
ABSTRACT

In this paper we present an efficient method to do online
rebuild of a B+-tree index. This method has been imple-
mented in Sybase Adaptive Server Enterprise (ASE) Ver-
sion 12.0. It provides high concurrency, does minimal
amount of logging, has good performance and does not
deadlock with other index operations. It copies the index
rows to  newly allocated pages in the key order so that good
space utilization and clustering are achieved. The old pages
are deallocated during the process. Our algorithm differs
from the previously published online index rebuild algo-
rithms in two ways. It rebuilds multiple leaf pages and then
propagates the changes to higher levels. Also, while propa-
gating the leaf level changes to higher levels, level 11 pages
are reorganized, eliminating the need for a separate pass.
Our performance study shows that our approach results in
significant reduction in logging and CPU time. Also, our
approach uses the same  concurrency control mechanism as
split and shrink operations, which made it attractive for
implementation.

1  INTRODUCTION

B+-trees [Comer79] are one of the main indexing methods
used in commercial database systems. A primary B+-tree
index has data records in the leaf pages while a secondary
B+-tree index has only the indexkeys in the leaf pages,
where a key consists of a key value and the ROWID of the
data record. In this paper, we consider the rebuild of a sec-
ondary index2. We assume that the leaf pages of the index

1.  Level 1 is the level immediately above the leaf level

are doubly linked and the non-leaf pages are not linked.

Over time, insertions and deletions may cause allocations
and deallocations of index pages. As mentioned in [GR93],
most practical implementations of B-trees do not merge
index nodes upon underflow and the same is true for ASE.
Index pages may become less than half full causing a drop
in the space utilization and also an increase in the number of
disk reads required to read the same number of index keys.
Further, the index may become declustered (i.e. index keys
within a key range may not be in contiguous disk space)
thereby degrading the performance of range queries. To
restore the clustering, users can drop and recreate the index.
However, that typically requires holding a shared table lock
on the table thereby making the table inaccessible to OLTP
transactions, which may not be acceptable.

Online index rebuild restores the space utilization and clus-
tering of the index with minimal blocking of readers and
writers. It copies the index keys to fresh pages and deallo-
cates the old pages. In this paper, we present an algorithm
for online index rebuild that provides high concurrency,
does minimal amount of logging, has good performance and
does not deadlock with other index operations. Section 2
describes the concurrency control mechanisms in the index
manager.  Section 3, Section 4 and Section 5 describe the
online index rebuild algorithm. Section 6 evaluates the algo-
rithm with respect to some desirable properties. Section 7
compares it with related work in this area and finally, Sec-
tion 8 gives the conclusions.

2   INDEX CONCURRENCY CONTROL

In this section, we describe the concurrency control mecha-
nisms in the index manager.

We assume row level locking. Insert, delete and scan opera-
tions acquire logical locks on rows as needed. Logical locks
are meaningful only on rows at the leaf level. We do not dis-
cuss logical locking further, as split, shrink and rebuild
operations do not acquire logical locks.

2.  However, if the primary key value is used as data ROWID in the
secondary indices, then the same algorithm  can be used to rebuild
a primary index as well.
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Latchesare used for physical consistency at the page level.
To read or modify a page, an S (shared) or X (exclusive)
latch is acquired on the buffer that contains the page. Latch
deadlocks are prevented by requesting the latches in top
down order or left to right order.

An insert may cause a split operation which consists of add-
ing a new leaf page to the chain, possibly moving some keys
to it and updating the parent and possibly higher levels.
Shrink operation consists of removing a leaf page from the
chain and updating parent and possibly higher levels. A
page is shrunk when the last row is removed from it. Split
and shrink operations are performed asnested top actions
[GR93], which means that once the operation is complete, it
is not undone even if the transaction performing it rolls
back.

Now, we give an overview of insert, delete, split, shrink and
scan operations. We also present the pseudocode for tree
traversal routine. The deadlock issues are discussed in Sec-
tion 6.5.

2.1 Insert and Delete
Insert and delete call traversal module to retrieve the appro-
priate leaf page X latched.  If no split or shrink is needed,
the latch is released after performing the insert or delete.

