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ABSTRACT
Information, ideas, and diseases, or more generally, contagions,
spread over time and space through individual transmissions via
social networks, as well as through external sources. A detailed
picture of any di�usion process can be achieved only when both
a detailed network structure and individual di�usion pathways
are obtained. Studying such di�usion networks provides valuable
insights to understand important actors in carrying and spread-
ing contagions and to help predict occurrences of new infections.
Most prior research focuses on modeling di�usion process only
in the temporal dimension. �e advent of rich social, media and
geo-tagged data now allows us to study and model this di�usion
process in both temporal and spatial dimensions than previously
possible. Nevertheless, how information, ideas or diseases are prop-
agated through the network as an overall spatiotemporal process
is di�cult to trace. �is propagation is continuous over time and
space, where individual transmissions occur at di�erent rates via
complex, latent connections.

To tackle this challenge, a probabilistic spatiotemporal algorithm
for network di�usion simulation (STAND) is developed based on the
survival model in this research. Both time and geographic distance
are used as explanatory variables to simulate the di�usion process
over two di�erent network structures. �e aim is to provide a
more detailed measure of how di�erent contagions are transmi�ed
through various networks where nodes denote geographic locations
at a large scale.
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1 INTRODUCTION
With the advent of rich social and other web-based media contain-
ing both temporal and locational information, tracing the di�usion
of ideas, political opinions and even evidence of processes such as
the spread of disease at a large scale has become a focus of research
in recent years. Di�usion is the process by which contagions spread
over space and time via complex network structures. Contagions
start at speci�c nodes and spread from node to node over the edges
of the network. �ese traces are called cascades.

Previous network research [7] indicates that observing when
individual nodes in the network get infected by various contagions
is easy, but determining the transmission pathways is di�cult. In
other words, the times at which nodes get infected are noted in
the observational data but the sequence and parent node through

which each node gets infected is usually not. Many algorithms
have been developed to simulate cascades for di�erent contagions
to drive a be�er understanding of di�usion process. However, most
current algorithms only exploit time as an explanatory variable and
don’t take the geographic space into consideration.

Nevertheless, all di�usion processes that involve physical agents,
locations or interactions, are embedded in geographic space. For
examples, news events usually occur at speci�c locations. People
receiving and exchanging information or ideas via social media
also have a physical location. or physically being proximal to each
other. When we trace the di�usion phenomena at a large scale
over a long time, it has also been demonstrated the spread and
adoption of many contagions are di�erent from region to region
with signi�cant local characteristics [6, 8]. Instead of geographic
distance becoming increasingly irrelevant, it’s more accurate to say
technology has made border less relevant.

�e motivation of this research is to provide a well-de�ned and
mathematically solid approach for solving di�usion simulation and
modeling problems taking both spatial and temporal information
into consideration. To achieve this, we have developed a probabilis-
tic algorithm called STAND,using a survival approach, to simulate
spatiotemporal di�usion cascades. �is algorithm is applicable to
various types of network structures. It is intended that our research
can lead to new insights of how di�erent contagions, including
topics, opinions,sentiments, or events mined from world wide web
are propagated over space and time.

2 RELATEDWORK
Simulating the complete topology of spatiotemporal networks and
multiple contagions spread over them is challenging for two reasons:
First, in many cases we can only observe the timing information of
when nodes get infected [11]. Second, even though large amounts
of digital heterogeneous data are now available via the World Wide
Web, locational information is extremely sparse, unstructured and
o�en ambiguous [1, 4, 13]. Developing a �exible model for deriving
the network structure and cascade behaviors is key to uncovering
the mechanism that governs spatiotemporal di�usion processes
and their dynamics.

