
On Location Relevance and Diversity in Human Mobility
Data1
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Abstract

The theme of human mobility is transversal to multiple fields of study and applications, from ad-hoc networks to
smart cities, from transportation planning to recommendation systems on social networks. Despite the considerable
efforts made by a few scientific communities and the relevant results obtained so far, there are still many issues only
partially solved, that ask for general and quantitative methodologies to be addressed. A prominent aspect of scientific
and practical relevance is how to characterize the mobility behavior of individuals. In this article, we look at the
problem from a location-centric perspective: we investigate methods to extract, classify and quantify the symbolic
locations specified in telco trajectories, and use such measures to feature user mobility. A major contribution
is a novel trajectory summarization technique for the extraction of the locations of interest, i.e. attractive, from
symbolic trajectories. The method is built on a density-based trajectory segmentation technique tailored to telco
data, which is proven to be robust against noise. To inspect the nature of those locations, we combine the two
dimensions of location attractiveness and frequency into a novel location taxonomy, which allows for a more accurate
classification of the visited places. Another major contribution is the selection of suitable entropy-based metrics for
the characterization of single trajectories, based on the diversity of the locations of interest. All these components
are integrated in a framework utilized for the analysis of 100,000+ telco trajectories. The experiments show how
the framework manages to dramatically reduce data complexity, provide high-quality information on the mobility
behavior of people and finally succeed in grasping the nature of the locations visited by individuals.

1 Introduction

Human mobility data are key to understanding the relation of human beings with their natural, social, and built
environments, for example, the use of space and time in their everyday life, which locations they visit, with what
frequency and for how long. Recent research has shown that individuals tend to visit recurrently few locations and
only sometimes divert from their habitual trips to visit new locations [1]. An interesting question, of both scientific
and practical relevance, is how to quantitatively characterize the individual mobility behavior.

Human mobility data commonly take the form of trajectories reporting the individual location history. From a data
modeling perspective, an important class of trajectories for the study of human mobility are the symbolic trajectories.
Unlike spatial trajectories, where location data is collected at very fine temporal scale over a continuous space and
thus the missing points in between consecutive samples can be estimated by interpolation, symbolic trajectories are
defined over a discrete space consisting of a finite set of points P = {p1, .., pk} in an embedding space. Given a
dictionary L and a bijection m : L→ P , a symbolic trajectory is a sequence of timestamped (symbolic) locations:

T = (l1, t1), .., (ln, tn), with li ∈ L

Locations are spatially sparse and temporally irregular, therefore the sequence cannot be modeled as continuous
trajectory or symbolic time series. Despite the simplicity of the model, symbolic trajectories can be effective in
a variety of scenarios, to represent, for example, the movement indoors, e.g., [2], series of POIs, e.g., [3], series

1The final version of this work will appear in ACM Transactions on Spatial Algorithms and Systems 7, 2, Article 7 (October
25, 2020), 38 pages, with DOI: 10.1145/3423404. Please refer to the final version for future citations.
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of ill-defined regions in spatial trajectories, e.g., [4]. A class of trajectories of major importance for the study of
human mobility, which can be readily modeled as symbolic trajectories, are those built on the call detail records
(CDR) of mobile phones. CDRs report the communication activities of mobile communication subscribers as series of
geo-referenced events, i.e., voice call start/end, text message, data upload/download, collected by mobile operators
for billing purposes. The importance of CDR data (game-changing data in the last decade according to [5]), is
substantially due to the significance of the user base, i.e., very large sets of individuals monitored in their daily life.
In this work, we rely on this data we refer to as telco trajectories, for the characterization of human mobility.

The theme of human mobility modeling and understanding spans multiple fields of study and applications. Two
prominent research streams, closely related to our work, are urban computing and human mobility modeling. Urban
computing focuses on the development of computational methods supporting the integration and analysis of hetero-
geneous data generated in urban spaces. The ultimate goal is to tackle major issues of interest for the city (e.g.
traffic congestion, air pollution, tourism) [6,7]. To exemplify, Zheng et al. in [8] presents a pioneering system for the
recommendation of friends and locations in a city, built on methods for the detection and aggregation of locations of
interest present in spatial trajectories. In contrast, human mobility modeling focuses on the definition of metrics and
mathematical models capable of explaining and predicting the mobility behavior, e.g., [1, 5, 9–11]. For example, a
fundamental result, drawn principally from the analysis of CDR data [1], regards the probability distribution of the
number of times locations are visited. In particular, such distribution is heavy-tail, with few locations accounting
for more than 50% of visits, a limited set of locations visited occasionally, while the long tail accounts for a large
number of locations visited rarely or even once. While this is a well established characteristic of human mobility,
on which there is a broad consensus in literature, a question that is still debated is how to characterize the mobility
behavior of individuals. Indeed, human mobility has multiple facets. For example, in the related literature, one of
the discriminating features is the distance covered by individuals. In this work, we investigate the problem from a
different and location-centric perspective.