Traversal uses the familiarcrabbing strategy [GR93] with
latches. An S latch is sufficient, except at the leaf level,
where an X latch is acquired. However, if a page in the path
traversed is undergoing a split or shrink by another transac-
tion, traversalmay need to release its latches and block for
the split or shrink to complete, as explained in the following
sections (Section 2.2, Section 2.3 and Section 2.6).

2.2 Leaf Split
To split a leaf page P0, both P0 and the new page, say N0,
are X latchedand address-locked in X mode.In addition,
SPLIT bits are set on both of them. The X lock acquired by
the split is called anaddress-lock to distinguish it from log-
ical locks. For the rest of this paper, unless specified other-
wise, a lock refers to an address lock. While the X latches
are released soon after the modification of P0 and N0, the X
locks and the SPLIT bits are retained till the end of the top
action. The purpose of setting the SPLIT bit on a page is to
block writes to that page by concurrent transactions after the
splitter has released its X latch3. The writers block by
releasing any latches held and requesting an unconditional
instant duration S lock on the page4. Thus the writers are
blocked till the top action is complete. However, readers can
still access P0 or N0, if they have successfully acquired an S
latch on it.

3.  SPLIT bit does not block a writer that just wishes to modify its
previous page link. This optimization allows two adjacent leaf pag-
es to be split concurrently.

No locks or latches are held on higher level pages by the
splitter when it is splitting the leaf page. They are acquired
during the propagation phase, as explained below.

2.3 Propagation of Split to Higher Levels
The split is propagatedbottom up. The latches held on the
pages at the current level are released before moving to the
next higher level. To propagate the split to level i, split calls
traversal to retrieve the appropriate non-leaf page P at level i
latched in X mode. (However, traversal may not start from
root in this case. See Section 2.6.1.) The page returned by
traversal is guarenteed not to have SPLIT (or SHRINK) bit
set on it. Here is the action to be taken on P:

• If P needs a split, both P and the new page, say N, are X
latched, X locked and SPLIT bits are set on them(just
as in leaf split). Suppose that keys >= K are moved to
N. The page P is also marked with OLDPGOFSPLIT
bit and entry [K, N] is stored on page P as aside entry5.
Once the side entry is established, both P and N are
unlatched and the propagation continues to the next
level. In case a concurrent traversal visits page P from
its parent before the split propagates to the parent, the
traversal uses the side entry to decide which of P or N is
the correct target page.

• If no split is needed, no X lock or SPLIT bit is needed
on P. The insert is performed, and the top action is com-
pleted and P is unlatched. The SPLIT bits and the
OLDPGOFSPLIT bits are cleared and the X locks are
released.

Recall that setting SPLIT bit on a page blocks writes to that
page but not the reads. Thus a concurrent insert, delete, split
or shrink operation that wants to traverse through P (or N) to
a lower level page can access P (or N) after splitter has
released its X latch on P (or N).

2.4 Shrink
Shrink is also performed as a nested top action and is propa-
gated quite similar to split operation, except that SHRINK
bits are set on the affected pages instead of SPLIT bits.
Also, note that setting SHRINK bit on a page blocks both
read and write operations on the page.

2.5 Scan
Scan calls traversal module to retrieve the starting page for
the scan S latched. The scan qualifies the index keys under S

4.  The SPLIT bit is similar to the SM bit in [MF92]. However, SM
bit is accompanied with a tree latch (rather than an X lock on the
page), which increases the likelihood of blocking. Also, in our ap-
proach, the bit is only an optimization of calls to the lock manager
(checking for the bit can be replaced with a request for a condition-
al instant duration S lock).

5.  Although the sidekey is similar to side pointers in B-link trees
[LY81], it is valid only as long as the OLDPGOFSPLIT bit is set.
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latch. The page is unlatched before returning a qualifying
key to query processing layer and is latched again to resume
qualification. Also, note that depending on the isolation
level, the scan may need to acquire logical locks on qualify-
ing keys.