Several di�erential equation models (DE) and agent-based mod-
els (AB) have been proposed to simulate the network structure
and spatiotemporal di�usion cascades. DE models [9, 10] usually
aggregate agents into several states (e.g., infected or uninfected).
�e transitions among di�erent states are modeled by di�erential
equations. In contrast, agent-based models [2, 5] have considered
the heterogeneity of agents. �ey simulate the di�usion in real-
istic networks by de�ning how the infection may occur through
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Table 1: Parameters in Di�usion Networks

Parameters Def
G(V , E) Directed Graph with node set V and edge set E
c Contagion that spreads over G
C Set of contagions c
T Cascade propagation tree
Tc (G) Set of all possible cascade trees of the contagion c
ti Time when node i get infected by a contagion
∆i, j Time di�erence between the node infection time tj − ti
α Di�usion speed scaling parameter
β Probability that contagion spreads over the edge of G

individual-based interactions (e.g., infection can only occur when
agents are at the same location).

While, most existing simulation models of network di�usion
are based on assumptions of agent homogeneity or how agents
interact with each other for spreading contagions, none have inte-
grated space and time together to account for di�usion probability
individually for each node-pair over spatiotemporal networks at
large-scale. We also intend to �ll this gap. We develop an exponen-
tial di�usion probabilistic algorithm that integrates geographic dis-
tance, node infection time and transmission speed together based
upon NETINF [11]. �e reasons to choose an exponential net-
work di�usion model as a starting point for STAND are: 1) it’s a
continuous-time model without any assumptions about the indi-
vidual interactions, 2) it is amenable to inference/estimation for
di�erent datasets, and 3) it has a �exible structure in terms of adding
features like geo-distance. Other time distributions (e.g., log-normal,
Gamma, etc.) can also be considered in the future research as well.

3 THE STAND ALGORITHM
Table I de�nes the parameters used in many di�usion network
models, and we build upon this notation. When a speci�c contagion
spreads over the network, it will create a cascade by infecting nodes
in a temporal sequence. �e cascade of a contagion c is denoted by
a directed treeT , consisting of a set of infected nodes with observed
infection time: (i, ti )c where i ∈ V .

3.1 Temporal Probabilistic Survival Likelihood
�e likelihood of a contagion c spreading over an edge (i, j) in
NETINF is calculated by a probabilistic exponential function and
assumed to depend only on the time di�erence ∆i, j in Equation (1).

Pc (i, j) ≈ Pc (∆i, j ) ∝
β

eα∆i, j
(1)

Only the �rst time when a node gets infected will be counted for
each contagion c and the contagion must di�use forward in time.
If there is a node j that never got infected by any contagion, then
tj = ∞ and ∆i, j ≈ ∞. �us each infected node will only have one
parent node who di�uses the contagion c and the tj > ti .

However, there may exist more than one possible di�usion cas-
cade tree for the same set of infected nodes. �ese trees have the
same temporal sequence for the occurrences of infections among
nodes but their di�usion paths are di�erent. Equation (1) which
only exploits the infection time di�erence to explain the di�usion
probability, cannot solve which di�usion path has a higher proba-
bility.

Figure 1: Di�erent cascade trees

For example, Figure 1 shows three di�erent trees with the same
observed spatiotemporal di�usion sequence where the nodes are ge-
ographic locations, (tWashinдton , tPhiladelphia , tPittsburдh , tChicaдo )c .
�e infection time tWashinдton < tPhiladelphia < tPittsburдh <
tChicaдo . �e di�usion path from Washington to Chicago can
be (Washinдton → Philadelphia → Pittsburдh → Chicaдo) as
shown by the red line in the le� plot or (Washinдton → Pittsburдh →
Chicaдo) in the middle plot.

�e di�usion probability from Washington to Chicago of these
three paths de�ned by Equation 1 are same, demonstrated as below:

Pc (i,k,p, j) =
β

eα∆i,k
∗ β

eα∆k,p
∗ β

eα∆p, j
=

β3

eα (∆i,k+∆k,p+∆p, j )

=
β3

eα∆i, j
=

β3

eα (∆i,p+∆p,q+∆q, j )
= Pc (i,p,q, j)

=
β3

eα (∆i,k+∆k,q+∆q, j )
= Pc (i,k,q, j)

(2)

where i is Washington, k is Philadelphia, p is Pi�sburgh, q is New
York and j is Chicago.