1.1 A location-centric view

An important feature of human mobility is related to the number of locations a person visits, namely, stationary
people tend to frequent few locations, while people with high propensity to mobility likely visit a higher number of
locations. However, locations are not equally significant, e.g., some locations are accidental, frequented by chance,
or represent noise, and thus negligible. Therefore, simply counting the number of locations may result in a coarse
measure. A different direction is to quantify the locations that appear of major relevance for the user. Key challenges
posed by this view are discussed in the following.

Location relevance. In the literature on human mobility modeling, the relevance of locations is commonly related
to their frequency: the higher the number of times the location appears in the trajectory, the more relevant the
location is. For example, in the seminal work [1], the most visited location (likely home) is given rank 1, the second
(likely, work place) rank 2, and so on. We refer to this class of relevance models as frequency-based.

A major shortcoming of frequency-based models is the semantic mismatch between frequency and importance: the
locations appearing sporadically in the trajectory are classified irrelevant, regardless of the actual significance for
the user, e.g. the location of an important event, while transient locations may be qualified as relevant, despite the
marginal interest of the person, e.g. the bus station for a commuter.

A different viewpoint, complementary to the frequency-based perspective, relates relevance to staying time, namely,
a location is relevant if the individual spends some significant time in it, regardless of the number of times the location
is visited. We refer to this class of models as attractiveness-based.

In this work, we hypothesize that frequency and attractiveness are two distinct and interrelated features of location
relevance. We focus, in particular, on the latter class of models. Attractiveness-based models are at the basis of
the array of techniques developed for stop and POIs detection in spatial trajectories, e.g., [8, 12, 13]. Unfortunately,
those techniques make strong assumptions on movement, in particular on the continuity of movement, while, in telco
trajectories, the locations are sparse, with long temporal gaps between consecutive locations and with noise (see
Section 3). That raises the question of how to develop a method tailored to the discrete nature of telco data, and
more in general, to symbolic trajectories.

Location diversity. A natural property of locations is their diversity. Diversity metrics quantify the heterogeneity
of a set consisting of elements of different type (population). While a simple measure is the count of types, more
sophisticated metrics are used in practice. The notion of diversity is key in innumerable fields, including biology,



economy, demography, information theory. For example, diversity can be used in ecology to measure the biodiversity
of a geographical area, i.e. diversity of species; in economy, the economic variety of a region, i.e. diversity of
companies with respect to their products; in demography, the racial heterogeneity in various regions. In this work,
we employ the concept of diversity to characterize the heterogeneity of relevant locations in a trajectory. We refer
to that measure as location diversity. As the number of locations as well as the number of visits vary significantly
among individuals, we hypothesize that location diversity can act as discriminant for the categorization of mobility
behaviors.

Indeed, there exists a large variety of diversity indices in the literature, e.g., Shannon-Wiener and Simpson indices,
to cite a few. These indices, however, lack a unifying ground, and thus are hard to compare. Moreover, these
measures do not increase linearly with the number of types, and thus are of difficult interpretation. The challenge is
to find a metric that is suitable for the problem at hand.

1.2 Analytical framework and contributions

To address the above challenges, we develop an analytical framework supporting location relevance analysis and
diversity analysis. Relevance analysis targets the discovery and classification of attractive locations from telco tra-
jectories. Key component is a cluster-based trajectory segmentation technique, conceptually rooted in [14] and
tailored to symbolic trajectories. The outcome is a set of summary trajectories. The term ’summary’ is used to
emphasize that the purpose of the method is to extract key symbols from symbolic trajectories, in analogy with text
summarization methods in information retrieval. Locations are then classified based on the two criteria of attractive-
ness and frequency. Diversity analysis targets the quantification of location diversity in summary trajectories. The
approach relies on the use of different entropy-based metrics, enabling the homogeneous quantification of location
diversity in terms of ’number of types’. These metrics are used to characterize the individual mobility behavior from
a location perspective.

