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ABSTRACT
Used for route choice modeling by the transportation research com-
munity, recursive logit is a form of inverse reinforcement learning,
the field of learning an agent’s objective by observing it’s behavior.
By solving a large-scale system of linear equations it allows estima-
tion of an optimal (negative) reward function in a computationally
efficient way that performs for large networks and a large number
of observations. In this paper we review examples of IRL models
applied to real world travel trajectories and look at some of the
challenges with recursive logit for modeling bicycle route choice
in the city center area of Amsterdam.

CCS CONCEPTS
•Computingmethodologies→ Inverse reinforcement learn-
ing; • Applied computing → Transportation.
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1 INTRODUCTION
Bicycling in Amsterdam is serious business, more than a third of
journeys by Amsterdam residents are done on a bicycle. As the bi-
cycle market share further increases and the number of Amsterdam
residents keeps growing, problems such as traffic jams of bicycle
near traffic lights start appearing. This makes it more and more
important to model bicycle traffic for traffic studies and simulate
potential policy changes. To do so it is important to understand the
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factor that drive bicycle route choice. In earlier work Koch et al.
[10] we found that more factors than distance play a role bicyclists,
meaning that other factors such as environment (through parks or
next to water) or dedicated bicycle infrastructure might be able to
explain route choice.
We start this paper with a thorough review of literature on using
inverse reinforcement learning in spatial context and literature
on recursive logit. We perform a case study to better understand
bicyclist route choice behavior using a data-set of GPS traces col-
lected by a large panel of volunteers. We conclude this paper with
a reflection on challenges we encountered.

2 BACKGROUND
2.1 Inverse reinforcement learning on real

world travel trajectories
Inverse reinforcement learning (IRL) aims to find reward function
parameters 𝜃 by observing the behaviour of each agent in a Markov
Decision Process (MDP) with a finite set 𝑆 of 𝑁 states. The reward
function 𝑅(𝜁 ) for trajectory 𝜁 = {𝑠, 𝑎}, performing action 𝑎 at state
𝑠 with f𝑠 the feature vector of state 𝑠 , is given by:

𝑅(𝜁 ) = 𝜃𝑇 f𝜁 =
∑
𝑠∈𝜁

𝜃𝑇 f𝑠 (1)

.
In the computer science literature there are several studies per-

forming IRL on real world problems. Ziebart et al. [20] introduced
Maximum Entropy Inverse Reinforcement Learning in 2008 based
on the principle of maximum entropy by Jaynes [9] that the proba-
bility of a trajectory 𝜁 with higher reward is exponentially higher
than that of a smaller reward: 𝑃 (𝜁 ) ∝ 𝑒𝑅 (𝜁 ) . In order to learn
from observed behaviour, the Maximum Entropy IRL algorithm
maximizes the likelihood of the observed trajectories under the
maximum entropy distribution 𝑇

𝜃∗ = argmax
𝜃

∑
𝜁

log 𝑃 (𝜁 |𝜃,𝑇 ) (2)

The maximum entropy distribution 𝑇 is derived using

𝑃 (𝜁 |𝜃 ) = 1
𝑍 (𝜃 ) 𝑒

∑
𝑠 𝑗 ∈𝜁

𝜃⊤f𝑠𝑗
𝑖 (3)

For parameters 𝜃 the partition function 𝑍 (𝜃 ) will always converge
for the problem with finite horizons and infinite horizon problems
with discounted reward weights. Since function 2 is convex for a
deterministic MDP, gradients for optimizers can be obtained by
taking the difference between the observed feature counts and the
expected feature counts based on a given set of parameters 𝜃 , that
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can be formulated as the expected state visitation frequencies 𝐷𝑠𝑖 .
To compute the gradients Ziebart et al. [20] uses:

▽𝐿(𝜃 ) = f̃ −
∑
𝜁

𝑃 (𝜁 |𝜃,𝑇 ) 𝑓𝜁 = f̃ −
∑
𝑠𝑖

𝐷𝑠𝑖 f𝑠𝑖 (4)

