
Multi-Criteria-based Dynamic User Behaviour Aware
Resource Allocation in Fog Computing

RANESH KUMAR NAHA∗ and SAURABH GARG∗, University of Tasmania

Fog computing is a promising computing paradigm in which IoT data can be processed near the edge to
support time-sensitive applications. However, the availability of the resources in the computation device is not
stable since they may not be exclusively dedicated to the processing in the Fog environment. This, combined
with dynamic user behaviour, can affect the execution of applications. To address dynamic changes in user
behaviour in a resource limited Fog device, this paper proposes a Multi-Criteria-based resource allocation
policy with resource reservation in order to minimise overall delay, processing time and SLA violation which
considers Fog computing-related characteristics, such as device heterogeneity, resource constraint and mobility,
as well as dynamic changes in user requirements. We employ multiple objective functions to find appropriate
resources for execution of time-sensitive tasks in the Fog environment. Experimental results show that our
proposed policy performs better than the existing one, reducing the total delay by 51%. The proposed algorithm
also reduces processing time and SLA violation which is beneficial to run time-sensitive applications in the
Fog environment.

Additional Key Words and Phrases: Fog computing, resource allocation, dynamic behaviour, Internet of things
(IoT), time-sensitive application, application scheduling

1 INTRODUCTION
We are approaching a well-connected modern world in which each and every person and things
will be connected to the internet. According to Statista, the total number of connected devices will
be more than 75 billion by 2025 [39]. By 2022, the monthly mobile internet traffic alone will be 77
exabytes, as predicted by Cisco VNI Global Mobile Data Forecast [11]. The sudden rise of IoT devices
and internet traffic will face unforeseen anarchy if we do not focus on data processing near to the
users. This is the reason why the Fog computing concept has been developed. It is a distributed
computing paradigm in which applications are processed near to users or near to the edge by using
either edge devices or utilising the idle computation power of various autonomous devices [32].
According to Shi et al. [37] edge computing and Fog computing are interchangeable with each
other but edge is more towards things-centric while Fog is mostly infrastructure-centric. The Fog
computing environment consists of undedicated servers for application processing, unlike previous
computing paradigm such as the Cloud [7]. Any devices, such as routers, switches, RoadSide Units
(RSUs), smartphones, tablets, laptop and stationary computation devices that have computation
power can be part of Fog computation and processing [31, 33].
Clearly such devices are heterogeneous, not dedicated devices and connected using multiple

type of network connections [17]. Moreover, the user behaviour in the Fog environment can also
be dynamic. Users might change their requirements even after submitting an application request
based on their current situation. For example, real-time traffic application and augmented reality
applications are the two examples of such applications in which users’ behaviour might vary
constantly, based on their changing requirements, as well as the current situation [33].

The problems of dynamic user behaviour and the unstable characteristics of available resources
in the devices make resource allocation a difficult task. Resource allocation in the Fog should
identify and select resources, and consider these issues for efficient and reliable execution of the
application. If the application is for an emergency system, then failing to complete the tasks on time

Authors’ address: Ranesh Kumar Naha, raneshkumar.naha@utas.edu.au; Saurabh Garg, saurabh.garg@utas.edu.au, Univer-
sity of Tasmania, School of Technology, Environments and Design, Hobart, Tasmania, 7001.

, Vol. 1, No. 1, Article . Publication date: December 2019.

ar
X

iv
:1

91
2.

08
31

9v
1

 [
cs

.D
C

]
 1

7
D

ec
 2

01
9

will incur financial loss and may even cause a threat to human life (for example, the emergency fire
response service, driverless cars, emergency vehicle management, and many more).

Most research [2, 26, 28, 38] on Fog computing neglected the combination of user and resource
challenges as regards dynamic user behaviour. To fill this gap, this research aims to develop a
resource allocation technique to minimise user and resource related challenges. In summary, this
research has the following contributions:

(1) To propose a solution to the application placement problem while user behaviour is changing
dynamically;

(2) To propose Multi-Criteria (MC) based resource allocation for Fog applications which will
consider multiple Fog characteristics, and

(3) To introduce a previous task submission history-based resource reservation technique to
deal with the time-sensitivity of applications.

The rest of the paper is organised as follows. Section 2 presents the literature about Fog resource
allocation and scheduling. Section 3 describes the system scenario in smart transportation and
augmented reality related applications. Next, Section 4 describes the problem and solution approach.
Section 5 presents the details on themethodology by covering proposed algorithms, networkmodels,
pricing models and performance metrics. The simulation and the experimental setup are discussed
in Section 6. Section 7 presents experimental results and discussion, and finally, Section 8 concludes
this article and suggests future research direction.

2 RELATEDWORK
The resource allocation problem has been studied in various computing paradigms such as the
Cloud and Fog computing environment. In this section, we present a state-of-the-art solution for the
problem of resource allocation for time sensitive applications in the Fog and other distributed com-
puting environments. Resource allocation policies used in other distributed computing paradigms
do not fit exactly with Fog computing because of the dynamic nature of the users and resources in
the Fog environment.
A number of research studies about resource allocation in the Fog has been undertaken in the

last few years Most of these have considered user requirements and network throughput for Fog
resource allocation. Some work focuses on Cloud-Fog resource allocation while others only focus
on Fog resource allocation. We summarise the current works and, at the end of this section, describe
how our works would differ from others.

2.1 Resource Allocation in Cloud and Distributed Computing
Resource allocation policies are extensively studied in the Cloud computing paradigm because
costs is the most important factor for the Cloud users. Ghanbari and Othman [18] proposed a three
level, priority-based scheduling algorithm for the Cloud. Their proposed algorithm considered
the objective level, the attributes level and alternative level priority. However, priority in multiple
characteristics of the resources is not considered in their work.

Baranwal et al. [6] proposed double auction-based resource allocation in which they employed
multi-attribute combinations without considering the cost. However, their work implemented
auction fairness to ensure the satisfaction of the users and also considered provider reputation
to avoid spurious QoS assurance. Xu et al. [46] proposed a Cloud resource allocation technique
for cost- and time-sensitive users. Their proposed algorithm is based on cooperative game theory.
However, future availability of the resources is not considered in their work. Zheng and Shroff [52]
studied the online scheduling problem for deadline-sensitive jobs in the Cloud environment. Their

2

work considered multiple resource sharing to meet application deadlines and proposed an online
algorithm to deal with deadline sensitivity.
Some research work specifically focused on user behaviour in the distributed computing envi-

ronment. Schlagkamp et al. [36] investigated the differences and similarities in user job submission
behaviour in High Throughput Computing (HTC) and High-Performance Computing (HPC). Their
findings show that modelling user-based HTC job submission behaviour requires knowledge of the
underlying bags of tasks, which is often unavailable. Also suggested was in-depth characterisation
of waiting times in order to improve the correlation analysis between queueing times and the subse-
quent user job submission behaviour. Panneerselvam et al. [34] proposed a novel prediction model
named InOt-RePCoN (Influential Outlier Restrained Prediction with Confidence Optimisation)
which is aimed at a tri-fold forecast for predicting the expected number of job submissions, the
session duration for users, and also the job submission interval for the incoming workloads. The
proposed framework exploits the AutoregRessive Integrated Moving Average (ARIMA) technique,
integrated with a confidence optimiser for prediction. It achieves a reliable level of accuracy in
predicting user behaviours by way of exploiting the inherent periodicity and predictability of every
individual job of every single user. It can predict user behaviour trends but it fails to address the
problem of dynamic changes in user behaviour.

2.2 Resource Allocation in Fog Computing
Bittencourt et al. [8] proposedmobility-aware application scheduling by considering the hierarchical
composition of the Fog and Cloud environments. However, they did not consider other unique
characteristics of the Fog computing environment, such as CPU availability fluctuation and future
arrival of the applications. Silva and Fonseca [12] proposed Fog-Cloud resource allocation which
would consider available system resources. Their proposed mechanism is known as Gaussian
Process Regression for Fog-Cloud Allocation (GPRFCA). GPRFCA analyses previous submission
requests and latency for resource allocation. It also minimises the energy consumption of Fog
nodes. In another work, Du et al. [13] proposed resource allocation for the Fog-Cloud environment
by ensuring min-max fairness. The main goal of that work is to optimise transmitted power, radio
bandwidth and computation resources by guaranteeing maximum tolerable delay and user fairness.
Their proposed resource allocation algorithm is known as Computation Offloading and Resource
Allocation algorithm (CORA).

Throughput and load balancing are also important for resource allocation in the Fog. Yu et al.
[48] proposed a resource allocation technique by employing three different algorithms (for example,
Modified Distributed Inner Convex Approximation, Joint Benders Decomposition and Dinkelbach
Algorithm) for Fog resources. The objective of that is to maximise the utility function by considering
network throughput. Another work by Yu et al. [49] introduces the alternating direction method of
multipliers (ADMM) and Branch-and-Bound algorithms, along with Joint Benders Decomposition
and Dinkelbach Algorithm for large-scale resource allocation in the Fog environment. For this
large-scale allocation, throughput was considered, based on the distance of Fog nodes. Xu et al.
[45] proposed using the Dynamic Resource Allocation Method (DRAM) to balance the load in
the Fog environment. In this method, they considered resource requirements and spare space in
computation nodes, in order to determine the dynamic resource scheduling and static resource
allocation.
Zhang and Li [51] proposed a resource allocation technique that preserves the privacy of Fog

nodes from unwanted attacks, even if the private key of all Fog nodes is corrupted. In their proposed
scheme, a group public key will be generated by a group of Fog devices that will make the system
secure against eavesdroppers and that will be used as a smart gateway. García-Valls et al. [16]
discussed time-sensitivity of the cyber physical system due to dynamic behaviour enforcement.

3

Along with other techniques, they suggested setting priority to the servers. However, it is required
to analyse extensively the prioritisation of Fog devices since the devices in the Fog environment
are more dynamic. In another work, García-Valls et al. [15] proposed an execution model using
Fog servers for smart eHealth services. The key idea of this work is offloading processes to the
multicore Fog servers to accelerate the processing. However, the main focus of our work is the
consideration of user behaviour and Fog characteristics.