It’s thus needed to extend the current di�usion probabilistic
algorithms to include space as well as time to be�er model the
dynamic di�usion over the spatiotemporal network.

3.2 Spatiotemporal Probabilistic Survival
Likelihood

We assume the spatiotemporal di�usion probability Pc (i, j) that a
cascade c will spread from a node i to a node j decreases with both
the spatial distance di j and time di�erence ∆i, j in a certain way.
Geographic distance is integrated into Equation (1) as a starting
point. Considering that the geographic distance may have direct
in�uence on the di�usion speed and infection time interval, this
in�uence is modeled by the survival analysis model.

Supposing T is the observed infection time of a node, then the
probability that this node would not yet be infected at any time t is
denoted by the survival function, S(t) = P(T > t).

�e probability that a given node would get infected at any time
t , is denoted by a cumulative probability density function (CDF),
F (t) = P(T ≤ t) = 1 − S(t). �e probability that a node will get
infected within a time interval (t , t+dt) is P(t ≤ T ≤ t+dt) = f (t)dt
where f (t) is the infection rate over time, given by the probability
density function (PDF):

f (t) = d

dt
F (t) = d

dt
(1 − S(t)) = − d

dt
S(t) (3)
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�e instantaneous infection rate h(t) at the given time t , is called
the hazard rate, that re�ects the likelihood that the uninfected node
will get infected within a very short time interval (t , t + dt), given
this node hasn’t been infected before:

h(t) = lim
dt→0

Pr (t ≤ T < t + dt)
dt × S(t) =

f (t)
S(t) (4)

�e survival likelihood S(t) and the cumulative infection prob-
ability F (t) have the following relationships with the hazard rate
h(t):

S(t) = e−
∫ t

0 h(t )dt F (t) = 1 − e−
∫ t

0 h(t )dt (5)

where the
∫ t
0 h(t)dt is the cumulative hazard that represents the

total risks of a node being infected up to the time point t .
In order to measure pairwise infection likelihood in Equation

(1), the probability density f (t) and the hazard rate h(t) are needed
to calculate the probability that a node j gets infected by the node
i within the time interval (ti , ti + dt). A higher value of density
function f (t) means the node j is more likely to be infected by the
node i within a short time interval dt which results in a higher
hazard rate.

In this step, we use the a proportional hazard function suggested
by [12] to exploit the geographic properties in the form below:

h(t ;Y ; λ;θ ) = e(λX+Y )h0(t ;θ ) (6)

where the h0(t ;θ ) is the baseline hazard function, and t is the ob-
served infection time. X is a vector of explanatory variables associ-
ated with node properties and Y is a vector of explanatory variables
associated with the spatial dependencies. λ and θ are parameter
coe�cients for the explanatory variables X and the baseline hazard
function.

To simplify, the baseline hazard rate h0(t ;θ ) in Equation (6) is
assumed to be constant and independent with time for any node-
pairs. �us the h0(t ;θ ) and its associated cumulative hazard rate
H0(t ;θ ) are:

h0(t ;θ ) = θ H0(t ;θ ) =
∫ t

0
h0(t ;θ )dt = θt (7)

Furthermore, only the spatial distance is implemented into the
di�usion probability as a starting point. �us the λX is a constant
modeled by the parameter λ and the explanatory variables Y , ac-
counting for spatial dependencies in Equation (6) is modeled by
the distance between any node-pair i and j with a decay parameter.
To unify the parameter coe�cients, the λ for node properties is
reset as λ0 and the decay parameter for spatial dependencies (i.e.,
distance here) is set as λ1. Equation (6) can be reforma�ed as:

h(t ;Y ; λ;θ ) = θe(λ0+λ1di, j ) (8)

where the di, j is the geographic distance between the node i and j.
�e cumulative probability F (t), the probability density f (t), and

the infection likelihood de�ned in Equation (1) with the hazard rate
θe(λ0+λ1di, j ) over the infection time interval ∆i, j can be rewri�en

as:

Fi, j (∆i, j ) = 1 − e−
∫ t

0 h(t )dt
= 1 − e−θe

(λ1+λ1di, j )∆i, j

fi, j (∆i, j ) =
θe(λ0+λ1di, j )

eθe
(λ0+λ1di, j )∆i, j

Pc (i, j) ∝ β fi, j (∆i, j ) =
βθe(λ0+λ1di, j )

eθe
(λ0+λ1di, j )∆i, j

(9)

�e network inference problem can also be solved by developing
a greedy algorithm to search for all edges that can maximize the
probability of a network structure over which all contagions C can
spread.