To efficiently compute the expected state frequencies for pa-
rameters 𝜃 , Ziebart et al. [20] has proposed an algorithm that ap-
proximates the state frequencies by recursively backing up from
each possible terminal state, computing each probability mass of
each branch along the way, computing partition function 𝑍 at each
action and state. The branching values give the local action proba-
bility that can be used to compute state frequencies and summed up
for total frequency counts. Ziebart et al. [20] apply the Maximum
Entropy IRL model to learn the reward function of taxi drivers on
the road network of Pittsburgh, Pennsylvania. To do so, GPS log-
ging of approximately 7403 trajectories are used to determine the
cost of different road type, speed, number of lanes and turn costs.
The MDP modeled from the road-network of Pittsburg is assumed
to be deterministic with over 300,000 states (street segments) and
900,000 actions (transitions at intersections).

Hirakawa et al. [8] use maximum entropy IRL to learn from bird
behaviour. As birds are equipped with GPS loggers but gaps may
occur due to unavoidable issues with the equipment, a method is
needed to fill those gaps with the most likely trajectory. By using
maximum entropy IRL to find the reward function they determine
the most likely route taken by bids based on environmental fea-
tures. They applied this approach on one type of bird and found
improvement over existing interpolation methods. The IRL model
uses 53 trajectories in a 3 dimensional grid world, with 600 cells in
height for 200 by 300 grid cells each a square of approximately 3
kilometers wide.

In Nguyen et al. [17] a generalization of the IRL problem is pro-
posed that allows multiple locally consistent reward functions to
generate the trajectories. By representing the IRL problem with a
probabilistic graph model, an expectation-maximization (EM) algo-
rithm can be devised to iteratively learn different reward functions
and the stochastic transitions between them, in order to improve
the likelihood of the observed trajectories. As a result, the EM al-
gorithm can be used to derive locally consistent reward functions.
Nguyen et al. [17] empirically evaluated their algorithm with a
small real world network and GPS data of 59 taxis in Singapore. In
this evaluation the road network is modelled as a simplified grid
world with 193 states.

Mai et al. [12] proposes a generalized version of the causal en-
tropy maximization problem, allowing the possibility to generate a
class of maximum entropy IRL models. Their proposed generalized
model has the advantage of being able to recover an expert function
that would (partially) capture the impact of the connecting struc-
ture of the states on experts’ decision. Their empirical evaluation
on a real-world dataset and a grid-world dataset shows that their
generalized model outperforms classical approaches in terms of
recovering reward functions and demonstrated trajectories.

Mai et al. [14] proposes a tractable approach to compute directly
a log-likelihood of observed trajectories with incomplete/missing
data. By performing the training by solving a sequence of linear

equations that does not depend on the number of missing segments
it is efficient at handling a large number of missing segments. Their
empirical evaluation showed that their approach outperforms other
approaches.

Mo [16] looks at bicycle route choice applying the maximum
entropy IRL approach. To achieve multi-reward functions an ex-
tension is used known as Behaviour Clustering IRL (BCIRL). He
performs multiple experiments to investigate the applicability of
these methods in the context of bicycle route choice. In this study
it was found that a low number of demonstrated trajectories, short
trajectory lengths, large number of Markov decision processes to be
solved, and class imbalance were problematic issues for the meth-
ods. An application was performed on a dataset of GPS trajectories
in Amsterdam, but no factors other than distance were found to be
relevant.

In 2017 Wu et al. [18] proposed a data driven method that con-
struct a MDP that models the decision making process of a public
transit rider, decisions such as mode choice, route choice and trans-
fer location choice. The purpose is to predict public transit route
choice for urban planners, given various proposed transit construc-
tion scenarios. Using this MDP they use maximum entropy IRL to
infer the passenger reward function from observed public transit
chip card data (AFC) from Shenzhen, China for a period of 3 months.
They model the real world as a grid world, dividing the world into
grids of a square kilometer and the action set as the possible choice
set of different bus and subway routes between each grid cell. The
features they include are variables such as fare, travel time, number
of transfers and the amount of time remaining to 9 am. In their
study they find that they can find a reward function very closed to
what is observed with regard to behaviour by public transit users
and claim that it justifies their hypothesis that public transit users
make sub optimal decisions.

