaf row size especially
when the index is on multiple columns or on wide columns.

We experimented with index key size (i.e. sum of maximum

column lengths of all index columns) of 4 bytes and 40
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While holding a latch, unconditional logical lock is
never requested and an unconditional address lock is
requested only on a page that is being allocated (and
hence not accessible from the tree) or a page that does
not have SPLIT/SHRINK bit set.

Latches are requested only in left to right order at a
given level and top down order across levels.

Address locks are requested only in bottom up order
across levels.

Address locks within a nonleaf level are acquired only
in left to right order.

Address locks within leaf level: Shrink acquires address
locks on two pages and they are acquiredgint to left
order. Split acquires address lock on the old page and
then the new page. But since new page is not yet part of
the tree, this sequence does not cause a deadlock with
shrink. Rebuild acquires address locks in left to right
order. However, as mentioned before, if rebuild needs
to wait, it releases all the locks that are acquired already
before waiting. After wakeup, it retries for all the locks
again.



7 COMPARISON WITH RELATED WORK suggested that the transactions active in the tree be
aborted if lock cannot be acquired after certain timeout

interval. User transactions are never aborted in our

algorithm.

* In Tandem’s approach, when the page split and mergeOur algorithm has following drawbacks compared to
operations are performed, the entire file is made inac-[ZS96].
cessible to the OLTP transactions where as in our,
method only access to the affected pages is restricted.

e Further, in Tandem’s approach, although it is not
explicitly stated, it seems all the moved keys are logged
where as in our approach the key contents themselves
are not logged.

A more recently published work in this area is [SBC97].

This paper describes a comprehensive scheme to reorganize

a table and rebuild the associated indexes. That scheme has

the following drawbacks:

The first published article on online rebuild is from Tandem
[Smi90]. Our approach has the following advantages:

During the propagation phase of multipage rebuild,
pages above level 1 may need to be modified in which
case X lock is acquired on the page being modified.
[2S96] does not X lock pages above level 1 in X mode
(except for the X lock on the tree in the switching
phase). However, since propagation is bottom up (as
opposed to top down), the duration of X lock on non-
leaf pages is expected to be small. This is because most
of the time in the topaction is spent in reading old leaf
pages and moving rows from old leaf pages to new
* A separate copy of the table is made and the associated pages.
indexes are rebuilt thereby doubling the storages As mentioned before, to achieve good clustering, our
requirement. algorithm needs a large chunk of contiguous free space
» User transactions must be directed to use the new copy.  on disk to begin with. However, since the amount of
If there are long-running user sessions (with opened contiguous free space needed is small compared to the
cursors), reorg waits for them to complete. size of the index, this is not a significant problem.
»  For the duration of the reorg, the log should not be trun-« At the end of each transaction, new pages need to be
cated because the reorg relies on the log for any  flushed to disk. This disadvantage is alleviated to some

changes that need to be applied to the new copy. extent by using large buffers and building a few hun-
» Incremental reorganization is difficult. dred new pages in each transaction.
By doing inline reorganization, our scheme avoids the above
problems. 8 CONCLUSIONS

[2S96] gives a detailed description of an algorithm for \ye have presented an industrial-strength algorithm for
rebuilding an index. We believe our algorithm has the fol- 5jine index rebuild that provides high concurrency, does
lowing advantages over it: minimal logging and has good performance. By rebuilding
e Our algorithm reorganizes level 1 pages without requir- multiple leaf pages in each top action, the updates to level 1
ing a sidefile. The sidefile mechanism adds a lot of pages can be batched resulting in significant reduction in
implementation complexity. It also adds overhead to logging and CPU time. The level 1 pages are reorganized
splits and shrinks happening in the index during the while propagating the leaf level changes thereby eliminating
rebuild of non-leaf levels. a separate pass for reorganizing level 1 pages.
e Logging is reduced in [ZS96] by assuming “careful
writing” mechanism in the buffer manager. Our algo- 9 ACKNOWLEDGMENTS
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