
CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

secureTF: A Secure TensorFlow Framework
Do Le Quoc, Franz Gregor, Sergei Arnautov

TU Dresden, Scontain UG
Roland Kunkel

TU Dresden

Pramod Bhatotia
TU Munich

Christof Fetzer
TU Dresden, Scontain UG

Abstract
Data-driven intelligent applications in modern online ser-
vices have become ubiquitous. These applications are usually
hosted in the untrusted cloud computing infrastructure. This
poses significant security risks since these applications rely
on applying machine learning algorithms on large datasets
which may contain private and sensitive information.

To tackle this challenge, we designed secureTF, a dis-
tributed secure machine learning framework based on Ten-
sorflow for the untrusted cloud infrastructure. secureTF is
a generic platform to support unmodified TensorFlow appli-
cations, while providing end-to-end security for the input
data, ML model, and application code. secureTF is built
from ground-up based on the security properties provided
by Trusted Execution Environments (TEEs). However, it ex-
tends the trust of a volatile memory region (or secure enclave)
provided by the single node TEE to secure a distributed infras-
tructure required for supporting unmodified stateful machine
learning applications running in the cloud.
The paper reports on our experiences about the system

design choices and the system deployment in production
use-cases. We conclude with the lessons learned based on
the limitations of our commercially available platform, and
discuss open research problems for the future work.

Keywords: secure machine learning, confidential comput-
ing, intel software guard extensions (Intel SGX), tensorflow

1 Introduction
Machine learning has become an increasingly popular ap-
proach for solving various practical problems in data-driven
online services [5, 19, 33, 83]. While these learning tech-
niques based on private data arguably provide useful on-
line services, they also pose serious security threats for the
users. Especially, when these modern online services use
the third-party untrusted cloud infrastructure for deploying
these computations.

In the untrusted computing infrastructure, an attacker can
compromise the confidentiality and integrity of the compu-
tation. Therefore, the risk of security violations in untrusted
infrastructure has increased significantly in the third-party
cloud computing infrastructure [74]. In fact, many studies
show that software bugs, configuration errors, and security
vulnerabilities pose a serious threat to computations in the
cloud systems [16, 41, 75]. Furthermore, since the data is
stored outside the control of the data owner, the third-party

cloud platform provides an additional attack vector. The
clients currently have limited support to verify whether the
third-party operator, even with good intentions, can handle
the data with the stated security guarantees [52, 91].
To overcome the security risks in the cloud, our work

focuses on securing machine learning computations in the
untrusted computing infrastructure. In this context, the exist-
ing techniques to secure machine learning applications are
limiting in performance [38], trade accuracy for security [32]
or support only data classification [21]. Therefore, we want
to build a secure machine learning framework that supports
existing applications while retaining accuracy, supporting both
training and classification, and without compromising the per-
formance. Furthermore, our work strives to provide end-to-end
security properties for the input data, ML models, and applica-
tion code.
To achieve our design goals, trusted execution environ-

ments (TEEs), such as Intel SGX [28] or ARM TrustZone [11],
provide an appealing way to build a secure machine learn-
ing system. In fact, given the importance of security threats
in the cloud, there is a recent surge in leveraging TEEs for
shielded execution of applications in the untrusted infras-
tructure [12, 16, 69, 78, 90]. Shielded execution aims to provide
strong confidentiality and integrity properties for applica-
tions using a hardware-protected secure memory region or
enclave.

While these shielded execution frameworks provide strong
security guarantees against a powerful adversary, the TEEs
have been designed to secure single-node in-memory (volatile)
computations. Unfortunately, the trust of TEEs does not nat-
urally extend to support distributed stateful applications
running in the cloud. To build a secure machine learning
framework that supports both training and classification
phases, while providing all three important design proper-
ties: transparency, accuracy, and performance, we need to
address several architectural challenges presented by TEEs,
specifically Intel SGX, which acts as the root of trust.

More specifically, in addition to the conventional architec-
tural challenges posed by the SGX architecture in the single
node setting, such as limited enclave memory and I/O bot-
tlenecks, we need to address the following three important
challenges in the context of distributed cloud computing:
Firstly, we need to extend the trust of SGX to support

the distributed TensorFlow framework, where the worker
nodes are running in the remote distributed enclaves while
ensuring that they execute correct code/computations and

1

ar
X

iv
:2

10
1.

08
20

4v
1

 [
cs

.C
R

]
 2

0
Ja

n
20

21

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

data. However, this is a challenging task since Intel SGX is
designed for securing single machine computations.

Secondly, we need to support practical features offered by
the virtualized platforms in the public cloud service to enable
elastic and fault-tolerant computing, i.e., scaling-up/down
based on the workloads, and dealing with failures/migra-
tions. To support these important requirements, we need
to ensure the new worker node running in a container pre-
serves the integrity, confidentiality of the data, ML models,
and application code. However, the traditional remote at-
testation using the Intel Attestation Service (IAS) [30] is
impractical to support the elastic and fault-tolerant comput-
ing. Therefore, we need to redesign the mechanism to ensure
an elastic trust establishment through a configuration and
attestation service.
Lastly, we need to support stateful machine learning ap-

plications that rely on reading the input data or write com-
putation results from/to a file system storage as well as to
the network. Unfortunately, Intel SGX is designed to protect
only the data and computation residing in the volatile en-
clave memory. It does not provide any security guarantees
for stateful machine learning computations across multiple
machines.

To overcome these design challenges, we present secureTF,
a secure machine learning framework for the untrusted in-
frastructure. More specifically, we make the following con-
tributions.

• We have designed and implemented secureTF as the
end-to-end system based on TensorFlow that allows se-
cure execution of the existing unmodified TensorFlow
applications without compromising the accuracy.

• We optimized the performance to overcome the ar-
chitectural limitation of Intel SGX in the context of
machine learning workloads for distributed untrusted
cloud computing environments.

• We report an extensive evaluation of secureTF based
on microbenchmarks and production use-cases. Our
evaluation shows that secureTF achieves reasonable
performance overheads, while providing strong secu-
rity with low TCB.

secureTF is a commercially available platform, and it is
currently used in production by four major customers. In this
paper, we report on our experiences on building secureTF
and deploying it in two production use-cases. We conclude
the paper with the lessons learned based on the limitations
of our system design, and a discussion on open research
problems for the future work.

2 Background and Threat Model
2.1 Machine Learning using TensorFlow
Machine learning aims to automatically extract useful pat-
terns in large-scale data by building probabilistic models [79].
Machine learning approaches are often categorized into

supervised, unsupervised and reinforcement learning. All
forms have in common that they require datasets, a defined
objective, a model and a mechanism to update the model
according to new inputs.
To generalize the machine learning approach for masses,

Google proposed TensorFlow [8] as amachine learning frame-
work designed for heterogeneous distributed systems. Ten-
sorFlow requires the user first to define a directed graph
consisting of nodes representing operations on incoming
data. Nodes have zero or more inputs and outputs and per-
form operations on different levels of abstraction such as
matrix multiplication, pooling or reading data from disk.
Nodes can also have an internal state, depending on their
type. Thus the whole graph can be stateful as well.

After defining the graph, the user can perform calculations
by starting a session and running the previously defined
operations. TensorFlow uses a flow model for calculations.

Through the division of the calculation in the graph into
nodes, TensorFlow makes it easy to distribute the execution
across different devices. Therefore, TensorFlow can be de-
ployed on mobile devices, single personal computers, as well
as computer clusters, by mapping the computation graph on
available hardware.
TensorFlow Lite [7] is a feature-reduced version of Ten-

sorFlow, designed for mobile and embedded devices. Opti-
mization for mobile devices is achieved by running a mobile-
optimized interpreter that keeps the load at a lower level
and having the overall binary size smaller when compared
to full TensorFlow. The number of available operations for
defining a graph is reduced to achieve a smaller memory
footprint of the resulting binary. This comes at the cost of
trainability of the graph, because TensorFlow Lite can only
perform forward passes in graphs. Instead, a model must
first be training with the full version of TensorFlow and then
exported and converted to a special TensorFlow Lite model
format. This format can then be used from the TensorFlow
Lite API for inference.

2.2 Intel SGX and Shielded Execution
Intel Software Guard Extension (SGX) is a set of x86 ISA
extensions for Trusted Execution Environment (TEE) [30].
SGX provides an abstraction of a secure enclave—a hardware-
protected memory region for which the CPU guarantees the
confidentiality and integrity of the data and code residing
in the enclave memory. The enclave memory is located in
the Enclave Page Cache (EPC)—a dedicated memory region
protected by an on-chip Memory Encryption Engine (MEE).
The MEE encrypts and decrypts cache lines that are written
and read to EPC, respectively. Intel SGX supports a call-gate
mechanism to control entry and exit into the TEE.
Shielded execution based on Intel SGX aims to provide

strong confidentiality and integrity guarantees for applica-
tions deployed on an untrusted computing infrastructure [12,
16, 69, 78, 90]. Our work builds on the SCONE [12] shielded

2

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

execution framework. In the SCONE framework, the ap-
plications are linked against a modified standard C library
(SCONE libc). In this model, the application’s address space is
confined to the enclave memory, and interaction with the un-
trusted memory is performed via the system call interface. In
particular, SCONE runtime provides an asynchronous system
call mechanism [80] in which threads outside the enclave
asynchronously execute the system calls. Lastly, SCONE
provides an integration to Docker for seamlessly deploying
container images.