In 2018 Wu et al. [19] extended this work in multiple ways to
propose a transit evaluation framework. This framework consists of
three stages. The first stage data pre-processing divides the urban
area into equal size grids, which can be represented as a graph:
with the grids as nodes and connected via edges that represent
the road and transit system. The second part of the pre-processing
consists of aggregating the bus-stops and trajectories into that
grid system. The second stage consists of data-driven modelling,
modelling the decision process as MDP and and derive decision
making features from the network such as number of transfers,
number of transit options,transit mode, travel time, fare, etc. The
final stage is to use this work to learn about rewards, preferences
and user choices in order to evaluate transit plans. In the study they
describe a preference learning algorithm Inverse Reinforcement
Learning with Suboptimal Policy (IRL+SP) that can capture non-
linear reward functions of travelers. This algorithm works with
the principle of maximum entropy and assumes that experts make
decision with soft-max based sub-optimal policies.

To study how well IRL+SP performs in reward learning, Wu
et al. [19] compare it to IRL and Apprenticeship Learning (AL) and
claim that it leads to the lowest ridership vector difference, that
IRL and IRL+SP converge faster than AL. To learn how well their
algorithm performs in ridership prediction they combine IRL+SP
with machine learning techniques such as random forest, lasso
regression and linear regression. They compare this with a directly
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trained machine learning model and to a multinominal logit (MNL)
model and claim to have the lowest prediction relative error. In
this study they correctly note that MNL considers a route choice as
a single decision of the entire trajectory instead of a sequence of
decisions.

2.2 Discrete choice modeling of travel routes
Since the 1970’s discrete choice modeling has been a leadingmethod
to understand choice behaviour of individuals in a wide range fields
such as marketing, economics and transportation. Described by
McFadden et al. [15] in 1973, discrete choice modeling has sub-
sequently been extended over the decades in order to overcome
specific limitations such as overlapping alternatives and correla-
tions over time. The study of the specific field of route choice, is
however more complicated than a choice between easily enumer-
able distinct alternatives, since route choice is typically not one
single choice but instead a sequence of choices at each intersection,
each transit stop, each mode, etc. This leads to very large choice
set that is theoretically infinite due to loops. Often there can also
be a large overlap between different route alternatives leading to
difficulties for choice modeling. Two commonly used approaches
are highlighted here.

A first approach to route choice modeling dates from the 1990’s
using a choice set consisting of the observed paths plus paths gen-
erated by a route choice generator. This approach has been used to
estimate a number of different choice model forms such as multi-
nominal logit and mixed logit. This approach comes with limita-
tions: as discussed in Koch et al. [10], these route choice generators
do not necessarily create realistic routes; and Frejinger et al. [7]
argue that parameter estimates can vary significantly depending
on the bias of the route choice generator. To address the specific
issues with the overlap between difference alternative paths and
the resulting correlations, multiple extensions have been proposed
to attempt to avoid erroneous path probabilities and substitution
patterns. The most two popular are path size logit Ben-Akiva and
Bierlaire [1] and C-Logit Cascetta et al. [3], which decrease the
utility of overlapping paths proportional to the overlap with other
paths included in the choice set.

A second approach is to achieve a consistent choice set by sam-
pling as proposed by Frejinger et al. [7]. This approach attempts to
set up a sampling protocol in order to obtain unbiased parameter es-
timates from the route choice sets to neutralize the bias introduced
by the route choice generator.

2.3 Dynamic discrete choice modeling of travel
link sequences

An alternative approach uses link-based Markov decision process
to model route choice as a series of sequential decisions. First pro-
posed by Fosgerau et al. [6] it uses a linear system of equations to
efficiently compute choice probabilities by using a solver to solve
Bellman equations.

