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ABSTRACT
Ambient, binary, event-driven sensor data is useful for many hu-
man activity recognition applications such as smart homes and
ambient-assisted living. These sensors are privacy-preserving, un-
obtrusive, inexpensive and easy to deploy in scenarios that require
detection of simple activities such as going to sleep, and leaving
the house. However, classification performance is still a challenge,
especially when multiple people share the same space or when
different activities take place in the same areas. To improve clas-
sification performance we develop what we call a Visualization as
Intermediate Representations (VLAIR) approach. The main idea is
to re-represent the data as visualizations (generated pixel images)
in a similar way as how visualizations are created for humans to
analyze and communicate data. Then we can feed these images to a
convolutional neural network whose strength resides in extracting
effective visual features. We have tested five variants (mappings) of
the VLAIR approach and compared them to a collection of classifiers
commonly used in classic human activity recognition. The best of
the VLAIR approaches outperforms the best baseline, with strong
advantage in recognising less frequent activities and distinguishing
users and activities in common areas. We conclude the paper with a
discussion on why and how VLAIR can be useful in human activity
recognition scenarios and beyond.
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1 INTRODUCTION
Computing applications that interact with — or directly serve — hu-
mans often depend on the successful recognition of human activity.
For example, a smart home system that adapts heating to the inhab-
itants’ behaviour (different temperatures for sleeping, cooking or
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reading) has the potential to simplify human-interaction, increase
comfort and reduce energy consumption, but relies on sensing and
algorithms to classify people’s activities. Accurate and practical
human activity recognition (HAR) can also enable life-critical appli-
cations such as health monitoring and ambient-assisted living [7].
For example, activity recognition can detect and analyse anomalies
in daily behaviour patterns and further assist disease diagnosis of
older adults [46].

There are currently two dominant approaches to HAR: video-
based and sensor-based [9]. While video-based HAR utilizes video
to observe people’s actions, sensor-based HAR relies on sensor
data that records human motion [19] or ambient changes [29] from
diverse sensors such as accelerometers and acoustic sensors. Sensor-
based HAR has been widely used to analyze physical human activ-
ity (e.g., walking [13]) as well as biological human dynamics (e.g.,
breathing [12]), presumably because it does not require cameras,
which can feel intrusive [41]. The deployment of non-image sensors
can also be preferable to cameras because sensors might be more
appropriate and accurate for certain signals, less costly, require less
energy and data processing, and might be easier to deploy. Here we
focus on HAR based on binary sensors installed in homes, such as
those from the ARAS [1] and CASAS [10, 11] datasets, which are
inexpensive, non-intrusive and easy to deploy [49, 50].

Regardless of sensing technologies, accurately classifying activi-
ties with sufficient granularity to enable sophisticated applications
remains a challenge. When binary sensors are used, this is com-
pounded with the lack of obvious ways to integrate the location
of the sensor and the timing of its activation for the classification
algorithm. For example, when a user is wandering vs. working
in the bedroom, the same sensors might be activated, resulting
in hard-to-separate sensor features and leading to low accuracy
distinguishing these two activities [59].

Here we present a novel approach to improve accuracy in HAR.
Inspired by the research field of visualization (e.g., [5, 32]), we trans-
form the raw data into visual representations that are then used in
a Convolutional Neural Network (CNN). This approach, which we
call VisuaLizations As Intermediate Representation (VLAIR), allows
us to encode spatial and temporal information of sensor onsets in a
straightforward and human-readable manner.

We perform a comparison of the VLAIR approach with a set of
baselines that include a CNN trained directly on sensor features
and a host of traditional machine learning approaches with sev-
eral data transformations, some of which are designed to encode
temporal relationships between sensor activation as well as spatial
information. We show that VLAIR mappings perform comparably
or better than the alternative classification approaches and, signif-
icantly, show important improvements for specific activities that
are almost never detected by previously published algorithms.

https://doi.org/10.1145/1122445.1122456
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Our contribution is twofold: we introduce VLAIR and we show,
through a series of experiments, how it can increase accuracy for
HAR from binary sensor data. Classification improvements are of
direct value to developers of HAR-dependent applications. The
graphical nature of VLAIR also offers promise improving the ex-
plainability of activity recognition, since the visual representations
of the data are more accessible to human observers. Because of
the flexibility and the large remaining room for sophistication in
the design of visualization mappings, we believe that VLAIR can
be applied beyond binary sensor activity recognition and deliver
further classification performance gains in this and other domains.

2 RELATEDWORK
In this paper we propose VLAIR as a domain transformation tech-
nique that reappropriates computer vision models for classification
of human activities. Thus, there are three areas of work that are
particularly relevant: existing approaches to sensor-based HAR
(same domain), other transformations of sensor data used for classi-
fication (same part of the workflow), and previous examples of reap-
propriation of computer-vision models for classification beyond
the domain of their training data sets (related approach). Because
VLAIR leverages knowledge in data visualization for humans, we
also provide a brief introduction and key references in this area.