2.6 Traversal Pseudocode
Here is the pseudocode for traversal. Note that a page is
latched in X mode only if it is at the target level and the tra-
versal was called in writer mode. In all other cases, the page
is latched in S mode.

traverse(searchkey, searchmode, targetlevel)

{

retraverse:

       p = get root page latched;

       while (level of p > target level)

       {

              Search p to identify the child to chase;

              c = get child page latched;

              if (c has SHRINK bit set)

             {

                   Unlatch c and p;

                   Wait for instant duration S lock on c;

                   goto retraverse;

             }

             if (OLDPGOFSPLIT bit is set in c)

             {

                    if (searchkey >= key in side entry)

                    {

                          sibling = Get right sibling latched;

                          Unlatch c;

                          c= sibling;

                    }

             }

             /* Now  we are on the correct child  */

             Unlatch p;

             p = c;

        }

        /* Target level is reached */

        if ((searchmode == writermode) and

            (p has SPLIT bit set))

        {

               Unlatch p;

               Wait for instant duration S lock on p;

               goto retraverse;

        }

return p;

}

2.6.1 Retraversing
In the above algorithm, retraversal starts from the root page.
However, ASE actually uses a more efficient strategy. While
traversing down the tree, the pages encountered in the path
are remembered. When there is a need to retraverse, rather
than starting from the root, it starts from the lowest level
page in the path that issafe. A page is safe if it is still at the
same level as expected and the search key is within the
range of key values on it. Same strategy is used by traversal
during the propagation of split and shrink to avoid starting
from root. Later, in Section 5.4.1, we will see that the propa-
gation phase of online index rebuild also uses traversal and
benefits from this strategy.

3   ONLINE INDEX REBUILD OVERVIEW

Online rebuild runs as a sequence of transactions,  with each
transaction performing a series of nested top actions and
each top action rebuilding multiple contiguous leaf pages in
the page chain. The top actions are calledmultipage rebuild
top actions.  The number of pages to rebuild in a single top
action is denoted byntasize and the number of pages to
rebuild in a transaction is denoted byxactsize. Rebuilding
multiple pages in a single top action reduces logging and
CPU time. We chose an ntasize of 32 based on our perfor-
mance study (Section 6.4). The significance of xactsize is
explained below.

At the end of each transaction, the new pages generated in
the current transaction are flushed to disk and then the old
pages that were removed from the tree are made available
for fresh allocations.

Flushing new pages to disk before making old pages avail-
able for fresh allocations allows rebuild not to log full keys
during the key copying. Instead,  the log records contain
only the PAGEIDs and the timestamps of the source page
and the target page and just thepositions of the first and the
last key that were copied. Redo may have to read the source
page to redo the key copying. On the other hand, if the
source page is made available for allocation before the tar-
get page is flushed to disk, then the new contents of the
source page could reach the disk before the target page
reaches the disk. If a crash occurs after the new contents of
the source page reach the disk, but before the target page
reaches the disk, the target page cannot be recovered.

While rebuilding several pages in a transaction has the
advantage of delaying the forced write of new pages, it also
delays the availability of the old pages for reuse. It is desir-
able to rebuild a few hundred pages in a transaction.
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4   MULTIPAGE REBUILD TOP ACTION

Consider the rebuild of contiguous pages P1, P2,..., Pn in a
single nested top action. Suppose that PP is the previous
page of P1 and NP is the next page of Pn. The top action
involves a copy phase and a propagation phase, which are
explained below:

4.1 Copy Phase
The index keys are copied from P1, P2,..., Pn to PP and zero
or more newly allocated pages, say N1,N2,..., Nk, where k
>= 0. Note that k could be > n if the user has specified that
the new leaf pages be filled only upto a desiredfillfactor, so
that some space is left free for future inserts. Copy phase
also includes fixing page linkages and deallocating the old
pages.

4.1.1 Locking
X locks are acquired and SHRINK bits are set on PP, P1,
P2,..., Pn in that order. For i > 1, if Pi has SPLIT or SHRINK
bit set on it, rebuild does not wait for lock. Instead, only
pages P1, P2,...,Pi-1 are rebuilt in the current top action. On
the other hand, if PP or P1 has SPLIT or SHRINK bit set,
then rebuild waits for the split or the shrink to complete.

4.1.2 Logging
Copy phase generates asingle keycopy log record  to cap-
ture all the key copying that has occurred from pages P1,
P2,..., Pn to PP and the newly allocated pages. It has multiple
entries of the form [source pageno, target pageno, position
of the first key copied, position of the last key copied].  It
also generates allocation and deallocation log records and
changeprevlink log record for NP.