An incidence matrix is established that defines the exponential
utility to perform action 𝑎 from state 𝑘 :

𝑀ka =

{
𝛿 (𝑎 |𝑘) 𝑒

1
𝜇
𝑣 (𝑎 |𝑘) , 𝑎 ∈ 𝐴 (𝑘)

0 otherwise.

}
(5)

The size of the incidence matrix is given by |𝐴| describing the
number of states 𝐴 and the number of dummy links 𝑑 representing
termination states of destination. As the dummy links 𝑑 have no
successors, the row 𝑘 = 𝑑 will be zero. Secondly Fosgerau et al.
[6] define a vector 𝑧 of size |𝐴𝑥1| vector where 𝑧𝑘 = 𝑒

1
𝜇
𝑉 (𝐾) and a

vector 𝑏 of size |𝐴𝑥1| where 𝑏𝑘 = 0, 𝑘 ≠ 𝑑 and 𝑏𝑑 = 1. Now given
the identity matrix 𝐼 , Fosgerau et al. [6] write the linear equation:

𝑧 = 𝑀𝑧 + 𝑏 ⇐⇒ (𝐼 −𝑀)𝑧 = 𝑏 (6)

This system has a solution if 𝐼 −𝑀 is invertible, which might not
be the case. As Fosgerau et al. [6] note this is highly dependent on
the balance between the number of paths that connect the nodes in
the network and the size of instantaneous utilities 1

𝜇 𝑣 (𝑎 |𝑘). They
note that this issue is particularly important to consider when
estimating a model, as depending on the value of 𝛽 , 𝐼 −𝑀 can be ill-
conditioned or even singular. Fosgerau et al. [6] note that this limits
the possible values of parameters, as when equation 6 does not
yield a valid solution for at least one observation, the log likelihood
function is not defined. They suggest to deal with this issue by
starting at a feasible point (meaning a large enough magnitude in
the parameters) and then being conservative in the initial step size
of the line search algorithm at the price of an increased number of
iterations.

Mai et al. [13] proposed a nested recursive logit that relaxes
the independence from irrelevant alternatives property of the logit
model by allowing scale parameters to be link specific. Zimmer-
mann et al. [21] subsequently look at bicycle route choice problem
in the city of Eugene, Oregon. By using 648 observations of bike
trips collected from 103 users. They test a long list of 14 potential
parameters: length; link constant to penalize paths with many con-
stants; length interacted separately with upslope, medium traffic,
heavy traffic, regional multi-use path, bicycle boulevard, bike lane;
bridge; bridge interacted with bike facilities; no turn; no turn inter-
acted with crossroad; left turn interacted with crossroad separately
for medium traffic and for heavy traffic.

In Mai et al. [11] an improvement is proposed to Fosgerau et al.
[6] by reducing the numbers of linear systems that need to be solved.
By adding all observed destinations in vector 𝑏 of size |𝐴𝑥 |𝐷 | | it
becomes possible to solve the problem one iteration instead of
solving the system for each destination separately, allowing for
30 times performance gain in their example. They use this perfor-
mance gain to propose a mixed recursive logit, which allows for
random taste variation by adding a random value to the utility
function and running the model 𝑛 draws each iteration to allow for
a random variation. They perform a case study in two cities. First a
car route choice model in the Swedish city of Borlänge, with 466
destinations, 1832 observations and a bicycle route choice model in
Eugene, Oregon with 286 destinations with a unknown number of
observations.

In de Freitas et al. [4], recursive logit is used to model inter-modal
travel based on a static network that describes various connections
in Zurich, Switzerland. The street network consists of 30,372 links
and 13,828 nodes and the transit network consists of 10,298 transit
links and 1585 nodes.

In de Moraes Ramos et al. [5], a network composed of 520 links
and 200 nodes in is considered, using (nested) recursive logit to see
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how travel information affects route choice behaviour, and what is
the impact of the travel time representation on the interpretation
of parameter estimates and prediction accuracy.