Table 1. Comparison of various resource allocation method in Fog computing environment

Research
Work

Device het-
erogeneity

Resource
constraint

Device
mobility

CPU
availability
fluctuation

Completion
time

Application
time-

sensitiveness

Future
arrival

Aazam et al.
(2016) [2] ✓ ✓ ✓

Skarlat et al.
[38] (2017) ✓ ✓ ✓ ✓

Bittencourt et
al. [8] (2017) ✓ ✓ ✓

Silva and
Fonseca
(2018) [12]

✓ ✓ ✓ ✓

Du et al.
(2018) [13] ✓ ✓

Yu et al.
(2018) [48] ✓ ✓

Xu et al.
(2018) [45] ✓ ✓ ✓

Zhang and Li
(2018) [51] ✓ ✓

García-Valls
et al. (2018)
[15]

✓ ✓ ✓ ✓

Mahmud et al.
[28] (2018) ✓ ✓ ✓ ✓

MC-Based
(This work) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mahmud et al. [28] proposed a Quality of Experience (QoE) aware application placement policy
which prioritises different application placement by using fuzzy logic. In this, they considered
service access and round-trip time, resource requirements and availability, and processing time
and speed, while placing an application into the Fog infrastructure. Using fuzzy logic, the Rating
of Expectation (RoE) and Capacity Class Score (CCS) have been calculated before placing an
application in the Fog infrastructure. QoE aware application placement is compared with MeFoRE
[2], QoS-aware [38] and CloudFog [26] which showed that the proposed QoE-aware policy would
perform better on processing time, service quality, infrastructure cost and network traffic. Hence,
we are going to compare our proposed MC-based resource allocation with QoE-aware policy as a
validation of our proposed policy. Comparison of various resource allocation methods is presented
in Table 1.
From the above literature, it is clear that no one has considered the unique characteristics of

the Fog such as CPU availability fluctuation, dynamic behaviour of users and the mobility of the
available Fog resources. In this research, we considered the above constraints, along with access

4

time, requirements of resources, and processing time in our proposed policy to solve the dynamic
user behaviour problem in the Fog environment. These constraints will help in the successful
completion of application requests in the highly unstable available resources for Fog application
processing in a time-sensitive manner.

3 SYSTEM SCENARIO
If IoT based smart transportation and augmented reality related applications depend on the Cloud
service, then time sensitivity of the applications may not be met. Usually, the communication
latency of the Cloud service is high, and also real-time interaction is hard [27]. It is also assumed
that the network latency in the Cloud is 100 milliseconds (ms) from the source [27]. However, users
of such applications would constantly need real-time interactions. Processing requests near to the
users is a good solution that can be undertaken by the Fog computing environment. Resources in
the Fog are dynamic with respect to utilisation, location and availability. Fog middleware has to
handle the dynamic nature of the resources, as well as the dynamic nature of the users. Further
descriptions of smart transportation and augmented reality related applications are presented
below. However, the proposed solution that is presented in this paper would cope with all types of
time-sensitive applications in the Fog.

3.1 Special Occurrence in Smart Transportation System
For the IoT based transportation system, the application is required to deal with some frequent
decisions, for example, traffic avoidance, action on roadblocks or accidents, and making way for
emergency vehicles. These types of decisions might be useless if the delay is even a few seconds. In
smart transportation application, each vehicle is considered a user. Assuming that our application
has the functionality to declare a vehicle as an emergency vehicle and based on the risk parameters,
the level of emergency can be varied by the users. If the scenario is some emergency situation
caused by fire, every second is very important. A smart firefighting team would be able to deal
with such emergency situations more efficiently. In such cases, the deadline is an important factor
according to the changing behaviour of the users. Based on the action of smart firefighting, the
amount of damage can be minimised.

One of the other examples is a smart traffic application which is based on the changing behaviour
of users for congestion avoidance and fuel cost minimisation. By using the information from the
connected vehicle and other roadside sensors, it is possible to minimise fuel cost and congestion. In
a smart connected transportation system, every vehicle is equipped with a dash cam. By processing
the data obtained from the dash cam and roadside cameras, we should be able to achieve various
goals. The dash cam could supply information about the current location of the vehicle, road
conditions, traffic conditions, special occurrences (roadblocks or accidents), weather conditions at
current location, and current speed. Other application-related metadata, such as traffic updates,
vehicle fuel consumption characteristics, environmental factors (temperature, light, urban or rural
area, peak or off-peak traffic status) will be retrieved from the local Fog server to process the
application output. Also, some input will be generated from other roadside units (RSU). Fog devices
will be able to process all of the data to generate the output which basically indicates the driving
path, estimated fuel consumption or any other emergency occurrence. The input behaviour of the
users and other sources is dynamic. Due to this, the output is always transformed dynamically,
over time. Users might place a sudden request to minimise the cost of the Fog service but not need
the congestion avoidance and fuel cost minimisation services. To deal with such situations, the
system should find a way to minimise the cost of using Fog applications.

5

3.2 Augmented Reality Related Applications
In augmented reality, users have interactive interaction with the real-world objects with the most
dynamic behaviour. User experience is important in these kinds of applications. Fog computing
can be used to enable better user experience with augmented reality by processing application
requests near the users. An augmented reality application for tourists should provide a seamless
experience. Tourists, generally, love to explore historical or iconic places. They would also want
to know about the history behind the different landmarks and architecture. In such a scenario,
if the processing is done in the Cloud, it may not provide a seamless experience. Similarly, the
user experience will not be good in augmented reality-based on-line games using the Cloud. For
any augmented reality application, user behaviour will always change dynamically. In the case of
augmented reality application for tourists, the user behaviour is always changing, based on the
amount of information they request and the level of detail sought with each request. Augmented
reality-based multi-player online game user requirements can also change dynamically, based on
the level that they are playing and the complexity of that level.

In both scenarios stated above, it is not possible to predict user behaviour while the requirements
of the users are changing over time. We need to understand the pattern of user behaviour so that
we can manage an application for the users to have a seamless service experience. We need to
identify how frequent user behaviour is changing and in which situations it is changing, so that
applications can handle this dynamism.

It is obvious that Fog devices will do the processing for the application and store some intermedi-
ate information. Once the application processing is done, the Fog device may save some information
to the Fog server which would be necessary for the next few hours. For long-term storage, processed
information will be stored in the Cloud for the future. Multiple application requests could be sent
by an end device to Fog devices for processing. These applications will be scheduled by various
Fog devices in order to achieve minimum latency.

3.3 Resource Model
The processing devices in the Fog environment are Fog devices and Fog servers. These devices
contain processing power, RAM and network connectivity. More details about the resources are
presented in Table 6. The device that has more computational resources compared with Fog devices
is designated as the Fog server. These devices support virtualisation with Virtual machines. Multiple
Fog devices form a Fog cluster and every Fog cluster is connected to a Fog server. Fog devices and
servers are connected to the Cloud, in order store data for long term processing. Fog devices are
responsible for IoT application processing which can also be defined as Fog processing. Each IoT
application consists of multiple tasks; more details about tasks are presented in Table 6.

3.4 Application scheduling on Fog Infrastructure
In order to satisfy time-sensitivity requirements, applications need to be executed in the Fog
infrastructure. Fig. 1 shows the application scheduling and execution, using Fog resources in the
Fog computing environment. Any computation device which is willing to share its resources for
computation can be registered in the Fog environment and the owner of the device will receive
incentives based on its contribution [7]. On the other hand, if the device is unable to serve the
request after the agreement, then the device owner should pay the penalty. In our application
scenario, users submit the request to the application for further processing. The Fog app broker
evaluates selected resources for allocation by analysing the requirements and behaviour of the
users and the resources.

6

Fig. 1. Application scheduling in Fog environment.

An application broker is a mediator between the Fog application and the Fog platform. It selects
appropriate resources with the help of the Fog platform. The Fog app broker also reserves resources
based on users’ behaviour. The Fog platform caters for resource scheduling, monitoring, reservation
and management. The application is deployed in the Fog infrastructure. The Fog platform helps
the Fog app broker to select appropriate resources for resource allocation. This platform monitors
available resources in the Fog environment. After selecting resources, the Fog platform schedules
application to the Fog resources and continues to monitor them. If any dynamic changes are
initiated by the user, the Fog platform reschedules the application to the Fog resources, based on
the changes in users’ requirements. The management of application and Fog infrastructure is taken
care of by the Fog platform. It also reserves resources based on application submission history in
the Fog environment. Moreover, all accounting related operations, such as billing and usage, are
maintained by the Fog platform. A detailed description about resources allocation, reservation and
user dynamic behaviour handling is presented in section 4.4. The final outcome of the application
is collected from the infrastructure and passed to the application, in response to the application for
the submitted request.