4.1.3 Page Deallocations
A page can be in one of allocated, deallocated or free states.
Only a page in free state is available for fresh allocations.
When the page manager is called to deallocate a page, it
logs a deallocation record and takes the page to deallocated
state. The page manager has to be called again to free the
page. The transition from deallocated state to free state is
not logged by the page manager and it cannot be undone. In
the event of a crash, after the redo and undo phases, recov-
ery frees up pages that are still in deallocated state.

In the case of a shrink top action, deallocated pages are
freed when the top action commits. However, in the case of
multipage rebuild topaction, the deallocated pages are freed
only when the currenttransaction commits. It uses log scan
to determine what pages need to be freed up. Also, note that
if rebuild needs to abort due to lack of resources or internal
error or a user interrupt, during rollback, it needs to free up
the pages deallocated in completed top actions. Before free-
ing up the old pages, the new pages need to be flushed to
disk.

4.2 Propagation Phase
The changes are propagated to level 1 by deleting the entries
for P1, P2,..., Pn and inserting the entries for N1, N2,..., Nk in
the parent(s) of P1, P2,..., Pn. The propagation may continue
above level 1. The propagation of split (shrink) can be
thought of as passing of an insert (delete) command from
one level to the next. The propagation of rebuild top action
can be thought of as passing multiple commands from one
level to the next, where each command could be an insert,
delete or an update. At each level several pages could be
affected. At a given level, the affected pages are modified in
left to right order. Also, all modifications at the current level
are finished before moving to the next higher level. For each
affected non-leaf page, no more than onebatchdelete log
record and onebatchinsert log record are generated. These
log records contain the entire keys that were inserted or
deleted. The propagation phase is described in detail in Sec-
tion 5.

4.3 Advantages of Rebuilding Multiple Pages
in a Single Top Action
Insert and delete log records in ASE have not only the key
being deleted or inserted but also a lot of additional infor-
mation such as transaction ID, old and new timestamps for
the page, position of delete or insert etc. The amount of such
additional information is as high as 60 bytes and is amor-
tized by batching multiple inserts or deletes in a single
batchinsert or batchdelete log record. Similarly, the over-
head in other log records is amortized by rebuilding multi-
ple pages in a single top action. Besides saving log space,
rebuilding multiple pages in a top action reduces the number
of visits to level 1 pages significantly, reducing the calls to
lock manager, latch manager etc. Our performance study
reflects this (Section 6.4).

5  PROPAGATION PHASE OF REBUILD

In this section, we discuss how the rebuild of multiple leaf
pages is propagated to higher levels. The propagation is bot-
tom up and the modifications to be done at the next higher
level are specified in the form ofpropagation entries.
Before describing propagation entries, we explain what an
index entry is.

We assume that a nonleaf page in the B+-tree that has n
child pointers has only n-1 key value separators. An index
entry is of the form [key value, child pageid], except for the
index entry for the first child, which does not have the key
value. An index page having n children has n index entries
C0, [K1, C1], [K2, C2],...,[Kn-1, Cn-1]. For 0 < i <= n-1, Ci
has index entries greater than or equal to Ki and for 0 <= i <
n-1, Ci has index entries less than Ki+1.

Now, we define propagation entries and explain what propa-
gation entries are passed from the leaf and the nonleaf
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pages. Then we describe how the propagation phase pro-
ceeds from one level to the next.

5.1  Propagation Entries
A propagation entry specifies the following:

• the page P that is sending the propagation entry.
• operation that must be performed at the next higher

level. The possible operations are DELETE, UPDATE
or INSERT of an index entry.

• INSERT propagation entry specifies the entry to be
inserted at the next level. UPDATE propagation entry
specifies the entry to replace the existing entry for that
page. UPDATE and DELETE propagation entries do
not specify the contents of index entry to delete (pageid
P uniquely identifies the index entry).

5.2 Propagation Entries Passed From a Leaf
Page
Consider the rebuild of leaf pages P1, P2,..., Pn in a single
top action. Let PP be the previous page of P1 and NP the
next page of Pn. Here are the rules that determine what
propagation entries are passed from asingle page Pi:

• Suppose that k, wherek > 0, new allocations are
needed to accommodate the keys from Pi. The entry for
Pi needs to be deleted from parent and entries for the k
new pages need to be inserted in the parent. So an
UPDATE propagation entry followed by k-1 INSERT
propagation entries are passed.