3 CASE STUDY
3.1 Collecting data on bicycle movements
For this study we used the Dutch 2016 FietsTelweek ("Bicycle Count-
ing Week") data set ([2]) that is available at their website and con-
tains 282,796 unique trips. During 7 days between the 19th and 25th
of September 2016 approximately 29,600 bicyclists volunteered to
track their bicycle movements using a smartphone app. For this
case study we limited the study to bicycle trips to and/or from
the city of Amsterdam, Diemen, Amstelveen and Ouder-Amstel,
leaving 29,684 trips by an unknown number of bicyclists as any
personal identifying information was removed.

The application observing the participants ran in the background
of the phone to collect the bicycle movements of all participants
using the phone’s GPS and acceleration sensors. The cyclists used
their bike in a way as often seen in the Netherlands, using their bike
as transportation from and to work, supermarket, school, friends,
etc. For privacy reasons the resulting data was anonymized by the
data provider before making it publicly available (i) by the removal
of user information to make it impossible to trace multiple trips to
a single person and (ii) by rounding of the trip departure time into
one-hour bins to the nearest hour and (iii) removal of the random
number between 0 and 400 meters from the start and the end of the
trip to obfuscate the true origin and destination of each trip.

In prior research with the same specific sub-selection of the data,
we found in Koch et al. [10] that bicyclists in Amsterdam often
deviate from the shortest path, more than car drivers, indicating
that there are different and possibly also more factors that have
an effect on the routes bicyclists in Amsterdam take. In Koch et al.
[10] we focused on the concept of route complexity: counting the
number of locations where people deviate from the shortest path,
in the interest of improving route choice generation techniques
and potentially get more insight into the motivations for the route
choice for bicyclists. In this study we explore other effects on route
choice using different methodologies, without looking at route
complexity or where people deviate from the shortest path. In
future research we intend to combine both streams of work.

3.2 Environmental variables
To collect a set of variables that would reasonably impact route
choice of bicyclists we collected and processed open data sources
to compute various explanatory variables describing each route.
First of all for each link in the network we include the length of
that link as distance and if that link is a dedicated cycle-way, we
include the length as oncycleway. Additionally we have a variable
traveltime based on the length and an estimated speed based on the
GPS observations. To include data about the environment of each
link we extracted information of data made openly available by the
city of Amsterdam. Firstly we pulled potentially relevant variables
from a geographical data-set with land-use zones. To combine the
street-network with other relevant geographical data-sets, we cut
each street link into small segments of 5 meters and determined the
distance of that segments to a geographical feature in the land use

data-set. The variable nearwater measures the distance of street
situated close to water bodies such as the canals of Amsterdam,
(small) lakes, rivers and other water bodies wider than 6 meters. To
determine a preference for routes through parks and forests we did
the same thing with the variable neargreen, measuring distance
of street situated within a 25 meter radius of ’green’ land used for
parks, forests and meadows.

To see if the vicinity of busy roads, a major source of noise and
pollution, has any impact on route choice we used a data set with
the noise contours map of road traffic in Amsterdam as shown in
figure 1. This data-set is produced by a model that estimates the
level of exposure to traffic noise in this map there are four noise
levels with respectively at least 55, 60, 65 or 70 decibels of noise.
The variables near55db, near60db, near65db and near70db rep-
resent the distance of the street passing through these exposure
zones.

Figure 1:Noise contourmapofAmsterdam, used for the vari-
able that indicates the distance of a trajectory along roads
with noisy traffic

4 RESULTS
Our initial attempt was to model the Amsterdam network with each
intersection as a node and the streets as actions, following exam-
ple in Zimmerman and Frejinger 2020. This resulted in a network
with approximately 46,000 links and 30,000 observations, which
we carefully controlled for full connectivity and no isolated graphs.
Our motivation to model intersections as states instead of links as
states was driven to lower the number of total states to be modeled,
under the assumption that turn angles might have a low influence
on bicycle route choice in Amsterdam. We tested the recursive
logit model with the five variables length, oncycleway, nearwater,
neargreen and near55db. However we were unable to get the solver
to give plausible results for equation 5 as the solver would return
incorrect results.