Summary of contributions. This article significantly extends the preliminary version in [15] to address a few
open questions, focusing in particular on the consolidation, enrichment and validation of the analytical framework,
built on the trajectory summarization technique. In addition, we report a richer set of experiments on a significantly
larger dataset of telco trajectories. More specifically:

• We contrast the summarization technique, referred to as SeqScan-d, with a baseline segmentation method for
the compression of symbolic trajectories based on Run-Length Encoding (RLE) and data filtering. While the
two methods use the same set of parameters, we show that noise sensitivity makes the difference. In particular,
our technique enables a more compact representation, while reducing the loss of location types.

• We contrast the locations in summary trajectories, i.e., the attractive locations, with the frequent ones. We
show that frequency and attractiveness are two distinct, though interrelated location features and propose a
location taxonomy based on them. Specifically, we distinguish four classes of locations, labeled, respectively:
significant (frequent and attractive), transit (frequent and not attractive), sporadic (not frequent but attractive),
insignificant (not frequent and not attractive).

• We present an extended framework for quantifying the heterogeneity of trajectory locations. In particular, we
introduce: (a) the notion of location diversity profile, grounded on recent work in biodiversity and ecology.
It provides a systematic organization of the diversity concepts, enabling a multi-level description of location
heterogeneity, expressed in terms of number of location types. In particular, the true diversity of order 1 and
2, built respectively on the Shannon-Wiener and Simpson diversity indices, are measures that are differently
sensitive to the number of occurrences (or type abundance) and, as such, provide different facets of the user’s
behavior. (b) An estimation of the entropy rate, an order-dependent measure of how the entropy varies with the
number of symbols (i.e. time).

• We evaluate the utility of summary trajectories. Specifically, we show that summary trajectories preserve major
statistical properties, in particular, the location rank distribution commonly utilized for the study of human
mobility, e.g. in [1]. In addition, we test the analytical framework on a dataset of anonymized 100,000+ telco
trajectories (superset of the dataset used in [15]). Although larger datasets of telco trajectories are reported
in literature, e.g. [16], we consider that size in line with the state-of-the-art on research in human mobility
modeling [1].



To our knowledge, this is the first approach to the analysis of the mobility behavior built on the concepts of location
relevance and diversity. If taken alone, the effectiveness of location diversity metrics can be easily compromised if
data are not properly filtered and organized. In this sense, relevance and diversity analysis are tightly interrelated.

The rest of the paper is organized as follows. Section 2 provides further details on related work, while Section 3
introduces the dataset used in the work along with the architecture of the analytical framework. Section 4 focuses on
relevance analysis and Section 5 on location diversity metrics. Experiments are reported in Section 6 to evaluate the
summarization technique and to analyze location relevance and diversity at population scale along with summary
trajectories utility. Section 7 reports a brief discussion of results. The conclusive Section 8 completes the paper.

2 Related work

In this section, we overview major research streams related to the discovery and analysis of locations in mobility
data. We start from the methods for the discovery of core locations, rooted in urban computing, then we move to the
analysis of frequent locations, focusing in particular on the statistical properties and the metrics used to characterize
the individual mobility.

2.1 Location discovery techniques

The goal of this class of techniques is to extract from a trajectory the sequence of locations that are visited by the
individual (stops/places/stay points). In literature, the trajectories of concern are commonly of spatial type, thus
consisting of coordinated points, while the problem is formulated in terms of trajectory segmentation, namely to
find the sub-trajectories (segments) satisfying certain conditions. Two major classes of solutions are the attribute-
centric and pattern-centric segmentation techniques [17]. Attribute-centric are called the methods partitioning a
spatial trajectory into a minimum number of segments in such a way that the movement inside each segment is
nearly uniform with respect to some condition on movement attributes. For example, a stop can be defined as a
segment along which the speed does not exceed a threshold value and whose temporal extent is lower bounded. A
variety of methods for different classes of attributes can be found in literature, e.g., in [13,18,19]. The second stream
of research on pattern-based segmentation typically leverages clustering methods for partitioning a trajectory in
segments. Clustering methods are either based on simple heuristics, e.g. [8], or on density, e.g. [20,21], or partitional,
e.g. [22]. Clustering-centric techniques are also used for the construction of semantic trajectories [12].