2.1 Sensor-based Human Activity Recognition
Sensor-based HAR infers human daily activities from a range of
wearable and ambient sensors embedded in an environment. The
general process of sensor-based HAR typically involves collecting
and integrating data from sensors, extracting features from the
raw data [19], and applying learning techniques to infer human
behaviors. Various algorithms, including decision trees, support
vector machines and, more recently, deep neural networks [53],
have been applied to classification, recognition and segmentation
tasks. Deep learning can demonstrably learn complex correlations
between low-level sensor data and high-level human activities [33].
For example, Morales et al. [33] employed a CNN to extract features
from raw accelerometer signals and a Recurrent Neural Network
(RNN) to learn sequential relationships of extracted features in
human activities. Radu et al. [39] designed a multimodal architec-
ture for integrating sensor data from different modalities to infer
activities. Sprint et al. employed change detection on Fitbit’s time
series data to track changes in physical activities during inpatient
rehabilitation [46]. In VLAIR, we look into how to apply computer
vision-based deep neural networks to learn intrinsic sensor features
on visualizations.

In this work, we focus on data from ambient binary sensors. This
type of data — based on events — is intrinsically different from regu-
larly sampled sensor data such as acceleration and orientation from
wearable sensors. There are two classic feature representations to
represent binary sensor data: binary and numerical representations.
Binary representations record whether a sensor is activated during
a certain interval, while numerical representations record the num-
ber of times or the ratio of time that each sensor is activated during
the interval [6]. Numerical representations can detect fine differ-
ences in activities that trigger a similar set of sensors and thus are

more commonly adopted [14, 59]. However, numerical representa-
tions alone do not capture sequential or temporal information such
as the sensor activation order of sensors being activated, and when
a sensor is being activated, or spatial information such as the layout
of an environment and the spatial relations between deployed sen-
sors. Researchers have attempted to encode hour/minute/second
information in feature representations [14, 15], and tried sequential
mining approaches on sensor events to learn the activation order [?
]. One of the motivations for the VLAIR approach is to find simple
ways to integrate this kind of temporal and spatial information to
improve activity recognition.

2.2 Sensor Data Transformation
Some existing techniques transform raw input sensor data into rep-
resentations that are learnable through CNNs. For example, an early
data-driven approach [60] treats each dimension of accelerometer
signals as a channel of an RGB image to capture local dependencies
of sensor signals, and extracts scale-invariant sensor features by
using CNN to infer human activities such as ‘walking’ and ‘drink
when standing’. Other similar approaches are to adapt 1D sensor
signal inputs to form 1D virtual images and then leverage the ad-
vantages of CNNs to automatically extract and learn discriminative
sensor features [38, 54].

Ha et al. [18] combine all dimensions of sensor input forming an
image and use a 2D kernel to effectively capture spatial dependency
over sensors as well as local dependency over time. They take into
account two different modalities: sensors in different positions and
different sensing types. They group sensors in different positions
to capture spatial dependency over signals via the 2D kernel and
separate sensor types by padding zeros between them. Compared
with using a 1D kernel, their 2D kernel method can obtain dis-
tinguishable features from multiple sensors; e.g., accelerometers,
gyroscopes and magnetometers, and get better performance on
common human activity recognition tasks [26, 28, 40].

Singh et al. [45] use the knowledge from CNNs pre-trained on
image data for their sensor-based classification task. They linearly
transfer 2D pressure value mappings from force-sensitive resistor
fabric sensors into gray-scale images. By using a pre-trained CNN
as feature extractor, they unify the feature extraction process for
pressure sensor data to better identify users from their footsteps.
However, their modality transformation is task specific and can
only be applied on matrix-sensors such as a pressure mat. It does
not generalize well for other types of sensor data such as ambient,
binary sensor data.

These examples inspired (and are precursors of) VLAIR because
they transform, sometimes in spatialized form, raw data into for-
mats learnable by a CNN. VLAIR takes this further by leveraging
visual mapping techniques (including abstract re-representations)
from the visualization field thus far only in use by humans.

2.3 Visualization For Sensor Data
The process of visualization transforms information (e.g., numerical
data) into visual artifacts with the aim of facilitating the human
exploration of, analysis of, communication of and reasoning with
said information. The study of visualization is over three centuries
old [32], a well-established field of study and practice [5, 34], and
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Table 1: Raw sensor data in the CASAS Twor dataset
Timestamp Sensor Value Annotated Activity

2009-08-24 00:04:38.039369 M047 ON R1_Sleep begin
2009-08-24 00:05:04.099416 M046 ON
2009-08-24 00:05:19.004364 M037 ON R1_Bed_Toi._Trans. begin
.
.
.

.

.

.
.
.
.

.

.