For the purpose of a better understanding of the algorithm we
also implemented our own version of the original recursive logit
model in Fosgerau et al. [6] and the significantly faster decomposi-
tion recursive logit model Mai et al. [11] in Python with SciPy and
NumPy. Comparing the output of our Python implementation with
publicly available MATLAB code and input data by authors of Mai

http://www.bikeprint.nl/fietstelweek/
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et al. [13] a number of examples openly available, showed that the
both implementations gave similar enough result values that the
difference could be explained by floating point accuracy. This also
meant that our Python re-implementation was similar ineffective
giving plausible estimation results for the Amsterdam bicycle case.

Subsequently we simplified the study area to just the Amsterdam
city center area containing only about 4500 links, excluding the
entire municipality and surrounding suburbs. Again we carefully
controlled for full connectivity and no isolated graphs. This too did
not lead to plausible estimation results.

Based on the remark by Fosgerau et al. [6] on dense networks
and the number of alternative paths, our next action was to sim-
plify the street network in the Amsterdam city center and remove
all footpaths to reduce the complexity of the network. Again we
carefully controlled for full connectivity and no isolated graphs.
We accordingly also removed all observations of GPS trajectories
cycling over footpaths. This too did not lead to plausible estimation
results.

Finally to transform our model to a model more similar to the
studies in the literature, we instead created an edge-based network,
instead of the intersection-based network. In the adapted implemen-
tation, each state is a street-segment and each action is a move to
another street segment. This link-link approach allows the possibil-
ity to create new features with a boolean to indicate turns, left turns
and u-turns, similar to the Borlänge model in Fosgerau et al. [6] and
Mai et al. [11]. For the entire city of Amsterdam this model contains
40063 links as states with 137724 transitions between states; for the
city center area only it consists of 4204 links as states with 15234
transitions.

With this network we were now able to solve the linear system to
obtain a solution of 𝑧 without (invalid) negative values for the entire
city of Amsterdam. However even when setting the maximum
number of links per observation at 30 links, we are still unable to
calculate a log likelihood due to values of 𝑧𝑜𝑟𝑖𝑔𝑖𝑛 == 0 for one or
more of the observations.

In the smaller area of the city center of Amsterdam it is possible
to estimate a model but also with a relatively low limit of 30 links
per observation, as a higher limit would again return zero values
for 𝑧𝑜𝑟𝑖𝑔𝑖𝑛 . This meant we are able to process only 987 observations
and 681 destinations. We listed the results of this model in table
1 where we would describe the betas to be plausible. An increase
travel time would be a obvious cost. The negative value of an inter-
section, especially in the city centre where almost all road/bicycle
intersections are equipped with traffic lights is also expected. The
positive reward for for left-turn seems as expected to avoid crossing
traffic. The positive reward for u-turn may seem odd, but u-turn
costs on a bicycle should be less costly than in a motorized vehicle.

Subsequently we modelled travel-time with our 5 variables sepa-
rately: 70db traffic noise distance, near green distance, near water
distance, tree covered distance, cycle way distance. While all these
models did converge, it was only able to invert the hessian to cal-
culate a standard error for models: travel-time and length with
tree cover; travel-time and length along water; travel-time and
length with traffic noise. We listed these results in table 3. The
𝛽𝑙𝑒𝑛𝑔𝑡ℎ − 𝑡𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟 for is not significant, possibly because tree
cover is less of an issue in the city center which is shielded by
buildings. The result for traffic noise is not significant either. The

Table 1: Results from estimated model on 987 observations
in the city center of Amsterdam.

value std-error t-test
𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 -2.9119 0.147249 -19.7751
𝛽𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 -0.6356 0.045935 -13.8377
𝛽𝑙𝑒 𝑓 𝑡−𝑡𝑢𝑟𝑛 -1.5717 0.075366 -20.8542
𝛽𝑢−𝑡𝑢𝑟𝑛 0.4205 0.833094 7.5003
log likelihood -4.489078

Table 2: Results from estimated variable travel-time on 987
observations in the city center of Amsterdam.