4 EXPERIMENTAL SIMULATION
In order to simulate real-world di�usion processes, and evaluate
our algorithm for recovering the network structure on the synthetic
cascades, experiments are described in the following sections.

4.1 Simulation of Ground-truth Network
One hundred geographic cities/counties with the largest population
in the United States, excluding Hawaii and Alaska, are taken as
spatial network nodes V . �e original data is from the U.S. Geo-
logical Survey collected in 2017. Some cities/counties having high
population and very close geographic locations were merged into
larger metro areas (e.g., New York City or Greater Los Angeles).
�en we manually deleted a few small cities and add other cities in
Montana, Wyoming, North and South Dakota to make the nodes
more evenly distributed over the United States.

Considering that many real-world networks share some simi-
lar properties, such as relatively small average path length, high
clustering coe�cient, or high reciprocity (i.e., the percentage of
mutually connected node-pairs), two directed network structures
are considered to generate the ground-truth network G. �ey are
the random network structure [3] and the small-world network
structure [14]. Characterizing how contagions spread over these
two extreme network structures can help us be�er understand more
complex network di�usion phenomena. However, our proposed
STAND algorithm can be applied to any kind of network structure.
�e pseudocode of STAND algorithm is given as below:

4.1.1 Simulation of Random Network. �e random network as-
sumes the node degree in the network has a normal distribution
and edges are randomly picked with a constant probability with a
same node-edge density. �is has been widely used for network
simulations with the absence of topological information about the
network structure.

Building this type of network begins with n spatial isolated
nodes and selecting out of those any two to randomly place an edge
between them until all edges of the required number have been
added to the network without repetition. An example is shown in
Figure 2 (Le�).

4.1.2 Simulation of the Small-world Network. �e small-world
network as shown in Figure 2 (Right) assumes the node degree
follows the power-law distribution, in which only a small propor-
tion of nodes has a large number of links while the majority has
only few or no links. �us it has a high clustering coe�cient and
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Figure 2: Random network (Le�) and Small-world network (Right) with 100 nodes and 600 edges.

Algorithm 1 STAND Algorithm

Require: coordinates of n nodes (lnд, lat), number of edgesm, net-
work G(V ,E), parameter β ,θ , λ0, λ1, cuto� di�usion time tmax ,
number of nearest neighbours k .
Step 1: Simulate Random & Small-world Networks
V ← (lnд, lat)
Grandom ← E ← COMBINATION (V , 2,m)
for all node v ∈ V do

Gsw ← E ← (v,K NEAREST (v,k,Euclidean))
RECONNECT (E ∈ Gsw (V ,E), 0.05)

return Grandom ,Gsw
Step 2: Simulate Cascades
for all edges (i, j) ∈ Grandom |Gsw do

di, j ← EuclideanDist((lnдi , lati ), (lnдj , latj ))
hrandom |hsw ← h(i, j) = θe(λ0+λ1di, j ) Equation (8)

return hrandom, hsw
Crandom = SIMU LAT E(Grandom, hrandom ) Equation (9)
Csw = SIMU LAT E(Gsw , hsw )
return simulated cascades Crandom, Csw

a relative short average path length. �e small-network model is
widely used in many application contexts, such as the outbreak of
disease or social activities.

Building this type of network starts with connecting each spatial
node to its k nearest neighbors. Next, a small proportion of edges
are randomly rewired by removing the original edge and recon-
necting the starting node of the original edge to another node with
a probability p (i.e., 0.05).