• If all the keys from Pi could be copied into the last
newly allocated page (i.e.no new allocation was
needed to accommodate the keys from Pi), it passes
DELETE propagation entry.

Thus, each page that was rebuilt passes one or more propa-
gation entries. All the propagation entries from P1, P2,..., Pn

are accumulated before the propagation proceeds to level 1.

5.3 Propagation Entries Passed From a Non-
leaf Page
A non-leaf page P passes propagation entry(s) in the follow-
ing cases:

• P is becoming empty (in this case P needs to be shrunk)
• P is split
• P is not becoming empty but there was some key move-

ment from the subtree under P to the subtree under its
left sibling.

These three cases are discussed in more detail below. Note
that the last two cases arenot mutually exclusive.

5.3.1 Shrink of P
If all children pass DELETE propagation entries, then page
P needs to be shrunk6. It passes DELETE propagation entry.
This means thatall the leaf rows in the subtree under P have

been moved to the subtree under its left sibling.

5.3.2 Split of P
The inserts to be performed on page P (as a result of
UPDATE/INSERT propagation entries coming from chil-
dren of P) may cause P to be split. If so, P is split in such a
manner that all the remaining inserts go to the old page or
all of them go to the new page. Note that one split may not
be sufficient to accommodate all such inserts. If the inser-
tions cause k splits, then k siblings are generated for P and k
INSERT propagation entries are setup for inserting entries
for these new pages at the next higher level.

5.3.3 Key Movement Across Subtrees
Consider  figure 1 shown below. P’ is the parent of P and L
is the left sibling of P. [K1, L] and [K2, P] are the entries for
L and P in P’. Consider some key movement from the sub-
tree under P to the subtree under L. If keys up to (but not
including) K are moved to the subtree under L, then the
entry for P in P’ needs to be changed from [K2, P] to [K, P]
to keep the index consistent. So P needs to pass an UPDATE
propagation entry [K, P] to P’. Now let us look at how to
detect such key movement and how to find the value of K.

Figure 1:  Key Movement Across Subtrees

Let C0, C1,...,Cn be the children of P.

If C0 did not pass DELETE or UPDATE propagation entry,
thenno key movement has occurred from the subtree under
P to the subtree under L.

Otherwise, let Ci, where 0 <= i <= n, be the leftmost child of
P that did not pass DELETE propagation entry. (Such a
child must exist. Else, all children must have passed
DELETE propagation entries and it is the shrink case dis-
cussed in Section 5.3.1). Since the children C0, C1,...,Ci-1

have passed DELETE propagation entries, it means all the
keys in the subtrees under them have been moved and they
have become empty. The entries for all of them on P need to

6.  In this case, there is no need to perform the deletes. Page can di-
rectly be deallocated.

P

P’(parent of P)

[K1,L], [K2, P]... ...

 L
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be deleted and Ci needs to become the first child of P.

• If Ci has passed an UPDATE propagation entry, say
[Ku, Ci], then keys < Ku may have been moved from
subtree under Ci to that under its left sibling. So, P
passes UPDATE propagation entry [Ku, P] i.e. K = Ku.

• Otherwise, Ci must have passed INSERT propagation
entry(s) or no propagation entries. In either case,no key
movement has occurred from the subtree under Ci to a
subtree under its left sibling. If [Ki, Ci] is the entry for
Ci on P, then P passes UPDATE propagation entry [Ki,
P] to its parent i.e. K = Ki.

5.4 Propagation From Level i to Level i+1
An algorithm to apply a list of propagation entries passed
from level i to level i+1 is described below.