value std-error t-test
𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 -18.0368 0.006972 -2587.03
log likelihood -10.279184

Table 3: Results from 3 models (travel-time x length-noise,
travel-time x length-water, travel-time x length-treecover)
that were estimated on 987 observations in the city center
of Amsterdam.

value std-error t-test
𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 -18.03681 0.006972 -2587.035
𝛽𝑙𝑒𝑛𝑔𝑡ℎ−𝑛𝑜𝑖𝑠𝑒 -1.9330 14.279491 -0.1354
log likelihood -10.279184
𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 -18.0369 0.00699 -2580.7
𝛽𝑙𝑒𝑛𝑔𝑡ℎ−𝑤𝑎𝑡𝑒𝑟 -2566.333 692.61447 -3.7053
log likelihood -10.274874
𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 -18.0368 0.006972 -2587.0
𝛽𝑙𝑒𝑛𝑔𝑡ℎ−𝑡𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟 -1.9330 197.316315 -0.0098
log likelihood -10.279184

only significant effect found besides travel-time was the distance
travelled near water, possibly due to cycling along the cobble-stone
paved narrow canals navigating between cars, trucks and tourists
being perceived as disadvantageous to persons who cycle for daily
activities.

5 DISCUSSION
Given our experience with the Amsterdam model, we highlight
several challenges during the estimation of the recursive logit model
and reflect on why our initial plan for the model did not work out.

Negative reward formulation. In the original paper by Fosgerau
et al. [6] on recursive logit it is mentioned that to formulate the path
choice problem as a dynamic discrete choice model with the utility
maximization problem consistent with a dynamic programming
problem, the deterministic utility component is required to have
negative value: 𝑣𝑛 (𝑎 |𝑘) = 𝑣 (𝑥𝑛,𝑎 |𝑘 ;𝛽 ) < 0.

As an experiment we set up a network based on a simple grid
layout, with 625 intersections, allowing the user to move left, right,
up, down. There is one diagonal connection across from the top
left corner to the bottom right corner. We included each segment
between the intersections as a single unit of distance. See figure 2
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Figure 2: Two fixed paths to same destination along the
boundaries of the graph (in red and green), plus example of
one randomly generated path (in blue). All paths start at the
top left corner and end respectively at the large red/green
circle and the large blue circle.

for a visualization of 10 by 10 grid. We set up 4 different variables:
𝛽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 for the unit distance, 𝛽𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 that counts each inter-
section passed, 𝛽𝑙𝑒 𝑓 𝑡 that counts each move towards the left side of
the grid, 𝛽𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 that counts each diagonal move.We included two
observations across the top and right of the grid and a observation
across the left and bottom of the grid and a series of 10 random ob-
servations that have a strong preference to move diagonally when
possible. This model estimated with a log likelihood of -10 and
𝛽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −1.54467129, 𝛽𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = −2.04467129, 𝛽𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 =
−2.09161539, 𝛽𝑙𝑒 𝑓 𝑡 = −81.34025.

What we observed is that altering the attribute of a single link
of this model to make the utility of that link positive lead to the
inability of the linear solver to return a valid solution and thus not
being able to find a log likelihood or estimate a model.

An implication that when using recursive logit you should aim
for only including costs in your function 𝑢. In practise this might
turn out tricky as cost variables may turn out to be correlated with
reward variables not included in your model. For example heavy
traffic near a bicycle path may seem like a cost variable at first, but
as such roads are likely equipped with street lights in contrast to a
path through a dark and empty park, such variable may turn out to
have a negative cost.