7

Table 2. Notations

Symbol Definition Symbol Definition
α Constant value for penalty β Penalty rate
Ab Available battery charge Adr Battery discharging rate by the application
An Constant for processing and transmission delay As Availability score
ATcost Total cost per application Av Availability based on battery power
ABWL Available bandwidth of a link ABWP Available bandwidth of a path
bw Bandwidth BWL Bandwidth of a link
BWP Bandwidth of a path C Link capacity
CA, CB , CN Connection A, B to N Caf s CPU availability fluctuation score
Cc Connection time to the Cloud CFD Connection time to the Fog device
CFS Connection time to the Fog server CP Unit price for connectivity
CPUf r average CPU fluctuation rate CPUs CPU speed in MIPS
Ct Completion time CTA Total completion time for an application instance

CTAavд
Average completion time of the system for each
request Ctotal Total charges for connectivity

CTUavд Average completion time of a single user request Ds Data size
Df ixed Minimum fixed delay DIPavд Average internal communication delay
DIPtotal Total internal communication delay DPavд Average delay
DPtotal Total delay DT Delay time
Et Execution time FDx Cost variable of Fog device
FSx Cost variable of Fog server Frr fluctuation rate in each time-frame
Fr s Free resource score Gd Geographical distance
h Number of hops Js Job size in MIPS
k Total number of intermediate links L Length of the frame
Mc Messaging request to the Cloud MFD Messaging request to the Fog device
MFS Messaging request to the Fog server Mt Migration time
Mth Throughput of the medium Mtotal Total charges for messaging
MP Messaging unit price NdL Network delay of a link
NdP Network delay of a path Nu Number of users sharing a link
Pc Processing request to the Cloud PCu Number of packets need to be sent to the Cloud
Pd , δ Propagation delay Pdn Propagation delay for a node
Pdp Propagation delay of a path PFD Processing request to the Fog device
PFS Processing request to the Fog server Pip Total number of communications
PRd Processing delay PRdn Processing delay for a node
PRdp Processing delay of a path PP Processing unit price
Ptotal Total charges for rules engine Pu Total number of communications sent by the user
Qd Queuing delay Qdn Queuing delay for a node
Qdp Queuing delay of a path Rt Response time
r Response of the request SDmax Maximum supported distance
SP Registry or Shadow unit price SRc Registry or Shadow request to the Cloud in KB

SRFD
Registry or Shadow request to the Fog device in
KB SRFS

Registry or Shadow request to the Fog server in
KB

Stotal Total charges for shadow and registry Tbd Throughput based on distance

TC Total cost for an application instance with n
number of requests TCr eq

cost for using Cloud and Fog environments for a
single request

Td Transmission delay Tdn Transmission delay for a node
Tdp Transmission delay of a path T IP total number of request and response
T P Number of packets transmitted tPc Processing time required by Cloud
tPf d Processing time required by Fog device tPf s Processing time required by fog server
tPu Total time required to send Pu packet tPCu Total time required to send PCu packet
T PT total processing time Tr Transmission rate

th Throughput ti , tj , tn t is Task, i is ith task, j is completed task, n is
the remaining task

Td , Ttn
Task should be completed in d time, tn time
needed to complete the task U Data size unit

W Packet size

4 PROPOSED MC-BASED RESOURCE ALLOCATION
Special occurrences in the smart transportation system and augmented reality related applications
have been chosen as the use case. To solve the resource allocation problem for time-sensitive
applications with deadline requirements and dynamic users’ behaviour in the Fog environment, we
need to find appropriate resources to finish the tasks that need to be completed by the application.
We are going to propose a solution by suggesting an MC-Based resource allocation technique.
The mathematical formulation is carried out to calculate delay and cost for the experiments and
simulations. Finally, three performance metrics are described to evaluate the system performance.

8

4.1 Problem Description
This research is dealing with the following problem: How can deadlines be satisfied, based on user
requirements for time-sensitive applications, considering the dynamic behaviour of users in the
Fog computing environment? Satisfying these requirements is challenging because of the limited,
heterogeneous and dynamic nature of the resources in the Fog computing environment compared
with the Cloud. In the Fog, we have a limited number of heterogeneous devices. On top of that,
there is no dedicated device which is responsible for Fog processing only. Most of the devices in
the IoT environment are connected via wireless networks in which throughput is less compared
with the wired network. Not only that, we do not have full control of the resources because we
are using end devices and intermediate network devices for Fog processing. As handheld mobile
devices are part of the Fog environment, they are moving from one network to another.
Dynamic user behaviour-aware resource allocation in unstable Fog devices is a challenging

task and we need to solve this problem to execute user application in the Fog environment. To
address this problem, this research is going to investigate deadlines as the dynamic behaviour
of users’ requirements. Here, a deadline is referring to both scheduling time and the running
time of the tasks submitted by the users. More precisely, the deadline is the time in which users
would want to complete their tasks. To solve the above problem, efficient resource allocation and
resources reservation are required. We need to have some intelligence to schedule time-sensitive
applications in the Fog environment; otherwise, we will not be able to satisfy the time-sensitivity
of the applications.

During the application execution process, the user might change the deadline for completing the
submitted task. To deal with the deadline constraint request, application processing would be done
in multiple instances that have higher processing capability. The cost of processing of those higher
capacity nodes is definitely higher; thus, the user needs to pay more. However, we would manage
resource provisioning in a way that the user should not pay unnecessarily.
All notations used throughout this paper are listed in Table 2. Assuming that a user submits

a task at ti , at the initial stage and then at any event during the processing of the task, the user
requests to complete the task within Td time. Let, tj be the amount of completed task; hence, the
Fog resource would complete the task tn in Td time, where tn = ti − tj and it would satisfy the
condition Ttn ≤ Td , where Ttn is the time needed to complete the task tn .

4.2 Network Model
CloudSim is based on a conceptual abstraction which does not simulate any real networking entities
such as routers and switches but considers latency stored in the latencymatrix. Topology description
consists of all CloudSim entities, such as data centres, hosts and Cloud brokers stored in BRITE [29]
format. Using BRITE topology, the description of the shortest path of all pairs is calculated by the
Floyd-Warshall algorithm. This latency matrix is generated once while the CloudSim simulation
is initialised. In Fog simulation, the location of the nodes will change over the simulation time;
thus, it is challenging to model network behaviour. However, we can calculate the shortest path of
all pairs using the Floyd-Warshall algorithm but it is not realistic to calculate all of the shortest
paths at one time during the initialisation of the simulation. On the other hand, in the Fog scenario,
maximum devices will be connected via wireless connections and also wired connections, in some
cases. Hence, we need some models for wired and wireless network connections. For wired and
wireless connections, ethernet and Wireless Fidelity (WiFi) are not the only network connection
types at the present time. Besides ethernet and WiFi, there are serial, fibre, cellular and other types
of connectivity. We need some models to implement various types of connectivity.

9

In Fog computing, network traffic load is unpredictable and latency is crucial in such computing
environments in which network latency takes place. Thus, detailed modelling becomes necessary.

In the Fog environment, most of the devices are connected via the wireless or cellular connection,
yet some devices could be connected via LAN, WPAN, WAN or Broadband connections. The
throughput of the network varies based on the network connectivity type. Generally, network
throughput is lower inwireless networks comparedwithwired networks. If twomedia are connected
with two different linked bandwidths, then the lower bandwidth will be considered as being the
available bandwidth [3]. Therefore, the bandwidth of a link can be defined as:

BWL = min
i=CA,CB

bwi (1)

In equation (1), BWL is denoted as the bandwidth of a link which is the minimum bandwidth of
the ports of nodes, CA and CB . The bandwidth of a path connected via several links and nodes is
defined as:

BWP = min
i=CA,CBCN

bwi (2)

Where, BWP represents the bandwidth of a path which is the minimum bandwidth of the ports of
nodes CA and CB CN , bandwidth will be further allocated using the Max-Min fairness
policy. This policy allows using minimum bandwidth between all links while competing with other
users for the bandwidth of the same link. Thus, the available bandwidth of a link or the path for a
user will be as follows:

ABWL = min
i=CA,CB

bwi /Nuor ,ABWP = min
i=1,2.....n

ABWL(i) (3)

For a link, the bandwidth of the link will be divided by the total number of users, Nu , competing
for the same bandwidth. In the case of the path, the available bandwidth will be followed by the
Max-Min policy where i represents the specifically allocated bandwidth of a link for a specific user.
The available bandwidth is further varied by the throughput of the link or path. Under high

offered loads, the throughputs of the link are measured as 36%, 71% and 83% for the packet size
of 64, 512, and 1500 bytes, respectively [41] where the maximum propagation delay is set by
30µs . According to Wang and Keshav [41], “the link throughput is a monotonically increasing and
piecewise linear function of the link load and mean packet size”. Xiao and Keshav [44] defined
1µs propagation delay for 802.11a and 802.11b wireless network. Jun et al. [24] showed that the
theoretical maximum throughput is 55% when CSMA/CA is used, and it is 41% when the data rate
is 11 Mbps and RTS/CTS is used for 1500 byes MSDU size with the absence of transmission errors.
From the above description, it is clear that throughput is varied by connection type and packet size.
If we consider throughput, then the available bandwidth for link and path will be varied according
to their average throughput. Bandwidth is also varied based on the medium type and length [40].
Hence, the availability of a link or a path for a user will be:

ABWL = min
i=CA,CB

bwi /Nu (Mth)or ,ABWP = min
i=1,2.....n

ABWL(i) ×Mth (4)

Where,Mth is the throughput of the medium in percentage.
Network latency depends on four basic parameters: propagation time, transmission time, queuing

time and processing delay [14]. Propagation delay varies based on the type of medium (wired or
wireless).
The total latency for a link of a single communication unit will be as follows:

10

NdL = 2(Qd +Td + Pd + PRd) (5)

Where, NdL represents the network delay of a link,Qd is the queuing delay,Td is the transmission
delay, Pd is the propagation delay, PRd is the processing delay.

To calculate network delay of a path, it is necessary to consider all intermediate links and nodes.
In that, the network delay for a path will be:

NdP = Qdp +Tdp + Pdp + PRdp (6)

Where NdP represents the network delay of the path. Pdp is the propagation delay of all interme-
diate links and can be represented as:

Pdp =
k∑

n=1
Pdn (7)

Where k is the total number of intermediate links.
Queuing delay,Qdp , transmission delay,Tdp and processing delay, PRdp of all intermediate nodes

can be represented as follows:

Qdp =

k∑
n=1

Qdn ;Tdp =
k∑

n=1
Tdn ; PRdp =

k∑
n=1

PRdn (8)

Propagation time is the delay period which is needed to transfer a data packet from one point to
another through the medium. Hence, the time spent by the data packet on the medium is the actual
propagation delay. Wired of the wireless medium have different propagation delays. Coaxial cable
or fibre optic links have a delay of approximately 5µ sec/km and microwave links have a delay of 3µ
sec/km [40]. It could be assumed that propagation delay is negligible in an ethernet network [40].