A common problem to all of these techniques is noise sensitivity. Inevitably, real data contains noise, therefore
noise cannot be neglected. To tackle this issue, a common strategy is to introduce some additional constraints, for
example, on the maximum number of noise points that can be tolerated. Such a parameter 28

is, however, hard to set, especially whenever the sampling intervals are irregular and the clustering is to be applied
to a large number of trajectories. As a result, these techniques are highly time consuming and not very effective
in practice [17]. A first attempt to deal in a more systematic way with the problem of noise in clustering-based
segmentation is represented by SeqScan [14]. SeqScan is a clustering technique for the segmentation of sequences,
fully compliant with the DBSCAN model [23]. SeqScan identifies two classes of outliers: the points indicating a
temporary absence from the cluster (local noise) and the points representing a definitive departure from the cluster
towards another cluster (transition points). The segmentation algorithm determines the sequence of clusters along
with the classified outliers [17].

However, SeqScan is defined for spatial trajectories, while, in our research, we have to deal with telco trajectories.
We state that the aforementioned techniques cannot be applied straightforwardly to the discrete case, as in [16].
Hence, we propose a method that, though conceptually grounded on SeqScan and thus robust against noise and
relying on clustering, is aware of the discrete nature of telco data.

2.2 Statistical properties of frequent locations

The regularity and therefore the predictability of human mobility has been widely investigated and discussed over the
past decade. Despite the diversity of data, methods and metrics used, there is a shared evidence that human mobility
is extremely regular and therefore predictable. The main universal law is that people visit almost daily a few locations
where they spend most of their time, but also visit many other locations with very diminished regularity [24].

The very first research [25] investigated human traveling statistics by analyzing the circulation of banknotes in the
United States. Based on a huge dataset of over a million individual displacements, they found that the distribution
of the traveling distances decays as a truncated power law, indicating that trajectories of bank notes are similar to
Lévy flights. Moreover, each individual tends to return to a few frequented locations with high probability.



The seminal paper on this topic is [1]. On the basis of a dataset of 100,000 trajectories of mobile phone users over
6 months, it shows that human trajectories exhibit a high degree of temporal and spatial regularity. They found
that the distribution of the distance between two consecutive calls, i.e. the displacement, is well approximated by a
truncated power-law, in line with [25]. A per user analysis is also conducted by calculating the radius of gyration
for each user, i.e. the deviation (mean square-error) of each of the user’s positions from the average location,
interpreted as the characteristic distance travelled by a user. The distribution of the radius of gyration is a truncated
power-law, too. This suggests that people frequent many different locations, but the trajectories are bounded by
the characteristic user’s radius of gyration. The mechanism underlying this behaviour is given by the propensity
of people to return to their favourite locations over and over. To explore whether individuals return to the same
location over and over, the probability of finding a user at a location was measured and plotted against the frequency
rank. A linear relationship was shown, independent of the number of locations visited by the user. The conclusion
was that people devote most of their time to a few locations, although spending their remaining time in 5 to 50
places, visited with diminished regularity. This work paved the way for a long track of researches and papers aimed
to confirm, complement, enrich, quantify and eventually model this fundamental law of human mobility which was
summarized in a few surveys such as [7, 9, 24,26].

We mainly refer to the works which provide an estimate of this behavior such as [27] which found that the average
number of frequently visited locations is 2.14 and that 95% of the users visit frequently less than four locations.
A complementary result is provided in [28] which found that individuals visit on average 200 unique locations
in 53 weeks, of which 70% are visited only once. In this study a dataset from smartphones for more than 800
students at the Technical University of Denmark was leveraged. The data sources are heterogeneous and include
GPS location, Bluetooth, SMS, phone contacts, WiFi, and Facebook friendships. The location data were collected by
the smartphone with frequency of one sample every 15 minutes and the location is determined by the best available
provider. Other works interpret regularity in visiting over and over same locations as predictability to find the user
over there. For instance, Song et al. [29] studied the predictability of human trajectories derived from the estimated
entropy of the mobile phone data. The predictability is centered around 93% over a large population, independently
of the size of the area covered by individuals’ mobility or other demographic factors. Probably, the high predictability
is obtained based on low resolution positioning data since the average size of a location is roughly 3 km2. For higher
resolution positioning data such as the GeoLife dataset, Lin and Hsu [30] showed that a high predictability is still
present at fine spatial/temporal resolutions. However, they observed an invariance between the predictability and
spatial resolution. In other words, we cannot obtain a high prediction accuracy and spatial precision simultaneously.