Valid initial parameters and length of observations. To take a
closer look at how difficult it can be to determine a valid initial
parameter prior to iterative solution of the system, we proceeded to
look at solely at travel-time without any other features in the model.
To do so, we manually computed the log-likelihood function for a

Table 4: Descriptive statistics for variables length and travel-
time in the city center of Amsterdam

min max median mean std-dev kurtosis
travel time 0.0102 21.3616 0.50330 0.8607 0.99338 25.9047
length 0.0007 0.51691 0.02760 0.0496 0.054914 5.70730

range of the 𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 parameter in the range between -1 and
-25. We saw that only in a small window of 𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 between
approximately -18.02 and -21.01 a valid log likelihood function
exists. For a 𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 <= −18 the equation system would return
an invalid sign for the log likelihood, for 𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 >= 21.01 at
least one of the observations would return a 𝑒𝑥𝑝 (𝑉 ) = 0 for at the
starting value.

This narrow range was achieved with a number of links in each
observations limited at 40. If we allowed observations with more
links we were unable to find a window of initial parameters where
the log likelihood function is valid at all. We see numerical issues as
the root cause of this. As a long recursion will be a sum of each link
utility, with high values due to the exponential, we expect these
results to be caused by overflows and under flows in the solver.

The distribution of values of features and network degree cen-
trality. Subsequently we attempted a similar experiment with the
only feature in the model being 𝛽𝑙𝑒𝑛𝑔𝑡ℎ , which is correlated with
𝛽𝑡𝑟𝑎𝑣𝑒𝑙−𝑡𝑖𝑚𝑒 . We were unable to find an exact parameter of 𝛽𝑙𝑒𝑛𝑔𝑡ℎ
that is valid, but deduce it is somewhere between -413.6 and -413.7,
based on where the solver returns a valid solution but 𝑒𝑥𝑝 (𝑉 ) = 0.
To look at the difference between both variables we will describe
some statistics in table 4 and a histogram plot of length in figure 3
and travel time 4.

Figure 3: Histogram of the variable length of the bicycle net-
work in the city center of Amsterdam
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Figure 4: Histogram of the variable travel time of the bicycle
network in the city center of Amsterdam

Based on the descriptive statistics we expect the same root cause
that makes it difficult to find a valid starting parameter. The lower
kurtosis in the distribution of length indicates a fatter right-tailed
distribution presenting more possibility for a significant number of
relatively large values to end up added together in the recursion
on links. This too can lead to overflows and under flows making it
difficult to find starting values betas due to numerical issues.

Another difference with existing studies in the literature that
due to the complexity of bicycle infrastructure in Amsterdam, the
number of possible options is higher than we would see in car route
choice or in a city without two cycle-paths on both sides of major
roads or two roads in both directions (for cyclists) along the canals.

6 CONCLUSION
Recursive logit is a promising solution for inverse reinforcement
learning on specific route choice problems. However when de-
signing your model and variables it is very important to keep the
limitations of the linear equation system in mind. These limitations
can make it impossible to estimate your model or lead to wrong
estimations.

As recursive logit may fail to converge if even a single link has
a (high) reward instead of cost, it is important to think through
whether your variables are always costs for all links in the network.
This can be hard in practice, as assumptions can be deceiving. For
example you might model a bridge as a cost, as there is a small
slope involved, however in reality people might prefer a route
over a bridge as a form of sight seeing opportunity. Furthermore
preferences can differ by person or vary over the time of day. For
example a park might be a beneficial detour during the day, but
during the night an empty badly lit park that feels unsafe might be
worth a detour around instead. Better positio

7 FUTURE STUDY
For future study we are interested in the mechanics that lead to the
invalid estimates by the solver when faced with numerical overflow
and underflow issues. Could a more advanced solver resolve the

issues we have seen? We are also looking into how well exten-
sions of algorithms based on Maximum Entropy IRL of Ziebart et al.
[20] will function with the Amsterdam bicycle network given the
successful implementation of inverse reinforcement learning for
bicycle paths in the work by Mo [16]. However given the limita-
tions noted by Mo [16] on the same Amsterdam dataset, we expect
challenges here as well.
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Figure 7: Map visualizing the trajectories observed in Ams-
terdam in the case study

Figure 8: Map showing the selected area for city center of
Amsterdam in red

Figure 5: Map visualizing the presence of the water near
streets in Amsterdam

Figure 6: Map visualizing the presence of cycle-way infras-
tructure in Amsterdam
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