2.3 Threat Model
We aim to protect against a very powerful adversary even
in the presence of complex virtualization stacks in the cloud
computing infrastructure [16]. In this setting, the adversary
can control the entire system software stack, including the
OS or the hypervisor, and is able to launch physical attacks,
such as performing memory probes. In addition, we consider
an untrusted network in the cloud environment, i.e., the ad-
versary can drop, inject, replay, alter packages, or manipulate
the routing of packages. This network model is consistent
with the classic Dolev-Yao adversary model [31]. Even un-
der this extreme threat model, our goal is to guarantee the
integrity, confidentiality, and freshness of data, code (e.g.,
Python code), and models of machine learning computation.
We also provide bindings with Pesos [52], a secure storage
system to protect against rollback attacks [71] on the data
stored beyond the secure enclave memory. Our system is
adaptable with SGXBounds [56]; therefore, secureTF is re-
silient to memory safety vulnerabilities [66].
However, we do not protect against side-channel attacks

based on cache timing and speculative execution [92], and
memory access patterns [42, 98]. Mitigating side-channel
attacks is an active area of research [67]. We do not consider
denial of service attacks since these attacks are trivial for a
third-party operator controlling the underlying infrastruc-
ture [16], e.g., operating system (OS), and hypervisor. Lastly,
we assume that the CPU hardware (including its implementa-
tion of SGX) are trusted and the adversary cannot physically
open the processor packaging to extract secrets or corrupt
the CPU system state.

3 Design
In this section, we present the design of secureTF.

3.1 System Overview
secureTF is designed for secure distributed machine learn-
ing computations using the hardware-assisted trusted exe-
cution environment (TEE) technologies such as Intel SGX.
Figure 1 depicts the high-level architecture of secureTF. Our
system ensures not only the confidentiality, integrity and
freshness of executions (e.g., training and classifying compu-
tations) but also the input data and machine learning models.

User

secureTF

Enclave

Cloud-side / Untrusted
(1) Remote Attestation

(2) Keys, certificates
 transferring

(3) Computation results
TLS

Input
Data Models

Figure 1. System overview.

At a high-level, the system works as follows: at the first step,
when a user deploys a machine learning computation on a
remote host (e.g., a public cloud), the user needs to establish
trust into the secureTF instance running in the untrusted
environment. To do so, the user performs the remote attesta-
tion mechanism provided by the TEE technology to ensure
that the computation and the input data deployed in the
remote environment are correct and not modified by any-
one e.g., an attacker. After trusting the secureTF running in
the remote environment, the user provides secrets including
keys for encrypting/decrypting input and output data (e.g.,
input images and models, certificates for TLS connections),
to the machine learning platform. After finishing the com-
putation, secureTF returns the results back to the user via a
TLS connection.

Design goals. Our primary design goal is to achieve strong
confidentiality and integrity properties. By confidentiality,
we mean that all data including models handled by the ma-
chine learning framework and the machine learning frame-
work code itself may not be disclosed to or obtainable by
an unauthorized party. By integrity, we mean that modifi-
cations of the data handled by secureTF that were done by
an unauthorized party must be detectable and should not
compromise the internal state and functioning. In addition,
while designing a practical system, we aim to achieve the
following goals.

• Transparency: The secure framework must offer the
same interface as the unprotected framework, and
should run unmodified existing applications based on
TensorFlow.

• Performance: We aim to impose as little overhead as
possible when adding security to the machine learning
framework.

• Accuracy:We do not aim to trade-off accuracy for se-
curity. Accuracy will be the same in the native Tensor-
Flow framework as when using no security protection.

3.2 Design Challenges
Building a practical secure distributed machine learning sys-
tem using TEEs such as Intel SGX is not straightforward, in
fact, we need to handle several challenges.

➊ Code modification. Intel SGX requires users to heavily
modify the source code of their application to run inside

3

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

enclaves. Thus, transparently supporting an unmodified ma-
chine learning framework to run inside enclaves is not a
trivial task.

➋ Limited EPC size. Currently, Intel SGX supports only a
limited memory space (∼ 94MB) for applications running
inside enclaves. However, most machine learning computa-
tions, especially training, are extremely memory-intensive.

➌ Establishing the trust in a distributed system. Trust
has to be established in the remote distributed enclaves to
ensure that they execute correct code and data. However, this
is a challenging task since Intel SGX is originally designed
for a single machine.

➍ Elastic and fault tolerant computing support. Typi-
cally, public cloud services support elastic computing, i.e.,
when the input workload increases, the framework automat-
ically spawns new service containers or instances to handle
with the growth of requests. However, whenever spawning
a new container, it requires to perform remote attestation to
ensure the integrity, confidentiality of the machine learning
application in that container before communicating with
it. Unfortunately, the traditional attestation mechanism us-
ing the Intel Attestation Service (IAS) [30] incurs significant
overhead, thus it’s impractical in this setting.

➎ Stateful computing: security of network and file sys-
tem. Machine learning applications running inside SGX en-
claves need to read input data or write results from/to a file
system, storage systems, or network. Unfortunately, Intel
SGX is designed to protect only the stateless in-memory data
and computation residing inside enclaves. It does not provide
any security guarantees for state stateful machine learning
computations across multiple machines.

3.3 System Design
In this section, we present the detailed design of distributed
secureTF that handles the aforementioned challenges in §1.

3.3.1 System Components. To overcome the challenge
➊ (see §1), we built secureTF based on the SCONE shielded
execution framework [12]. SCONE enables legacy applica-
tions to be executed in Intel SGX enclaves without source
code changes. While there are other options available, we
choose SCONE, because of the relatively small extra work
required to run an application and comparatively small over-
head compared to other available options.We leverage SCONE’s
Docker container support to design secure distributed se-
cureTF which allows users to perform machine learning
computations in a secure manner on an untrusted environ-
ment such as a public cloud. Figure 2 shows the distributed
architecture of secureTF. At the high-level, our systems
consist of four core components: Configuration and Remote
Attestation Service (CAS), secure machine learning contain-
ers including Tensorflow parameter servers and Tensorflow

Parameter
Servers

TLS

TLS

TLS

User

Uplo
ad

ing

co
nfi

gu
rat

ion
 via

 TLS

Rem
ote

 at
tes

tat
ion

Jobs
(Encrypted

python code)

Configuration &
Attestation Service

(CAS)
SCONE Lib

Workers

SCONE Lib

Tensorflow
Process

SCONE Lib

Tensorflow
Process

SCONE Lib

Tensorflow
Process

...

SCONE Lib

Tensorflow
Process

SCONE Lib

Tensorflow
Process

...

TLS

: Secure
container

SGX
Enclave

SCONE Lib
: Remote attestation &

Keys transferring
: Tensorflow
connections

Figure 2. The distributed architecture of secureTF.

workers, network shield and file system shield, and adapted
Tensorflow library.
We design the CAS component to handle the challenges

➌ and ➍. This component takes an important role in the
distributed architecture of secureTF which transparently
and automatically performs the remote attestation for secure
machine learning containers before transferring secrets and
configuration needed to run them. The CAS component is
deployed inside an SGX enclave of an untrusted server in
the cloud or on a trusted server under the control of the user.
When a secure machine learning container is launched, it
receives the necessary secrets and configuration from CAS
after the remote attestation process, to run machine learning
computations using the adapted Tensorflow library running
inside an enclave.
We design the network shield and the file system shield

components to address the challenge ➎. All communications
between secure machine learning containers and the CAS
component are protected using the network shield compo-
nent.

Next, we provide the detailed design of each component.

3.3.2 Configuration and Remote Attestation Service.
CAS enhances the Intel attestation service [30] to boot-
strap and establish trust across the secureTF containers
and maintain a secure configuration of the distributed se-
cureTF framework. CAS itself is deployed in an Intel SGX
enclave. In the case that CAS is deployed in an enclave on
an untrusted server, the user of secureTF needs to establish
trust into the CAS instance, i.e., he/she needs to perform
remote attestation of CAS before transferring encryption
keys and certificates to process the encrypted input data and
machine learning models. By using CAS, we can maintain
the original distributed architecture of Tensorflow machine
learning framework.

4

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

Tensorflow Application (e.g., Python code)

secureTF Tensorflow Library

Userspace
Threading

File System
Shield

Network
Shield

secureTF Controller

SCONE Runtime

Enclave

Operating System

Figure 3. The architecture of a secure machine learning
container in secureTF.