Seattle and Amsterdam are located within an 8,000 km distance from each other and the propa-
gation delay of optical fibre for this distance is 40 ms [40]. For the wireless medium, the length of
the medium will be the distance of the station from the base station which effects propagation time.

After processing a data packet, packet sends to the media for transmission. The time needed to
send packets to the medium is known as transmission time. Processing delay is denoted as the time
needed to process the frame header, including the determination of the frame needed to send and
bit-level errors. Processing delay depends on the length of the frame (L) and transmission rate (Tr)
[25]. The processing delay can be denoted as:

PRd =
L

Tr
(9)

The length of the frame is varied by the physical layer technologies (for example, 802.3, 802.11,
and 802.16). The transmission rate is varied by the type of network adapter. The processing delay is
almost always constant among four different kinds of delays, except for some special occurrences,
because hardware-assisted forwarding is being used in modern switches with respect to link speed
[20]. Processing delay is constant when a network device is selected and the length of the frame is
fixed. Additionally, for certain paths, due to the dependency on the distance and link capacity, the
transmission and propagation delays are also constant. Hence, in reality, the queueing delay is only
varied randomly because of the variability in the network. Therefore, it is feasible to investigate
the queuing delay thoroughly in simulation, by limiting three other delays as the constant [25].
Hence, the delay is calculated using Equation 5 and can be rewritten as the following:

11

NdL = Qd + PRdp +
k∑

n=1
An (10)

In the above equation,An is the constant for processing and transmission delay, and k is the total
number of intermediate links. We are dealing with queuing delays and propagation delays. The
delays also depends on packet size and link bandwidth. Based on this, the minimum fixed delay
follows a linear function of a packet size and link bandwidth is as follows [10, 21]:

Df ixed (W) =W
h∑
i=1

1/Ci +

h∑
i=1

δi (11)

Where, Df ixed is the minimum fixed delay,W is packet size, h is the number of hops, Ci is the
link capacity and δi is the propagation delay. But, in an operational network, it is not possible for
a single user to utilise the whole bandwidth by a single user. We need to calculate the delay by
using the currently available bandwidth for a specific user or packet. Propagation delay is already
considered in Equation 10. Considering link bandwidth and packet size, Equation 11 can be modified
as follows:

NdL =

⌈
W

h∑
i=1

1/Ci

⌉
∗

(
Qd + PRdp +

k∑
n=1

An

)
(12)

If it is assumed that the service time is zero, then no queue will be formed so, we can ignore the
queuing delay. Therefore, path delay can be calculated using the following equation:

NdL =

⌈
W

h∑
i=1

1/Ci

⌉
∗

(
PRdp +

k∑
n=1

An

)
(13)

4.3 Pricing Model
The pricing of the Fog resource is important because of its heterogeneous nature. Different types
of nodes and networking devices do the computation and data transfer tasks. Aazam and Huh [1]
pproposed a pricing model for IoT in the Fog computing environment. They defined the pricing
differently for new and the old customers. According to their probability model, they provided a
discount to the users based on their past behaviour of service usage. However, pricing based on user
behaviour is unrealistic because the cost of equipment and the operation costs are more important
in defining the pricing. On the other hand, Aazam and Huh [1] considered how concessions will be
given to the users but did not consider how the pricing will be defined.

Many providers such as IBM, Google, AWS, Microsoft and Alibaba are providing services for the
IoT environment. They are each following a different pricing model. IBM defines pricing based
on three different plans: lite, standard and advanced security plans. The prices are also varied
based on deployment [22]. Google defines their prices for IoT devices by data volume exchanged
through the Cloud IoT core [19]. Microsoft defines pricing based on a monthly plan [30]. Alibaba
Cloud IoT solution pricing is based on the type of service and a user pay-as-you-go model [4]. AWS
estimates pricing based on four key items: 1) connectivity charge per minute, 2) messaging charge
per message, 3) device shadow and registry charge, and 4) rules engine charge [5]. Table 3 shows
the pricing of Amazon IoT solutions.

Of them all, the AWS pricingmodel is themost suitable for the pricing estimation in our simulation
since we are evaluating our model in a network perspective. Thus, pricing by connectivity and by
messaging is best suited to our simulation environment. But one issue arises: we need to separate

12

Table 3. AWS IoT pricing

Services Price
Connectivity (per million minutes) $0.08 - $0.132
Messaging (per million messages/5KB) $1.00 - $1.65
Device shadow and registry (per
million operations/1 KB) $1.25-$1.88

Rules engine (per million rules
triggered or action executed/5KB) $0.15 - $0.25

the processing price by Fog layer. In our simulation, we assume that the processing will be done
in a Fog device, a Fog server and on the Cloud when necessary. Thus, it is obvious that the data
processing and price exchange for each level are different. According to the pricing of IBM Waston
Internet of Things, they are charging half for edge processing. Using the IBM pricing model, we
can assume that the half price is where computation takes place on the Fog server and the price is
one-third in the case of the Fog device. Again, the issue is that time-sensitive application users are
paying less compared with the users using the Cloud. On the other hand, the infrastructure and
maintenance costs of the Cloud are high. To solve this problem, we should prioritise time-sensitive
applications in the Fog environment. According to our assumption, we can formulate pricing for
connectivity, messaging, registry and rules or action.

Connectivity cost: Cost of connectivity can be calculated using Equation 14:

Ctotal = CP(
∑

Cc +
1

FSx

∑
CFS +

1
FDx

∑
CFD) × 10−6 (14)

Where, Ctotal is the total charges for connectivity, CP is the unit price for connectivity, Cc is the
connection time to the Cloud in minutes, CFD is the connection time to the Fog device in minutes,
CFS is the connection time to the Fog server in minutes, FSx is the cost variable for the Fog server
(two for our case), and FDx is the cost variable for the Fog device (three for our case).

Messaging cost: Cost of messaging can be calculated using Equation 15:

Mtotal = MP(
n∑
i=1

⌈
Mc i

U

⌉
+

1
FSx

n∑
i=1

⌈
MFS i

U

⌉
+

1
FDx

n∑
i=1

⌈
MFDi

U

⌉
) × 10−6 (15)

In the above equation,Mtotal is the total charges for messaging,MP is the unit price of messaging,
Mc is the messaging requests to the Cloud,MFD is the messaging requests to the Fog device,MFS
is the messaging requests to the Fog server, U is the unit of data size (5KB in our case), n is the
total number of requests, FSx is the cost variable for the Fog server (two for our case), and FDx is
the cost variable for the Fog device (three for our case).

Registry or Shadow Cost: Cost of registry or shadow can be calculated using Equation 16:

Stotal = SP(
∑

SRc +
∑ 1

FSx
SRFS +

∑ 1
FDx

SRFD) × 10−6 (16)

Where, Stotal is the total charge for shadow and registry. SP is the unit price of registry or
shadow cost, SRc is the registry or shadow requests to the Cloud in KB, SRFD is the registry or
shadow requests to the Fog device in KB, SRFS is the registry or shadow requests to the Fog server
in KB, FSx is the cost variable for the Fog server (two for our case), FDx is the cost variable for the
Fog device (three for our case).

13

Processing Cost: Cost of processing can be calculated using Equation 17:

Ptotal = PP(
n∑
i=1

⌈
Pc i
U

⌉
+

1
FSx

n∑
i=1

⌈
PFS i
U

⌉
+

1
FDx

n∑
i=1

⌈
PFDi

U

⌉
) × 10−6 (17)

In the above equation, Ptotal is the total charges for the rules engine, PP is the unit price for the
processing, Pc is the processing request to the Cloud, PFD is the processing requests to the Fog
device, PFS is the processing requests to the Fog server,U is the unit of data size (5KB in our case),
n is the total number of requests, FSx is the cost variable for the Fog server (two for our case), and
FDx is the cost variable for the Fog device (three for our case).

In our simulation, we only considered the connectivity, processing and messaging. Shadow and
registry did not take place; hence, the total cost per application will be as follows:

ATcost = Ctotal +Mtotal + Ptotal (18)

4.4 Proposed Policy
As the resources are dynamic in the Fog environment, we employ priority-based techniques to
select appropriate resources by considering detail characteristics of the Fog resources. We need to
undertake the following Fog related assumptions to select appropriate resources:
• Distance (geographical location of Fog devices)
• Utilisation (free resources)
• Response time (including migration time and execution time)
• Availability (due to the of battery life of the Fog devices)
• Fluctuating behaviour of CPU availability

Fog devices are not exclusively dedicated for Fog application processing. Most of these devices
are mainly responsible for native application processing. If the participating Fog devices have some
currently available computation power, they can use them for Fog processing. Even during Fog
application processing, CPU utilisation might vary, based on the load of the native applications.
This can be referred to as fluctuating behaviour of CPU availability. The rate of fluctuation in
CPU availability during a Fog application execution can be referred as CPU availability fluctuation
rate. In a Fog environment, such a situation might arise when the users’ requirements change
dynamically over time. The application broker should be able to schedule tasks in a way that the
application could serve the requests of the user. Hence, some resources should be reserved for
tentative future application requests. We assume that Fog application services will not responsible
for the bulk processing, in other words, long-term processing. Thus, the reservation will be updated
from time to time based on user requests to the application. During the resource allocation and
scheduling process, the proposed Multi-Criteria-based (MC-based) policy will be able to cope with
basic Fog computing characteristics like limited resource capacity, dynamic resource availability
and mobility. We assume that there will be no case when the Fog resource is not sufficient to
complete the service. In other word, we do not have available resources to serve for the requested
application. For example, we need 1000 MIPS pressing power for a certain time to complete an
application but we do not have such resources available in the Fog environment. We also assume
that there will be no case when Fog resources will be completely full and the user’s request needs
to be completed by the Cloud resources. That is, all of the time-sensitive processing will be done in
the Fog environment by utilising Fog infrastructure. Of course, the system is depending on the
Cloud for long-term storage and bulk processing which are not time-sensitive. A sensor application
will be run on each Fog device to monitor the resources which will be handled on the Fog platform.