.
2009-08-24 00:05:19.004364 M037 OFF R1_Bed_Toi._Trans. end
2009-08-24 00:00:25.061429 M046 OFF R1_Sleep end

an important part of certain human activities such as data analysis.
A key concept of visualization is themapping, which is the relation-
ship between the structure of the raw data and the properties of the
resulting visual artifacts. For example, a line chart of a country’s
GDP over timemaps the vertical position of line points to the coun-
try’s GDP value, and the horizontal location to the time (year). A
very large number of mappings is possible for each data schema, and
the combinations of mappings in a visualization greatly influences
whether it can be processed effectively by the human perceptual
and cognitive system [4, 8]. Combinations of mappings (visualiza-
tions) can be designed by humans, either independently or aided by
algorithms [57], or selected by software [35]. Visualizations have
been used to represent HAR data (e.g.,[61]) and to make machine
learning algorithms interpretable [52] but, to our knowledge, not
as a direct input to improve classification performance.

3 EVENT-DRIVEN BINARY SENSOR DATA
Binary event-driven sensors are sensors that report ‘1’ or ‘ON’ when
being activated. Examples include RFID sensors that are activated
when a tag is in close proximity [30], infra-red passive motion
sensors being activated when a user is in front of them [10], or
switch sensors that indicate the state of physical objects, such as
whether a cabinet door is open or closed [51]. These sensors can
unobtrusively monitor users’ activities and can be deployed on a
wide range of objects.

In this paper we examine a state-of-the-art third-party dataset
from the CASAS project published by Washington State Univer-
sity [3, 10]: the Twor (Kyoto) dataset. The dataset reflects the where-
abouts of the residents of a student apartment collected through
83 binary sensors. A sensor is activated if a person is present in
front of the sensor. The apartment layout and sensor deployment
are shown in Figure 1a and examples of raw sensor data are listed
in Table 1. The raw sensor data consists of a temporally ordered
sequence of binary sensor events that are annotated with activity
labels, to which we add the static 2D coordinates of the location of
the individual sensors that we extracted from the sensor deploy-
ment maps published with the dataset. The labels were produced
by the multiple annotators of the CASAS team using the house
plan, sensor positions and forms completed by the residents with
information of the times and locations of their activities [2].

The apartment housed two residents (R1 and R2), who performed
their daily activities including working, preparing meals, and sleep-
ing. Figure 1b shows the distribution of the annotated activities. We
deliberately selected this dataset because of the density of sensor
deployment and because it is well annotated with a wide range of
activities. Real-world environments usually contain multiple users
and recognizing multi-user concurrent activities is essential for
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(b) Activity class distribution

Figure 1: Spatial layout and activity distribution of the
CASAS Twor dataset

scenarios such as smart homes. However, recognizing the activity
of two people through identity-agnostic sensors is challenging, and
it mainly relies on learning the subtle differences between users
when they perform the same activity [59]. We apply state-of-the-
art techniques to segment the raw sensor data (see Table 1) into a
fixed-length interval, and preprocess the dataset to only include
non-concurrent activities so that we have exactly one activity label
with each corresponding converted image.

Althoughwe suspect that our approach could be particularly suit-
able for analysis of concurrent events, we use the non-overlapping
activity sub-dataset as a starting point; therefore, overlapping ac-
tivity classification falls out of our current scope and should be
addressed in future work.

4 VISUALIZATION OF SENSOR DATA
In this section we describe how we transform the raw data into
visualizations, which is the core of the VLAIR approach. A visu-
alization type is defined by one or more mappings from direct or
derived data elements to graphical elements. A large number of



PervasiveHealth ’20, May 18–20, 2020, NY, USA Ai Jiang, Miguel A. Nacenta, Kasim Terzic, and Juan Ye

mappings and combinations of mappings are possible. A visualiza-
tion is determined by a designer (human or machine) through their
choice of mappings which, in turn, determines the effectiveness of
the visualization for observer tasks. For example, designers might
choose to map the dimensions of the data that they want to empha-
size to the horizontal and vertical positions of objects in the plane,
which have been shown to be the most powerful visual variables (or
channels) for human perception of quantitative data [21]. VLAIR’s
main difference from ordinary visualization is that the observer is
a machine-vision algorithm rather than a human; nevertheless we
use simple mappings that we know would be reasonable for people
as a starting point. The rationale is that the network structure of
CNNs is inspired by the human visual cortex [17, 43].

We iteratively developed a series of five visualization types. The
mappings are chosen to assign the features of the data that we
found most promising a priori (e.g., the sensor layout, the activation
ratios of the sensors, the sequences of activation) to visual variables
that are most effective for humans according to best knowledge
in information visualization [4, 31, 34, 55] and empirical research
[8, 21]. Position in the 2D plane usually ranks top in lists of visual
channels ordered by efficiency and accuracy; therefore, all our
mappings match the position of sensors to the location of visual
elements in the 2D visualization (the 2D location visual variable).
This is also a mapping that has been used in the past for a similar
purpose ( [45]) and that is understandable by human observers.