As regularity represents the main statistical property of human mobility, and has been also observed in the dataset
we use here, we consider and investigate whether the summarization algorithm can preserve it in the summary
trajectories.

2.3 Mobility metrics

We provide further details on mobility metrics. The major metrics utilized for quantifying human mobility are
primarily defined for discrete trajectories. Most of these metrics are distance-based. For example, the jump length [25]
measures the distance between two consecutive locations, while a related metric is the Mean Square Displacement [5],

measuring the extent of the exploration area, defined as: MSD(t) = |r(t)− r0|2, where r0 is the vector marking the
initial point of the trajectory, r(t) measures the position at time t.

A major metric is the radius of gyration, defined as the characteristic distance travelled by the user in a time
interval. Rooted in physics and engineering, this measure has been applied to human mobility in [1], and defined

as: rg =
√

1
N

∑N
i=1 |ri − rc|2, where ri are the coordinates of the i-th point of the trajectory of length N , and rc

the centroid of the set of N points. The radius of gyration has been used to discriminate between routinary users
(returners) and highly mobile users (explorers). This measure presents, however, a major limitation. For example,
if an individual spends most of the time at home and work, and home and work are far from each other, the value rg
will be very high, even though the behaviour is routinary, in clear contrast with the intended purpose of the metric.

A slightly different metric trying to overcome this issue is the k-radius of gyration, denoted r
(k)
g [26]. It is defined

as the radius of gyration computed over an individual’s k most frequently visited locations. If r
(k)
g ' rg for a given

k, it means that the radius of gyration is dominated by the k most visited locations, conversely, if r
(k)
g � rg, the k

locations are not sufficient to characterize the mobility. In this sense, the value of k can be interpreted as a mobility
indicator.

The alternative class of metrics, not relying on distance, are those based on entropy. The model in [29] is built on



the measure of the entropy rate, which depends not only on the frequency of visitation, but also on the order in which
the locations are visited. Even if the entropy rate has been introduced as a feature to estimate the predictability
of the trajectories, it can be a useful indicator to analyze the mobility behavior; we refer to entropy rate for that
specific purpose.

3 Data and system architecture: overview

A natural starting point is to describe the nature of empirical data used for this study. Afterwards, we describe the
architecture of the analytical framework and introduce some basic notation.

3.1 Telco data

The CDR dataset used in this work is provided by a major mobile operator in Italy. The dataset covers the city
of Milan plus a few surrounding districts, over a period of 67 days, from March to May 2012. It contains 100,000+
trajectories of anonymized users. The location information is given at the spatial granularity of Location Area,
where a Location Area is a set of one or more base stations, grouped together by the mobile operator, and univocally
identified by a label. Figure 1 illustrates a few records on phone calls, text messages and internet data communication,
respectively. The last sample reports the trajectory combining the records associated to a random user.

CALL RECORDS 
Source Destination Date Time Start  

location area 
End  
location area 

Dir Duration 

2071153 1553655 26/03/2012 00:45:10 VALLAZZE VALLAZZE I 17 

1553655 2733807 27/03/2012 18:19:02 BUENOS AIRES 
PONCHIELLI 

MARIA  
ADELAIDE 0 246 

1553655 35611749 29/03/2012 18:24:23 TUNISIA TUNISIA 0 20 

1553655 2577975 30/03/2012 20:27:17 MM2 CENTRALE MM2 CENTRALE 0 0  
SMS RECORDS 
Source Destination Date Time Location area Dir 