Here, we have built 600 edges among these geographic locations
for each network structure. In comparing le� and right �gures in
Figure 2, it is obvious that the average edge distance of the ran-
dom network is much longer than that of the small-world network,
which has made the small-world network seem sparser over space
than the random network even though they have the same num-
ber of edges. �e small-world network also shows a signi�cant
clustering pa�ern of cliques in contrast to the random network.

Table 2: Parameters of λ1 and tmax

λ1

−5 ∗ 10−5 −3 ∗ 10−5 −2 ∗ 10−5 −10−5

−9 ∗ 10−6 −8 ∗ 10−6 −7 ∗ 10−6 −6 ∗ 10−6

−5 ∗ 10−6 −4 ∗ 10−6 −3 ∗ 10−6 −2 ∗ 10−6

tmax
500 1000 2000 4000
8000 ∞

4.2 Simulation of Cascades
A set of cascadesC that spreads over the networkG are generated by
the probabilistic function de�ned in Equation (9). At this step, each
node is selected as the single starting infected node with assigned
an infection time 0, and then it starts to spread the contagion to
every remaining node. �e infection time of remaining nodes is
calculated based on Equation (9). If there is no edge between any
two nodes, the hazard rate α is forced to be set as 0.

Di�erent parameter values are selected for generating di�usion
cascades. Recalling that the hazard rate α = θe(λ0+λ1di, j ) in Equa-
tion (8) controls the infection rate that a contagion spreads over
edges, there are three parameters to express this: θ (i.e., a base-
line hazard rate), λ0 (i.e., in�uence of node properties), and λ1 (i.e.,
parameter coe�cient of in�uence of distance).

Several parameters are set as �xed values in this step because
they are constant scaling factors irrelevant to account for the in�u-
ence of explanatory variables (i.e., the distance). �ey are: 1) the
prior probability of an edge to successfully spread the contagion,
β = 0.5. A higher value of β means most of edges are more likely
to spread the contagion, which results in large infections/cascade
size within the network; 2) the baseline hazard rate, θ = 0.5; 3) the
in�uence of node properties on the di�usion hazard rate, λ0 = 1;
and 4) the penalty parameter that accounts for the small probability
that the contagion may spread via non-existing edges, ϵ = 10−4.

�e parameter coe�cient of the in�uence of the distance λ1 and
the cuto� di�usion time tmax used to decide to what extent the
di�usion should fail when the di�usion time along an edge is too
long, are chosen from a list of values in Table II.

�ese values of λ and tmax increase monotonically and can
represent cascades ranging from small (i.e., contagions can almost
not spread) to large (i.e., a large infection over all nodes). �e
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Figure 3: Histogram and QQ-plot of the distance between
any two nodes in the Random and Small-world networks

reason to set λ1 as negative is that in general, the hazard rate α
should be small when the spatial distance is very large. In other
words, the di�usion time that a contagion spreads via a network
edge is longer when two nodes are far away from each other if
all other parameters are �xed. �e α has a positive relationship
with λ1. When λ1 increases from the −5 ∗ 10−5 to −2 ∗ 10−6, the
di�usion/infection speed via network edges will be larger.

�e cuto� di�usion time tmax is used to set those nodes that are
infected beyond the threshold as∞. For example, if 1000 (time units)
is selected as the cuto� value, then nodes with simulated infection
time more than 1000 should be set as ”won’t get infected”. It can
model phenomena that the outbreaks of some contagions happen
within a short period then fades very quickly due to geographic
constraints while others can easily spread at a large scale and last
for a long time.

�e analysis of the simulated cascades of the static random net-
work and the static small-world network is given in the following
section using the parameters selected above.