The mappings and visualization types presented below are only
a tiny sliver of what is possible; they provide an initial informed
guess of what can work, based on what works for humans. All our
visualizations are based on assigning the spatial layout of sensors to
horizontal and vertical position in the image. We then progressively
generate other variants by adding information on sequences, sen-
sor activation ratios, and temporal information through additional
visual variables. Many other visualizations are possible, but their
systematic exploration is outside the scope of this paper.

The subsections below describe the mappings that we have tried,
except for the spatial mapping already described above, which all
visualizations use. Several mappings are combined in different ways
to create the five visualization variants displayed in Figure 2. The
output of the VLAIR encoding process is then fed to a CNN model.

4.1 Sensor Activation to Color Intensity
For each sensor i out of S total sensors in an T -length interval (see
Section 3) we calculate the activation ratio according to Equation (1),
where Ni is the number of the times that the ith sensor is activated
during the interval. The resulting value is determines the color
intensity of the image pixel representing the ith sensor’s location.

pi =


Ni∑S
j=1 Nj

if i ∈ [1, S]

0 otherwise
(1)

The Activation Intensity visualization, shown in Figure 2 column
2, uses only this approach.

4.2 Sensor Activation to Circle Radius
For each sensor i out of S total sensors in a T -length interval we
place a circle of radius ri , determined by Equation (2), where k

R1_Eating

R1_Meal_Preparation

R2_Meal_Preparation

AI DT RT R+DTT

R1_Work

R2_Wandering_in_room

R2_Sleep

R1_Watch_TV

R2_Work

Sensor Features 

R1_Wandering_in_room

R1_Housekeeping

M046 M045 M044 M050 M049 M048 M047

0.091 0.273 0.182 0.091 0.091 0.182 0.091

M010 M006 M009

0.4 0.3 0.3

M006 M007

0.5 0.5
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0.166 0.5 0.333

M016 M017

0.2 0.8

M046 M047 M048 M049

0.25 0.083 0.25 0.416

M008 M009 M005 M010 M006

0.077 0.308 0.308 0.077 0.231

M031 M032 M033 M034 M035 M036

0.076 0.153 0.307 0.230 0.153 0.076

M032 M033 M034 M035

0.294 0.411 0.117 0.176

M035

0.3

Figure 2: Summary of sensor features and transformed im-
ages for a collection of activities in the Twor dataset.

denotes the time index that the ith sensor is activated, and ti ,k
is the duration of the kth time segment where the ith sensor is
continuously being recorded as active. Ni is the total number of
times that the ith sensor is activated in aT -length interval, and rbase
is the pre-defined maximum radius for a visited sensor point. All
visualizations except the Activation Intensity mapping (see Figure 2,
columns 3 to 6) use this.

ri =
ΣNi
k=1ti ,k

T
∗ rbase (2)

4.3 Node Transitions to Width-variable Traces
We encode sequences of events by drawing traces. Considering each
activated sensor as a node, nodes activated consecutively draw a
line between the positions of these nodes. The thickness of the line
between nodes i and j varies according to Equation (3), wherewbase
is the pre-defined minimum width for a line indicating one-time
visit and Ni , j is the total number of visits between sensor i and
sensor j in a T -length interval.

wi , j = Ni , j ∗wbase (3)

All visualizations except the Activation Intensity mapping (see
Figure 2, columns 3 to 6) use this.

4.4 Time-of-day to Color
Time of day might be relevant for distinguishing activities; e.g.,
cooking may be less likely in the early hours of the day. Therefore
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Figure 3: VLAIR Workflow

we encode time-of-day information by drawing all elements in the
image with a color that corresponds to the time of the day. We pick
24 different levels from a colormap taken from the Python plotting
library Matplotlib, which range from blue (early morning) to red
(late night). This color coding is used in the Daytime-encoded and
Room+Daytime-encoded Traces (see Figure 2, columns 4 and 6).

4.5 Sensor Location Context to Room Shape
Sensors are located in rooms, which are natural delimiters of human
activities. We add grey shadings of room areas where at least one
sensor is activated. The Room-encoded Traces and Room+Daytime-
encoded Traces (Figure 2, columns 5 and 6) use this.

5 ARCHITECTURE
Our proposed approach takes raw binary sensor data as input,
segments them into fixed intervals, and transforms each segment
into a VLAIR image, which will be classified by a CNN into an
activity label (see Figure3). In the following, we briefly describe the
CNN architecture.

We aim for a small-sized architecture that can run on a relatively
resource-constrained device, requires little training time, and only
needs to deal with simple images that largely consist of primitive
shapes such as lines, rectangles, and circles. Driven by this purpose,
we design a CNN composed of three 2D convolutional layers each
followed by max pooling layer, a dense layer with 512 neurons
followed by a dropout layer, and a softmax classification layer.