14

Fig. 2. Resource allocation in Fog infrastructure.

15

Algorithm 1MC-based Resource allocation for Fog application.
Input: ResourceList < CPUcap , Freer es ,Avail ,Throbod ,CPUaval f l >,Appr eq ,Usrr eq

Output:ResouceList < rid >

if ResourceList[].size , null and request ,miдrationr eq then
for all ResourceList[] do

Et ← Calculate execution time
Frss ← Calculate f reeresource score
CAFs ← Calculate CPU availability f luctuation score
Tbd ← Calculate throuдhput based on distance
Ct ← Calculate Completion time
As ← Calculate availability score

end for
Sort by Ct
return ResourceList < rid >

else if request =miдrationr eq then
Update parameters
Reserve resource based on previous application request
Find appropriate resource for migration
Sort by Ct
return ResourceList < rid >

else
return NULL

end if

The Fog server will have all the resources and information available on the Fog devices that are
connected within that Fog server. Resource allocation and scheduling will be completed with the
following steps:
(1) Retrieve the list of available resources.
(2) Find appropriate resources considering response time, utilisation, availability, location, and

CPU availability.
(3) Allocate resources based on objective based resource allocation.
(4) Reserve resources based on the application request with a consideration of various objectives.
(5) Monitor the local resource usage and reassign the task when necessary.

The steps of the proposed algorithm are shown in Fig. 2. The proposedMC-based resource allocation
algorithm is presented in Algorithm 1.
Assume that there are five devices which have enough available resources to complete a task.

Each device has different migration time, execution time, free CPU, availability, distance and CPU
availability fluctuation as presented in Table 4. Assume that we need to allocate 1000 Units (1000
MIPS) jobs and the user has deadline requirements which are five units of time in which to complete
the job.
Now the question is: which resource would be more suitable for the job as stated above? All

devices have the capability of completing the requested jobs, except the third Fog device. To deal
with this, our algorithm will choose the best suitable resource to complete the job. Initially, the
algorithm will ignore the migration time and find the time that will be needed by each device in
order to complete the task. Table 5 shows the outcome of the completion time calculation.

Availability score and completion time will be calculated using the following equations:

As =
Et

Fr ×CAFs ×Tbd
(19)

16

Table 4. Different parameters for multiple Fog devices.

Devices

CPU
Capacity
(MIPS)

Response Time Fr s AvailabilityTbd Caf

Migration Time Execution
Time

FD1 1000 D2 2 D3 4 D4 3 D5 1 1 50% 10 Sec 0.9 50%
FD2 500 D1 2 D3 5 D4 2 D5 3 2 60% 12 Sec 0.8 80%
FD3 100 D1 4 D2 5 D4 4 D5 2 10 30% 20 Sec 0.5 100%
FD4 200 D1 3 D2 2 D3 4 D5 1 5 40% 30 Sec 0.7 130%
FD5 300 D1 1 D2 3 D3 2 D4 1 3.33 20% 5 Sec 0.55 90%

Table 5. Completion time and availability score

Devices Et Frss CAFs Tbd Ct As
FD1 1 0.5 0.5 0.9 4.44 2.25
FD2 2 0.6 0.8 0.8 5.21 2.304
FD3 10 0.3 1 0.5 66.67 0.3
FD4 0.5 0.4 1.3 0.7 1.37 21.84
FD5 0.33 0.2 0.9 0.55 3.37 1.485

Where, Fr s is Free resources score,CAFs is CPU availability fluctuation score andTbd is Through-
put based on distance.

Ct =
Av

As
(20)

Where Av is the Availability and Ct is the completion time.
According to Table 4, if we want to execute the 1000 MIPS task on FD1 then it will take two

seconds to complete the task because 50% of the CPU resource is available. Again, based on the CPU
fluctuation rate, we can assume that the completion of the task might take four seconds. Finally,
based on throughput, the system will take 4.44 seconds to complete the task by FD1.
We are assuming that Fog devices are dynamic so the allocation policy will assign the job to a

system which will take less time to complete the job. We can assign the job to the best fit system
but in such a case, if Fog device utilisation for native application becomes higher in a way that
the Fog application cannot be run, then there is a need to migrate the jobs to another system. We
need to schedule tasks in such a way that they can migrate and be reassigned to another system to
minimise SLA violation. Due to this, FD4 is the most suitable resource to complete the submitted
task as shown in Table 5.
If anything changes on the job execution (which occurs from the changing behaviour of users

or native resource utilisation), this needs to be handled during the job execution. Then the jobs
need to be migrated to another device. Hence, it is necessary to consider migration time. In such
cases, the job will be migrated to the system which will take less time to migrate the job and with
high availability. In the case of the above-stated job, if FD4 native utilisation restricts the execution
of the Fog application, then the system will not choose FD5 for job migration; it will choose FD1
because FD1 has high availability score with the closest completion time compared with FD5.
More details about response time, free resources, availability, throughput and CPU availability

are discussed in the following:

17

Response time, Rt depends on migration time,Mt and execution time, Et as shown in Equation
21. Response time indicates the time required to get a response after completing a particular task.
This includies sending the task, execution and returning the results to the sender.

Rt = Mt + Et + NdL (21)
Migration time depends on data size, Ds , bandwidth, bw and throughput, th as shown in Equation

22:

Mt =
Ds

Bw ×Th
(22)

Execution time depends on the size of the jobs in MIPS, Js and CPU speed in MIPS, CPUs as
shown in Equation 23:

Et =
Js

CPUs
(23)

Free resources depend on the current utilisation of the CPU. It will always vary on the applications
running on the device itself (native applications).

Availability depends on the battery life of the mobile device. If the device is directly connected to
power, with an appropriate backup, then there is no downtime and the availability is 100%. Battery
power is non-linear based on the profile of battery discharge [50]. We assume that the Fog device
will keep updating availability and the Fog platform will handle this. However, it can be calculated
as follows: Assume that a mobile device has 60% charge left and three applications are running,
with App1, App2 and App3 discharging battery power of 0.5%, 0.2%, and 0.3%, respectively in every
minute. Hence, the availability can be calculated using Equation 24:

Av =
Ab∑n

i=1Adri
(24)

Throughput always depends on the distance of wireless connections. Throughput is always
decreasing while distance is increasing 1. Hence, throughput depends on geographical distance,Gd
and maximum supported distance by the device, SDmax as shown in Equation 25:

th =
Gd

SDmax
(25)

CPU availability is the free CPU that can be utilised over time. Due to the nature of the Fog device,
the fluctuation of CPU availability will be high. We will need to calculate the rate of fluctuation.
Let us assume that in different time frames, T1, T2, T3, T4, and T5, the available CPU was 10%, 20%,
5%, 30% and 20%, respectively. Compared with T1→ T2, fluctuation is 100%. Similarly, for T2→
T3, it is 75%; for T3→ T4, it is 500%; for T4→ T5, it is 33%. Thus, the average fluctuation rate can
be calculated using Equation 26, where, CPUf r is the average CPU fluctuation rate and Frr is the
fluctuation rate in each time-frame.

CPUf r =

∑n
i=1AFri

n
(26)

The algorithm for resource reservation:The resourcewill be reserved based on a the previous
history of task submission. For this purpose, the systemwill store the number of application requests
in a specific time period, with the average size of the application. Then, the system will reserve the
resources according to the number of application requests and the average size of the applications.
1https://www.geckoandfly.com/10041/wireless-wifi-802-11-abgn-router-range-and-distance-comparison/

18

https://www.geckoandfly.com/10041/wireless-wifi-802-11-abgn-router-range-and-distance-comparison/

For instance, if five application requests are coming in a specific period of time and the size of
each application is 20 units, then the system will reserve the resources that can execute 100 units
of applications. Now, the question is: which device will reserve the resources? In a Fog cluster,
the system will reserve the resources based on the volume of users’ requests going to that cluster.
Generally, Fog devices will always accept the requests from peer Fog devices. But, after the addition
of resource reservation, the system will only accept the request if the Fog cluster has available
space after reservation, in order to handle dynamic user behaviour. Fig. 3 shows how reservation
will work in the system scenario. According to this figure, the reservation is shown in the red circle.
Initially, none of the resources will be reserved for Fog applications but, from the second phase,
resources will be reserved based on the previous application requests. In each rotation of time, the
reservation value will be updated.

Fig. 3. Resource reservation in Fog infrastructure.

Since it is based on previous task submission history, the system will perform better over time.
By following this idea, we can simulate different slices of time rotation. Users of the system can
choose different time slices according to their needs. Algorithm 2 shows the steps for calculating
and updating the value of resource reservation.

Algorithm 2 takes the Fog device list and the current utilisation of each Fog device as input. Then
the required reservation (Reqr es) is calculated using the reservation value (RV), utilisation of the
last application request (LAR) and the total application processed (TAP) by the Fog device. Finally,
Fog device utilisation is updated to the current utilisation (CUz) and required reservation (Reqr es).
Based on the success or failure of resources reservation, the algorithm generates the outcome.

The algorithm for handling dynamic users’ behaviour: When the dynamic changes occur
in the system environment, the system will call Algorithm 3 which will find an appropriate resource
for the submitted application. Here we consider a deadline as dynamic user behaviour. Algorithm
3 will be triggered if users want to have their application outcome in less time, compared with
the submitted application request. Here, task execution time and task migration time are both
considered before selecting resources chosen by the MC-based resource allocation algorithm. If this
algorithm returns as null, the system will look for an appropriate resource, using the MC-based
resource allocation algorithm. Once the system finds an appropriate resource, which will meet
the deadline by matching both execution time and migration time, then the application will be
submitted to the resource that has been chosen.