In addition, to guarantee the freshness of data during
runtime, we design and implement an auditing service in
CAS to keep track the data modification during machine
learning computation. This mechanism allows secureTF to
protect against rollback attacks.

3.3.3 Secure Machine Learning Containers. To build
secure machine learning containers, we make use of Tensor-
Flow and TensorFlow Lite. TensorFlow Lite has the additional
advantage of having a smaller memory footprint which helps
us to handle the design challenge ➋. We use SCONE [12]
as an additional layer that allows access to SGX features
with fewer changes to application code. Figure 3 presents
the general architecture of a secure Tensorflow container
using SCONE.

Since we build secure machine learning containers based
on SCONE in secureTF, we use Docker [61] to conveniently
deploy our system. No changes to the Docker engine is re-
quired. The design of a secure machine learning container in
secureTF is composed of two components: (a) the secureTF
controller that provides the necessary runtime environment
for securing the TensorFlow library, and (b) secureTF Ten-
sorFlow library that allows deploying unmodified existing
TensorFlow applications. We next describe these two com-
ponents in detail.

secureTFController. The secureTF controller is based on
the SCONE runtime. Inside the SGX enclave, the controller
provides a runtime environment for TensorFlow, which in-
cludes the network shield, the file system shield, and the user-
level threading. Data, that is handled through file descriptors,
is transparently encrypted and authenticated through the
shields. The shields apply at each location where an applica-
tion would usually trust the operating system, such as when
using sockets or writing files to disk. The shields perform
sanity checks on data passed from operating system to en-
clave to prevent Iago attacks [24]. More specifically, these
checks include bound checks and checking for manipulated
pointers. This protection is required to fulfill the goal of not
requiring the application to deal with untrusted systems (see
challenge ➊ in §1).

File system shield. The file system shield protects confiden-
tiality and integrity of data files. Whenever the application
would write a file, the shield either encrypts and authenti-
cates, simply authenticates or passes the file as is. The choice
depends on user-defined path prefixes, which are part of
the configuration of an enclave. The shield splits files into
chunks that are then handled separately. Metadata for these
chunks is kept inside the enclave, meaning it is protected
from manipulation. The secrets used for these operations are
different from the secrets used by the SGX implementation.
They are instead configuration parameters at the startup
time of the enclave.
Network shield. TensorFlow applications do not inherently
include end-to-end encryption for network traffic. Users who
want to add security must apply other means to secure the
traffic, such as a proxy for the Transport Layer Security (TLS)
protocol. According to the threat model however, data may
not leave the enclave unprotected, because the system soft-
ware is not trusted. Network communication must therefore
always be end-to-end protected. Our network shield wraps
sockets, and all data passed to a socket will be processed
by the network shield before given to system software. The
shield then transparently wraps the communication chan-
nel in a TLS connection on behalf of the user application.
The keys for TLS are saved in files and protected by the file
system shield.
User-level threading. Enclave transitions are costly and
should therefore be avoided when possible. Many system
calls require a thread to exit userspace and enter kernel space
for processing. To avoid thread transitions out of enclaves
as much as possible, the controller implements user space
threading.
When the OS assigns a thread to an enclave, it first ex-

ecutes an internal scheduler to decide, which application
thread to execute. These application threads are thenmapped
to SGX thread control structures.When an application thread
blocks, the controller is run again to assign the OS thread to
a different application thread instead of passing control back
to the operating system. In this way, the number of costly
enclave transitions is reduced. When no application thread is
ready for execution, the OS either backs off and waits inside
the enclave, or outside, depending on the time required for
an enclave transition. A side effect of this user-level thread-
ing scheme is that the controller does not require more OS
threads than CPUs available to achieve full CPU utilization,
which is usually the case for applications running under a
conventional OS.

3.3.4 secureTFTensorFlowLibrary. Machine learning
applications consist of two major steps. In the first step, the
model is trained, and thereafter, the model is employed for
classification or inference tasks. Next, we explain the detailed
design to run both training process and classification process
with Intel SGX.

5

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

Training process. For the training process, we use the full
version of TensorFlow. Training in TensorFlow is usually
performed on acceleration hardware such as GPUs and dis-
tributed across multiple machines. However, the secureTF
controller requires SGX which is only available for CPUs.
We therefore only support training on CPU. This limitation
reduces the performance of the training process, but it is
required to achieve the security goals.
The secureTF controller allows easy distribution of the

application in the form of Docker images. The training in-
stances of secureTF can be distributed on multiple nodes,
each running separate SGX hardware. The network shield
applies transparent protection of the communication chan-
nel between instances. Scaling on the same instance, that
is, on the same CPU is possible, but does decrease relative
performance, because the limiting factor in our environment
is EPC size, which is fixed for each CPU. Only horizontal
scaling with more nodes can substantially increase perfor-
mance.

Classification process. The main reason for dividing the
classification and training process in our design is that we
can use different TensorFlow variants for each step. Running
with Intel SGX imposes less overhead, if applications have
a smaller memory footprint, because the limited EPC size
is the major bottleneck (see challenge ➋ in §1). TensorFlow
Lite has a smaller memory footprint because it targets mobile
devices. The drawback is however that it cannot perform
training by design. Therefore, we can only use it for classifi-
cation or inference. When protecting TensorFlow Lite with
SCONE, the framework uses the SCONE C library instead
of the common system library. The internals of TensorFlow
Lite do otherwise not require change, as the interface of the
SCONE C library is compatible. The interface for using the
classification method of secureTF is the same as for Tensor-
Flow Lite. Graph definitions created for TensorFlow Lite are
compatible.

4 Implementation
We implement secureTF based on Tensorflow version 1.9.0
and the SCONE framework [12] to run machine learning
computations within Intel SGX enclaves. We also consider
other TEEs technologies such as ARM TrustZone [11] and
AMD’s TEE, SME/SEV [3]. However, they have several limi-
tations, e.g., ARM TrustZone supports only a single secure
zone, and does not have any remote attestation mechanism,
meanwhile, AMD’s TEE does not support integrity protec-
tion [63].
We rely on SCONE to implement some features such as

file system shield and network shield. However, it is not
straightforward to use these features out-of-the-box to build
secureTF. For example, SCONE does not support TLS con-
nection via UDP which is required in Tensorflow. SCONE

provides only confidentiality and integrity in network/stor-
age shields, whereas, secureTF ensures also the freshness
of data, code and models of machine learning computation.
In addition, the memory management and user-level multi-
threading need to adapt/extend it to fit the custom scheduler
and memory management of TensorFlow framework. Thus,
we need to develop these missing parts of these features to
implement the design of secureTF.
In this section, we describe several challenges we faced

during implementing secureTF and how we addressed them.
We first present how to enable the security features in se-
cureTF during the training process (§4.1) and classifying
process (§4.2). Thereafter, we describe the implementation
of the CAS component in §4.3.

4.1 Training Process
The typical user of TensorFlow uses the Python API for defin-
ing and training graphs, because it is the richest API. Using
Python with SCONE would impose additional complexity be-
cause it requires the dynamic library open (dlopen) system
call for imports. As the name implies, dlopen dynamically
loads libraries during runtime of a program. However, SGX
does not allow an enclave to be entered by a thread, unless it
has been finalized according to the procedures of enclave cre-
ation. A library that is dynamically loaded would therefore
not be represented in the enclave’s attestation hash. Conse-
quently, dlopen is disabled by default for SCONE applica-
tions. To allow dlopen, we need to change the SCONE envi-
ronment accordingly (i.e., SCONE_ALLOW_DLOPEN=yes).
To ensure the security guarantee, we need to authenticate
loaded libraries during runtime using the file system shield
(see §3.3).

We support not only Python but also C++ API as native
Tensorflow framework. In the previous version of secureTF,
we did not support the Python API since, at that time, SCONE
did not support fork system call which is required in the
Python package [55]. The C++ version covers the low-level
API of TensorFlow, meaning many convenience features
such as estimators or monitored training are not available.
However, implementation using C++ API provides much
better performance compared to using Python API. There is
one approach that let us use the convenience of the Python
API for the definition of the computation graph. TensorFlow
allows exporting graphs and parameters, such as learned
biases that were created in the current session. Graph defini-
tions and checkpoints containing the parameters can later
be imported by another program. Importing and exporting
are available in both the C++ and the Python API, and they
use interchangeable formats. The user can therefore define
a graph with the more high level Python API, including data
inputs, and later import and run it with C++. If the appli-
cation does not by default already export its model with a

6

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

named interface, changes are required to the original pro-
gram, so that either the name of operations in the graph can
be known, or an interface is defined.
For the training process, we used the full version of Ten-

sorFlow, not to be confused with TensorFlow Lite. A graph
definition must be provided by the user in form of a graph
frozen by a script packaged together with TensorFlow, when
using either the Python or C++ API. If the user has used the
C++ API for the definition, the full source definition of the
graph can also be used.
A frozen graph can be created from a graph definition

exported from the Python script that defines the graph in
the Protocol Buffers ([35]) exchange format. A checkpoint
file containing all values of a graph that are not part of the
graph definition, such as weights, biases and counters can
be exported as well.
Alternatively, the graph can also be exported as a blank

slate without any initialized internal values. The initializa-
tion can then be done inside the secureTF environment,
which is useful if a user wants to train the graph protected
by SGX for the entire training process. The initialization
operations are required when using the Python API and are
therefore usually part of the exported graph.
The user must also provide the inputs for training, such

as a set of annotated images. secureTF protects the input
data and code by activating the file system shield (see §3.3).