5.4.1 Algorithm Propagate_to_level
Input:  List L = [E1, E2,..., Em] of all propagation entries to
be applied to level i+1 pages (these were passed from level i
pages)

Output:  List L1 of propagation entries passed to the next
higher level from level i+1 if any

Side Effect: The modifications specified by the input propa-
gation entries are applied on level i+1 pages

propagate_to_level(L, i+1)

Initialize L1 to empty list;

while (L is not empty)

{

         e = first propagation entry in L;

         C = page that propagated e;

         K =Any key from page C;

         /* Get the parent of C X latched. Note that

         ** traversal uses same strategy as described in

         ** retraversal section earlier to avoid starting

         ** from root (See Section 2.6.1).

         */

         P = traverse(K, writer, i+1);

          /*  identify all the propagation entries that

          ** were sent by children of P (they are

          ** guaranteed to be contiguous in L).

          */

          e’ = last propagation entry in L that was

                 passed by a child of P;

          Delete propagation entries e through e’

               from L;

           /* apply the propagation entries e through

           ** e’ on P(See Section 5.4.2).

           */

           Modify P;

           Append the propagation entries passed by P

                     if any to L1

           Release any latches held;

}

5.4.2 Modification of Page P
The propagation entries passed by the children of P are
applied on page P in two phases, the delete phase followed
by the insert phase. In the delete phase, the index entries for
all the children that passed DELETE or UPDATE status are
deleted. All such index entries will be contiguous. In the
insert phase, the index entries specified by the
INSERT/UPDATE propagation entries coming from chil-
dren of P are inserted. The index entries inserted will also be
contiguous.

Traversal would have retrieved page P latched in X mode.
However, latch alone is not sufficient. The address locking
mechanism used by split or shrink top actions is used here
and the SPLIT and SHRINK bits are overloaded. P is locked
in X mode. A SHRINK bit is set on P if traversals through P
need to be blocked. If modifications to P need to be blocked
but not the traversals through P, a SPLIT bit is set on it. The
rules for deciding which bit needs to be set are mentioned
below.

• If any delete is performed on a page (i.e. atleast one
child passed a DELETE or UPDATE status),  SHRINK
bit is set.

• If only inserts are performed on a page (i.e. no deletes
and no splits), then SPLIT bit is set.

• If P needs to be split, a SHRINK bit is set on it. The
new page is also X locked and SHRINK bit is set on it.
There is no need to establish a side entry as traversals
through P are being blocked anyway. X latch needs to
be retained only on the page where the rest of the
inserts in the insert phase need to be performed.

These rules are very conservative. Traversals are being
allowed through the page only in the insert-only case, as no
keys in the subtree under the page would have been moved
to the subtree under its left or right sibling in that case. (See
Section 6.2 for a possible improvement).

5.5 Reorganizing Level 1 Pages
      Consider the propagation from leaf level to level 1. In
the propagation algorithm that has been described, while

applying propagation entries on a level 1 page P, the insert
phase inserts the index entries specified in
UPDATE/INSERT propagation entries sent by the children
of P. However, it is better to perform as many of those
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Figure 2:  Multipage Rebuild Top Action

inserts as permitted by space on the immediate left sibling
of P that is not being shrunk in the current top action. Note
that this can only be done if the first child of P is getting
deleted in the delete phase (i.e. it passed a
DELETE/UPDATE status). Otherwise, it would violate the
index key ordering at level 1.

With this enhancement, level 1 pages are filled as much as
possible without requiring a separate pass. An example of
multipage rebuild top action with this enhancement is
shown in figure 2.

6  EVALUATION

Here, we evaluate the algorithm with respect to some impor-
tant metrics.

6.1 Restoration of Clustering
When online index rebuild begins, the page manager tries to

allocate a new page from a chunk of large contiguous free
disk space. After all the pages in the chunk are used up, it
again looks for a chunk of large contiguous free disk space.
As the index keys are moved to the newly allocated pages in
the increasing key order, the new leaf pages are expected to
be well clustered.

6.2 Concurrency
Although rebuilding multiple pages in a top action has the
disadvantage of keeping many leaf pages locked at a given
time, it significantly reduces the number of visits to a level 1
page and the total duration of exclusive access to it. It also
significantly reduces the CPU time for the rebuild operation
which in turn reduces the negative impact of the operation
on the throughput of the system.

   Here are some possible enhancements to reduce the
impact on concurrent index operations:
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Propagation to level 1:

The three reorganized
pages P1, P2, P3 all have
the same parent P. In the
delete phase, the entries for
all these pages need to be
deleted. In the insert phase,
[22,N1] needs to be
inserted. However, this
insert is performed on the
previous page L. Since all
the entries in P need to be
deleted and there are no
inserts to perform on P,
DELETE propagation
entry is passed.

