2008.00902v5 [cs.DC] 28 Aug 2020

arxXiv

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

Juhyun Bae!, Gong Su?, Arun Iyengar?, Yanzhao Wu!, Ling Liu!

1Georgia Institute of Technology, Atlanta, GA30329, USA
2IBM Thomas J. Watson Research, New York, USA

ABSTRACT

Since very few contributions to the development of an unified mem-
ory orchestration framework for efficient management of both host
and remote idle memory have been made, we present Valet, an effi-
cient approach to orchestration of host and remote shared memory
for improving performance of memory intensive workloads. The
paper makes three original contributions. First, we redesign the
data flow in the critical path by introducing a host-coordinated
memory pool that works as a local cache to reduce the latency
in the critical path of the host and remote memory orchestration.
Second, Valet utilizes unused local memory across containers by
managing local memory via Valet host-coordinated memory pool,
which allows containers to dynamically expand and shrink their
memory allocations according to the workload demands. Third,
Valet provides an efficient remote memory reclaiming technique
on remote peers, based on two optimizations: (1) an activity-based
victim selection scheme to allow the least-active-block of data to
be selected for serving the eviction requests and (2) a migration
protocol to move the least-active-block of data to less-memory-
pressured remote node. As a result, Valet can effectively reduce
the performance impact and migration overhead on local nodes.
Our extensive experiments on both NoSQL systems and Machine
Learning (ML) workloads show that Valet outperforms existing
representative remote paging systems by up to 282x throughput
improvement and up to 98% latency decrease over conventional
OS swap facility for big data and ML workloads, and by up to 5.3%
throughput improvement and up to 80% latency decrease over the
state-of-the-art remote paging systems. Valet is open sourced at
https://github.com/git-disl/Valet.

KEYWORDS
Cloud Computing, Network Memory, Host Memory

ACM Reference format:

Juhyun Bae!, Gong Su?, Arun Iyengar?, Yanzhao Wu!, Ling Liul. 2016.
Efficient Orchestration of Host and Remote Shared Memory

for Memory Intensive Workloads. In Proceedings of MemSys 20: The Interna-
tional Symposium on Memory Systems, Washington, DC, Sept 2020 (MemSys
’20), 15 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MemSys 20, Washington, DC

© 2016 ACM. 978-1-4503-XXXX-X/18/06...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Data-intensive and latency-demanding applications [17-19, 24, 25]
are typically deployed using the application deployment models,
comprised of containers, virtual machines (VMs), and/or execu-
tors/JVMs. These applications enjoy high throughput and low la-
tency if they are served entirely from memory. Challenges on these
applications increase as workload size becomes larger. When these
applications cannot fit their working sets in physical memory of
their containers/VMs/executors, they suffer large performance loss
in latency, throughput and completion time due to excessive page
faults and thrashing.

Most of the existing research studied the above problems and
proposed to increase effective memory capacity of VMs/containers
by leveraging remote idle memory resources. These proposals pro-
mote new architectures and new hardware design for memory
disaggregation [26, 28, 30, 32, 60, 62], or new programming mod-
els [34, 55]. But they lack of desired transparency at OS, network
stack, or application level, hindering their practical applicability.
Other efforts [1-7] promotes remote paging with transparency to
improve OS paging performance by exploiting the disk-network
latency gap via unused remote memory [2, 6, 11, 11, 36-38, 41—
44,79, 81]. However, most existing solutions [2, 6, 11, 42, 62] suffer
from high latency limitations due to remote node memory allo-
cation overhead due to receiver-side CPU involvement and the
scale-out performance with the large workload. Moreover, existing
research efforts have been dedicated either to consolidation of host
idle memory across VMs/Containers on the same host or focused
on remote memory disaggregation. Very few contributes to the
development of an unified memory orchestration framework for
efficient management of both host and remote idle memory.

In this paper we presents Valet, an efficient orchestration of
host and remote shared memory for big data and machine learning
workloads that are memory-intensive in nature. Valet by design
aims to address the following three common problems inherent
in existing remote memory systems. First, they have latency over-
head in the performance critical path due to dynamic connection
setup to the remote node(s) and remote memory mapping or disk
access scenarios (§2.1). Second, recent effort [6] shows the benefit
of remote memory paging with RDMA network and the limita-
tion due to eviction impact when remote node evicts data of local
nodes (§2.3). Finally, with the increasing popularity of Container as
a Service (CaaS) [9], the container-wide memory imbalance (§2.2)
involves managing both node-level memory imbalance and cluster-
wide memory imbalance, which pose non-trivial technical chal-
lenges [10].

We design and develop Valet to address the above challenges
with three original contributions(Figure 1). First, to reduce the

MemSys ’20, Sept 2020, Washington, DC

E Local cache

Optimized
RDMA flow

)

~

Remote
migration

o

:

Figure 1: Summary of contributions in Valet.

hidden latency in the critical path, we redesign the data flow in
the critical path by introducing a shared memory pool that works
as a local cache to remote data. As a result, Valet shortens perfor-
mance critical path and hides disk access scenarios unlike previous
work (§3.3). Second, Valet utilizes idle node level (host) memory
across containers via the node-coordinated shared memory pool.
This helps to maximize local idle memory utilization and improves
application performance on containers (§3.4). Third, Valet provides
an efficient remote memory reclaiming technique to minimize the
impact of eviction from a remote node on the performance of local
containers (local node). Valet achieves the remote memory recla-
mation by introducing a data migration protocol to move the least
active block of data to a remote node of less memory contention.
This also helps to maximize remote idle memory utilization across
cluster (§3.5).

We evaluated Valet with both memory intensive big-data work-
loads: Memcached[17], Redis[18], VoltDB[19] on YCSB[20], and
memory intensive machine learning workloads: GradientBoosting
Classifier, Kmeans clustering, Random Forest Classifier, Logistic
regression[22][23][50] and TextRank[45]. Using Valet, throughput
improves by up to 282x and latency decrease by up to 98% over
conventioal OS disk swap. Compared to existing representitive re-
mote memory paging system such as nbdX[11] and Infiniswap[6],
throughput improves up to 5.3x and latency decrease by up to
80% , demonstrating that Valet is an efficient memory orchestra-
tion framework for managing both idle host memory and idle re-
mote memory, and maximizing peek time performance of memory
intensive workloads in the presence of transient memory usage
variations [49].

In the rest of the paper, we first describe the problems of existing
approaches and the challenges to be addressed in Section §2. We
present an architectural overview of Valet in Section §3 and §4. We
provide discussions in Section §5 and experimental evaluations in
Section §6. Section §7 presents the related work and section §8
concludes the paper.

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu!

2 SOFTWARE CHALLENGES

Before we go into discussions of software challenges in remote
paging system, we try to define the term we use in this paper. In
remote paging system, local node(or sender node) handles swapping
traffic and remote peer node(or receiver node) allocates memory
and registers RDMA Memory Region(MR) blocks as a memory
donor for multiple sender nodes. Local node also has multiple peer
nodes to distribute paging-out(or write) requests and to read data
for paging-in(or read) requests.

2.1 Latency Overhead in the critical path.

In in-memory systems utilizing extremly fast DRAM and RDMA,
design of critical path in I/O request accounts for the huge portion
of overhead in the I/O performance. To understand the burden
on latency, we build a prototype of network block device as a
baseline. Typical design of RDMA based network block device
uses one sided verbs to bypass the kernel at remote side. Before
starting I/O operations, connection establishment and mapping
to remote MRs are required. We choose dynamic connection and
mapping mechanism. We apply power of two choices mechanism
for dynamic connection and mapping node selection. Connection
and mapping involve querying N remote nodes and selecting the
most free node. It also needs address/route resolution, connection
establishment and exchanging MR address and keys. Lastly, we
add asynchronous disk backup on local side. These design choices
are similar to the current state of art remote paging system[6]. We
measure latency of each operation to figure out the impact of the
latency overhead in general cases. We set our block device as a
partition and run FIO microbenchmark on it with the range of
128Kb block I/O size. Write size can be from 4KB up to 128KB and
read size is 4KB for both disk and RDMA operations. We run over
10 thousand operations and take an average. Obviously, disk write
has the biggest overhead as we expected but we also find out that
the latencies for dynamic connection and mapping are not trivial
as shown in Table 1.

Operations Latency (usec)
Disk WR 401336 (58.5%)
Connection 200668 (29.2%)
Mapping 62276 (9%)
Disk RD 20758 (3%)
RDMA WRITE 51.35
COPY 37.57 +(0.3%)
RDMA READ 36.48

Table 1: Comparison of latency impact on the critical path
in typical design of network block device. Connection and
mapping have significant overhead on the critical path.

In existing design choices, we find that there are several contrib-
utory factors to the inefficiency. First, Performance critical path
of I/O is tied with remote sending operation. In one-sided opera-
tion, I/O request ends when WC(Work Completion) is polled from

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

CQ(Completion Queue). In two-sided operation, it ends with re-
ceiving the response message from receiver node. Second, another
latency in the critical path is related to connection establishment
and mapping. Connection might not be expensive because it hap-
pens only once per receiver node but mapping is. There are two
approaches here. One is pre-mapping and the other is dynamic-
mapping. Pre-mapping for all possible remote memory in peer
nodes removes the mapping latency from the critical path but it is
not scalable and also wastes too much resources for internal data
structure and buffers that might not be used. Dynamic-mapping is
scalable but mapping latency stays in the critical path. As shown
in Table 1, connection and mapping cost in the critical path are
significant compared to RDMA operations and copy latency. Third,
we observe disk access increases during connection and mapping
setup because traffic has to be stored in somewhere while remote
sending operation is blocked. Those data stored in disk will be
accessed by read request later, which causes disk read activities.