4.2 Classification /Inference Process
We implemented our design for inference/classifying compu-
tations in secureTF, by integrating the full Tensorflow with
SCONE as we developed for the training computations. In
addition, we provide a light-weight version for inference by
adapting Tensorflow Lite [7] framework to run with SCONE.
We first ensured that Tensorflow and TensorFlow Lite com-
piles with themusl C library [2] on Alpine Linux [1], because
SCONE enhanced the musl library to support legacy appli-
cation running with Intel SGX. The musl libc is designed
to be compatible with The GNU C Library (glibc) but more
secure with a smaller code base. The issue we faced is that
Tensorflow currently uses Identical code folding (ICF) [84],
which is a compiler or linker feature, to eliminate identical
function bodies at compile or link time in order to reduce the
binary size. However, it is currently supported by gcc and
the gold linker, but not by the musl linker or the compiler
wrapper for musl. We therefore removed the ICF option for
the binary targets in the TensorFlow source tree. Compiling
the TensorFlow framework with and without ICF provides
similar binary sizes. Therefore, the performance cost when
deactivating ICF will also be minimal.
The next issue is that TensorFlow also uses backtrace by

default. This library is specific forglibc. We therefore could
not use it directly with musl. To solve this issue, we either
recompiled dependencies against the musl libc, or disabled
backtrace in the building configuration of Tensorflow.

After adapting the Tensorflow source code, compiling it
with SCONE is quite straightforward by merely setting the
environment variables CC and CXX to the SCONE C and C++
compilers (i.e., scone-gcc and scone-g++).
Note that there is no standalone version of TensorFlow

Lite available, meaning a user of TensorFlow Lite needs to
build their application inside the TensorFlow source folder,
with dependency targets set to TensorFlow Lite. Tensorflow
uses Bazel as a build tool [17], however, Bazel also does not
link library targets unless a binary target is created, which
means TensorFlow Lite cannot be easily released from the
source tree by compiling all libraries, and move them to
the system’s include directories. Thus, we added compile
targets that force linking as a workaround. The libraries
could then be moved to other projects along with the header
files, and used as third party dependencies. With this, we
developed a classifier service from scratch. The service takes
classification requests via network, and uses TensorFlow
Lite for inference/classifying. For evaluation, we used an
example available in the TensorFlow Lite source, which takes
its inputs from the hard drive and prints the classification
results to console.

4.3 Configuration and Remote Attestation Service
For large-scale deployment secureTF, we design the Config-
uration and Remote Attestation Service component (CAS)
to transparently perform the remote attestation and trans-
fer keys to distributed secureTF containers (see §3.3). We
implement the CAS component using Rust [59] program-
ming language since it provides strong type safety. To run
CAS with Intel SGX, we utilize the SCONE cross compiler
to compile our implementation of CAS. We make use of an
encrypted embedded SQLite [10] to store encryption keys,
certificates, and other secrets for Tensorflow computations
(see §3.3). This database itself also runs inside an enclave
with the help of the SCONE framework.

To allow a user of CAS can ensure that the code of CAS
was not modified and indeed runs inside a valid SGX enclave,
besides running CAS with SCONE, we implement CAS in
the way that it has zero configuration parameters that can
control its behavior. Thus, an attacker with root/privileged
accesses cannot break the trust given by the user in CAS.
A detail description of CAS regarding protection against
rollback attacks and key management is provided in [39].

5 Evaluation
In this section, we present the evaluation results of secureTF
based on both microbenchmarks andmacrobenchmarks with
real world deployment.

5.1 Experimental Setup

Cluster setup.We used three servers with em SGXv1 sup-
port runningUbuntu Linuxwith a 4.4.0 Linux kernel, equipped

7

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

10-6

10-5

10-4

10-3

10-2

10-1

IAS secureTF CAS

La
te

n
cy

 (
se

co
n
d

s)
Initialization
Send Quote

Wait Confirmation
Receive Keys

Figure 4. The attestation and keys transferring latency
comparison between secureTF with the traditional way
using IAS.

with an Intel© Xeon© CPU E3-1280 v6 at 3.90GHz with 32
KB L1, 256 KB L2, and 8 MB L3 caches, and 64 GB main
memory. These machines are connected with each other us-
ing a 1 Gb/s switched network. The CPUs update the latest
microcode patch level.
In addition, we used a Fujitsu ESPRIMO P957/E90+ desk-

top machine with an Intel© core i7-6700 CPU with 4 cores
at 3.40GHz and 8 hyper-threads (2 per core). Each core has a
private 32KB L1 cache and a 256KB L2 cache while all cores
share an 8MB L3 cache.

Datasets.Weused two real world datasets: (i)Cifar-10 image
dataset [53] and (ii) MNIST handwritten digit dataset [58].

#1: Cifar-10. This dataset contains a labeled subset of a
much larger set of small pictures of size 32x32 pixels col-
lected from the Internet. It contains a total of 60,000 pictures.
Each picture belongs to one of ten classes, which are evenly
distributed, making a total of 6,000 images per class. All
labels were manually set by human labelers. Cifar-10 has
the distinct advantage that a reasonable good model can
be trained in a relatively short time. The set is freely avail-
able for research purposes and has been extensively used for
benchmarking machine learning techniques [43, 97].

#2: MNIST. The MNIST handwritten digit dataset[58] con-
sists of 60000 28 pixel images for training, and 10000 exam-
ples for testing.

Methodology. Before the actual measurements, we warmed
up the machine by running at full load with IO heavy oper-
ations that require swapping of EPC pages. We performed
measurements for classification and training both with and
without the file system shield. For full end-to-end protection,
the file system shield was required. We evaluate secureTF
with the two modes: (i) hardware mode (HW) which runs
with activated TEE hardware and (ii) simulation mode (SIM)
which runs with simulation without Intel SGX hardware ac-
tivated. We make use of this SIM mode during the evaluation
to evaluate the performance overhead of the Intel SGX and
to evaluate secureTF when the EPC size is getting large
enough in the future CPU hardware devices.

5.2 Micro-benchmark: Remote Attestation and
Keys Management

In secureTF, we need to securely transfer certificates and
keys to encrypt/decrypt the input data, models and the com-
munication between worker nodes (in distributed training
process). To achieve the security goal, we make use of the
CAS component (see §3.3) which attests Tensorflow pro-
cesses running inside enclaves, before transparently provides
the keys and certificates to encrypt/decrypt input data, mod-
els, and TLS communications. Note that the advantage of
using CAS over the traditional way using IAS to perform
attestation is that the CAS component is deployed on the
local cluster where we deploy secureTF.

Figure 4 shows the break-down latency in attestation and
keys transferring of our component CAS and the method
using IAS. The quote verification process in our CAS takes
less than 1ms, whereas in the IAS based method is ∼ 280ms.
In total, our attestation using CAS (∼ 17ms) is roughly 19×
faster than the traditional attestation using IAS (∼ 325ms).
This is because the attestation using IAS requires providing
and verifying the measured information contained in the
quotes [30] which needs several WAN communications to
the IAS service.

5.3 Macrobenchmark: Classifying Process
We evaluate the performance of secureTF in real-world
deployments. First, we present the evaluation results of se-
cureTF in detecting objects in images and classifying images
using pre-trained deep learning models. Thereafter, in the
next section, we report the performance results of secureTF
in training deep learning models (see §5.4).
In the first experiment, we analyze the latency of se-

cureTF in Sim mode and HW mode, and make a compar-
ison with native versions using glibc and musl libc (i.e.,
running Tensorflow Lite with Ubuntu and Alpine linux)
and a system [6] provided by Intel using Graphene [90].
Graphene is an open-source SGX implementation of the
original Graphene library OS. It follows a similar principle to
Haven [16], by running a complete library OS inside of SGX
enclaves. Similar to SCONE [12], Graphene offers developers
the option to run their applications with Intel SGX without
requiring code modifications. All evaluated systems except
the Graphene-based system run inside a Docker container.