19

Algorithm 2 Resource reservation for Fog application.
Input: ResourceList < FoдDevice >,CurrentU til < FoдDeviceId,Utilisation >

Output:Status
if ResourceList[].size , null then
for all ResourceList[] do
id ← FoдDevice[i].FoдDeviceId
CUz ← CurrentU til[id].Utilisation
Rv ← FoдDevice[i].ResValue
LAR ← FoдDevice[i].LastAppReq
TAP ← FoдDevice[i].TotalAppProcessed
Reqr es ← (Rv + LAR)/TAP
FoдDevice[i].Utilisation ← CUz + Reqr es

end for
else

return ReservationFailed
end if
return Success

Algorithm 3 Handling dynamic user behaviour in Fog environment.
Input: ResourceList < FoдDevice >,Usrr eq

TRl ist < FoдDevice >= MC-basedAlgo<ResourceList < FoдDevice >,Usrr eq>
for all TRl ist [] do
TET ← TRl ist [i].TaskExeTime
if TET <Usrr eq+MiдrationTime then
id ← TRl ist [i].id
Break

end if
end for
MC-basedAlgo<id ,Appr eq=miдration>

Algorithm 3 is taking the Fog device list and user requests deadline as input. Then it is finding
all the tentative resource lists using Algorithm 1 in which application execution can be performed
within the changed deadline requested by the user. Then it is finding a resource in which task
execution time is less than the summation of user-requested time and migration time. Finally, it is
calling Algorithm 1 to perform the migration.

4.5 Performance Metrics
Several metrics such as delay, completion time (processing time), SLA violation, and cost have been
chosen to evaluate the performance of the proposed MC-Aware policy. The aim of Fog computing
is to reduce delay and processing time, in order to serve time-sensitive applications. Hence, these
two metrics are appropriate for performance evaluation. However, cost and SLA violation should
not be very high, while delay and completion time should be less. Therefore, we need to measure
costs and SLA violations to evaluate the effectiveness of the system.

4.5.1 Completion time. Most of the computation tasks are intended to be done by the Fog device
in the Fog computing environment. However, based on user requirements, we need to send some
requests to the Cloud for processing or storage. Therefore, the average completion time of each

20

request depends on the communication between users with the Fog device, Fog device with Fog
server, Fog server with the Cloud, and vice versa. The average completion time of each request also
depends on the processing delay of the device itself. If any Fog device or Fog server is unable to
process the request due to insufficient resource availability, then they will forward the request to
the closely located peer Fog device or Fog server. We can ignore those communication delays since
they are near to the sender and delay is minimal. We will consider the delay between the user to
FD, FD to FS, FS to the Cloud and processing time needed by each component. Let Pu be is the total
number of communications sent by the user, more precisely the total number of packets. PCu is the
number of packets required to be sent to the Cloud. The total number of packet transmissions can
be calculated by as follows:

TP = Pu + PCu + PC
r
u + (Pu − PCu)r + PCr

u (27)

Let tPu be the total time required to send Pu packet. Similarly, tPCu is denoted as the total time
required to send PCu packets. From the above equation, the total delay of the Pu packet and the
average delay of each packet can be calculated as follows:

DPtotal = tPu + tPCu + tPC
r
u + (tPu − tPCu)r + tPCr

u (28)

DPavд =
tPu + tPCu + tPC

r
u + (tPu − tPCu)r + tPCr

u

Pu
(29)

Pip is the total number of communications needed for internal processing by the Fog for a user
request. It can denoted as follows:

T IP = Pip + P
r
ip (30)

From the above equation, the total and the average delay of each internal communication can be
calculated by as follows:

DIPtotal = tP
Foд
ip + tP

r Foд
ip + tPCloudip + tPrCloudip (31)

DIPavд =
tP

Foд
ip + tP

r Foд
ip + tPCloudip + tPrCloudip

P
Foд
ip + PCloudip

(32)

tPf d , tPf s and tPc are the processing times required by the Fog device, Fog server and Cloud
respectively. So, the total processing time will be as follows:

TPT = tPf d + tPf s + tPc (33)
The average completion time of a single user request will be as follows:

CTUavд = {(tPu + tPCu + tPC
r
u + (tPu − tPCu)r + tPCr

u) + (tP
Foд
ip + tP

r Foд
ip + tPCloudip

+tPrCloudip) + (tPf d + tPf s + tPc)}/Pu
(34)

Total completion time for an application instance with the number of the request, n, would be as
follows:

21

CTA =
n∑

k=1
(DPtotal)k +

n∑
k=1
(DIPtotal)k +

n∑
k=1

TPTk (35)

Average completion time of the system for each request will be:

CTAavд =

∑m
k=1CTA∑m
k=1 nk

(36)

4.5.2 Cost. In the proposed system, the user application is used in the Fog system resources as well
as Cloud system resources. Therefore, the user has to pay for both systems. We can only consider
the processing cost in the Fog computing environment. From Equation 29, the cost for using Cloud
and Fog environments for a single request will be as follows:

TCr eq = {(DPtotal + DIPtotal +TPT) ×CFoд} + {(tPCu + tPC
r
u + tP

Cloud
ip

+tPrCloudip + tPc) ×CCloud }
(37)

TCr eq = {(DPtotal + DIPtotal +TPT) ×ATcost } + {(tPCu + tPC
r
u + tP

Cloud
ip

+tPrCloudip + tPc) ×ATcost }
(38)

In the above equation, CFoд is denoted as the unit cost of the Fog environment and CCloud
denoted as the unit cost of Cloud resources. The total cost for an application instance with n,
number of the request would be as follows:

TC =
n∑

k=1
(TCr eq)k (39)

4.5.3 Service Level Agreement (SLA). Service quality is generally guaranteed by the SLA. The
provider is responsible for the maintenance of an adequate response time to avoid the violation of
SLA. We will measure the response time and cost as agreed by the SLA. In the Fog, users’ dynamic
requirements will be response time or cost. If the provider is unable to serve according to the
agreed requests of the users, then the provider will have to pay for the violation. An SLA violation
penalty will follow a linear function which is similar to other related works of [23, 35, 42, 43, 47].
The function will be as follows:

Penalty = α + β × DT (40)
Where, α is a constant value for the penalty, β is the penalty rate and DT is the delay time. Delay
time is the extra time that users waited as stated in SLA for obtaining a response. The percentage
of SLA violation is also calculated.

5 EXPERIMENTAL SETUP AND SIMULATION PARAMETERS
5.1 Experimental Setup
The evaluation of managing user dynamic behaviour for time-sensitive application handling in
the Fog is carried out in a simulation environment. It is very difficult to develop a real, controlled
environment for the experiments. Therefore, we choose simulation for our experiments. CloudSim
simulator [9] is used to simulate the Fog environment. We added Fog devices and a Fog server by
including their individual features, such as network connectivity, how far they are located from
the access points and how much battery power they have, keeping all other existing features that

22

one host has in CloudSim. The varying number of application submissions is the experimental
procedure by which the performance of the proposed method is observed. A synthetic workload
is used since the real workload of the Fog environment is not currently available [27, 28]. Based
on the previous literature [28, 38], we tested the proposed method by increasing the number of
application submissions. Hence, 70 to 560 applications have been submitted to the Fog environment,
increasing by 70 applications each time.

5.2 Simulation Parameters
Table 6 illustrates the parameters used for the simulation. Table 7 represents the other parame-
ters that are used to model dynamic user behaviour, distance, battery life, and CPU availability
fluctuations.

Table 6. Simulation Parameters

Parameter Value
Fog Server Configuration
MIPS (Millions Instruction Per Second) 10000
No of Pes 1
No of Host 1
Bandwidth (bps) 1000000
RAM 302768
Fog Device Configuration
MIPS (Millions Instruction Per Second) 2000 to 6000
No of Pes 1
No of Host 1
Bandwidth (bps) 100000
RAM 2048
Task Configuration
Task Length (MI) 3000
Data Size 5120 and above
Sub Task Configuration
Task Length (MI) 500
Data Size 5120 and above

Table 7. Other Parameters

Parameter Value
No of Task per App 10
Minimum deadline for tasks 4
CPU availability fluctuation 50% - 130%
Distance 5 to 40 Meter
Battery power 20% to 90%
CPU Utilisation variation during task
execution 10% to 40%

The main goal of this work is to allocate the application tasks to the Fog infrastructure, and
not to the Cloud. During the simulation, different evaluation scenarios were followed. In the first
evaluation scenario, 70 applications were submitted to the Fog environment in the initial stage, then
the number of application submission was increased gradually, up to 560 applications. We measured
delay, processing time and cost for this evaluation scenario. In the second evaluation scenario,

23

the increasing number of application submission SLA-violation was measured with and without
reservation. The last evaluation scenario was a of each dynamic parameter for users and devices.
These dynamic parameters were variations of user deadlines, free resource variation, battery power
variation and CPU utilisation fluctuation variation.

6 RESULTS AND DISCUSSION
The proposed MC-based policy is compared with recently proposed QoE-aware [28] policy. This
is because QoE aware application placement policy performed better, compared with three other
recently proposed policies: MeFoRE [2], QoS-aware [38], and CloudFog [26]. We tested our proposed
and QoE-aware algorithm in a simulated environment by employing with and without resource
reservation. In addition, we measured the Service Level Agreement (SLA) violation since we are
considering that the submitted application by the user and device are both dynamic.
We evaluate the proposed MC-based policy in two different experimental settings. In the first

setting, we fixed user and resource dynamic behaviour parameters within the range presented in
Table 7. In a different setting, the variation of dynamic behaviour parameters was considered.

6.1 Dynamic Behaviour Parameters Variation Within a Range
Based on the simulation results from the experiments, it was found that the average and the total
delays of our proposed algorithm were less which is more important for time-sensitive applications.
Fig. 4a shows the average delay with the increasing number of task submissions. The average delay
is decreased by 9% on an average in the proposed MC-based policy when compared with QoE-aware
policy. From the graph, it is clear that the average delay decreases linearly over the increasing
number of task submissions. However, we cannot see a substantial difference between the with
and without reservations in both algorithms. But resource reservations can affect SLA violation.
In a scenario in which Fog device resources are busy with the tasks from other Fog clusters, the
requests that come from the same Fog cluster will not be able to be served and this might cause
SLA violations.