2.2 Container-wide Memory Imbalance

OS virtualization is a commonly used technology in many cloud
servers and datacenters to provide isolated computing environ-
ment. There are two ways to set container’s memory constraints.
One is to set a limit of memory to each container. Applications on
this container can use memory within the limitation. The other
is to set unlimited. With unlimited settings, one container can
consume all the memory in a node. Then, others running later
suffer from performance degradation by swapping to disk. With
memory limit, container-wide memory imbalance exists among
multiple containers on the same node because cloud systems typi-
cally serve heterogeneous guest application workloads and it shows
heterogeneous data access patterns during runtime[10]. Figure
2 shows memory imbalance situation where container 1 suffers
from swapping while free memory remains on the node. In Figure
3, We run Memcached, Redis, VoltDB with varying the memory
limitation of the container. For workload, we use Facebook sim-
ulated workload[21] ETC(95%GET and 5%SET) and SYS(75%GET
and 25%SET) by using YCSB[20]. Performance severely decreases
due to swapping while unused local memory remains in the node.
Previous approaches[6, 11] are not free from this container-wide
memory imbalance problem.

2.3 Remote Eviction Impact

Remote eviction happens due to shortage of free memory when
applications in the remote node call for memory. When remote
memory eviction happens, performance impact on sender node is
inevitable because remote memory is simply deleted from the peer
node. Later, all read requests to those deleted data are served from
disk in the local node. If the deleted data is highly active one, the
impact on sender node is even worse. Another problem is that,
finding the most inactive victim is costly. Typical way of handling
this is to query write/read activity to multiple sender nodes. This
unnecessarily increases communication latency to query sender
nodes if the remote memory block is inactive. If the number of
queries gets bigger to find the victim well, communication latency
increases linearly. In turn, it results in memory pressure on native

MemSys °20, Sept 2020, Washington, DC

Memory Usage

&
2 40000 5

g Container 1 starts to swap

£ 30000 while free memory in the node is available.

PR R B = R e =]
CNXLTOOANNTOOND YOO
FHANMOTITINOORNN DD

1021
1081

Time (Sec)

—used(Contl) —free(node) —swap(node) —used(Cont2) —used(Cont3)

Figure 2: Container-wide memory imbalance. With the con-
tainer memory limit setting, container cannot use more than its
own limitation. We run 3 containers with memory limit in the
node and measure memory usage while we run an application in
container 1. Container 1 has 10GB memory limit. After 10GB is
reached, container 1 suffers from swapping while unused memory
remains in the node. Container 2 and 3 are idle at this moment.

o
3
Q
< o o o o o o
= > > d]] >
5 1.0 gk ©
o > 9
'_EO.B' o
n
80.6' <
n
No.4 ~
© \n 5 10 o o X
L | E iq | H B B
S00 = = =3 ocl&c BRo
AR g IR
o n Ol N OO0 N O|0 N Ol N O|C 1N O
o~ Mo~ NoO~ NoOo~ o~ NIo ™~ Nn
~ETC 'TSYS |TETC '—'SYs |TETC 'TSYS
Memc Redis VoltDB

Working Set Container Memory fit (%)

Figure 3: Applications performance with the setting in Fig-
ure 2. Applications suffer from performance degradation while
unused memory remains in other containers.

applications on the peer node due to slow eviction process. Re-
garding scalability perspective, the impact on sender node due to
eviction increases as workload increases. The more pages reside
on the peer node, the higher risk of eviction exists and the impact
is larger. We measure eviction impact with 23GB workload. We
first run Redis with SYS workload to populate 6 peers(See Figure 4).
Then, we run native application in the peers until it consumes all
free memory. Then, receiver module that manages remote memory
evicts remote memory by randomly selecting 1GB sized remote
memory block at a time until all blocks are evicted. Figure 5 shows
throughput of Redis and cluster-wide unused memory. It shows
that eviction causes significant performance loss on the sender
node and it becomes worse as the amount of evicted data increases.
It also shows that idle memory in the cluster remains unutilized
while throughput severely decreases. Addressing remote eviction
impact is critical to achieve scalability in distributed in-memory
systems.

MemSys *20, Sept 2020, Washington, DC

Trigger Remote Random Eviction
by allocating local memory in userspace application

'
Total ’
Physical
Mem in
anode 5GB
? 3GB 3GB 3GB 3GB 3GB
Z \ \ |

Sender Peer Peer
Node Node 1 Node N

L 1 1 1 1 1 t

[T | -

Figure 4: Experiment setup. To figure out remote eviction impact
on sender node, We run 6 peer nodes for a sender node. Container
in the sender node has 5GB limit. When 5GB limit is reached in the
sender node, about 18GB workload is evenly distributed into 6 peers
in the cluster. We run native applications on M peer(s) at each run to
allocate all free memory and cause the remote eviction, where M is 1
to 6. Local memory denotes consumed memory on both sender and
remote peer node and remote memory denotes data from sender node.

—e— throughput 71 local ~EEE remote unused

=
)
—
o
S

°
©
Cluster Memory Utilization(%)

4
o
=) @
o o

o
IS
S
o

Normalized Throughput

[
o

| A [
NoEviction 1 peer 2 peers 4 peers 6 peers0
Number of peers evicting remote memory

Figure 5: Remote eviction impact and imbalanced cluster-wide
memory utilization. Line represents normalized throughput of Re-
dis on sender node and bar represents cluster memory utilization of 6
peers. Remote eviction happens from 1 to 6 peers at each run(Figure 4).
Evicted data from peer nodes causes significant performance degrada-
tion while unused memory in other peer nodes is not fully utilized(e.g.
when only 1 peer evicts all remote memory, it shows 50% decrease in
throughput of Redis on sender node).

3 DESIGN OVERVIEW

3.1 Design considerations

Maximize CPU utilization Valet employs asynchronous I/O
to maximize CPU utilization. Multi queue block I/O mechanism is
working with multiple threads.

Critical path optimization Valet achieves shorter latency by
optimizing performance critical path. With host-coordinated local
mempool, dynamic connection, mapping to remote RDMA MR and
local disk access are hidden from the critical path.

Utilize unused memory Valet utilizes unused memory both in
local and remote memory. Valet tries to utilize the unused memory
that is managed by host-coordinated memory pool in a local node
first. It exploits container-wide memory imbalance and manages
free memory that is not used by other containers. This maximizes
idle memory usage in a local node. Valet also utilize unused re-
mote memory in remote nodes by dynamically registering RDMA

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu®

MR(Memory Region). Local node spreads paging-out data to multi-
ple remote node based on the amount of free memory.

Reclaim memory efficiently Reclaiming memory is also cru-
cial for native applications running on both local and remote nodes.
Host-coordinated local mempool dynamically expands and shrinks
according to the amount of free memory in the local node. Remote
RDMA MR also expands and shrinks according to the free mem-
ory on the remote node. Valet also provides migration protocol
for remote eviction. It migrates victim data block to other less-
memory-pressured nodes. This also maximizes idle memory usage
in remote nodes.

Reliability Valet uses staging queue and reclaimable queue to
maintain the data consistency between local and remote nodes.
Unlike parallel reading(paging-in), writing(paging-out) is serialized
for data consistency. Valet also provides replication across remote
nodes for diskless design. We prefer replication over disk backup.
Even though SSD is faster than rotational disk, RDMA is still more
than 20 times faster than SSD[83].

Scalability Scalability is essential for Valet to process large
amount of workload. Valet scales well with multiple remote nodes
and distribute workload across remote nodes. Valet also keeps low
latency while workload increases. Valet acheives this by removing
bottlenecks in the data path.

Remote Memory
Container 0| |Container 1| |Container 2| E«:'u:lel
pagin UserSpace Remote Memory
—— 9_ g ————————— p_ = Remote Node 1 Module
| Block Device Layer | Replica 1]|
Remote Node 2
u U Replica 2
Cache hit Local Store Remote Memory
Module
{ Remote Node 3
Replica 1|| Remote Memory
Module - iNati
Cache miss Lazy Sending Replica 2 A .’ 1 App
Sender
module Remote Memory Remote Node 4
Module
| RDMA NIC | AL @@ Remote
Eviction
Local Node Remote Node 5

Figure 6: Overall software organization of Valet.

3.2 Software organization

In Figure 6, we show overall software organization in Valet. Valet
uses symmetric model. Each node can be a sender and a memory
donor(receiver) at the same time although it is not a requirement.
Sender module takes swap traffic. Receiver module(Remote Mem-
ory module) manages MR blocks as remote memory. Sender node
can allocate remote memory across multiple remote nodes. Remote
node can serve multiple sender nodes in the cluster.

Valet ends a write request after storing pages in a local shared
memory pool(local mempool in short for the rest of the paper).
Pages that are stored in the local mempool will be sent out to
remote nodes later asynchronously. For read requests, Valet tries
to find the page from local mempool first and reads from a remote
node if cache is missed. The local mempool extends and shrinks to
maximize local idle memory utilization.

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

Valet tries to spread data evenly across the cluster. If remote
eviction happens in a remote node it moves remote memory block to
less-memory-pressured node. This maximizes cluster idle memory
utilization. Detailed discussion of components in Valet can be found
in section 4.