5 ANALYSIS OF RESULTS
5.1 Distribution of the Distance
�e histograms and �antile-�antile (QQ) plots in Figure 3 are
used to examine the statistical distribution of the edge distance.
�e range of the statistical distance (km) between two nodes in
the random networks is much larger than that in the small-world
network. Both of them have a bell-shaped curve as shown in the
top of Figure 3. However, the density curves in black suggest that
the distribution of the edge distance in the random network is
smoother and more widely distributed while the edge distance
the small-world is dominated by more lower values. �e reason
accounting for this in the random network may be due to the limited
number of geographic points, thus few observations can easily skew
the distribution. For the small-world network, the reason is the
existence of a small portion of edges that connect di�erent cliques.

Table 3: Information about Simulated Cascades

node name time parent node v path cascade id
3: Chicago 0.00000 3 3 3
31: Milwaukee 1.71148 3 (3, 31) 3
56: Fort Wayne 3.61669 3 (3, 56) 3
82: Grand Rapids 4.03627 56 (3, 56, 82) 3

Figure 4: Box plots of the number of infected nodes in 100
simulated cascades for Random network and Small-world
network

5.2 Infected Nodes in Simulated Cascades
For each combination of λ1 and tmax shown in Table II, 100 cas-
cades are generated by taking every node as a starting infected
node and the information including the infected node name, the
infection time, the parent node from whom the contagion spreads,
the di�usion pathway and the cascade id are reported. For exam-
ple, the information in Table III suggests a di�usion cascade that
starts from the node Chicago spreads via two pathways (Chicaдo →
Milwaukee) and (Chicaдo → FortWayne → Grand Rapids).

�e box-plots in Figure 4 give a clearer picture of the distribution
of the number of infected nodes under di�erent sets of λ1 and tmax .
�e le� series of plots in Figure 5 shows how the total number of
infected nodes changes for di�erent values of λ1, �xing the cuto�
di�usion time while the right plot in Figure 5 shows how the total
number of infected nodes changes for di�erent cuto� di�usion time
tmax , �xing λ1.

Several conclusions about the in�uence of λ1 and tmax and the
di�erence between the random network structure and the small-
world network structure are drawn from these statistical results:

(1) If the cuto� di�usion time is set as∞ where all nodes can
get infected (i.e., the bo�om row of the le� plot in Figure
4, the value of λ1 has no in�uence on the total number of
infected nodes;

(2) For other cuto� di�usion times, it is clear that the geo-
graphic distance has a great in�uence on the total number
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Figure 5: Number of infected nodes in 100 simulated cascades for the random networks and small-world networks

of infected nodes. �e number of infected nodes monoton-
ically increases to the peak when λ1 increases;

(3) When the absolute value of λ1 is low, the in�uence of
the distance on the di�usion is small, which results in an
approximate constant hazard rate for all location-pairs;

(4) When the absolute value of λ1 is high, more nodes will
survive from contagions due to the geographic constraint
as �rst several columns of the right plot in Figure 4;

(5) �e maximum number of infected nodes that the small-
world network can reach is more than that in the random
network because the small-world network is highly clus-
tered that makes the contagion spreads more easily;

(6) �e simulation process of the random network is more
sensitive to the change of parameters and the number of
infected nodes will increase gradually when λ1 and tmax
increase. �is number in the small-world network will
increase dramatically to the peak within a short range of
λ1 and is less sensitive to the change of the cuto� di�usion
time except when λ1 = −2 ∗ 10−5.

When λ1 is very small, most nodes fail to spread contagions for
di�erent cuto� di�usion time except for ∞. When λ1 increases,
most nodes in the small-world network can get infected within a
short time due to an average small distance. So the in�uence of the
cuto� di�usion time is only obvious for λ1 around −2 ∗ 10−5. �e
distribution of the number of infected nodes of the random network
is nearly normally distributed while that of the small-world network
is more skewed with a large proportion of outliers identi�ed.

6 VISUALIZATION OF DIFFUSION CASCADES
To be�er understand the geographic distribution of the infected
nodes in the di�usion process, Figure 6 below shows simulated
cascades generated by taking Chicago as the starting infected
node under di�erent sets of λ1 and cuto� di�usion time tmax for
the random network and the small-world network.