To conduct this experiment, we use the Desktop machine
(see § 5.1) to install Ubuntu 16.04 since the Graphene based
system does not work with Ubuntu 18.04. The evaluated
systems runwith single thread because of the current version
of the Graphene-based system does not support multiple
threads, i.e., to run the classification process, we use the
same input arguments for the classification command line:
$ 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒 −𝑚𝑚𝑜𝑑𝑒𝑙 .𝑡 𝑓 𝑙𝑖𝑡𝑒 − 𝑖 𝑖𝑛𝑝𝑢𝑡 .𝑏𝑚𝑝 − 𝑡 1. For the
latency measurement, we calculate the average over 1, 000

8

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

 0

 100

 200

 300

 400

 500

 600

Native musl

Native glibc

Sim HW Graphene

L
a
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
) (a) Model size of 42MB

 0

 200

 400

 600

 800

Native musl

Native glibc

Sim HW Graphene

L
a
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
) (b) Model size of 91MB

 0

 500

 1000

 1500

 2000

Native musl

Native glibc

Sim HW Graphene

L
a
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
) (c) Model size of 163MB

Figure 5. Comparison between secureTF, native versions and the state-of-the-art Graphene system in terms of latency
with different model sizes, (a) Densenet (42MB), (b) Inception_v3 (91MB), and (c) Inception_v4 (163MB).

 0

 100

 200

 300

 400

 500

 600

Native musl

Sim Sim w/ FSPF

HW HW w/ FSPF

L
a
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
) (a) Model size of 42MB

 0

 200

 400

 600

 800

Native musl

Sim Sim w/ FSPF

HW HW w/ FSPF

L
a
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
) (b) Model size of 91MB

 0

 400

 800

 1200

 1600

Native musl

Sim Sim w/ FSPF

HW HW w/ FSPF

L
a
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
) (c) Model size of 163MB

Figure 6. The effect of file system shield on the classification latency with different model sizes, (a) Densenet (42MB), (b)
Inception_v3 (91MB), and (c) Inception_v4 (163MB).

runs. We use a single bitmap image from the Cifar-10 dataset
as an input of evaluated systems.
Models. For classifying images, we use several pre-trained
deep learning models with different sizes including Inception-
v3 [82] with the size of 91MB, Inception-v4 [81] with the size
of 163MB and Densenet [45] with the size of 42MB. We man-
ually checked the correctness of a single classification by
classifying the image with the TensorFlow label_image appli-
cation involving no self-written code and running directly on
the host without containerization. We later compared the re-
sults to the ones provided by secureTF and other evaluated
systems, we could confirm that indeed the same classifying
result was produced by the evaluated systems.
#1: Effect of inputmodel sizes. Figure 5 shows the latency
comparison between secureTF with Sim and HW mode, na-
tive Tensorflow Lite with glibc, native Tensorflow Lite with
musl libc, and Graphene-based system. secureTF with Sim
mode incurs only ∼ 5% overhead compared to the native ver-
sions with different model sizes. In addition, secureTF with
Sim mode achieves a latency 1.39×, 1.14×, and 1.12× lower
than secureTF with HW mode with the model size of 42MB,
91MB, and 162MB, respectively. This means that operations
in the libc of secureTF introduce a lightweight overhead.
This is because secureTF handles certain system calls inside
the enclave and does not need to exit to the kernel. In the
Sim mode, the execution is not performed inside hardware
SGX enclaves, but secureTF still handles some system calls
in userspace, which can positively affect performance. We
perform an analysis using strace tool to confirm that some of

the most costly system calls of secureTF are indeed system
calls that are handled internally by the SCONE runtime.
Interestingly, the native Tensorflow Lite running with

glibc is the same or slightly faster compared to the version
with musl libc. The reason for this is that both C libraries
excel in different areas, but glibc has the edge over musl
in most areas, according to microbenchmarks [4], because
glibc is tailored for performance, whereas musl is geared
towards small size. Because of this difference in goals, an
application may be faster with musl or glibc, depending
on the performance bottlenecks that limit the application.
Differences in performance of both C libraries must therefore
be expected.

In comparison to Graphene-based system, secureTF with
HW mode is faster and faster than Graphene-based system
when we increase the size of input models, specially when
it exceeds the limit of the Intel SGX EPC size (∼ 94MB). In
particular, with the model size of 42MB, secureTF with HW
mode is only 1.03× faster compared to Graphene-based sys-
tem, however, with the model size of 163MB, secureTF with
HW mode is ∼ 1.4× compared to Graphene-based system.
The reason for this is that when the application allocates
memory size larger than the EPC size limit, the performance
of reads and writes severely degraded because it performs
encrypting data and paging operations which are very costly.
To reduce this overhead, we reduce the size of our libraries
loaded into SGX enclaves. Instead of adding the whole OS
libc into SGX enclaves as Graphene did, we make use of
SCONE libc [12] which is a modification of musl libc having

9

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 1 2 3
Cores
(Scale-up)

Nodes
(Scale-out)

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Native
secureTF Sim
secureTF HW

Figure 7. The latency comparison in classifying cifar-10
images with different numbers of CPU cores and nodes.
much smaller size. In this library, system calls are not exe-
cuted directly but instead are forwarded to the outside of an
enclave via the asynchronous system call interface (see §3.3).
This interface together with the user level scheduling allows
secureTF to mask system call latency by switching to other
application threads. Thus, we expect this speedup factor of
secureTF compared to Graphene-based system will increase
more when the size of the input model size is increased and
when the application runs with multiple threads.
#2: Effect of file system shield.One of real world usecases
of secureTF is that a user not only wants to acquire classi-
fying results but also wants to ensure the confidentiality of
the input images since they may contain sensitive informa-
tion, e.g., handwritten document images. At the same time,
the user wants to protect her/his machine learning models
since he/she had to spend a lot of time and cost to train the
models. To achieve this level of security, the user activates
the file system shield of secureTF which allows he/she to
encrypt the input including images and models and decrypt
and process them within an SGX enclave (see §3.3).

In this experiment, we evaluate the effect of this file system
shield on the overall performance of secureTF. As previous
experiments, we use the same input Cifar-10 images. Figure 6
shows the latency of secureTF when running with/with-
out activating the file system shield with different models.
The file system shield incurs significantly small overhead
on the performance of the classification process. secureTF
with Sim mode running with the file system shield is 0.12%
slower than secureTF with Sim mode running without the
file system shield. Whereas in the secureTF with HW mode,
the overhead is 0.9%. The lightweight overhead comes from
the fact that our file system shield uses Intel-CPU-specific
hardware instructions to perform cryptographic operations
and these instructions can reach a throughput of up to 4
GB/s, while the model is about 163 MB in size. This leads to
a negligible overhead on the startup of the application only.
#3: Scalability. To evaluate the scalability of secureTF, we
measure the latency of secureTF in classifying 800 cifar-
10 images, with different number of CPU cores (scale-up),
and different number of physical nodes (scale-out). Figure 7
shows that secureTF both in Sim and HW mode scale quite

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Workers

secureTF HW
secureTF HW w/o TLS

secureTF SIM
secureTF SIM w/o TLS

Native

Figure 8. The training latency comparison between se-
cureTF with different modes and native Tensorflow.

well from 1 CPU core to 4 CPU cores. However, secureTF in
HW mode does not scale from 4 CPU cores to 8 CPU cores.
The reason for this is that the EPC size is limited to ~94𝑀𝐵.
When secureTF runs with 8 cores it requires more than the
capacity of the current version of Intel SGX. Thus, it requires
to perform the paging mechanism which is very expensive.
For scale-out evaluating, we keep each node to run with 4
CPU cores. As we expected, secureTF in both Sim and HW
mode scale well with different numbers of physical nodes.
The latency of secureTF in HW mode with 1 node is 1180s
whereas with 3 nodes the latency is 403s.

#4: TensorFlow and TensorFlow Lite comparison. To
show the advantage of using TensorFlow Lite in secureTF in-
stead of TensorFlow for inference or classification, we make
a comparison between them. In this experiment, we use the
same input model (i.e., Inception_v3 model) and input image
to evaluate the performance of secureTF using TensorFlow
and TensorFlow Lite in HW mode. secureTF with Tensor-
Flow Lite achieves a ∼ 71× lower latency (0.697s) compared
to secureTF with TensorFlow (49.782s). The reason for this
is that, the binary size of secureTF with TensorFlow Lite is
only 1.9MB, meanwhile the binary size of secureTF with
TensorFlow is 87.4MB; and note that the Intel SGX enclave
EPC size is limited to ∼ 94MB.

5.4 Macrobenchmark: Distributed Training
In this section, we evaluate the performance of secureTF in
training distributed deep learning models at scale. In these
experiments, we use MNIST handwritten digit dataset (see
§5.1) and three physical servers having the same configura-
tion described in §5.1. We keep the same batch size of 100
and learning rate as 0.0005, then measure the end-to-end
latency of secureTF with different modes including HW
mode, Sim mode, with and without activating the network
shield, and a native version of Tensorflow.