Propagating to level 2:

The entry [15, P] is
deleted. The propagation
is complete and the top
action is committed.

Leaf pages P1, P2 and P3 are reorganized.
Assuming five rows fit into a leaf page, all
of P1’s rows and some of P2’s rows are
moved to PP. The remaining rows from P2
are moved to the new page N1. All of P3’s
rows are moved to N1. P1 passes a DELETE
propagation entry as it did not cause alloca-
tions. P2 passes UPDATE propagation entry
with [22, N1] as the index entry to replace
the entry for P2 at the next higher level. P3
also passes DELETE propagation entry.

P PL L L
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• In the propagation phase, setting SHRINK bit on all
nonleaf pages on which a delete was performed is pes-
simistic. Rebuild deletes contiguous index entries on
nonleaf pages. Suppose that all index entries between
[K i, Ci] and [Kj, Cj] are deleted. There is no reason to
block traversals through the page that are looking for <
Ki or >= Kj. Thus thepositions of these index entries
could possibly be established on the page (just as a split
establishes a side entry) to benefit concurrent traversals.
This enhancement only helps in those cases where the
propagation continues above level 1.

• Consider the rebuild of P1, P2,..., Pn in a single top
action. Let PP be the previous page of P1 and NP be the
previous page of Pn. As the address locks are acquired
on the pages being rebuilt, SPLIT bits (rather than the
SHRINK bits) could be set on them (except on PP) so
that only writers are blocked and not the readers. Once
the contents ofall the n pages have been copied to PP
and possibly one or more newly allocated pages, the
SPLIT bits could be modified to SHRINK bits (under
an X latch). Now the next page pointer of PP and previ-
ous page pointer of NP can be set so that the old pages
are effectively unlinked and new pages are linked into
the chain.

6.3 Disk I/O
One scan of the old index is performed in the page chain
order and the new pages are written out to disk once. While
the page size is 2KB, the buffer manager allows the user to
configure buffer pools with 4K, 8K or 16K buffer sizes.
Online rebuild requests buffer manager to use the largest
size buffers available for reading old pages and for writing
new pages to reduce disk I/O.

6.4 Logging and CPU Time
We performed some experiments to see how the log space
used and the CPU time consumed vary withntasize. Our
experiments are performed under the following conditions

• The space utilization in the index being rebuilt is about
50% and the rebuild specified a fillfactor of 100%.

• The cache is cold (i.e. all pages had to be read from
disk).

• The  page size is 2KB but the buffer pool is configured
with 16KB buffers so that 16KB I/O size is used for
index page reads and writes as well as log writes.

• Sun Ultra-SPARC machine running SunOS 5.6 is used.
For a given number of leaf pages in the old and the new
index, the log space required varies primarily with the aver-
age nonleaf row size. The index manager in ASE uses suffix
compression which reduces the nonleaf row size especially
when the index is on multiple columns or on wide columns.
We experimented with index key size (i.e. sum of maximum
column lengths of all index columns) of 4 bytes and 40

bytes and the results are shown below. Lratio is the ratio of
log space required when ntasize of 1 is used to the log space
required at the specified ntasize. Cratio is defined similarly
for CPU time. Although our experiments were performed
with 2K page sizes, speaking analytically, the numbers for
log space are expected to be valid for a wide range of page
sizes. However, the ratio of log space required to that of the
index size is expected to be inversely proportional to index
page size. From  Table 1, it is desirable to choose a large
number for ntasize (32 to 64 pages).

6.5 Deadlocks
Our concurrency control protocols are such that the index
operations never get into a deadlock involving latches or
address locks or both. The only possible deadlock is one
that involves only logical locks. The following rules ensure
this:

• While holding a latch, unconditional logical lock is
never requested and an unconditional address lock is
requested only on a page that is being allocated (and
hence not accessible from the tree) or a page that does
not have SPLIT/SHRINK bit set.

• Latches are requested only in left to right order at a
given level and top down order across levels.

• Address locks are requested only in bottom up order
across levels.

• Address locks within a nonleaf level are acquired only
in left to right order.