The forward propagation of the CNN model is as follows. For
each convolutional layer l , the input volume of N l

in × N l
in will be

processed by a convolutional operation with filters kconv of size 3
with a fixed stride sconv of size 1. The same padding p is used to
preserve spatial resolution and a pooling over kpool × kpool (of a
size 2) pixel window with a stride spool (of size 2) converts into an
output volume of N l

poolOut × N l
poolOut . The depth of input and

output volumes depends on the number of filters used in each layer.
The calculation is defined as:

N l
convOut =

(
N l
in + 2p − kconv

sconv

)
+ 1, (4)

N l
poolOut =

(
N l
convOut − kpool

spool

)
+ 1 (5)

where N l
convOut and NpoolOut are the dimensions of the convolu-

tional and pooling output at layer l .

Table 2: CNN Configuration

Type Configurations
Input 240 * 240 * 1 (3) image

Convolution Filter: 64, Kernel size: 3 * 3, Stride: 1
Maxpooling Kernel size: 2 * 2, Stride: 2
Convolution Filter: 64, Kernel size: 3 * 3, Stride: 1
Maxpooling Kernel size: 2 * 2, Stride: 2
Convolution Filter: 128, Kernel size: 3 * 3, Stride: 1
Maxpooling Kernel size: 2 * 2, Stride: 2

Fully connected 512 neurons
Softmax 23 neurons

For the fully-connected layer, the input X l−1
i is the flattened

result of each image i from the last convolutional layer. A regular
neural network operation is then applied with weightsW l

i between
layer l and layer l − 1 plus a bias term bli for this layer. The clas-
sification output Yi for an image i , an inferred activity label, is
calculated by a non-linear Softmax activation function on the last
output layer:

Z li =W
l
i ∗ X l−1

i + bli , and Yi = Softmax(Z li ). (6)

To find the best hyperparameters for our CNN, we have con-
ducted grid search on the number of convolutional layers, the num-
ber of filters per layer, and the size of kernels and fully connected
layers. The final CNN model configuration is displayed in Table 2.
Batch normalization [25] is employed to effectively increase the
training speed. It also associates the dropout [47] strategy with fully
connected layers. The dropout rate was maintained at 0.5 through-
out training. Note that usage of deeper and wider convolutional
layers can be beneficial when extracting more complicated features,
however, we wanted to keep our model as light as possible.

6 EVALUATION METHODOLOGY
To validate the VLAIR approach we test the visualization types
shown in Figure 2 against classic feature-based machine learning
approaches. In the following, we describe the evaluation process.

6.1 Data Preprocessing
We segment sensor events into 60-second slices. Previous work [27,
59] has found this interval appropriate for this kind of classification
task in this kind of data; smaller periods do not capture sufficient
events to successfully differentiate activities, and longer periods are
detrimental to timely prediction andmay contain data frommultiple
activities. Previous work [58, 59] also provides a foundation for
the selection of features, such as sensor activation ratios, sensor
event order, and the activation time, which we adopt for our VLAIR
visualizations.

6.2 Configuration and Metrics
For each of the VLAIR approaches, we run 100 iterations of 5-
fold cross validation, which is considered appropriate for long-
term datasets and has been applied on the same datasets [16, 59].
We choose hyperparameters for learning rate and the optimizer
in line with the state-of-the-art vision-based approaches in deep
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learning [36]. We experimented with different learning rates and
two optimizers (SGD and Adam), and selected a combination that
converges fast and achieves higher accuracy on the validation set.
To reduce overfitting, we stop training when the validation loss
does not improve for 15 consecutive epochs.

The validation set is obtained by splitting the training data (the
K-1 folds) into 80% for model training and 20% for validation. We
use F1-scores as our main accuracy measure because they balance
precision and recall. More specifically, we use macro F1-scores (av-
eraging the F1-scores from all activity classes) and micro F1-scores
(averaging across all instances). For each configuration we calcu-
late the scores from the average of 5-fold cross validations. We also
measure execution times in all our trials, which we run on the same
dedicated machine: an Intel workstation with a processor i5-8500
CPU @ 3.00GHz, 6 cores and 64G memory with a NVIDIA Quadro
p6000 GPU. The training time for our CNN on VLAIR images is
averaged 17 seconds per epoch.

6.3 Baseline
Regarding non-VLAIR alternatives, there are largely two orthogo-
nal dimensions of variation: data representation and model type.
Data representation refers to the feature set that is provided to
the machine learning algorithms. We consider three alternatives:
raw (RAW), location and time (LOC+TIME), and Mutual Informa-
tion (MI). The RAW representation contains activation intensity
for each sensor in each interval, as described in Section 4, Equa-
tion 1. The LOC+TIME representation provides additional spatial
and temporal information in an equivalent way to the VLAIR ap-
proaches by adding sensor coordinates, bounding room data, hour
information, and traces (transition) information to the data already
in RAW. Finally, the MI representation encodes the contribution of
each sensor event based on temporal and sensor mutual informa-
tion, as described in [27]. In this approach, temporal dependency
measures the contribution of a sensor event in a segment based on
its temporal distance to the last event in the segment and sensor
dependency measures the probability of two sensors occurring con-
secutively. Differently from the RAW representation, which counts
sensor events, the MI feature vector weighs the influence of sensor
events based both on their temporal dependency and sensor mutual
information. In the end, the feature dimensions for RAW, MI and
LOC+TIME representations are 43, 43, and 414.