2071153 1553655 26/03/2012 15:32:22 BUENOS AIRES 
PONCHIELLI I 

1553655 2071153 26/03/2012 15:38:19 BUENOS AIRES 
PONCHIELLI 0  

INTERNET RECORDS 
Source Date Time Location area Upload Download 

1553655 26/03/2012 00:02:46 PIOLA 0 141 

1553655 26/03/2012 00:02:46 PIOLA 4698 7838 

1553655 26/03/2012 00:40:27 VALLAZZE 3327 4367 

MOBILITY TRACE  
Source Date Time Location area 

1553655 26/03/2012 00:02:46 PIOLA 

1553655 26/03/2012 00:02:46 PIOLA 

1553655 26/03/2012 00:40:27 VALLAZZE 

1553655 26/03/2012 00:45:10 VALLAZZE 

1553655 26/03/2012 00:45:27 VALLAZZE 

1553655 26/03/2012 15:32:22 BUENOS AIRES PONCHIELLI 

1553655 26/03/2012 15:38:19 BUENOS AIRES PONCHIELLI 

1553655 27/03/2012 18:19:02 BUENOS AIRES PONCHIELLI 

1553655 27/03/2012 18:23:29 MARIA ADELAIDE 

1553655 29/03/2012 18:24:23 TUNISIA 

1553655 29/03/2012 18:24:43 TUNISIA 

1553655 30/03/2012 20:27:17 MM2 CENTRALE 

Figure 1: A fragment of CDR data

Cells and Location Areas coordinates are not available. However, in previous work, it was estimated that 75%
of the Location Areas in Milan are smaller than 1 square kilometer and concentrated downtown, whilst the largest
regions, over 4 square kilometers, are in the suburbs. Figure 2 shows a fragment of the Voronoi polygons used to
approximate Location Areas. The set of representative points for the Location Areas forms the telco space. We refer
the reader to [31,32] for further details on the dataset.

Abstracting from the specific dataset, telco trajectories have some important characteristics:



Figure 2: A fragment of the Voronoi diagram obtained from the estimated centroids of Location Areas in Milan

• Sequences of identical locations. Locations denote regions of space. Therefore, as the user’s position is matched
against the closest base station, it may happen that consecutive locations are identical. For example, a phone call
started and ended at home or in its proximity will generate two records reporting the same location. Notably,
that does not happen in other kinds of trajectories, such as GPS and trajectories of check-in data, where
consecutive locations are very unlikely identical, either for technological reasons (signal characteristics) or for
the nature of movement (e.g. a check-in is typically performed once).

• CDRs are only generated when phones are actively involved in a voice call, text message or internet access.
Therefore large temporal gaps exist between consecutive locations. Moreover, trajectories can contain bursts of
events, often related to user’s activity on the internet (data upload and download), possibly interleaved by long
periods of inactivity. The result is a highly inconsistent temporal frequency, which may confound the mobility
analysis [5].

• The locations reported in CDRs can be noisy because of signal fluctuation in the network coverage [27] which
can lead to ping-pong handovers between neighboring cells [33]. In addition, users can experience brief absences
from the locations where they regularly stay, e.g. home. [14].

3.2 The analytical framework architecture and notation

Figure 3 displays the functional architecture of the framework. It consists of two building blocks supporting relevance
and diversity analysis, respectively. In particular, given a dataset of telco trajectories, relevance analysis accomplishes
two main tasks: (a) identification of key locations through trajectories summarization. The quality of clustering is
assessed using internal indicators. (b) Classification of relevant locations based on frequency and attractiveness. The
second building block is to characterize every single trajectory as a whole using the set of entropy-based indicators,
specifically the location diversity profile and entropy rate estimation. The metrics are used for the classification of
trajectories at population scale.

3.3 Notation

Before proceeding, we introduce some basic notation. The dictionary L indicates the set of locations, more specifically
the names of the Location Areas in our dataset. Note that, throughout the paper, the terms “location” and “symbol”
are used interchangeably. The discrete space of coordinated points P in the Euclidean plane contains the centroids
p1, .., pn of Location Areas. Thus every location has both a symbol and coordinates. The set of locations constitute
the telco space.

A telco trajectory T is a sequence of timestamped locations in L, specifying where the communication events took
place. If we omit the event because irrelevant in this work, we can simply represent a telco trajectory T as a symbolic
trajectory: T = (l1, t1), .., (lm, tm) of length |T | = m with li ∈ L. The symbols appearing in the dictionary represent
(location) types, while the symbols appearing in a trajectory, (location) occurrences. We denote with D = {T1, .., Tz},
the telco dataset.
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Location taxonomy based on
frequency and attractiveness
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analysis

Figure 3: General architecture of the analytical framework: the datasets and the two building blocks for relevance
and diversity analysis

A telco trajectory typically contains multiple occurrences for the same location. For example, the weekly trajectory
of an individual typically contains several occurrences of ’home’. The frequency of visit is the number of times a
location appears in a trajectory. Finally, we assume that every trajectory is univocally associated with a single user.
The basic notation is summarized in Table 1.