When λ1 and cuto� di�usion time tmax is very small, it is hard
for contagions to spread over the random network. However, conta-
gions can still spread from Chicago to Milwaukee in the small-world
network when λ1 = −5 ∗ 10−5 and tmax = 500 due to nodes in
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λ1 = −3 ∗ 10−5, tmax = 1000 λ1 = −10−5, tmax = 1000

λ1 = −10−5, tmax = 4000 λ1 = −10−5, tmax = ∞

λ1 = −5 ∗ 10−5, tmax = 500 λ1 = −2 ∗ 10−5, tmax = 500

λ1 = −2 ∗ 10−5, tmax = 8000 λ1 = −2 ∗ 10−5, tmax = ∞
Figure 6: Simulated cascades in the random and small-world networks under di�erent sets of λ1 and tmax
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the small-world network are highly connected with a small av-
erage geographic distance. It is also intuitive to observe that the
contagion spreads like a chain via the connected cliques in the
small-world network but more divergent over space in the random
network. When the cuto� di�usion time is In f , still the node 40
(i.e., Raleigh) in the random network and the node 41 (i.e., Miami)
in the small-world network haven’t been infected. �is is because
some nodes only have outward connections. Contagions cannot
spread to these nodes unless they are the starting infected node.

7 DISCUSSION
First novel aspect of the STAND algorithm is that the geographic
distance is implemented into the hazard rate function, integrated
over the time to quantify its in�uence on the di�usion probability
in Equation (9). By varying its coe�cient λ1, we can model di�erent
real-world di�usion phenomena, where the geographic aspects
have di�erent e�ects.

�e second novel aspect is that it can be applied to any kind of
network structures that are observed in the real-world di�usion
phenomena. �e network structure is regarded as the input, and
the hazard rate and di�usion probability are calculated separately
for each single edge dependent on the distance and the infection
time di�erence between two nodes that this edge connects. �is is
more �exible and accurate than previous research that assume a
uniform global di�usion rate over the network.

�e third novel aspect of the STAND algorithm is that the node
properties and spatial dependencies (e.g., geographic distance) are
considered to be vectors of explanatory variables X and Y in the
de�nition of the hazard rate in Equation (6). Our STAND algorithm
allows di�erent node properties or spatial dependencies for di�erent
node-pairs within the same network since the di�usion probability
is calculated separately for each edge.

8 CONCLUSIONS AND FUTUREWORK
�is research presents a network di�usion algorithm, called STAND,
based on the framework of probabilistic survival modeling, to simu-
late the di�usion cascades and infer the underlying spatiotemporal
network over which various contagions (e.g., political policies, so-
cial opinions, news, diseases, etc.) spread over both space and time.
It can estimate the di�usion speed and the individual-level infec-
tion likelihood given any network structures as input. It can help
discover the di�usion pathways and also predict new occurrences
of infections over space and time as well as as well as trace back to
detect where and when the di�usion began.

Real-world network di�usion phenomena are usually more com-
plex than the simulated scenarios we have described here. �e
complexities can be summarized as follows: 1) the real-world net-
works over which contagions spread are a mixture of di�erent
levels of randomness and clustering rather than the simple random
network or small-world network structure; and 2) the network
nodes are heterogeneous and their properties have high in�uence
on the di�usion process. We will address these complexities as the
next step in our research. Future work will collect large-scale real-
world spatiotemporal di�usion dataset and take various geographic
characteristics into consideration, such as the local population or
geographic scale.

Also, a more complex interactive visualization tool and an R
package that integrates the STAND algorithm should be developed
in the future to model the synthetic spatial network and simulated
di�usion cascades as an aid to understanding high-dimensional and
complex results.

DATA AVAILABILITY
We have published our codes and data at the Spatiotemporal Net-
work Di�usion Codes and Data repository on the ScholarSphere.
�is repository collection includes: 1) 100 geographic locations we
used for modeling the network nodes; 2) R codes for simulating
both the random network and small-world network as well as the
di�usion cascades spreading over these two network structures,
using the proposed STAND algorithm; and 3) CSV �les of simulated
di�usion cascades under di�erent sets of parameters λ1 and tmax
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