3.3 Performance critical path optimization

Block Device

1/0 Request part RDMA Sending part

Global Page Tabl

Cache Hit(Read)
or

Staging Queue
- j—'D—’D—'Dn

Reclaimable Queue

i _ 1 Connection
Write [=)

Request E% (3:):::5) 1 Mapping remoteMR
Read - HEE ‘ ':,’f;““‘ | Post RDMA verbs
eal e
S, \ 0 B

Request < ——
q Radix Tree! \ OJ O 1

T T Waitunti WG *

: is arrived atCQ

Local Store(Write)

1
Local Node : Remote Node
1

Figure 7: Redesign critical path. With performance path opti-
mization, RDMA Sending part is detached from the performance
critical path. Connection, mapping to remote RDMA MR and RDMA
verb operations are hiding from performance critical path. For read,
Valet shortens read critical path when local cache hit is made.

Redesign Critical Path. Valet redesigns performance critical path
by having host-coordinated local mempool. For write case, as soon
as it stores pages into local mempool, it can immediately end the I/O
request and accomplish shorter write latency. The rest of the remote
sending operations are done after the data is written to the local
mempool and mempool starts servicing for read request(Figure 7).

Local mempool also functions as a cache for remote data. If data
resides in local mempool(cache hit), remote access is not needed.
Performance benefit(§3.4) gets larger when local mempool size
increases as local hit ratio increases(Figure 8).

Pipelining the local mempool in the critical path. Valet also
hides connection and mapping of remote MR(Memory Region)
latency from the write critical path. This design helps to remove
cases that make read latency high too. During connection to a
remote node and mapping to a remote memory block, I/O request
traffic should be redirected. Valet stores I/O traffic in the local
mempool instead of disk. By directly serving read request from the
local mempool, it can avoid long read latency due to disk access that
is caused by delay of connection and mapping. After connection
and mapping are done, local-stored data is sent to remote node to
reduce the memory pressure on local mempool.

Flexible design for input I/O and RDMA buffer size Unlike
previous designs, Valet’s I/O request size is not tied with RDMA MR
size. Previous design approaches share the same buffer for RDMA
MR and disk writing to avoid extra copies. It is also bounded by max
size of hardware disk I/O capacity. max_sectors_kb determines
the number of pages in one Block I/O request. If system has M kb
max_hw_sectors_kb of hard disk, the size of Block I/O and RDMA
MR size for remote paging system are bounded by this hard disk’s

MemSys °20, Sept 2020, Washington, DC

Average Write Latency
-8~ Write Latency

80007

1000 gesss tocal hit

‘ v 7000

NN\
2
8

Hit ratio(%)
Latency (us)

w
S
S
S

4000

3000512kb 256kb 128kb 64kb 32kb
Block I/0 max_sectors_kb

0 20 30 40 50 6'0 70 80 90
Local Mempool Size(%) to workload

Figure 8: Local and Remote
hit ratio comparison with
various local mempool size.
Local hit ratio increases as local
mempool size increases.

Figure 9: With performance
path optimization, application
write latency decreases as the
Block I/O size decreases because
only I/O request part remains in
the critical path.

physical limitation. Valet can set different value for Block I/O and
RDMA MR size regardless the hard disk’s block I/O size limitation if
one wishes to add disk backup. The benefit of having different size
between Block I/O and RDMA MR is of having a chance to optimize
according to various desires. Generally speaking, block I/O size
affects the write latency because it adds latency in the critical path
while copying pages from Block I/O buffer to RDMA MR. If Block
I/O size is set by large number, a Block I/O request has more pages
and, in turn, it takes longer time to copy. If the size is small, it
takes less time to copy, which leads to shorter latency. See Figure 9.
write latency decreases as block I/O size gets smaller. The latency
of 32KB is slightly higher than 64KB because of CPU burden due to
too many small requests. If RDMA MR size is small, the number of
RDMA I/O should increase to send the same amount of data. it may
cause WQE(Work Queue Entry) cache miss due to many WQEs
injecting to RDMA NIC. It is discovered in previous research[12]
that many WQEs cause WQE cache misses in NIC. Valet takes the
advantage at this point. Valet can set small size of block I/O to get
low latency and use message coalescing and batch sending with
large size of RDMA MR to avoid WQE cache miss.

3.4 Utilizing unused memory

Container-wide memory imbalance and Lazy Sending Local
mempool provides a chance to use idle local memory that is not
used by other containers by combining them into the local mempool.
The local mempool shrinks when the amount of free memory goes
below the user defined threshold to guarantee the certain amount
of free memory in the node. Then, local pages in the mempool are
sent to remote nodes and reclaimed. Before this page replacement
happens, this lazy sending scheme best tries to utilize unused local
memory and lower the memory pressure on the remote node. Local
mempool can grow again when the free memory in the local node
goes above the threshold for expansion.

Impact of the size of mempool Since the local mempool can dy-
namically expand and reduce adaptive to the workload dynamics,
we first measure the percentage of local hit over remote hit with
various size of local mempool to figure out the local mempool’s
contribution to local hit. As shown in Figure 8, large size of mem-
pool gets more local hit. If local mempool size decreases, it gets

MemSys *20, Sept 2020, Washington, DC

more remote hit. Application latency stays stable with mempool
compared to the one without critical path optimization. In Figure
10, we run VoltDB SYS workload with 10 million records and 10 mil-
lion queries under various ratio of local memory to remote memory
by setting container memory limit. 10:0 denotes I/O is served only
in local memory and 0:10 denotes only in remote memory.

Read Latency Write Latency

4500 4500 :
—@— Without perf path opt —@— Without perf path opt

A400QQ{ —¥ With perf path opt 4000 ¥ With perf path opt

33500 % 3500-

2 2

=.3000 3000

%) 1e)

T 2500 $ 2500

® ©

—2000 \/—\"4 —2000- \/—\/
1500 1500

10006.0 g2 64 46 28 0:10
Ratio of Local to Remote

10005, g2 64 46 28 0:10
Ratio of Local to Remote

Figure 10: Latency comparison with and without critical
path optimization. With performance critical path optimization,
application latency stays stable regardless of the various ratio of
local to remote memory.

3.5 Reclaiming remote memory

Data migration instead of delete Valet uses migration protocol
when remote data eviction happens in remote node. The major
benefit of migration is that it does not hurt the throughput of
sender node that maps the data. In order to avoid the I/O blocking
during the migration, we allow read requests while migration is
in progress. Regarding data consistency concerns between source
and destination due to write requests during migration, a local
mempool in the sender node can hold the write requests in the local
mempool. All the new write requests to the migrating data stay
in the staging queue until migration is done. Since these queued
write requests are stored in local mempool, read requests to the
data are guaranteed to read the latest data by reading from the local
mempool. Once migration is done, the sender node can write/read
to/from the new destination. Write requests in the staging queue
can also be sent out to the new destination(Figure 12). Detailed
discussion about consistency is in section §5.2.

Activity-based Victim Selection on remote node Unlike read
performance, write performance during migration relies on the
capacity of local mempool because local mempool is responsible
for holding writing requests to the migrating data on MR block
during migration. Finding the least-active-MR-block as a victim is
crucial factor to lower the memory pressure on the local mempool.
To find the least-active-victim, we propose an activity-based victim
selection algorithm. We calculate duration since last update for
each MR block on the remote node.

Non-Activity-Duration = Timecur — Timejast_activity

Every MR block on the remote node has small metadata tag and
the last write activity is timestamped(See Figure 11). This last
active timestamp is updated when this MR block is updated with

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu®

write requests from its sender node(See Figure 13). Non-Activity-
Duration for each MR block will be calculated at the time of eviction
process.

Through our observation of write pattern from various workload,
we find that the activity cycle of the remote memory block starts
with the heavy writes and becomes heavy read state and idle state as
time goes by. If a remote MR block starts to receive write requests,
it is highly likely followed by read requests. Once heavy read stage
is passed, it becomes idle state. This activity cycle is likely repeating
by updating with the write operation. The benefits of choosing the
least-active-MR-block are of having low write-request-pressure on
the local node while local mempool holds them during migration
and reducing communication to query write activity to the sender
node. The least-active-MR-block is highly likely to be idle stage.
Valet can select this idle block by simply choosing the least-active
one without querying to N sender nodes. Then, memory pressure
due to holding write operations on the local memory is also limited.

8B Unit Size
Activity Remote Memory MR block (Data Section)
[Time Stamp

Figure 11: Format of MR block on remote node. Tag informa-
tion is included to calculate Non-Activity-Duration at eviction.

Remote Node 1

READ stage block
WRITE stage block

Keep Reading
while copyin

Origin Node

READ req = |

WRITE re
Local Mempool

Migration
(Copying)

Remote Node 2

—_——————

READ stage block]

Once copying is done,
WRITE is allowed
to new destination

Figure 12: Read requests are allowed to access remote MR
block while copying but write requests stay in the local
mempool. By choosing the least-active MR block as a victim(likely
idle or read stage), sender node can lower the memory pressure on
the local mempool due to few writes.

Sender driven migration protocol Migration protocol involves
many message ping pong and remote procedures. In sender side,
it should stop write requests before migration starts and prepare
necessary setup with new destination information. In receiver side,
source and destination nodes need to communicate each other and
share necessary information for source and destination block includ-
ing connection setup. We propose sender driven protocol(Figure
14). In sender driven protocol, sender node takes responsibility for
control of the migration procedure and selects proper migration
destination node. Receiver nodes are passive participants. Remote
procedure is executed when it receives control message. This se-
rialization leads to simple message control model. Extra control
for message ordering is not required. Sender driven approach also

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

Time is stamped
on the local node.