The baseline algorithms include a CNN with the same archi-
tecture presented in Section 5 and classic feature-based machine
learning algorithms previously reported on this kind of data [42, 58]:
Naive Bayes (NB), K Nearest Neighbors (KNN), Classification And
Regression Tree (CART), Support Vector Machine with linear and
RBF kernels (SVM, SVM-RBF), and Random Forests (RF). All imple-
mentations come from Python’s scikit-learn library [37]. Because
NB, KNN, CART and linear-kernel SVM results are much poorer
than all the other approaches, we omit them from the result report-
ing and the discussion.

7 RESULTS
Here we present the main findings grouped in three sections. First,
we report the differences between VLAIR variants, then the compar-
isons between VLAIR and Baseline approaches, and finally evidence

Table 3: Comparisons of Micro- and Macro-F1 scores be-
tween VLAIR and baselines.

 Technique Input Micro-F1 Macro-F1
CNN R+DT 0.80 0.58

LOC+TIME 0.79 0.55
MI 0.63 0.40

RAW 0.77 0.48
LOC+TIME 0.74 0.34

MI 0.34 0.11
RAW 0.75 0.28

LOC+TIME 0.77 0.47
MI 0.53 0.25

RAW 0.77 0.46

RF

CNN

SVM

on how classifiers recognize activities by different users taking place
in common areas.

7.1 Comparison between Different Mappings
Figure 4 visually summarizes the F1-scores of the CNN trained with
different VLAIR mappings. The richest visualization is R+DT, which
encodes the most information, is the most accurate (21 classes, 91%),
ahead of all other variants. Among all VLAIR variants, the R+DT
and DT visualizations offer the best micro and macro measures of
accuracy. Looking at the individual activities, R+DT and DT are
most accurate in 20 of the 23 classes (87%).

Overall there is moderate variance in the accuracy between
R+DT and DT visualizations in macro scores (differences of 1.1
percentage points), and a relatively small variance for micro scores
(0.1 percentage points). Macro F1 scores of RT, T and AI are 9.1, 9.2
and 9.8 percentage points worse than R+DT.

7.2 Comparison with Baselines
Table 3 shows the overall performance comparison between the
best VLAIR variant (R+DT) and the baseline approaches. As we can
see, RF with LOC+TIME representations outperforms all the other
baselines, with a significant improvement in Micro- and Macro-F1
scores. This demonstrates that the inclusion of spatial and temporal
information will improve activity recognition. However, VLAIR ap-
proaches still show the best accuracy. Figure 5 presents the detailed
comparison of F1-scores on individual activities between the best
VLAIR approach and the best performed baseline approaches on
the LOC+TIME representations. The best accuracy overall corre-
sponds to VLAIR R+DT (F1micro = 80%, F1macro = 58%), with a
marginal improvement over RF LOC+TIME of 3 percentage points
on Macro-F1, but much better than the other representations and
techniques. Table 4 shows the results of one-sided paired Welch’s
t-tests (with α = 0.05) comparing the F1-scores on each activity of
the best VLAIR (R+DT) on the CNN against all the other techniques.
This is supporting evidence that the observed results are not due
to chance.

A look at the per-class result shows some additional interesting
patterns in accuracy. First, for most activities, the best VLAIR ap-
proach (R+DT) is as good as or better than the baselines. The excep-
tion are some mid-frequency activities, where the CNN LOC+TIME
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Figure 4: F1-scores on CNN trained with different VLAIR mappings. Activities are ordered from left to right in order of fre-
quency (indicated below activity name).
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Figure 5: F1-scores for CNN on VLAIR R+DT images (red), CNN on LOC+TIME (green), SVM (violet) and RF (light violet) on
LOC+TIME sensor features.

Table 4: Welch’s t-test statistics and p-values comparing
VLAIR R+DT and the baselines in F1-scores. ∗ means statis-
tically significant. All tests were run in R version 3.3.2 [22].

t(23) p-value

LOC+TIME 1.2226 0.2344
MI 5.7865 0.000008037*

RAW 4.151 0.0004173*
LOC+TIME 3.238 0.003777*

MI 8.4455 0.00000002373*
RAW 4.3935 0.0002307*

LOC+TIME 2.5779 0.01717*
MI 5.94 0.000005607*

RAW 3.8026 0.000975*

Baseline

RF

CNN

SVM

offers better accuracy at the expense of completely failing to recog-
nise most of the low-frequency activities. This reflects the advan-
tage of CNN VLAIR R+DT when classifying less frequent activities;
only one activity is not recognized (one with only 0.03% training in-
stances). In comparison, RF and CNN LOC+TIME failed to recognise
2 and 11 activities respectively.