Figure 8 shows that secureTF with different modes scales
almost linearly with the number of workers. secureTF, with
full features running in HW mode, achieves a speedup of
1.96× and 2.57× when it runs with 2 and 3 workers, respec-
tively. Unsurprisingly, this mode of secureTF is roughly
14× slower compared to the native version due to the fact

10

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

Handwritten
Docs Images

Image
Recognition

Model

Intel SGX

Digital
Text Docs TLS

TLS

Figure 9. Deployment #1: secure document digitization.
that the training process requires memory-intensive com-
putations and the enclave EPC size is limited to ∼ 94MB.
However, we believe that Intel will release new generation
of its hardware which supports much large EPC sizes, thus
we performed the experiments to evaluate secureTF in the
SIM mode, to see the overhead of secureTF in the case the
EPC size is enough for the training process. The slowdown
factor in comparison to the native version, is reduced to 6×
and 2.3× with secureTF in the SIM mode with and without
activating the network shield, respectively. This indicates
that the main overhead of the current implementation is the
network shield. In addition, note that the slowdown in SIM
mode is because of a scheduling issue in SCONE. We have
reported this issue, it’s now fixed in the current version of
SCONE.

From the results of experiments, we can learn that with the
current Intel SGX hardware capacity, performing securely
inference/classification inside Intel SGX is practical, but it is
not feasible for securely training deep learning (see §7.1).

6 Real-World Deployments
secureTF is a commercial platform, and it is actively used
by four customers (names omitted) in production. We next
present the secureTF deployment for two use cases.

6.1 Secure Handwritten Documents Analysis
The first use case of secureTF is to perform secure handwrit-
ten documents analytics (see Figure 9). A company (name
omitted) is using a public cloud to automatically translate
handwritten documents into digital format using machine
learning. Customers of this company not only want to ac-
quire the inference results, but also want to ensure the con-
fidentiality of the input since the handwritten document
images contain sensitive information. At the same time, the
company wants to protect its Python code for the inference
engine as well as its machine learningmodels. To achieve this
level of security, the company has deployed our framework—
secureTF. The company uses the file system shield to en-
crypt Python code and models used for the inference. Mean-
while, the customers make use of the attestation mechanism
of secureTF to attest the enclave running the service, and
then send their handwritten document images via the TLS
connections to this service to convert them into digital text
documents.

Intel SGX

Global
Training

Local
Updates

Global
Updates

Figure 10. Deployment #2: secure federated learning.
6.2 Secure Federated Learning: Medical Use-case
The second use case of secureTF is secure federated learning
(FL) [60] (see Figure 10). FL is proposed to allow multiple par-
ties to jointly train a model that takes benefits from diverse
datasets from the parties. In our second use-case, several
hospitals are actively collaborating to train a model for diag-
nosing brain tumors. However, at the same time, they want
to protect patients’ data regarding their privacy. Thus, each
hospital performs the training locally using its local data
and thereafter shares the model parameters with the global
training computation without sharing its actual data. Unfor-
tunately, the local model may reveal private information [9].
These local models have been demonstrated to be vulnerable
to several privacy attacks [44]. In addition, there is empirical
evidence to the risks presented by machine learning models,
e.g., the work by Matt et al [34] demonstrates that extracted
images from a face recognition system look similar to images
from the underlying training dataset. To handle this issue,
these hospitals make use of secureTF to run the global train-
ing inside Intel SGX enclaves. They only share their local
model after performing the attestation over the enclaves.
The communication with the global training enclaves are
performed via TLS connections.

7 Discussion and Lessons Learned
In this section, we discuss the lessons learned based on the
limitations of our commercially available platform, and also,
present open research problems for the future work.

7.1 Training Vs Classification
The limited EPC size has different implications for training vs
classifications. As shown in §5, training deep learning with
the larger datasets inside the enclave is performance-wise
limiting due to EPC paging. However, the EPC size is quite
practical for classifying/inference processes since the size
of the deployed ML model is usually much smaller than the
original training data. As discussed in §6, we are effectively
using secureTF for image classification (§6.1), and federated
machine learning use case (see §6.2).
To improve the performance of the training phase in the

limited enclave memory regions, we are exploring two av-
enues: (1) data normalization: we can further improve the
training performance, by normalizing input data, e.g., in im-
age recognition services, all input images can be normalized

11

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

to the size of 32 × 32; and (2) Ice lake CPUs Intel announced
the next generation processors called ice lakewhich supports
larger EPC size [27].

7.2 ML Model Optimizations
To further improve the performance, we are exploring per-
form optimizations for the ML models leveraging pruning
and quantization tools, such as Intel OpenVINO Toolkit [99].
Since TensorFlow models are typically abstracted as directed
computation graphs (see §2), where nodes are operations
and edges present the communication between operations.
By performing optimization on the model graphs such as
pruning unnecessary edges and nodes, we can significantly
improve the performance of classification/inference com-
putations. The optimization also provides an opportunity
to deploy ML inference service at edge devices supporting
SGX [29] in edge computing. In fact, we have been working
with an IoT-based company to use secureTF for securely de-
ploying the latest trained models at the edge, while achieving
high-performance.

7.3 Security Analysis and Properties
secureTF protects machine learning computations against
attackers with privileged access by executing securely these
computations inside Intel SGX enclaves. All data (input train-
ing/inference data, model, and Python code) and communica-
tions outside enclaves are always encrypted. The encrypted
data is only decrypted inside enclaves. The keys or secrets
to decrypt the data are protected inside the CAS component
which is also running inside an enclave. The CAS compo-
nent only provides these secrets via TLS connections to the
machine learning enclaves after attesting these enclaves. A
detailed security analysis of CAS is provided in [39].

Intel SGX is typically vulnerable to side-channel attacks [22,
26, 37, 50, 93, 95, 96]. Although this type of attacks are out-
of-scope of our work, it is worth to mention that the version
of SCONE, which was integrated in secureTF, can not only
protect against L1-based side channels attacks [67] but also
Iago attacks [25]. We can also make use of LLVM-extensions,
e.g., speculative load hardening [23] to prevent exploitable
speculation which helps us to present the variants of Spec-
tre attacks [26, 50]. In addition, the next generation of Intel
CPUs [27] seems to provide hardware-based solutions to
handle several types of side-channel attacks.
secureTF supports only TLS-based communications to

protect against eavesdropping on any communication be-
tween the CAS and computation nodes in a distributed set-
ting. In secureTF, the TLS certificates are generated inside
the SGX enclave running CAS, and thus they cannot be seen
by any human. This mechanism allows secureTF to handle
man-in-the-middle attacks. However, TLS and its predeces-
sor are also vulnerable to side-channel attacks, e.g., attacks

on RSA [13, 20]. Thus, in secureTF, we recommend to com-
pletely disable RSA encryption and replace it by forward-
secret key exchanges e.g., Elliptic-curveDiffie–Hellman (ECDHE)
encryption [68].

7.4 GPUs Support
Graphics Processing Units (GPUs) have become popular
and essential accelerators for machine learning [18]. Un-
fortunately, trusted computing in GPUs is not commercially
available, except research prototypes, such as Graviton [94].
Therefore, secureTF provides security properties by relying
on Intel SGX which is supported only for CPUs.
Technically, secureTF can also offer the GPU support,

however, it requires weakening the threat model, i.e., we
need to assume that the GPU computations and the commu-
nication between GPU and CPU are secure. The relaxation
of the threat model may be acceptable in practice for sev-
eral use cases, e.g., when users just want to protect their
Python code and models for machine learning computations.
secureTF can ensure the code and models are encrypted.
However, this extension may not practical for many other
use cases [94]. Therefore, we are currently investigating GPU
enclave research proposals, e.g., Graviton [94] and HIX [47]
which proposed hardware extensions to provide a secure
environment on GPUs.

8 Related Work
In this section, we summarize the related work about secure
machine learning and shielded execution using Intel SGX.

Earlyworks on preserving-privacy datamining techniques
have relied on randomizing user data [21, 32, 73]. These
approaches trade accuracy for privacy. They include a pa-
rameter that allows making a trade-off between privacy and
accuracy. The proposed algorithms aim to provide privacy of
computation, but they do not protect the results themselves
in the cloud, nor do they secure the classification phase.
While this can protect the users privacy, it does not cover
training as in secureTF. Further, we target to provide the
same accuracy level as the native execution.

Graepel et al. [38] developed machine learning algorithms
to perform both training and classification on encrypted data.
The solution is based on the properties of homomorphic
encryption. However, homomorphic encryption schemes
provide restrictive computing operations, and incur high
performance overheads. There have been a series of recent
works [48, 54, 62, 64] aimed to provide secure machine learn-
ing platforms with Secure multiparty computation (MPC).
Especially, Delphi [62] and CrypTFlow [54] demonstrated
that they outperform previous works. However, these sys-
tems also were designed only for securing inferences. se-
cureTF is instead based on a hardware-based encryption
approach (i.e., Intel SGX) and it supports both training and
inference computations.