Table 1: Notation

T,D Trajectory, set of trajectories

T̂ , D̂ Summary trajectory, set of summary trajectories
L, l Location dictionary, location

w(l, j, T ),W (l, T ) Weight of an occurrence/symbol
δ Clustering parameter: weight threshold
N Clustering parameter: occurrences threshold
H Shannon-Wiener diversity index
S Simpson diversity index
R Richness diversity index

TDH , TDS Location true diversity of order 1 and 2
Srate Summarization rate
Q Summarization goodness
Hr Entropy rate

4 Location relevance analysis: models and methods

In this section, we describe the technique for trajectory summarization. We begin introducing a baseline technique
for the lossy compression of telco trajectories based on RLE. Next, we detail our segmentation method, SeqScan-d,
and present a few indicators for the evaluation of segmentation. Finally, we introduce the taxonomy proposed for
location classification.

4.1 Trajectory summarization: baseline

Broadly, the operation of trajectory summarization extracts from a symbolic trajectory a series of temporally an-
notated locations, qualified as attractive. A first question concerns the granularity of those locations. For example,
one could hypothesize that individuals commonly stay in large regions, e.g. in our case groups of nearby Location
Areas, before moving to some other region. In that case, the attractive locations could be detected by applying some
form of spatio-temporal segmentation (e.g. [14]), thus ignoring the symbolic dimension of locations. Actually, there
is no experimental evidence that this kind of pattern exists in the reference dataset, while it is apparent that telco



trajectories typically contain sub-sequences of identical symbols. This suggests an approach to segmentation based
on temporal and symbolic criteria, in which attractive locations are defined at the granularity of Location Areas.
The approach is presented in the following.

Baseline technique. We start introducing a baseline technique for the extraction of attractive locations, relying
on RLE compression. In general, given a sequence of values, RLE simply encodes subsequences S of identical values
(runs) as pairs (l, n), where l is the repeating value and n ≥ 1 the count. For example, the string aaaccvwww is
encoded as (a, 3)(c, 2)(v, 1)(w, 3).

A straightforward application of RLE to the compression of telco trajectories is as follows. Consider a trajectory
T . Given a subsequence S, with repeating symbol l, namely S = (l, ti) . . . (l, ti+n−1), we encode S as:

S = ([ti, ti+n−1], l, n)

The triple specifying the maximal time interval, the symbol and the count, i.e. (I, l, n), denotes a segment of T .
It can be seen that the replacement of a series of timestamps with a time period determines a loss of temporal
information, while, by contrast, the symbolic information is naturally preserved. We refer to this compressed form
as RLE-trajectory. As an example, Figure 4(a)-(b) reports a fragment of a telco trajectory and the corresponding
RLE-trajectory.

We are, however, only interested in a subset of locations, those that are of major importance, therefore we slightly
modify RLE-trajectories, by applying the following heuristics: we remove the segments (I, l, n) where n < N or
size(I) < δ, with N and δ indicating the minimum number of communication events (i.e. symbols), and the
minimum temporal extent respectively, for the segment to be meaningful. The former condition is to take into
account the local frequency of communication events, the latter, the temporal irregularity of those events. We refer
to the resulting trajectories as RLE+ trajectories (+ to indicate the addition of constraints). Figure 4(c) reports the
portion of RLE+ trajectory obtained by compressing the native trajectory with N = 4, δ = 16′. It can be seen that
the RLE+ representation consists of four segments.

Handling noise. Unfortunately, this form of lossy compression is sensitive to noise. We call ’noise’ the unfitting
symbols in a segment. Noise can result from signal fluctuations, or simply be the consequence of the user’s movement,
e.g. the temporary crossing of neighbor Location Areas. The presence of noise raises two major issues: (a) it leads
to a fragmented representation of summary trajectories confusing the analysis; (b) fragmentation can determine an
undesirable loss of location information. We illustrate the latter case with the following example. Consider the
RLE+ trajectory (fragment) in Figure 5(a). It can be seen that the user’s movement in the time period falls in
three spatially adjacent Location Areas (within a touristic area) (Figure 5(b)). Yet, the segments do not satisfy the
constraints (with N = 4, δ = 16′), and thus are removed from the RLE+ trajectory. As a result, the whole visit to
this touristic area is removed.

To reduce the impact of noise, we present a technique conceptually built on density-based trajectory segmentation.
It requires the same parameters as RLE+, yet it allows for a more compact representation. For example, the trajectory
in Figure 4(a) is summarized in one segment (see Figure 4(d)) covering the whole time of the visit. This result can
be read in this way: the location (’Porta Romana’) is the most attractive location visited by the user in the period
from 9:45 to 19:30 of the day 10/04/2012. Regarding the example trajectory in Figure 5(a), it can be shown that,
unlike RLE+, our technique can find an attractive location (’Castello’, in the period from 16:35 to 18:21 of the day
24/04/2012), thus reducing the location information loss.