• Address locks within leaf level: Shrink acquires address
locks on two pages and they are acquired inright to left
order. Split acquires address lock on the old page and
then the new page. But since new page is not yet part of
the tree, this sequence does not cause a deadlock with
shrink. Rebuild acquires address locks in left to right
order. However, as mentioned before, if rebuild needs
to wait, it releases all the locks that are acquired already
before waiting. After wakeup, it retries for all the locks
again.

key
size

avg non-leaf
row size

nta-
size

Lratio Cratio

4 10   32  7.3 2.4

4 10   64   8 2.4

40 20   32  4.9 3.7

40 20   64  5.4 4

Table 1: Log Space and CPU Time
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7  COMPARISON WITH RELATED WORK

The first published article on online rebuild is from Tandem
[Smi90]. Our approach has the following advantages:

• In Tandem’s approach, when the page split and merge
operations are performed, the entire file is made inac-
cessible to the OLTP transactions where as in our
method only access to the affected pages is restricted.

• Further, in Tandem’s approach, although it is not
explicitly stated, it seems all the moved keys are logged
where as in our approach the key contents themselves
are not logged.

A more recently published work in this area is [SBC97].
This paper describes a comprehensive scheme to reorganize
a table and rebuild the associated indexes. That scheme has
the following drawbacks:

• A separate copy of the table is made and the associated
indexes are rebuilt thereby doubling the storage
requirement.

• User transactions must be directed to use the new copy.
If there are long-running user sessions (with opened
cursors), reorg waits for them to complete.

• For the duration of the reorg, the log should not be trun-
cated because the reorg relies on the log for any
changes that need to be applied to the new copy.

• Incremental reorganization is difficult.
By doing inline reorganization, our scheme avoids the above
problems.

[ZS96] gives a detailed description of an algorithm for
rebuilding an index. We believe our algorithm has the fol-
lowing advantages over it:

• Our algorithm reorganizes level 1 pages without requir-
ing a sidefile. The sidefile mechanism adds a lot of
implementation complexity. It also adds overhead to
splits and shrinks happening in the index during the
rebuild of non-leaf levels.

• Logging is reduced in [ZS96] by assuming “careful
writing” mechanism in the buffer manager. Our algo-
rithm does not require such a mechanism in the buffer
manager7.

• Unlike [ZS96], our algorithm does only one pass of the
index.

• In [ZS96], only one new page is rebuilt in each reorga-
nization unit. However, we believe that it is important
to build multiple new pages in each reorganization unit
to reduce logging overhead and CPU time.

• In [ZS96], switching to the new B+-tree requires an X
lock on the tree which may cause unbounded wait. It is

7.  Note that we just assume “forced write”, which  is different
from “careful writing”. The former just requests the buffer manag-
er to force a page to disk(without violating WAL), while the latter
assumes a more involved mechanism of tracking the relative order
in which a certain set of pages need to be written to disk.

suggested that the transactions active in the tree be
aborted if lock cannot be acquired after certain timeout
interval. User transactions are never aborted in our
algorithm.

Our algorithm has following drawbacks compared to
[ZS96].

• During the propagation phase of multipage rebuild,
pages above level 1 may need to be modified in which
case X lock is acquired on the page being modified.
[ZS96] does not X lock pages above level 1 in X mode
(except for the X lock on the tree in the switching
phase). However, since propagation is bottom up (as
opposed to top down), the duration of X lock on non-
leaf pages is expected to be small. This is because most
of the time in the topaction is spent in reading old leaf
pages and moving rows from old leaf pages to new
pages.

• As mentioned before, to achieve good clustering, our
algorithm needs a large chunk of contiguous free space
on disk to begin with. However, since the amount of
contiguous free space needed is small compared to the
size of the index, this is not a significant problem.

• At the end of each transaction, new pages need to be
flushed to disk. This disadvantage is alleviated to some
extent by using large buffers and building a few hun-
dred new pages in each transaction.

8  CONCLUSIONS

We have presented an industrial-strength algorithm for
online index rebuild that provides high concurrency, does
minimal logging and has good performance. By rebuilding
multiple leaf pages in each top action, the updates to level 1
pages can be batched resulting in significant reduction in
logging and CPU time. The level 1 pages are reorganized
while propagating the leaf level changes thereby eliminating
a separate pass for reorganizing level 1 pages.
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