12

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

Shielded execution provides strong security guarantees
for legacy applications running on untrusted platforms [16].
Prominent examples include Haven [16], SCONE [12], and
Graphene-SGX [90]. Our work builds on the SCONE frame-
work. Intel SGX has become available in clouds [36, 49],
unleashing a plethora of services to be ported, including
Web search [72], actor framework [76], storage [15, 52],
leases [85], monitoring and profilers [14, 51], software up-
date [70], FaaS [88], networking [86, 87], and data analytics
systems [57, 77, 100].
Recently, several secure machine learning systems have

been proposed, which rely on Intel SGX to support secure
machine learning [40, 46, 65, 89]. Privado [40] proposes a
mechanism to obtain oblivious neural networks. Then, it
executes the oblivious neural network inside SGX enclaves
for secure inferencing. Slalom [89] makes use of a combina-
tion of Intel SGX and untrusted GPUs to secure Deep Neural
Networks (DNNs) computations. The idea of Slalom is that
it splits the DNN computations into linear operations (e.g.,
matrix multiplications) on GPUs, whereas performing the
non-linear operations (eg. ReLUs operations) inside Intel
SGX enclaves. This approach allows achieving much better
performance since the intensive computation is performed
with GPUs. Unfortunately, Slalom still has several limita-
tions. First, as Privado, it focuses only on secure inferences.
It refers to secure training computations as a research chal-
lenge. Second, it requires Tensorflow users to heavily modify
or redevelop their existing code. Third, it does not support
distributed settings, i.e., it does not support secure connec-
tions between SGX enclaves. Finally, Slalom is not production
ready, in fact, it indicates that it can be used only for testing.
Chiron [46] is the most relevant for secureTF, where they
leveraged Intel SGX for privacy-preserving machine learning
services. Unfortunately, Chiron is a single-threaded system
within an enclave. In addition, Chiron requires adding an
interpreter and model compiler into enclaves which intro-
duce significant runtime overhead since the limited EPC size.
The work from Ohrimenko et al. [65] also used Intel SGX to
secure machine learning computations, however, it supports
only a limited number of operators. In contrast, we propose
secureTF — a practical distributed machine learning frame-
work for securing both training and inference computations.

9 Conclusion
In this paper, we report on our experience with building and
deploying secureTF, a secure TensorFlow-based machine
learning framework leveraging the hardware-assisted TEEs,
specifically Intel SGX. secureTF extends the security prop-
erties of a secure stateless enclave in a single node to secure
unmodified distributed stateful machine learning applica-
tions. Thereby, it provides a generic platform for end-to-end
security for the input data, ML model, and application code.
Moreover, it supports both training and classification phases

while providing all three important design properties for the
secure machine learning workflow: transparency, accuracy,
and performance. secureTF is a commercially available plat-
form, and is currently being used in production by four major
customers. While there are several open challenges and limi-
tations of our system, our experience shows that secureTF
strives for a promising approach: it incurs reasonable perfor-
mance overheads, especially in the classification/inference
process, while providing strong security properties against
a powerful adversary. Lastly, we also discussed several open
challenges and on-going extensions to the system.

Acknowledgements.We thank our shepherd Professor Sara
Bouchenak and the anonymous reviewers for their insightful
comments and suggestions. This work has received funding
from the Cloud-KRITIS Project and the European Union’s
Horizon 2020 research and innovation programme under
the LEGaTO Project (legato-project.eu), grant agreement No
780681.

References
[1] Alpine Linux. https://alpinelinux.org/. Accessed: May, 2020.
[2] Alpine Linux FAQ. https://wiki.musl-libc.org/faq.html. Accessed:

May, 2020.
[3] AMD Secure Technology. https://www.amd.com/en/technologies/

security. Accessed: May, 2020.
[4] Comparison of C/POSIX standard library implementations for Linux.

http://www.etalabs.net/compare_libcs.html. Accessed: May, 2020.
[5] Deepmind health and research collaborations. https://deepmind.com/

applied/deepmind-health/working-partners/health-research-
tomorrow/. Accessed: May, 2020.

[6] Graphene Tensorflow Lite benchmark. https://github.com/oscarlab/
graphene-tests/tree/master/tensorflow/. Accessed: May, 2020.

[7] Tensorflow lite. https://www.tensorflow.org/lite. Accessed: Jan, 2020.
[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, et al. TensorFlow: A System for Large-
Scale Machine Learning. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

[9] M. Abadi, A. Chu, I. Goodfellow, H. B.McMahan, I. Mironov, K. Talwar,
and L. Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2016.

[10] G. Allen and M. Owens. The Definitive Guide to SQLite. Apress, 2010.
[11] ARM. Building a secure system using TrustZone technol-

ogy. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf, 2009. Accessed: May, 2020.

[12] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, et al. SCONE: Secure Linux Containers
with Intel SGX. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

[13] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt. DROWN:
Breaking TLS using sslv2. In 25th USENIX Security Symposium
(USENIX Security), 2016.

[14] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer. Tee-perf: A profiler
for trusted execution environments. In 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2019.

13

https://alpinelinux.org/
https://wiki.musl-libc.org/faq.html
https://www.amd.com/en/technologies/security
https://www.amd.com/en/technologies/security
http://www.etalabs.net/compare_libcs.html
https://deepmind.com/applied/deepmind-health/working-partners/health-research-tomorrow/
https://deepmind.com/applied/deepmind-health/working-partners/health-research-tomorrow/
https://deepmind.com/applied/deepmind-health/working-partners/health-research-tomorrow/
https://github.com/oscarlab/graphene-tests/tree/master/tensorflow/
https://github.com/oscarlab/graphene-tests/tree/master/tensorflow/
https://www.tensorflow.org/lite
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

[15] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. SPEICHER: Securing lsm-based key-value stores us-
ing shielded execution. In 17th USENIX Conference on File and Storage
Technologies (FAST), 2019.

[16] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from
an Untrusted Cloud with Haven. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2014.

[17] Bazel. The Bazel project. https://bazel.build/. Accessed: May, 2020.
[18] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine

learning: Parallel and distributed approaches. Cambridge University
Press, 2011.

[19] J. Bennett, S. Lanning, et al. The netflix prize. In Proceedings of KDD
cup and workshop, 2007.

[20] H. Böck, J. Somorovsky, and C. Young. Return of bleichenbacher’s
oracle threat (ROBOT). In 27th USENIX Security Symposium (USENIX
Security), 2018.

[21] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning clas-
sification over encrypted data. In Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS), 2015.

[22] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi. Software grand exposure:{SGX} cache attacks are
practical. In 11th {USENIX} Workshop on Offensive Technologies
(WOOT), 2017.

[23] C. Carruth. Speculative load hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html, 2019.

[24] S. Checkoway and H. Shacham. Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface. In Proceedings of the 18th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[25] S. Checkoway and H. Shacham. Iago attacks: Why the system call
api is a bad untrusted rpc interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[26] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpec-
tre attacks: Stealing intel secrets from sgx enclaves via speculative
execution. arXiv e-prints, 2018.

[27] I. Corp. 10th Generation Intel Processors Core Families. https:
//www.intel.com/content/dam/www/public/us/en/documents/
datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf.
Accessed: May, 2020.

[28] I. Corp. Intel Software Guard Extensions (Intel SGX). https:
//software.intel.com/en-us/sgx. Accessed: May, 2020.

[29] I. Corporation. Intel nuc kits. Accessed: 28 May 2020.
[30] V. Costan and S. Devadas. Intel SGX Explained. IACR Cryptology

ePrint Archive, 2016.
[31] D. Dolev and A. C. Yao. On the security of public key protocols. In

Proceedings of the 22nd Annual Symposium on Foundations of Computer
Science (SFCS), pages 350–357, 1981.

[32] W. Du and Z. Zhan. Using randomized response techniques for
privacy-preserving data mining. In Proceedings of the ninth interna-
tional conference on Knowledge discovery and data mining (SIGKDD),
2003.

[33] K. R. Foster, R. Koprowski, and J. D. Skufca. Machine learning, med-
ical diagnosis, and biomedical engineering research-commentary.
Biomedical engineering online, 2014.

[34] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

[35] Google. Google protocol buffers. https://developers.google.com/
protocol-buffers/. Accessed: May, 2020.

[36] J. C. Gordon. Microsoft azure confidential computing with intel sgx.
Accessed: 28 May 2020.

[37] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache attacks on
intel sgx. In Proceedings of the 10th European Workshop on Systems
Security, 2017.

[38] T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Machine learn-
ing on encrypted data. In Proceedings of the International Conference
on Information Security and Cryptology, 2012.

[39] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. L. Quoc, S. Arnautov,
A. Martin, V. Schiavoni, P. Felber, and C. Fetzer. Trust Management
as a Service: Enabling Trusted Execution in the Face of Byzantine
Stakeholders. In Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2020.