Second, the MI sensor data representations lead to the worst
performance across all the baseline approaches. Introducing tempo-
ral and sensor mutual information encodes the temporal distances
between sensor events and the co-occurrence of the events. Accord-
ing to Krishnan and Cook [27], this can help group and segment
streaming sensors; however, this representation does not lead to
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better recognition in our particular case, at least against the tech-
niques that we have tested, including our own encoding of spatial
and temporal information.

7.3 Comparison with State-of-the-art CNNs
We have chosen a simple CNN architecture to extract features on
VLAIR images. The rationale behind this decision is that VLAIR
images are rather simple and do not have texture or complex shapes.
However, we also wanted to see whether pre-trained state-of-the-
art deep CNN models would improve recognition accuracy. We
considered several pre-trained network architectures to process our
images. For comparison, we trained the final layers of the candidates
with our richest visualizations (R+DT) with five different architec-
tures: VGG16 [44], ResNet [20? ],MobileNet [23], DenseNet [24] and
InceptionV3 [48]1. We fine-tune some of the convolutional layers of
each CNNmodel with VLAIR R+DT images and keep the default hy-
perparameters from Keras. The highest micro- and macro-F1 scores
are from VGG16, which is similar to our simple CNN. The other four
models achieve lower accuracy than VGG16, in which the small
sample size of VLAIR images might be insufficient to train these
sophisticated CNN models. We are aware that, with thorough grid
search on hyperparameters, these models might show some accu-
racy improvements. However, we decided to not pursue this further
because we consider that the greatly increased computational and
time cost would likely result only in marginal gains.

8 DISCUSSION
Below we discuss the possible advantages of using VLAIR for HAR
and the limitations of our current design, which lead to future
directions for improvement.

8.1 Recognising Infrequent Activities
The benefit of our proposed method comes mostly from the least
frequent activities, which have the least training examples in the
dataset. One might be inclined to discard such activities but we
argue that the most unusual activities might often be the most
important to support by a system, and that the usefulness of rec-
ognizing these activities is well above their rank in the frequency
table. Furthermore, we see that infrequent activities are often not
recognized at all by baseline algorithms, which directly affects the
functionality of the system (there is no point to programming sys-
tem reactions to those events if they are never recognized). As
expected, there is variation in classification performance between
the different visualization variants. Figure 4 provides some evidence
that simplistic visualizations that do not include all information are
inferior; e.g., AI. This suggests that visualization selection cannot
be ignored.

8.2 Distinguishing Users and Activities in
Common Areas

Our results indicate that VLAIR R+DT offers some advantage when
it has to distinguish users on the same activities. For example, in
Figure 6, ‘R1_Leave_Home’ and ‘R2_Leave_Home’ have only subtle

1For all these models, we use the architecture and pre-trained weights from the Keras
library: https://keras.io/applications/.

R1_Leave_Home       R2_Leave_Home        R1_Enter_Home        R2_Enter_Home

Figure 6: VLAIR images help distinguish different residents
(R1 and R2) on the same activity

differences in sensor feature distribution, making it challenging
for the baseline techniques to distinguish them accurately. The
F1 scores in these two activities with RF LOC+TIME are 55.2%
and 22.2% respectively, whereas with VLAIR R+DT accuracy is
much better (66.6% and 55.0%). This is likely because the visual
encodings of the VLAIR approaches highlight subtle differences
between activities, such as the the movement around the front
door area. Figure 6 hints at how colour (encoding time-of-day), the
size of circle-nodes (activation time), and the thickness of the lines
between nodes (sensor transitions) can express differences that
allow the CNN to better distinguish entering from leaving home
for both occupants.

Similarly, VLAIR R+DT can sometimes also better distinguish
between activities that take place in the same location. For example
in Figure 2, when a user is wandering vs. working in the bedroom,
the same sensors might be activated, resulting in hard-to-separate
sensor features and leading to low accuracy distinguishing these
two activities [59] with traditional methods. VLAIR approaches
show an advantage because they integrate the location of the sensor
and the timing of its activation for the classification algorithm.

8.3 Enabling Better Activity Recognition via
Temporal Information

Time-encoded trace images achieve the second best accuracy in
more than half of the activities. Temporal information helps to
distinguish activities with subtle differences in terms of sensor acti-
vation and spatial information. The examples of ‘Leave Home’ and
‘Enter Home’ almost activate the same set of sensors, but generally
at very different times during a day, as encoded with different col-
ors. This is because people usually go out for work in the morning
and come back home in the evening.