MemSys °20, Sept 2020, Washington, DC

Swap-in veo Swap-in
Request Gontainer Request Gontainer
T

Swap-Out
Request

Figure 13: TimeStamp on the MR block is updated by write
request. Then, this block becomes the most-active one in the node.
In this figure, the number denotes conceptual last write activity
timestamp for each block. The block that has 15 becomes likely the
most active block due to recent update. Compared to others, 3 is
the most likely read stage due to the longest Non-Activity-Duration
among three

gets benefit from pre-connection to counter parts. To determine
a migration destination, sender node needs to query N candidate-
remote peer nodes. If no connection is setup before, connection
latency is directly added to critical path in migration procedure.
However, if the number of mapped remote memory block is larger
than the number of peer nodes, all connections are likely setup
before the time of eviction because sender node evenly spreads
workload to peers. This behavior makes all candidate-peer nodes
to be connected in advance.

Sender

Remote Peer 1

RPC

1. Stop Write op
2. Find dest node
3. Request connectiol

R

RPC

(Source)
< Eviction Notification °

Mapping for Migration

Remote Peer 1
(Destination)

Send Dest MR info RPC

Setup dest con:
and MR info

1.Setup Connectio
2. Send MR info

T

Migration Done

1.Stop Read op.
2.Redirect ops

to new dest.

3. Send release m:

RPC

Connect

Send Dest MR info

1.Deregister MR|
2.Free memory.

Figure 14: Sender driven migration protocol

4 IMPLEMENTATION

4.1 Sender Module

Global Page Table Main role of GPT is to map the offset of the page
to the reference of the pages in local mempool. Radix Tree is used
to implement GPT. Radix Tree is wide and shallow structure tree. It
is as fast as accessing to 1-dimensional array, which is the simplest
design that GPT can be. Unlike array-based GPT, RadixTree-based
GPT does not need to allocate the whole structure in advance. It can
grow and shrink dynamically. This aspect more fits to our desire
for scalable design. We use simple rule to locate a page. If a page
reference exists in the GPT, it points to the local page. Otherwise,
it indicates that the page does not exist in local memory. It then
needs to read from remote memory by posting a READ verb. This

Reference

[R
i Global Page Table DD D
| Radix Trel HEE
| ([

............... E T b E TRt Rteppne Py pmpepmpmpnynpe &y, guympepnpnpnppn MO U
I' It i I 1 Iy + T Kernel
Local Node Remote Node 1 [: Y Block Device Driver
- et T o= === e e e e o e — oo m oo n
o R | R SggaaT ~ " 7IITIT
) i E-m-a-a
WRITE updates the TimeStamp pp—— Request Requost :] o) ||
R petlode | [e sl B —
___, '
Local Mempool 1 Y g JE— [I IR i
4 Data Flow

L0

|

Figure 15: Sender module architecture

Remote Node 11

Remote Memory Module

Remote Node 2

Remote Memory Module

1
1
1
i
MR Block Pool | MR Block Pool
1
— T ey || T py
DataFlo) 1 onitor
pearen :
Control Flow :
Refarerce Listener i Listener
A ! A
T ! T
1 | 1
1 ! 1
T i T
Data Migratiot 1 1 1
1 \ 1
1
RNIC \ | 1 | RNIC ¥
1
1
1
1
1

Figure 16: Remote Memory module architecture. Receiver
module manages MR Block Pool. Activity monitor detects shortage
of free memory and reports to sender node to initiate migration
protocol. Then, source and destination receiver modules carry on
the migration protocol

simple design helps to avoid a lock contention on GPT update by
removing the need for marking page existence on the GPT.

Dynamic Local Memory Pool Our mempool design is different
from Linux Mempool implementation in several ways. Linux Mem-
pool always tries to allocate memory first even if it has unused
pre-allocated memory in the mempool. Pre-allocated pages in the
Linux Mempool are only used when allocation is failed. It doesn’t
give a benefit of pre-allocation but gives a guarantee of allocation.
In our design, we pursue three main rules. First, we want to avoid
memory allocation burden on the critical path. Second, we want to
have guaranteed amount of memory but use them first to minimize
memory allocation latency in the critical path. Third, we want to
have a flexible size of mempool based on the availability of free
memory in the system. Figure 2 shows the difference between them.
Valet utilizes pages in pre-allocated mempool first and it can be
extended or shrunk. The minimum size of the mempool is decided
by user defined value min_pool_pages. With no user definition,
if usage of mempool reaches 80% of the current mempool size,
Size grows on demand. It stops growing when it reaches to either

MemSys *20, Sept 2020, Washington, DC

max_pool_pages threshold or 50% of the total free memory on the
host node. Whichever smaller will be taken. If containers allocate
memory and the size of free memory on the host node shrinks, the
local mempool also shrinks accordingly and stops shrinking when
it reaches to min_pool_pages. min_pool_pages guarantees the
minimum size of local mempool.

Linux Mempool Valet Mempool

Guaranteed amount
by user define

Guaranteed amount

-all i
Pre-allocation by user define

Allocation First. Using Mempool First.

alloc If fails, use Mempool If fails, allocates.

Freeing memory until Returning memory to the
free It shrinks to the size | Pool without freeing
of pre-allocation(min)

Only Minimum size
can be set.

Grow and Shrink by
two user defined
threshold(Min, Max)

Set Boundary

Table 2: Comparison between Linux Mempool and Valet
Mempool implementation

Local Mempool Page Reclaim Valet uses 24-byte sized tree_entry
structure to store page references and offset information from one
Block I/O request, which represent one transaction in Valet. Staging
queue and Reclaimable queue are responsible for tracking these
entries that are already sent to remote and that aren’t yet. When
a write request arrives, the entry for the request is put into Stag-
ing queue. Remote Sender Thread takes an entry object from the
Staging queue and sends pages to remote nodes. When message
coalescing and batch sending are done, those page references are
put into the Reclaimable queue. At this moment, pages tracked
by Reclaimable queue are safe to be reclaimed because sending
is done and a replicated copy is on the remote node. When local
Mempool reaches 80% of its size, mempool grows. If mempool
cannot grow anymore, it starts to reclaim and provide free pages to
new requests directly. For replacement policy, we use LRU in our
prototype. Since reclaiming is just moving a page pointer, it takes
only a few CPU cycles.

4.2 Remote Memory Module

To reduce the CPU overhead on the remote peer node, Valet uses
well-known one-sided RDMA verb to bypass kernel on the remote
side. Remote Memory module maintains only necessary compo-
nents and works as passive participant. The main purpose of Remote
Memory module is to provide unit sized remote memory registered
as MR to multiple sender nodes. Remote Memory module runs in
user space and monitors free memory capacity in the remote node.
Kernel space MR can utilize physically contiguous memory and
reduce PTE cache miss in RNIC but allocation of large physically
contiguous memory is challenging. User space MR requires RNIC
to cache PTE to access the page because it uses virtually contiguous
memory. However, user space allocation is much easier than alloca-
tion of large physically contiguous memory in kernel space. We use
large MR blocks to reduce the number of MR mapping. Therefore,
we choose user space receiver module design for MR block provider.

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu®

It can dynamically expands and shrinks MR blocks based on the free
memory. Remote Memory module also has listener to communicate
with other receiver modules when they receive migration protocol
messages.

4.3 How to track remote pages

Valet provides block device interface. It can be registered as swap
space or mounted as a partition with a linear address space. To
track the location of remote pages, Valet defines global page address
starting from 0 to the end of the user defined space size. This
doesn’t have to fit the remote memory capacity in the cluster. Then,
this virtual address space spans across in the cluster. Mapping
partitioned address space to remote peers happens on demand with
round-robin or power of two choices. We use power of two choices
in our prototype. Each unit sized address space and the same size
remote memory blocks on remote nodes is dynamically mapped
and internal data structure tracks this mapping information.

5 DISCUSSIONS

5.1 Fault Tolerance

Remote node failure. Valet provides several options for fault tol-
erance. Either remote replication and local disk backup or mixed ap-
proach can be selected as one wishes their fault tolerant level(Table
3). Each combination provides different semantic when remote
node failure occurs.

Local host node failure. For permanent data store in local host,
disk backup option is provided. Then local host writes backup on
disk either always or only when writing to remote fails. In paging
system example, we provide the same semantic to other paging
systems when local node fails.

w/ Replication w/o Replication

1. Access Replica first

w/ Disk Backup IS ’
2. Access Local Disk if #1 fails

Access Local Disk

w/o Disk Backup| Access Replica Remote data loss

Table 3: Different level of fault tolerance is provided by com-
bination of replication and disk backup

5.2 Data Consistency

Between local memory and remote replicas. An incoming
write requestfis write sets are enqueued into Staging queue as
the data is written to the local memory. If an incoming read request
finds a page in the local mempool, it is always served from the
local mempool directly. The remote pages are accessed only when
local mempool does not have the pages due to reclaiming. This
guarantees incoming read requests always get the most updated
data. Remote Sender Thread takes write sets from Staging queue
and sends out to remote nodes in incoming order. Once WC is
received, bitmap for the remote page indicates that remote page is
ready to read. This guarantees remote node has the same data when

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

it is read. When remote sending is done, the write set is removed
from the Staging queue and enqueued into Reclaimable queue. Page
slots in the local mempool are reclaimed only through Reclaimable
queue. Then only page slots that has replica on the remote node
are guaranteed to be reclaimed for the next use.