[40] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee. Privado:
Practical and secure dnn inference with enclaves. 2018.

[41] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria. What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), 2014.

[42] M. Hähnel, W. Cui, and M. Peinado. High-resolution side channels
for untrusted operating systems. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2017.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[44] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models under the gan:
Information leakage from collaborative deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[45] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017.

[46] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel. Chiron:
Privacy-preserving machine learning as a service. CoRR, 2018.

[47] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh. Heteroge-
neous isolated execution for commodity gpus. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

[48] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. Gazelle: A
low latency framework for secure neural network inference. In
Proceedings of the 27th USENIX Conference on Security Symposium
(USENIX Security), 2018.

[49] P. Karnati. Data-in-use protection on ibm cloud using intel sgx.
Accessed: 28 May 2020.

[50] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre Attacks: Exploiting Speculative Execution. In 40th IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[51] R. Krahn, D. Dragoti, F. Gregor, D. Le Quoc, V. Schiavoni, P. Felber,
C. Souza, A. Brito, and C. Fetzer. TEEMon: A continuous perfor-
mance monitoring framework for TEEs. In Proceedings of the 21th
International Middleware Conference (Middleware), 2020.

[52] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhato-
tia, and C. Fetzer. Pesos: Policy enhanced secure object store. In
Proceedings of the Thirteenth EuroSys Conference (EuroSys), 2018.

[53] A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[54] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma. CrypTFlow: Secure TensorFlow Inference. In IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[55] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.
TensorSCONE: A Secure TensorFlow Framework using Intel SGX.
arXiv preprint arXiv:1902.04413, 2019.

14

https://bazel.build/
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

[56] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Fel-
ber, and C. Fetzer. SGXBOUNDS: Memory Safety for Shielded Execu-
tion. In Proceedings of the 12th ACM European Conference on Computer
Systems (EuroSys), 2017.

[57] D. Le Quoc, F. Gregor, J. Singh, and C. Fetzer. Sgx-pyspark: Secure
distributed data analytics. In Proceedings of the World Wide Web
Conference (WWW), 2019.

[58] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.
[59] N. D. Matsakis and F. S. Klock, II. The rust language. In Proceedings of

the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology, HILT ’14, 2014.

[60] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-Efficient Learning of Deep Networks from Decen-
tralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, 2017.

[61] D. Merkel. Docker: lightweight linux containers for consistent devel-
opment and deployment. Linux Journal, 2014.

[62] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa.
Delphi: A cryptographic inference service for neural networks. In
29th USENIX Security Symposium (USENIXSecurity), 2020.

[63] S. Mofrad, F. Zhang, S. Lu, and W. Shi. A comparison study of Intel
SGX and AMD memory encryption technology. In Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy, 2018.

[64] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security
and Privacy (S&P), 2017.

[65] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine learn-
ing on trusted processors. In Proceedings of the 25th USENIX Security
Symposium (USENIX Security), 2016.

[66] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. Intel
MPX Explained: A Cross-layer Analysis of the Intel MPX System
Stack. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems, 2018.

[67] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer. Varys:
Protecting SGX enclaves from practical side-channel attacks. In
Proceedings of the USENIX Annual Technical Conference (USENIX ATC),
2018.

[68] R. Oppliger. SSL and TLS: Theory and Practice. Artech House, 2016.
[69] M. Orenbach, M. Minkin, P. Lifshits, and M. Silberstein. Eleos: Exit-

Less OS services for SGX enclaves. In Proceedings of the 12th ACM
European ACM Conference in Computer Systems (EuroSys), 2017.

[70] W. Ozga, D. Le Quoc, and C. Fetzer. A practical approach for updating
an integrity-enforced operating system. In Proceedings of the 21th
International Middleware Conference (Middleware), 2020.

[71] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical state continuity for protected modules. In Pro-
ceedings of the 32nd IEEE Symposium on Security and Privacy (S&P),
2011.

[72] R. Pires, D. Goltzsche, S. B.Mokhtar, S. Bouchenak, A. Boutet, P. Felber,
R. Kapitza, M. Pasin, and V. Schiavoni. CYCLOSA: decentralizing pri-
vate web search through sgx-based browser extensions. In 38th IEEE
International Conference on Distributed Computing Systems(ICDCS),
2018.

[73] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe.
PrivApprox: Privacy-Preserving Stream Analytics. In Proceedings of
the 2017 USENIX Annual Technical Conference (USENIX ATC), 2017.

[74] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards Trusted Cloud
Computing. In Proceedings of the 1st USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2009.

[75] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed
data: A new abstraction for building trusted cloud services. In Pro-
ceedings of the 21st USENIX Security Symposium, 2012.

[76] V. A. Sartakov, S. Brenner, S. Ben Mokhtar, S. Bouchenak, G. Thomas,
and R. Kapitza. Eactors: Fast and flexible trusted computing using
sgx. In Proceedings of the 19th International Middleware Conference
(Middleware), 2018.

[77] F. Schuster, M. Costa, C. Gkantsidis, M. Peinado, G. Mainar-ruiz, and
M. Russinovich. VC3 : Trustworthy Data Analytics in the Cloud
using SGX. In Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P), 2015.

[78] S. Shinde, D. Tien, S. Tople, and P. Saxena. Panoply: Low-tcb linux
applications with sgx enclaves. In Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS), page 12, 2017.

[79] O. Simeone. A brief introduction to machine learning for engineers.
arXiv preprint arXiv:1709.02840, 2017.

[80] L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling
with Exception-less System Calls. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2010.

[81] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning.
In Proceedings of the 31th AAAI Conference on Artificial Intelligence
(AAAI), 2017.

[82] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

[83] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014.

[84] S. Tallam, C. Coutant, I. L. Taylor, X. D. Li, and C. Demetriou. Safe
icf: Pointer safe and unwinding aware identical code folding in gold.
In GCC Developers Summit, 2010.

[85] B. Trach, R. Faqeh, O. Oleksenko, W. Ozga, P. Bhatotia, and C. Fetzer.
T-lease: A trusted lease primitive for distributed systems. In ACM
Symposium on Cloud Computing 2020 (SoCC), 2020.

[86] B. Trach, A. Krohmer, S. Arnautov, F. Gregor, P. Bhatotia, and C. Fetzer.
Slick: Secure Middleboxes using Shielded Execution. 2017.

[87] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.
ShieldBox: Secure Middleboxes using Shielded Execution. In Pro-
ceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR),
2018.

[88] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer. Clemmys:
Towards secure remote execution in faas. In 12th ACM International
Conference on Systems and Storage (SYSTOR), 2019.

[89] F. Tramèr and D. Boneh. Slalom: Fast, verifiable and private execu-
tion of neural networks in trusted hardware. In 7th International
Conference on Learning Representations (ICLR), 2019.

[90] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical library
OS for unmodified applications on SGX. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), 2017.

[91] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Druschel,
R. Rodrigues, J. Gehrke, and A. Post. Guardat: Enforcing data poli-
cies at the storage layer. In Proceedings of the 10th ACM European
Conference on Computer Systems (EuroSys), 2015.

[92] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Security Sympo-
sium (USENIX Security), 2018.

[93] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Security Sympo-
sium (USENIX Security), 2018.

[94] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution
environments on gpus. In Proceedings of the 13th USENIX Symposium

15

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the 21st
ACM/IFIP International Middleware Conference (Middleware 2020).

on Operating Systems Design and Implementation (OSDI), 2018.
[95] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,

H. Tang, and C. A. Gunter. Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[96] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom. Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-
order execution. Technical report, 2018. See also USENIX Security
paper Foreshadow [93].

[97] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853,

2015.
[98] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-

istic side channels for untrusted operating systems. In Proceedings of
the 36th IEEE Symposium on Security and Privacy (S&P), 2015.

[99] A. Zaytsev and A. Zaytsev. Openvino toolkit.
=https://software.intel.com/content/www/us/en/develop/articles/openvino-
relnotes.html. Accessed: 28 May 2020.

[100] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics
Platform. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

16

=

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Machine Learning using TensorFlow
	2.2 Intel SGX and Shielded Execution
	2.3 Threat Model

	3 Design
	3.1 System Overview
	3.2 Design Challenges
	3.3 System Design

	4 Implementation
	4.1 Training Process
	4.2 Classification /Inference Process
	4.3 Configuration and Remote Attestation Service

	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro-benchmark: Remote Attestation and Keys Management
	5.3 Macrobenchmark: Classifying Process
	5.4 Macrobenchmark: Distributed Training

	6 Real-World Deployments
	6.1 Secure Handwritten Documents Analysis
	6.2 Secure Federated Learning: Medical Use-case

	7 Discussion and Lessons Learned
	7.1 Training Vs Classification
	7.2 ML Model Optimizations
	7.3 Security Analysis and Properties
	7.4 GPUs Support

	8 Related Work
	9 Conclusion
	References