We found approximately 51% improvement in total delay by employing the proposed algorithm,
as shown in Fig. 4b. Since the Fog has been developed for time-sensitive applications, it is obvious
that the improvement in total delay made the Fog environment usable for real implementation.
However, maximum and minimum delay, processing time and cost should not be high. Therefore,
we measured all of these parameters to evaluate the performance of our proposed algorithm.

Fig. 4c shows the maximum delay of both MC-based and QoE-aware policies. From the figure,
it is clear that there is not much difference found in the maximum delay. There is approximately
0.04% improvement in the proposed MC-based policy; this is negligible.

The minimum delay of QoE-aware is better compared with the MC-based algorithm which is 4%
less on average, as illustrated in Fig. 4d. However, a minimum delay does not affect all applications;
it is the minimum delay that is found after submitting all applications. Since, the total delay is more
than half in the QoE-aware algorithm, the effect of a minimum delay can be overlooked.
The average processing time of the QoE-aware algorithm is better because it is only focused

on the processing time and speed, and round-trip time. It does not consider other Fog related
assumptions, such as fluctuations in processing availability, distance and mobility of the Fog device.
The average processing time of both algorithms is shown in Fig. 5a.

The cost of computation is shown in Fig. 5b. From the figure, it is clear that there is no difference
in cost for both algorithms. We calculate the cost based on Amazon’s IoT service cost which is based
on messaging and connectivity cost, both of which are the same in simulation for both policies.

While the proposed algorithm is used for selecting resources for task execution without resource
reservation, the SLA violation is high in most of the cases, as shown in Fig. 6. This is because

24

(a) Average delay (b) Total delay

(c)Maximum delay (d)Minimum delay

Fig. 4. Average, total, maximum and minimum delays with the increasing number of user requests.

(a) Average processing time (b) Total processing costs

Fig. 5. Average processing time and total processing costs with the increasing number of user requests.

resources may be utilised to serve the other Fog devices which are subscribed to other peer Fog
clusters. However, SLA violation decreases while resources have been reserved by employing
a resource reservation algorithm. The penalty cost for SLA violation is 0.04% without resource
reservation and 0.03% with resource reservation.

6.2 Independent Variation of Dynamic Behaviour Parameters
In this experimental setting, we consider parameters in Table 7 as default parameters, and we vary
each parameter to examine the impact on the changes for each parameter, in order to understand

25

Fig. 6. Percentage of SLA violation with the increasing number of user request.

how efficient the proposed policy is in a dynamic environment. We did not vary delay and distance
during our simulations, since the delay always depends on the underlying network and device
characteristics. Similarly, devices are scattered in a wireless network setting. It is not sensible to
assume that multiple devices can be located at a similar distance.

6.2.1 Impact on deadline-based user dynamic behaviour variation. The percentage of changing
deadline behaviour is examined to evaluate the performance of the proposed policy in a simulation
environment. A range of 10% to 80% variation on the deadline was tested in a dynamic environment,
with 10% increments in variation each time. Lower variation means stricter deadlines, while higher
variation means more flexible deadlines. All users vary the deadlines dynamically throughout the
simulation. Other parameters such as free resources, battery availability, CPU utilisation fluctuation
and distance varied dynamically within a range based on the default parameters.
Simulation results for user dynamic behaviour variation are shown in Fig. 7a. According to

the figure, the proposed MC-Based policy has about 12% less average delay compared with the
QoE-aware policy. However, the average processing time for QoE-aware policy is lower. But again,
the QoE-aware policy did not consider SLA violation in their work. SLA violation in without
reservation is about 60% higher on average, compared with policy with reservation. This is because,
Fog devices might be busy with other requests from the peer Fog device, so they are unable to
serve their own application requests.

6.2.2 Impact on free resource variation. To examine free resource variation, variation ranges take
place from 0% to 60%. While variation is over 60%, the SLA violation is very high. Due to that, we
should not register that the Fog device with free resource variation is more than 60%. Variation is
categorised as UP1, UP2, UP3, UP4, UP5 and UP6, which represents variations between 0% to 10%,
10% to 20%, 20% to 30%, 30% to 40%, 40% to 50% and 50% to 60%, respectively. Other parameters,
such as deadline, battery availability, CPU utilisation fluctuation and distance, varied dynamically
within a range based on the default parameters.

Simulation results for free resources are shown in Fig. 7b. In the figure, the proposed MC-Based
policy has around 8% and 11% less average delay for without and with reservation respectively,
compared with QoE-aware policy. However, average processing time for QoE-aware policy is lower
which did not consider SLA violation. SLA violation in without reservation is about 5% higher on
an average, compared with policy with reservation, while free resource is changes dynamically.

26

(a) Dynamic deadline variation. (b) Dynamic free resource variation.

Fig. 7. Impact on delay, processing time and SLA violation in dynamic deadline variations and free resource
variations.

6.2.3 Impact on available battery power variation. Fog processing will have a negative impact if
battery availability of the Fog device is low. To evaluate the impact on battery power, we varied
battery power availability from 0% to 90%, by varying 15% available battery power each time.
The variations are represented as BA1, BA2, BA3, BA4, BA5 and BA6. Other parameters such as
deadlines, free resources, CPU utilisation fluctuation and distance varied dynamically within a
range, based on the default parameters.

Simulation results for available battery power variations are shown in Fig. 8a. As shown in the
figure, the proposed MC-Based policy has around 12% and 11% less average delay for without
and with reservation, respectively, compared with the QoE-aware policy. Although the average
processing time for QoE-aware policy is lower, the work did not consider SLA violation. SLA

27

(a) Dynamic battery power variation. (b) Dynamic CPU utilisation fluctuation.

Fig. 8. Impact on delay, processing time and SLA violation in dynamic battery power variation and CPU
utilisation fluctuation.

violation in without reservation is about 5% higher on an average, compared with policy with
reservation, while available battery power varies dynamically.

6.2.4 Impact on CPU utilisation fluctuation variation. Fluctuation on CPU availability in Fog
devices is examined by varying CPU availability fluctuation. The variation started from 0% to 50%,
in increments of 10% each time without changing the lower boundary, which is represented as AF1
to AF9. Other parameters such as deadlines, free resources, battery availability and distance varied
dynamically within a range based on the default parameters.

Simulation results for CPU utilisation fluctuation are shown in Fig. 8b. According to the figure,
the proposed MC-Based policy has more than 12% less average delay compared with the QoE-
aware policy for both with and without reservation policy. Average processing time for MC-Based

28

policy is higher compared with the QoE-aware policy, which is similar to other variation results.
SLA violation in without reservation is over 24% higher, on average, compared with policy with
reservation, while CPU utilisation fluctuates dynamically.

From all the above results, we can conclude that the proposed MC-based policy performs better
compared with the QoE-aware policy, in most cases. Consideration of SLA violation is important
in the Fog because it has evolved to serve time-sensitive applications.

7 CONCLUSION
Placing applications in the Fog environment is challenging because of the dynamic nature of users
and computation devices. In the Fog, we cannot be sure that the application which has been submit-
ted to a device can be completed by the same device. On the other hand, user requirements might
change in the meantime. Hence, we need to consider a number of Fog computing characteristics
before placing an application in the Fog environment. We propose an MC-based resource allocation
algorithm in the Fog environment which will take care of the characteristics of Fog computing, as
well as user dynamic behaviour after application submission. The proposed algorithm is further
refined by applying resource reservation, in order to minimise SLA violation. Experimental results
show that the proposed algorithm is performing better than the existing one. On average, the total
delay of the proposed algorithm was reduced by 51% compared with the QoE-aware algorithm
which can better serve for time-sensitive applications. For the future work, we will employ our
proposed method in a real Fog computing environment, instead of simulation. In this work we did
not consider failure of the Fog devices which we will consider in the future.

ACKNOWLEDGMENTS
The first author would like to thank University of Tasmania (UTAS) for providing Tasmania
Graduate Research Scholarship (TGRS) for supporting his studies.

REFERENCES
[1] Mohammad Aazam and Eui-Nam Huh. 2015. Fog computing micro datacenter based dynamic resource estimation

and pricing model for IoT. In Advanced Information Networking and Applications (AINA), 2015 IEEE 29th International
Conference on. IEEE, 687–694.

[2] Mohammad Aazam, Marc St-Hilaire, Chung-Horng Lung, and Ioannis Lambadaris. 2016. MeFoRE: QoE based resource
estimation at Fog to enhance QoS in IoT. In Telecommunications (ICT), 2016 23rd International Conference on. IEEE, 1–5.

[3] Giuseppe Aceto, Alessio Botta, Antonio Pescapé, and Maurizio D’Arienzo. 2012. Unified architecture for network
measurement: The case of available bandwidth. Journal of Network and Computer Applications 35, 5 (2012), 1402–1414.

[4] Alibaba IoT 2018. Alibaba Cloud IoT Solutions. Retrieved Feb 15, 2018 from https://www.alibabacloud.com/pricing?
spm=a3c0i.7970569.675768.dnavpricing.1f52ef5HGVbK0

[5] Amazon IoT 2018. AWS IoT Core Pricing. Retrieved Feb 15, 2018 from https://aws.amazon.com/iot-core/pricing/
[6] Gaurav Baranwal and Deo Prakash Vidyarthi. 2015. A fair multi-attribute combinatorial double auction model for

resource allocation in cloud computing. Journal of systems and software 108 (2015), 60–76.
[7] Sudheer Kumar Battula, Saurabh Garg, Ranesh Kumar Naha, Parimala Thulasiraman, and Ruppa Thulasiram. 2019. A

Micro-Level Compensation-Based Cost Model for Resource Allocation in a Fog Environment. Sensors 19, 13 (2019),
2954.

[8] Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F Rana, and Manish Parashar. 2017. Mobility-aware
application scheduling in fog computing. IEEE Cloud Computing 4, 2 (2017), 26–35.

[9] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar Buyya. 2011. CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and experience 41, 1 (2011), 23–50.