Problem with multiple updates on the same page. There are
cases that multiple update write sets are coming on the same page.
Then, there are multiple write sets in the Staging queue. The local
mempool guarantees the latest data even with the multiple update
write sets because the local mempool is always updated immedi-
ately and then write sets are enqueued into Staging queue(Figure 17
(a)). The problem may occur between remote sending and reclaim-
ing(Figure 17 (b)). After 1st write set is sent out and enqueued into
Reclaimable queue, 1st write set can be reclaimed before 2nd write
is sent out. Then reference pointer for 2nd write set is no longer
valid. This is solved by having a simple flag. Each page slot in the
work entry has fiUpdatefi and fiReclaimablefi flag. Update flag is set
on the pages when the multiple write sets are issued on the same
page. When 1st write set is reclaimed, Update flag is examined
and skipped. When 2nd is sent out, Update flag is removed from
the page slots and page slots will be reclaimed when 2nd write set
gets reclaimed. The size of Staging queue and Reclaimable queue
is the same. The case that the distance between two write sets is
longer than or equal to the queue size can be solved by the Update
and Reclaimable flags(Figure 17 (b)). Regarding the case that two
write sets have shorter distance from each other than the queue
size, there is no chance that the 1st write set is reclaimed before
2nd write set is sent out.(Figure 17 (c))

Reclaim

d d
s [st [T TTTTTTTTTTTTT] oo

Reclaimable Queue
]
Lo

(a) ‘Mempool

-------------------------]

2nd 1ot]
writeReclaim

write
enqueue dequeue enqueue dequeue
== (TR === | S | == 1111 [==

;
Staging Queue |

i

i

Reclaimable Queue H
———————— e
o CICIOCICT

Mempool
. 2nd 15t
‘2::5;:‘ dequeue [Remote | enqueue write W[iteﬁi:m
— [T == |t | —] ==
Staging Queue Queue |

[E— —
© DataFlow Reference

Mempool

Figure 17: Data consistency problem in local mempool and
remote replicas due to multiple update requests on the same
page. (a) It is solved by a reference counter and an update flag. (b)
The case where the distance between two updates are larger than
the queue size. (c) The case where the distance is smaller than the
queue size.

Between replicas and disk. Read is always served directly from
the local mempool first. Remote node is only accessed when local
mempool doesnfit have the page. Likewise, disk is only accessed

MemSys °20, Sept 2020, Washington, DC

when remote node fails or pages don’t exist in remote nodes in-
cluding replicas. Pages in local mempool can be deleted only when
remote sending or disk backup is done and reclaimable flag is set to
the pages. Reclaimable pages are tracked by reclaimable queue. If
there is an update write set in local mempool and it is not sent out
to remote node or disk yet, a reclaimable flag is removed and an
update flag is set. The latest page is still served from the mempool
until an update write set is sent to remote node or written to the
disk.

5.3 Replication and disk backup

Valet uses replication as default. Compared to disk writing, replica-
tion using RDMA is still faster than writing to disk(Table 1). We
use replication for all experiments in evaluation.

Cost of replication and disk backup. With the local mempool,
replication and disk backup do not directly add latency to the criti-
cal path because replication and disk backup are behind the local
mempool and they are out of the critical path. The cost of having
replication and/or disk backup approach is memory pressure on
MR pool. Slow releasing of unit MR to the MR pool causes shortage
of MR in the MR pool and, in turn, it can make getting MR for
incoming requests slow too. Another cost of replication is space
cost on the remote node. It requires N time larger remote memory
space with N replication.

6 EVALUATION

Setup. We evaluate Valet with eight popular memory intensive
applications listed in Table 4. We run five machine learning ap-
plications and three big data applications. We run our exper-
iments on 32 machines with 56Gbps Infiniband cluster on
Cloudlab[51]. Each machine has Xeon E5-2650v2 processor(32
virtual cores 2.6Ghz), 64GB memory(DDR-3 1.86Ghz), 1TB SATA
3.5” rpm hard drives and Mellanox Connect X-3. We run 90 con-
tainers on a 32-machine RDMA cluster and randomly assign
one application on each container. We use 4 different memory
limitation on each container. We measure the peak memory usage
of each application first. The input dataset sizes are from 10GB
to 15GB and these create in-memory working sets from 22GB to
35GB. Each machine has 2 to 3 containers and each container fits
workload 100%, 75%, 50% and 25% in memory respectively. This
makes each container to have memory limitation setting from 5GB
up to 24GB and paging-out traffic from 5GB to 27GB according
to configuration. Unless stated otherwise, we set 64KB block I/O
size, 512KB RDMA message size and 1GB as an unit size of remote
MR block. The size of the local mempool will be specified in each
experiment. For stable measurement, average is taken from 5 times
run for each case. We compare our system with Infiniswap[6] and
nbdX[11]. We set Infiniswap as default as their paper mentions and
nbdX uses remote ramdisk for storing data.

6.1 BigData Workload Performance

In this experiment, we measure Valet performance on Memcached[17],
Redis[18] and VoltDB[19]. Memcached and Redis is in-memory dis-
tributed caching system through simple key-value interface. VoltDB

is ACID-compliant in-memory transactional database. We compare

MemSys *20, Sept 2020, Washington, DC

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu®

IS
S
=]
-
o]
IS
=]
=)

-
v

o s 3 3 PR 2]
3 8 o o 2 P Py o
2 = = 2
3 o 2
— 0 < m — 2 - = — =
T 300 2 S 3 B30 2 @ 3 3300 a
< B N S 2 . “Wi0E = o o 810§
= n © N > 2 > 200 =] >
g0 28 B2 . . a g gm0 32 .93 . o 5 g §%gsax 5 aa “Emsé
2. 18 = : g 2 g9] : 2 & - @ g
m“iilliillgg alllaall:lll - “oiilligllilla 1 F] |]| IlggllgNll ’
(1L]| (111] F =il
Ogg$$£$0\=£°\n\°,\°$gn\=£ﬁgge\e,\»gga\o,\ao °$n\°°\°u\°$n\=§£$n\°$u\°a\°$§u\°gga\o,\egga\e,\ao Ogex ss.,\";,!a\u,\e;\,!e\e,\eo
gﬁ%mgﬁ%ﬂgﬂ%mgﬁ%ngmgngpgn §£%K‘§ﬁ%£§ﬁ%&‘§ﬁ%£gﬁgngﬁgn §ﬁ8 2% gnrgrlgrgy
ETC sYs ETC sys | T erc |7 sys ETC sYs ETC sys | " erc |7 sys ETC Ys " erc |7 sys
Memc Redis VoltDB Memc Redis VoltDB VoltDB
(a) nbdX (b) Infiniswap (c) Valet

Figure 18: Big Data Workload Latency Comparison of nbdX, Infiniswap and Valet. (VoltDB scale is in right side)

m ~ m <
0 [Ral o N
oS MmN o) Q o 4000
4000 S = 4000 _
C) 2) 2)
& 3000 5 a2 - £ 3000 02 2 2 3000
£ B 2 S = RN ° ® E 838 3§
S2000 TEN = < Z 52000 —¥% N < [N ~ §2000| o—Q NN R
= < o~ < = © 3 = o R M —
2 IS = o ° 2 = B = = = Iy PR
£1000.3 5 2 2 2] £10003 g 3 Y S = 2100015 © N o om
B || P || TS] Ot || 1]]| e) 11| || 1] | e
0 i | 0 kel | Y 0 i T RERT
T I TN I N N N T N N N N N N N T N N N N T N N N
R RRER
ShRkshrhlskRRSRRRERRR5ERRR ShRkghiRhlskRRSRRRERRRERRR ShRnshiRRshRR5RRRERRRERER
etrc " sys | etc "sys |TETC " svs etc " sys |Tetc "svs [TETC ' sys etc "sys |Tetc Tsvs [TETC " svs
Memc Redis VoltDB Memc Redis VoltDB Memc Redis VoltDB
(a) nbdX (b) Infiniswap (c) Valet
Figure 19: Big Data workload Completion Time Comparison of nbdX, Infiniswap and Valet
Workload Application/Frameworks Dataset Valet’s improvement over other systems (BigData)
Logistic Regression Scikit learn 87 million samples WorkingSet Fit || Linux nbdX Infiniswap
Random Forest Scikit learn 50 million samples 75% 41x(86x) 1.19x(1.5x) 1.17x(1.7x)
Kmeans PowerGraph 4 million samples 50% 59X(101X) 2-5X(3-7X) 2~1X(3-2X)
Gradient Boosting classifier Caffe 87 million samples 25% 90x(138x) 3.7x(5.3x) 3.3x(4.5x)
Text Processing TextRank 1.4 million words Table 5: Summary of performance improvement compari-
YCSB-Memcached Memcached 10~50 million records son of Valet with other systems in Figure 19 and Linux. It
YCSB-Redis Redis 10~50 million records show improvement on average and on best case in brackets.
YCSB-VoltDB VoltDB 10~50 million records

Table 4: Applications and workload used in evaluation.

Valet(Figure 19¢) to Infiniswap(Figure 19b) and nbdX(Figure 19a).
For workload, we use Facebook simulated workload[21] ETC and
SYS by using YCSB[20]. We use zipfian distribution for both work-
load. We first populate the applications with 10 million records in
advance and run 10 million queries with ETC and SYS workload.
Dataset size is 10GB and working set memory with this dataset
ranges from 15GB to 22GB. Each application takes different amount
of working set memory after we populate and run the same 10GB
workload. Peak memory for Memcached is 15GB and 22GB for both
Redis and VoltDB. Compared to simple key-value structure such
as Memcached, its complicated data structure in VoltDB requires
more memory. For local mempool setting, we set local mempool
dynamically expands and shrinks based on free memory on the
host node.