The trace pattern is also useful to distinguish the same activity
classes performed by different users. As shown in Figure 4, for
‘R1_Meal_Preparation’, the trace images achieve better accuracy
than their activation intensity images, while for ‘R2_Meal_Preparation’
the activation intensity images lead to higher F1-scores than their
counterpart trace images. This result suggests that these two users
may have different cooking styles, which also can be seen in the ex-
ample images of ‘R1_Meal_Preparation’ and ‘R2_Meal_Preparation’
in Figure 2. R1 moves more frequently and triggers more sensors
in a more even way across the kitchen area from the refrigerator to
the sink, while R2 stays at the hob area longer and activates fewer
sensors in other areas.

Figure 7 also shows an interesting finding related to the ‘Bed_
Toilet_Transition’ activity. Both VLAIR and baseline approaches

https://keras.io/applications/
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M043 M029 M037

0.20 0.20 0.60

(a) R1_Bed_Toilet_Transition

M029 M037 M030

0.375 0.375 0.250

(b) R2_Bed_Toilet_Transition

Figure 7: Examples of the ‘Bed_Toilet_Transition’ activity
on R1 and R2: their sensor features and VLAIR images.
‘Bed_Toilet_Transition’ activates sensors ranging from bed-
room to bathroom, which results in a rich spatial pattern
visible in the encoded VLAIR images.

recognize ‘Bed_Toilet_Transition’ with good accuracy due to its dis-
tinctive patterns. The CNN trained from location-encoded images
performs the best, which is consistent with the example pattern
in Figure 7: ‘Bed_Toilet_Transition’ activates sensors ranging from
bedroom to bathroom, which results in a rich spatial pattern visible
in the converted VLAIR images. Also, R1’s and R2’s bedrooms have
different spatial layouts which allow the CNN model to reliably sep-
arate ‘R1_Bed_Toilet_Transition’ and ‘R2_Bed_Toilet_Transition’.

When comparing the baseline results in Figure 5 with different
encoding results in Figure 4, we find that the CNN model trained
on activity intensity images is similarly accurate to the baseline
model trained on the sensor features. This implies that simply
projecting sensor data onto a grid map is not an effective way to
leverage spatial information to recognize complex, subtle activities.
Our time-location encoded trace images have the advantage of
characterizing fine differences between activity patterns.

8.4 Towards Explainability of Activity
Recognition

VLAIR’s intermediate visual representations provide an additional
point of access to the intricacies of the data and the model, an impor-
tant issue in current machine learning [52]. For example, designers
of HAR deployments can use the understanding of their own vi-
sual system as a proxy to understand the classifier. This additional
understanding might help designers to choose better locations and
types of sensors to be deployed. In specific deployments, the images
themselves can provide designers with valuable insights on, for
example, why a certain activity is not being recognized. VLAIR
might even enable deployment and mapping design for activities
for which no data exists yet by allowing the designer to mentally
picture in advance how patterns of activity might look when ren-
dered through specific VLAIR mappings. In other words, VLAIR
images might offer insight into the workings of the model.

8.5 Limitations and Future Work
As discussed above, our choice of mappings is not designed to make
solid claims on the value of specific visual mappings. Moreover,
we have only tested mappings that are spatialized with respect
to the physical layout of the apartments; more abstract mappings
could be easier to ‘see’ by the CNN (e.g.,[56]). Furthermore, we

have identified cases in which our mappings fail to distinguish
activities because they result in very similar images and shapes,
and therefore mislead the CNN in the classification, or drive the
the CNN to classify the minority case with a larger activity class.

It is important to highlight that our results provide a promising
indication of the value of the VLAIR approach, using a specific
dataset. Much work remains to be able to support generalizing the
advantages of the VLAIR approach to other datasets and data types.
Similarly, the exciting potential implications of visual intermediate
representations to support debugging and understanding the mod-
els need to be validated with experiments with real humans in real
deployments.

9 CONCLUSION
This paper presents VLAIR, a technique to re-represent data that we
developed to improve classification performance with binary event-
based human activity recognition data. VLAIR takes advantage
of knowledge in data visualization as well of deep convolutional
network architectures to deliver moderately improved F1 scores,
and significantly improved macro F1 scores in activity classifica-
tion. Results from our experiments support the advantages of this
approach, which is particularly noticeable for infrequent activities.
We contribute the VLAIR technique and its architecture, several
simple instances of the VLAIR technique, and the results of the
experiment showing improvements in classification performance.

In addition to the improvements in accuracy, VLAIR might con-
tribute towards explainability. This is particularly important in
pervasive health applications, where explaining the decisions being
made is often crucial to gain the trust of patients and practition-
ers. For example, a VLAIR-enabled system that can recognise sleep
activities to diagnose insomnia will allow patients and medical pro-
fessionals to “see” how insomnia is being inferred by the system
through example visual representations. This is much harder to do
directly with raw sensor data.
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