[10] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki, and Christophe Diot. 2007. Analysis of
point-to-point packet delay in an operational network. Computer networks 51, 13 (2007), 3812–3827.

[11] Cisco Forecast 2018. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast, 2016-2021. Retrieved
Dec 13, 2018 from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
vni-forecast-qa.html

29

https://www.alibabacloud.com/pricing?spm=a3c0i.7970569.675768.dnavpricing.1f52ef5HGVbK0
https://www.alibabacloud.com/pricing?spm=a3c0i.7970569.675768.dnavpricing.1f52ef5HGVbK0
https://aws.amazon.com/iot-core/pricing/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-forecast-qa.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-forecast-qa.html

[12] Rodrigo AC da Silva and Nelson LS da Fonseca. 2018. Resource Allocation Mechanism for a Fog-Cloud Infrastructure.
In 2018 IEEE International Conference on Communications (ICC). IEEE, 1–6.

[13] Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu. 2018. Computation offloading and resource allocation in mixed
fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on Communications 66, 4 (2018),
1594–1608.

[14] A Behrouz Forouzan. 2006. Data communications & networking. Tata McGraw-Hill Education.
[15] Marisol García-Valls, Christian Calva-Urrego, and Ana García-Fornes. 2018. Accelerating smart eHealth services

execution at the fog computing infrastructure. Future Generation Computer Systems (2018).
[16] Marisol García-Valls, Christian Calva-Urrego, A Juan, and Alejandro Alonso. 2017. Adjusting middleware knobs to

assess scalability limits of distributed cyber-physical systems. Computer Standards & Interfaces 51 (2017), 95–103.
[17] Marisol Garcia-Valls, Abhishek Dubey, and Vicent Botti. 2018. Introducing the new paradigm of social dispersed

computing: Applications, technologies and challenges. Journal of Systems Architecture 91 (2018), 83–102.
[18] Shamsollah Ghanbari and Mohamed Othman. 2012. A priority based job scheduling algorithm in cloud computing.

Procedia Engineering 50, 0 (2012), 778–785.
[19] Google IoT 2018. Google Cloud Internet of Things Core. Retrieved Feb 13, 2018 from https://cloud.google.com/iot/

pricing
[20] Ana Hernandez and Eduardo Magana. 2007. One-way delay measurement and characterization. In Networking and

Services, 2007. ICNS. Third International Conference on. IEEE, 114–114.
[21] Nicolas Hohn, Darryl Veitch, Konstantina Papagiannaki, and Christophe Diot. 2004. Bridging router performance and

queuing theory. In ACM SIGMETRICS Performance Evaluation Review, Vol. 32. ACM, 355–366.
[22] IBM IoT 2018. IBMWatson IoT platform pricing. Retrieved Feb 12, 2018 from https://www.ibm.com/internet-of-things/

spotlight/watson-iot-platform/pricing
[23] David E Irwin, Laura E Grit, and Jeffrey S Chase. 2004. Balancing risk and reward in a market-based task service. In

null. IEEE, 160–169.
[24] Jangeun Jun, Pushkin Peddabachagari, and Mihail Sichitiu. 2003. Theoretical maximum throughput of IEEE 802.11 and

its applications. In Network Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on.
IEEE, 249–256.

[25] Ruiying Li, Meinan Li, Haitao Liao, and Ning Huang. 2017. An efficient method for evaluating the end-to-end
transmission time reliability of a switched Ethernet. Journal of Network and Computer Applications 88 (2017), 124–133.

[26] Yuhua Lin and Haiying Shen. 2015. Cloud fog: Towards high quality of experience in cloud gaming. In 2015 44th
International Conference on Parallel Processing (ICPP). IEEE, 500–509.

[27] Redowan Mahmud, Fernando Luiz Koch, and Rajkumar Buyya. 2018. Cloud-Fog Interoperability in IoT-enabled
Healthcare Solutions. In Proceedings of the 19th International Conference on Distributed Computing and Networking.
ACM, 32–41.

[28] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2018. Quality of
Experience (QoE)-aware placement of applications in Fog computing environments. J. Parallel and Distrib. Comput.
(2018), 1–15.

[29] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. 2001. BRITE: An approach to universal topology
generation. In Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2001. Proceedings. Ninth
International Symposium on. IEEE, 346–353.

[30] Microsoft IoT 2018. IoT Hub pricing. Retrieved Feb 14, 2018 from https://azure.microsoft.com/en-au/support/plans/
[31] Ranesh Kumar Naha, Saurabh Garg, and Andrew Chan. 2018. Fog Computing Architecture: Survey and Challenges.

arXiv preprint arXiv:1811.09047 (2018).
[32] Ranesh Kumar Naha, Saurabh Garg, Andrew Chan, and Sudheer Kumar Battula. 2020. Deadline-based dynamic

resource allocation and provisioning algorithms in Fog-Cloud environment. Future Generation Computer Systems 104
(2020), 131–141.

[33] Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Longxiang Gao, Yong Xiang,
and Rajiv Ranjan. 2018. Fog Computing: survey of trends, architectures, requirements, and research directions. IEEE
access 6 (2018), 47980–48009.

[34] John Panneerselvam, Lu Liu, and Nick Antonopoulos. 2017. InOt-RePCoN: Forecasting user behavioural trend in
large-scale cloud environments. Future Generation Computer Systems (2017).

[35] Omer F Rana, Martijn Warnier, Thomas B Quillinan, Frances Brazier, and Dana Cojocarasu. 2008. Managing violations
in service level agreements. In Grid middleware and services. Springer, 349–358.

[36] Stephan Schlagkamp, Rafael Ferreira Da Silva, Ewa Deelman, and Uwe Schwiegelshohn. 2016. Understanding user
behavior: from HPC to HTC. Procedia Computer Science 80 (2016), 2241–2245.

[37] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge computing: Vision and challenges. IEEE
Internet of Things Journal 3, 5 (2016), 637–646.

30

https://cloud.google.com/iot/pricing
https://cloud.google.com/iot/pricing
https://www.ibm.com/internet-of-things/spotlight/watson-iot-platform/pricing
https://www.ibm.com/internet-of-things/spotlight/watson-iot-platform/pricing
https://azure.microsoft.com/en-au/support/plans/

[38] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. 2017. Towards qos-aware fog service placement.
In Fog and Edge Computing (ICFEC), 2017 IEEE 1st International Conference on. IEEE, 89–96.

[39] Statista 2018. Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions).
Retrieved Dec 12, 2018 from https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

[40] Andrew S Tanenbaum. 2011. Computer networks 5th Edition. Number TK5105. 5.T36 2011.
[41] Jia Wang and Srinivasan Keshav. 1999. Efficient and accurate ethernet simulation. In Local Computer Networks, 1999.

LCN’99. Conference on. IEEE, 182–191.
[42] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. 2011. SLA-based resource allocation for software as a service

provider (SaaS) in cloud computing environments. In Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE Computer Society, 195–204.

[43] Linlin Wu, Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2014. SLA-based resource provisioning for
hosted software-as-a-service applications in cloud computing environments. IEEE Transactions on services computing
7, 3 (2014), 465–485.

[44] Yang Xiao and Jon Rosdahl. 2002. Throughput and delay limits of IEEE 802.11. IEEE Communications letters 6, 8 (2002),
355–357.

[45] Xiaolong Xu, Shucun Fu, Qing Cai, Wei Tian, Wenjie Liu, Wanchun Dou, Xingming Sun, and Alex X Liu. 2018. Dynamic
Resource Allocation for Load Balancing in Fog Environment. Wireless Communications and Mobile Computing 2018
(2018), 1–16.

[46] Xin Xu, Huiqun Yu, and Xinyu Cong. 2013. A qos-constrained resource allocation game in federated cloud. In 2013
Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, 268–275.

[47] Chee Shin Yeo and Rajkumar Buyya. 2005. Service level agreement based allocation of cluster resources: Handling
penalty to enhance utility. In Cluster Computing, 2005. IEEE International. IEEE, 1–10.

[48] Ye Yu, Xiangyuan Bu, Kai Yang, and Zhu Han. 2018. Green Fog Computing Resource Allocation Using Joint Ben-
ders Decomposition, Dinkelbach Algorithm, and Modified Distributed Inner Convex Approximation. In 2018 IEEE
International Conference on Communications (ICC). IEEE, 1–6.

[49] Ye Yu, Xiangyuan Bu, Kai Yang, ZhikunWu, and Zhu Han. 2018. Green Large-scale Fog Computing Resource Allocation
using Joint Benders Decomposition, Dinkelbach Algorithm, ADMM, and Branch-and-bound. IEEE Internet of Things
Journal (2018), 1–12.

[50] Ozgur Yurur, Chi Harold Liu, and Wilfrido Moreno. 2015. Modeling battery behavior on sensory operations for
context-aware smartphone sensing. Sensors 15, 6 (2015), 12323–12341.

[51] Lei Zhang and Jiangtao Li. 2018. Enabling robust and privacy-preserving resource allocation in fog computing. IEEE
Access 6 (2018), 50384–50393.

[52] Zizhan Zheng and Ness B Shroff. 2016. Online multi-resource allocation for deadline sensitive jobs with partial values
in the cloud. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications.
IEEE, 1–9.

31

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Resource Allocation in Cloud and Distributed Computing
	2.2 Resource Allocation in Fog Computing

	3 System Scenario
	3.1 Special Occurrence in Smart Transportation System
	3.2 Augmented Reality Related Applications
	3.3 Resource Model
	3.4 Application scheduling on Fog Infrastructure

	4 Proposed MC-Based Resource Allocation
	4.1 Problem Description
	4.2 Network Model
	4.3 Pricing Model
	4.4 Proposed Policy
	4.5 Performance Metrics

	5 Experimental Setup and Simulation Parameters
	5.1 Experimental Setup
	5.2 Simulation Parameters

	6 Results and Discussion
	6.1 Dynamic Behaviour Parameters Variation Within a Range
	6.2 Independent Variation of Dynamic Behaviour Parameters

	7 Conclusion
	Acknowledgments
	References