First, Valet shows more stable performance than Infiniswap
and nbdX. See Figure 19. nbdX and Infiniswap’s completion time
increases superlinearly as more pages are sent to remote nodes
whereas Valet shows steady performance. Table 5 shows summary

of performance improvement comparison in Figure 19. Valet out-
performs up to 5.3x over nbdX and up to 4.5x over Infiniswap.
Valet also outperformas Linux conventional OS swap by up to 128x.
Note that we didn’t put the figure of completion time of Linux
conventional OS swap.

Second, the performance gap between Valet and other systems
increases as more pages are sent to remote nodes. See Table 5. nbdX
and Infiniswap’s perofrmance is not scalable well compared to Valet
as percentage of working set fit decreases.

Third, we also measure average latency of each application
on three systems(Figure 18). Compared to 100% working set in-
memory fit case, Valet latency increases 1.5%, 2.4X and 3X in 75%,
50% and 25% fit case respectively. nbdX latency increases 2X, 4.9x
and 12X in 75%, 50% and 25% fit case respectively. Infiniswap la-
tency increases 2.3%, 5.5X and 12.7X in 75%, 50% and 25% fit case
respectively. Conventional OS swap facility latency increases 39.8X%,
58.8x and 93.4x in 75%, 50% and 25% fit case respectively.

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

MemSys °20, Sept 2020, Washington, DC

(b) Infiniswap

TextRank

(c) Valet

Figure 20: Machine Learning workload Completion Time Comparison of nbdX, Infiniswap and Valet

Valet’s improvement over other systems (ML)
WorkingSet Fit || Linux nbdX Infiniswap
75% 47x(99x) 1.3x(2.3x) 1.4x(2.5x%)
50% 69x(187x) 1.5%(2.7x) 1.8x(3x)
25% 109%(282x) | 1.8x(2.7%) 2.2%(3.5%)

Table 6: Summary of performance improvement compari-
son of Valet with other systems in Figure 20 and Linux. It
show improvement on average and on best case in brackets.

6.2 ML Workload Performance

We use various popular Machine Learning workload(Gradient Boost-
ing classifier, Kmeans, Logistic Regression, Random Forest and
TextRank) to measure performance of Valet and other systems in
Figure 20. Datasets we use are from 4 million to 87 million samples
and they create from 9GB to 34GB workload. For ML, we use click
prediction data from Kaggle[47] and NOAA weather dataset[48].
For TextRank, we use wiki dataset [46], which includes 1.4 million
words. We also apply 75%, 50% and 25% working set fit. For local
mempool setting, we also set local mempool dynamically expands
and shrinks based on free memory on the host node.

Table 6 shows summary of performance improvement compari-
son in Figure 20. Valet outperforms by up to 282X over Linux, by up
to 2.7x over nbdX and by up to 3.5% over Infiniswap. Valet gener-
ally shows more stable performance than Infiniswap and nbdX like
BigData workload. An interesting observation is that nbdX’s and
Infiniswap’s completion time increases superlinearly as workload
increases except Kmean. We observed that Kmean’s access pattern
is different from others. It intensively accesses certain MR blocks
that are mapped in early stage of running rather than access various
MR blocks. Since those intensive accessing memory blocks are as-
signed in early stage of running, it is highly likely in-memory in the
local host. This repetitive access pattern also might increase page
cache hit in OS. For now, Valet uses LRU on local mempool. Cache
replacement policy like MRU that works well on repetitive access
pattern might be useful for local mempool replacement policy for
this type of workload. We leave this exploration as a future work.

6.3 Effectiveness of optimization

Host/Remote memory distribution This section compares per-
formance impact of various host/remote memory ratio on applica-
tion for conventional OS swap(Linux), nbdX, Infiniswap and Valet.

We use 25% working set fit configuration for all four systems(Linux,
nbdX,Infiniswap and Valet). 75% of working set workload is dis-
tributed across remote nodes via paging. For Valet, Valet-75:25,
Valet-50:50 and Valet-25:75 denote ratio of local memory to re-
mote memory working set. Valet-LocalOnly and Valet-RemoteOnly
denote all working set resides in local node and remote node re-
spectively. Figure 21 shows the comparison.

We highlight several observations below. First, using Valet-
LocalOnly, throughput of VoltDB, Redis and Memcached increase
by up to 98.5x 226.26x and 15.7X compared to Linux, increase by
up to 5.5X 3% and 1.46X compared to Infiniswap, and increase by
up to 5.4X 4.7x and 1.17x compared to nbdX.

Second, throughput increases as the size of local mempool in-
creases from Valet-RemoteOnly to Valet-LocalOnly. However, the
performance gap between Valet-RemoteOnly and Valet-25:75 is
the largest when increasing the size of mempool. Note that Valet-
RemoteOnly does not have local mempool component. It shows that
critical path optimization with local mempool is the most effective
improvement in this experiment.

Third, even with Valet-25:75 that fits only 25% of workload in
memory, its performance is comparable to larger percentage cases.
By pipelining local mempool in the critical path, it effectively re-
duces latency(§3.3). Pages in the mempool are sent to remote and
replaced by newly incoming pages. Bigger sized mempool gets
more pages in the mempool and it can provide higher local cache
hit and, in turn, provide more performance.

MemSys *20, Sept 2020, Washington, DC

= a 3 3
@35 ?) Y
53430 IS X 3 2
2o Q
<525 ~
2220
£a1s o @ -
£310| o = N N
S 59 © > =
= 3ls o | H
Linux Infiniswap nbdX Valet Valet Valet Valet Valet
LocalOnly 75:25 50:50 25:75 RemoteOnly
(a) VoltDB
2 g 2
526 5 3 8]
20 il <
ST
Sc4
&
£8 1< 3 9 g
£32{ & — 5 =
< =
= o .
GLim.lx Infiniswap nbdX Valet Valet Valet Valet Valet
LocalOnly 75:25 50:50 25:75 RemoteOnly
(b) Redis
5]])
@ < < n
=58 Q ~ ~ ~ & 9
S a 5 © ©
25 S
£56 A
Sc
8g4
= ~
F£23
0 =
Linux Infiniswap nbdX Valet Valet Valet Valet Valet
LocalOnly 75:25 50:50 25:75 RemoteOnly
(c) Memcached

Figure 21: Impact of Host/Remote memory distribution

Critical path optimization impact on latency In Table 7, we
measure latencies of every events in the critical path with Valet-
25:75 setting in Valet and Infiniswap. For workload, we use VoltDB
with YCSB SYS workload. ETC and SYS are Facebook simulated
workload[21]. ETC is read heavy workload that contains 95% of
GET and 5% of SET. SYS is write heavy workload that contains 75%
of GET and 25% of SET. In this measurement Valet enables Disk
Backup for fair comparison with Infiniswap. Disk access happens
when data is not found on remote node(e.g. remote eviction) or
there is no connection to node or mapping to MR block. As we
expected, Infiniswap’s latency is severely affected by disk access(7b).
Infiniswap redirects request traffic to disk while connection and
mapping is setup. Valet, on the other hand, avoids disk access
due to connection or mapping by having local mempool in the
critical path(7a). Request traffic goes to local mempool first and is
sent to remote node later. 25% local hit helps to lower the latency
further in read request. Write request only spends latency regarding
local storing, which is radix tree insertion to track the pages in
the local node, data copy from BIO structure to local mempool
and enqueueing request to staging queue to track remote sending.
Write request doesn’t wait RDMA sending part unlike Infiniswap.
Latencies for connection, mapping and disk access are also hidden
from critical path. Although connection and mapping are also
hidden from write critical path in Infiniswap, the delay causes disk
access and, in turn, disk access is not hidden from critical path.

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu®

Read(usec) Write (usec)
Average 29.75 Total 35.31
Local Hit(25%) | Remote Hit(75%) Radix 23.9
Valet Radix 1.39 RDMA 31.39 Copy 9.73
Copy 2.11 Copy 2.13 Enqueue 1.68
MRpool 0.14
(a) Valet
Read(psec) Write(usec)
Average 4578.44 Average 19773
Total 67480 Total 38.87 |[Total 1782918 Total 99.45
Disk (6%) |Remote (94%) | Disk (8%) Remote (92%)
Infiniswap | Disk 67482 | RDMA 36.48 |Disk1782880.4 |RDMA 51.35
Copy 22 | Copy 22 Copy 37.57 |Copy 37.57
MRpool 0.19 MRpool 8.37
(b) Infiniswap

Table 7: latency breakdown comparison between Valet and
Infiniswap.

6.4 Scalability

In paging system, it is important that sender node handles increas-
ing workload well. In this experiment, we try to figure out Valet’s
effectiveness with large workload and scalability(Figure 22). We
choose VoltDB because it has the poorest latency among other ap-
plications. we measure throughput and 99th percentile tail latency.
For Valet, we use 500MB fixed size local mempool to avoid the
benefit of the local memory but to include the benefit of critical
path optimization. Throughput decreases as workload increases
but Valet still outperforms by up to 7.8x over Infiniswap and by
up to 12.65X over nbdX in throughput. 99th percentile tail latency
increases by up to 6.45% in Infiniswap and by up to 7.2X in nbdX
over Valet. Note that we were not able to measure nbdX with larger
workload than 32GB due to unstable running. nbdX uses two sided
verb with message pool on both sender and receiver node. We ob-
serve sender and receiver side message pool becomes the bottleneck
and it severely drops the performance during this experiment.

¥— Valet
—e— Infiniswap
—+— NBDX

mm Valet 80
= Infiniswap 270
mm nbdX \560

4
A

Throughput (thousand ops/s)

v
—

10 15 20 25 30 35 40 45 50
Workload size (GB)

21 25 29 32 37

Workload (GB)

Figure 22: Scalability comparison between Valet, nbdX and
Infiniswap with increasing workload.

6.5 Eviction Cost

In this experiment, we measure the performance impact on sender
node when eviction happens in remote peer nodes(Figure 23). We

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

set the same settings we used in Figure 4. Then, we run Redis with
SYS workload because SYS workload has more write operations
and this heavy write workload help us observe performance impact
when remote eviction happens. After Redis populates peer nodes
with about 17GB, we evict certain amount of victim MR blocks
selected by Valet with activity-based victim selection. Then, we
run Redis with YCSB SYS workload to measure the throughput. We
repeat this up to 16GB eviction. Our observation indicates that Valet
uses migration instead of eviction when remote eviction occurs and
there is no performance impact on local node. However, without
migration, one relies on batched-query-based random selection and
remote eviction impact is significant on sender node. For example,
2GB eviction(about 8% of workload) results in 50% reduction of
throughput on local node.

N
N
<
=N
)

o

100
3
3
%]
=
o
o

NN\

100
80
60
40
20

2100

51

&\\\\\\\\\\98

27

NANNANNNNNNNE

F\\\\\\\\\\\ 99

< m <

0GB 2GB 4GB 8GB 16GB /disk
Evicted Workload from remote

Normalized Throughput (%)

Figure 23: No remote eviction impact in Valet by migration
instead of eviction. We run Redis with 20GB workload. About
16GB is distributed into remote nodes.

7 RELATED WORK

Distributed Shared Memory/Disaggregated Memory. Although
Distributed shared memory (DSM) was studied extensively [52—
57], DSM suffers poor performance due to high communication
overhead. Disaggregated memory has attracted much attention
recently and proposed new hardware architecture, and new net-
work protocols to cut down the communication cost [58—62, 64].
Some proposals [65-67, 67-71] show good ways to leverage RDMA
technology by exploiting the disk-network latency gap. Remote
storage for key-value stores[72-75], distributed objects [76], ob-
ject replication [82] and swap pages [77-80] show the benefit of
RDMA technology in these use cases. Most of these efforts lack of
desired transparency and all existing proposals treat and leverage
unused host memory as the remote memory, fail to take advantage
of the small performance gap between DRAM and Infiniband com-
pared to disk. Effort to provide transparency at OS, network stack,
or application level [1-7] has also been extensively studied. We
put summary of comparion of these systems with Valet in Table 8.
However, these systems incur CPU overhead at receiver side, fail to
handle remote eviction cost, lack of efficient local/remote resource
orchestration or optimization in performance critical path.

MemSys °20, Sept 2020, Washington, DC

Remote Nswap HPBD Remote MemX nbdX | Infiniswap Valet
MemPager Paging for VM
for VM
Network TCP/IP TCP/IP RDMA TCP/IP TCP/IP RDMA RDMA RDMA
Server Side " " " : -
CPU overhead| Hig High High High High High low low
Local Resource
Orchestration X X X X X X X M
Optimized
latency hiding X X X X X X X M
Lazy Sending X X X X X X X v
R"“"‘gi‘f‘“"" high high high high high high high low

Table 8: Comparison with previous approaches.

8 CONCLUSION

Valet addresses three common problems inherent in existing remote
memory systems: latency overhead in the performance critical path,
remote eviction impact and container-wide memory imbalance. We
redesign the data flow in the critical path by introducing a host-
coordinated memory pool that works as a local cache to reduce the
latency in the critical path of the host and remote memory orchestra-
tion. Valet also tries to utilize unused local memory across contain-
ers by managing local memory via Valet host-coordinated memory
pool, which allows containers to dynamically expand and shrink
their memory allocations according to the workload demands. Valet
provides an efficient remote memory reclaiming technique on re-
mote nodes by an activity-based victim selection scheme to allow
the least-active-block of data to be selected for serving the eviction
requests and a migration protocol to move the least-active-block of
data to less-memory-pressured remote node. Through extensive ex-
periments on both big data and Machine Learning (ML) workloads,
we show that Valet outperforms conventional OS swap by up to
138% and 282X for big data and ML workloads respectively, and by
up to 5.3X completion improvement and by up to 3.5X completion
improvement over the state-of-the-art remote paging systems for
big data and ML workloads respectively.

Acknowledgement

The first author thanks the opportunity of the 12-week working
experience at IBM T.]J. Watson Research Center in Summer 2019
with the group led by Donna N Dillenberger. This work is partially
sponsored by the National Science Foundation under Grants NSF
2038029, NSF 2026945 and NSF 1564097, as well as an IBM faculty
award.

REFERENCES

[1] Evangelos P. Markatos and George Dramitinos (1996) “Implementation of a
Reliable Remote Memory Pager” Proceedings of the USENIX 1996 Annual Technical
Conference

[2] Tia Newhall, Sean Finney, Kuzman Ganchev, Michael Spiegal "Nswap: A Network
Swapping Module for Linux Clusters” Proceedings of the

[3] Shuang Liang, Ranjit Noronha, Dhabaleswar K. Panda “Swapping to Remote
Memory over InfiniBand: An Approach using a High Performance Network Block
Device” Proceedings of the

[4] Haogang Chen, Yingwei Luo, Xiaolin Wang, Binbin Zhang, Yifeng Sun, Zhenlin
Wang “A Transparent Remote Paging Module for Virtual Machines” Proceedings
of the

[5] Umesh Deshpande, Beilan Wang, Shafee Haque, Michael Hines, Katik Gopalan
"MemX: Virtualization of Cluster-wide Memory” Proceedings of the

[6] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, Kang G.
Shin “Efficient Memory Disaggregation with INFINISWAP” Proceedings of the

MemSys *20, Sept 2020, Washington, DC

[7] Hikari Oura, Hiroko Midorikawa, Kenji Kitagawa, Munenori Kai "Design and Eval-
uation of Page-swap Protocols for a Remote Memory Paging System” Proceedings
of the

[8] Mel Gorman “Understanding the Linux Virtual Memory Manager”

[9] MarketlIntellica "Global Container as a Service (CaaS) Market Analysis 2013-2018
and Forecast 2019-2024 Understanding the Linux Virtual Memory Manager”

[10] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun Bae, Yanzhao Wu "Memory
Disaggregation: Research Problems and Opportunities” Proceedings of the

[11] Mellanox Technology, https://github.com/accelio/NBDX "nbdX”

[12] A. Dragojevic, D. Narayanan, O. Hodson, and M.Castro. "FaRM: Fast remote
memory” Proceedings of the 11th USENIX NSDI, Apr. 2014

[13] Mellanox Technology, http://www.accelio.org "Accelio”

[14] C.A.Reiss. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. "Heterogeneity
and dynamicity of clouds at scale: Google trace analysis” In SoCC, 2012

[15] C.A.Reiss. "Understanding Memory Configuration for In-Memory Analytics.”
PhD thesis, UC Berkeley, 2016

[16] A.Samih, R. Wang, C. Maciocco, M. Kharbutli, and Y. Solihin. "Collaborate mem-
ories in clusters: Opportunities and challenges” Transactions on Computational
Science XXII, Berlin, Germany:Springer, 2014, pp.17-41

[17] "Memcached, a distributed memory object caching system”
https://memcached.org

[18] “Redis, an in-memory data structure store” https://redis.io

[19] ”VoltDB, a translytical in-memory database” https://github.com/VoltDB/voltdb

[20] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. "Benchmark-
ing cloud serving systems with YCSB” In SoCC, 2010

[21] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M Palesczny. "Workload analysis
of a large-scale key-value store” In SIGMETRICS, 2012

[22] "Scikit-learn, a free software machine learning library” https://github.com/scikit-
learn/scikit-learn

[23] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and
Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor
"Caffe: Convolutional Architecture for Fast Feature Embedding” arXiv preprint
arXiv:1408.5093, 2014

[24] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al. ” Apache hadoop yarn: Yet another
resource negotiator.” In SoCC, 2013.

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-Cauley, M. J. Franklin, S.
Shenker, and I. Stoica. "Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing.” In NSDI, 2012.

[26] “HP: The Machine” http://www.labs.hpe.com/research/themachine.

[27] “Intel RSA” http://www.intel.com/content/www/us/en/architecture-and-
technology/rsa-demo-x264.html.

[28] “Intel RSA” http://www.intel.com/content/www/us/en/architecture-and-
technology/rsa-demo-x264.html.

[29] K.Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
"Disaggregated memory for expansion and sharing in blade servers. ” In ISCA,
2009.

[30] K.Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F.
Wenisch. “System-level implications of disaggregated memory.” In HPCA, 2012.

[31] P.X.Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy,
and S. Shenker. "Network requirements for resource disaggregation.” In OSDI,
2016.

[32] M.K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Subrahmanyam, L.
Suresh, K. Tati, R. Venkatasubramanian, and M. Wei. "Remote memory in the age
of fast networks.” In SoCC, 2017.

[33] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. "Latency-
tolerant software distributed shared memory.” In USENIX ATC, 2015.

[34] R.Power and J. Li. "Piccolo: Building fast, distributed programs with partitioned
tables. In OSDI, 2010.” In OSDI, 2010.

[35] P.Zhang, X. Li, R. Chu, and HWang. "Hybridswap: A scalable and synthetic
framework for guest swapping on virtualization platform. In INFOCOM, 2015.

[36] E.A. Anderson and J. M. Neefe. "An exploration of network ram. ” Technical
Report, Computer Science Division, University of California, Berkeley, 1998.

[37] H. Chen, Y. Luo, X. Wang, B. Zhang, Y. Sun, and Z. Wang. A transparent remote
paging model for virtual machines. ” In International Workshop on Virtualization
Technology, 2008.

[38] S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets.
“Cashmere-vlm: Remote memory paging for software distributed shared memory.”
In IPPS/SPDP, 1999.

[39] M. D. Flouris and E. P. Markatos. "The network ramdisk: Using remote memory
on heterogeneous nows.” In Journal of Cluster Computing, 1999.

[40] S. Liang, R. Noronha, and D. K. Panda. “Swapping to remote memory over
infiniband: An approach using a high performance network block device” In
Cluster Computing, 2005.

[41] E.P. Markatos and G. Dramitinos. "Implementation of a reliable remote memory
pager.” In USENIX ATC, 1996.

[42] Q. Zhang and L. Liu. "Shared memory optimization in virtualized cloud.” In
CLOUD, 2015.

Juhyun Bae!, Gong Su?, Arun lyengar?, Yanzhao Wu!, Ling Liu®

[43] M. Hao, G. Soundararajan, D. R. Kenchammana-Hosekote, A. A. Chien, and H. S.
Gunawi. “The tail at store: A revelation from millions of hours of disk and ssd
deployments. ” In FAST, 2016.

[44] K. Elmeleegy, C. Olston, and B. Reed. "Spongefiles: Mitigating data skew in
mapreduce using distributed memory.” In SIGMOD, 2014.

[45] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text” Empirical
Methods in Natural Language Processing, 2004

[46] “TextRank Dataset : http://mattmahoney.net/dc/textdata.html”

[47] "ML Dataset : https://www.kaggle.com/c/outbrain-click-prediction/data”

[48] “ML Dataset : https://www.kaggle.com/noaa/gsod”

[49] W Cao, L Liu “Hierarchical Orchestration of Disaggregated Memory” IEEE
Transactions on Computers, 2020.

[50] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin
and Joseph M. Hellerstein "GraphLab: A New Parallel Framework for Machine
Learning.” Conference on Uncertainty in Artificial Intelligence (UAI),2010

[51] Dmitry Duplyakin and Robert Ricci and Aleksander Maricq and Gary Wong
and Jonathon Duerig and Eric Eide and Leigh Stoller and Mike Hibler and
David Johnson and Kirk Webb and Aditya Akella and Kuangching Wang and
Glenn Ricart and Larry Landweber and Chip Elliott and Michael Zink and
Emmanuel Cecchet and Snigdhaswin Kar and Prabodh Mishra. “The Design
and Operation of CloudLab” USENIX Annual Technical Conference (ATC),2019
https://www.flux.utah.edu/paper/duplyakin-atc19

[52] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel. "Treadmarks: Shared memory” computing on networks of worksta-
tions. Journal of Computer, 1996.

[53] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. "Munin: Distributed shared
memory based on type-specific memory coherence” In SIGPLAN, 1990.

[54] K.LiandP.Hudak. "Memory coherence in shared virtual memory systems” In
TOCS, 1989.

[55] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. "Latency-
tolerant software distributed shared memory.” In USENIX ATC, 2015.

[56] D.]J. Scales, K. Gharachorloo, and C. A. Thekkath. ”Shasta: A low overhead,
software-only approach for supporting fine-grain shared memory. ” In ACM
SIGOPS Operating Systems Review, 1996.

[57] L Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A. Wood.
“"Fine-grain access control for distributed shared memory.” In SIGPLAN, 1994.

[58] K. Asanovic and D. Patterson. “Firebox: A hardware building block for 2020
warehouse-scale computers.” In USENIX FAST, 2014.

[59] P. Faraboschi, K. Keeton, T. Marsland, and D. S. Milojicic. "Beyond processor-
centric operating systems.” In HotOS, 2015.

[60] P.X.Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy,
and S. Shenker. "Network requirements for resource disaggregation.” In OSDI,
2016.

[61] S.Han, N.Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker. "Network support
for resource disaggregation in next-generation datacenters.” In HotNets, 2013.

[62] K. Lim,]J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
"Disaggregated memory for expansion and sharing in blade servers.” In ISCA,
2009.

[63] K.Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
"Disaggregated memory for expansion and sharing in blade servers” In ISCA,
2009.

[64] P.S.Rao and G. Porter. "Is memory disaggregation feasible?: A case study with
spark sql” In ANCS, 2016.

[65] F. Mietke, R. Baumgartl, R. Rex, T. Mehlan, T. Hoefler, and W. Rehm. ”Analysis
of the memory registration process in the mellanox infiniband software stack. 8
2006.” In Euro-Par, 2006.

[66] C.Guo, HWu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. "Rdma over
commodity ethernet at scale” In SIGCOMM,2016.

[67] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D.
Underwood, and R. C. Zak. "Intel R omni-path architecture: Enabling scalable,
high performance fabrics” In HOTI, 2015.

[68] S.-Y. Tsai and Y. Zhang. “Lite kernel rdma support for datacenter applications.”
In SOSP, 2017.

[69] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel,
M. H. Yahia, and M. Zhang. "Congestion control for large-scale rdma deployments”
In ACM SIGCOMM Computer Communication Review, 2015.

[70] “http://www.infinibandta.org.”

[71] R.Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A “remote direct memory
access protocol specification.” Technical Report, 2007.

[72] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro. "Farm: Fast remote
memory.” In NSDI, 2014.

[73] A.Dragojevic, D. Narayanan, E. B. Nightingale, M. Renzelmann, A. Shamis, A.
Badam, and M. Castro. No compromises: “distributed transactions with consis-
tency, availability, and performance.” In SOSP, 2015.

[74] A.Kalia, M. Kaminsky, and D. G. Andersen. "Using rdma efficiently for key-value
services.” In SIGCOMM, 2014.

[75] C. Mitchell, Y. Geng, and J. Li. “Using one-sided rdma reads to build a fast,
cpu-efficient key-value store.” In USENIX ATC, 2013.

Efficient Orchestration of Host and Remote Shared Memory
for Memory Intensive Workloads

[76] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. "A note on distributed comput-
ing” In International Workshop on Mobile Object Systems, 1996.

[77] D.E. Comer and J. Griffioen. A new design for distributed systems: The re-
mote memory model.” Technical Report, Department of Computer Science, Purdue
University, 1990.

[78] M.].Feeley, W. E. Morgan, E. Pighin, A. R. Karlin, H. M. Levy, and C. A. Thekkath.
“Implementing global memory management in a workstation cluster” In ACM
SIGOPS Operating Systems Review, 1995.

[79] M. D. Flouris and E. P. Markatos. "The network ramdisk: Using remote memory
on heterogeneous nows.” Journal of Cluster Computing, 1999.

[80] S.Koussih, A. Acharya, and S. Setia. "Dodo: A user-level system for exploiting
idle memory in workstation clusters” In HPDC, 1999.

[81] S. Liang, R. Noronha, and D. K. Panda. "Swapping to remote memory over
infiniband: An approach using a high performance network block device” In
Cluster Computing, 2005.

[82] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. "Mojim: A reliable and
highly-available non-volatile memory system.” In ACM SIGPLAN Notices, 2015.

[83] Jian Yang Joseph Izraelevitz Steven Swanson “Orion: A Distributed File System
for Non-Volatile Main Memories and RDMA-Capable Networks” In USENIX FAST,
2019.

[84] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Dattatraya Padhye, Shachar Raindel, Mohamad Haj
Yahia, Ming Zhang "Congestion Control for Large-Scale RDMA Deployments.”
SIGCOMM, 2015

[85] Diego Crupnicoff, Sujal Das, Eitan Zahavi "Deploying Quality of Service and
Congestion Control in Infiniband-based Data Center Networks” White Paper,
Mellanox Technologies

[86] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, David Zats
"TIMELY: RTT-based Congestion Control for the Datacenter” SIGCOMM, 2015

[87] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, Minlan Yu. "JHPCC:
High Precision Congestion Control” SIGCOMM, 2019

MemSys °20, Sept 2020, Washington, DC

	Abstract
	1 Introduction
	2 Software Challenges
	2.1 Latency Overhead in the critical path.
	2.2 Container-wide Memory Imbalance
	2.3 Remote Eviction Impact

	3 Design Overview
	3.1 Design considerations
	3.2 Software organization
	3.3 Performance critical path optimization
	3.4 Utilizing unused memory
	3.5 Reclaiming remote memory

	4 Implementation
	4.1 Sender Module
	4.2 Remote Memory Module
	4.3 How to track remote pages

	5 Discussions
	5.1 Fault Tolerance
	5.2 Data Consistency
	5.3 Replication and disk backup

	6 Evaluation
	6.1 BigData Workload Performance
	6.2 ML Workload Performance
	6.3 Effectiveness of optimization
	6.4 Scalability
	6.5 Eviction Cost

	7 Related Work
	8 Conclusion
	References