4.2 Density-based segmentation of symbolic trajectories

We propose an approach that takes inspiration from SeqScan [14]. SeqScan partitions a spatial trajectory in a series
of temporally ordered clusters of arbitrary shape interleaved by sequences of unstructured points called transitions.
The points that do not belong to any cluster or transition are classified as local noise. Figure 6 illustrates the concepts
of cluster, transition and local noise.

SeqScan is, however, tailored to spatial trajectories, while proven ineffective when applied to telco trajectories,
therefore we have investigated a different strategy. To convey the intuition, consider the simple sequence in Figure
7.(a). This example shows a space of 6 locations (as points in the plane) and the trajectory of a user. It can be seen
that the trajectory contains sequences of identical locations, meaning that the user is located in the same region at
different times while making a phone call or accessing the Internet. As the user moves elsewhere, two cases can occur:



Timestamp Location area 

10/04/2012 9:45:05 PORTA ROMANA 

….. 

10/04/2012 9:53:18 PORTA ROMANA 

10/04/2012 9:53:43 AUGUSTO 

10/04/2012 10:15:07 PORTA ROMANA 

…… 

10/04/2012 12:38:37 PORTA ROMANA 

10/04/2012 12:47:19 BARACCHINI 

10/04/2012 13:14:36 PORTA ROMANA 

…… 

10/04/2012 14:09:43 PORTA ROMANA 

10/04/2012 14:35:41 CALDARA 

10/04/2012 14:39:34 CALDARA 

10/04/2012 14:53:29 BARACCHINI 

10/04/2012 14:57:51 PORTA ROMANA 

….. 

10/04/2012 15:19:57 PORTA ROMANA 

10/04/2012 15:23:33 BARACCHINI 

10/04/2012 15:24:14 BARACCHINI 

10/04/2012 15:33:09 PORTA ROMANA 

…… 

10/04/2012 19:00:38 PORTA ROMANA 

10/04/2012 19:23:24 BARACCHINI 

10/04/2012 19:29:48 PORTA ROMANA 

10/04/2012 19:30:21 PORTA ROMANA 

(a) 

Time interval N Location area 

10/04/2012 9:45:05 10/04/2012 9:53:18 5 PORTA ROMANA 

10/04/2012 9:53:43 10/04/2012 9:53:43 1 AUGUSTO 

10/04/2012 10:15:07 10/04/2012 12:38:37 7 PORTA ROMANA 

10/04/2012 12:47:19 10/04/2012 12:47:19 1 BARACCHINI 

10/04/2012 13:14:36 10/04/2012 14:09:43 6 PORTA ROMANA 

10/04/2012 14:35:41 10/04/2012 14:39:34 2 CALDARA 

10/04/2012 14:53:29 10/04/2012 14:53:29 1 BARACCHINI 

10/04/2012 14:57:51 10/04/2012 15:19:57 4 PORTA ROMANA 

10/04/2012 15:23:33 10/04/2012 15:24:14 2 BARACCHINI 

10/04/2012 15:33:09 10/04/2012 19:00:38 48 PORTA ROMANA 

10/04/2012 19:23:24 10/04/2012 19:23:24 1 BARACCHINI 

10/04/2012 19:29:48 10/04/2012 19:30:21 2 PORTA ROMANA 

(b) 

Time interval N Location area 

10/04/2012 10:15:07 10/04/2012 12:38:37 7 PORTA ROMANA 

10/04/2012 13:14:36 10/04/2012 14:09:43 6 PORTA ROMANA 

10/04/2012 14:57:51 10/04/2012 15:19:57 4 PORTA ROMANA 

10/04/2012 15:33:09 10/04/2012 19:00:38 48 PORTA ROMANA 

(c) 

Time interval Location area 

10/04/2012 09:45:05 10/04/2012 19:30:21 PORTA ROMANA 

(d) 

 

Figure 4: (a) Fragment of the example trajectory (id=1470402); (b) portion of the RLE trajectory; (c) portion of
the RLE+ trajectory; (d) the location found by our technique

the user returns back to the previous location; or the user starts frequenting some other location. This suggests a
cluster-based segmentation performed over the temporal line with clusters only grouping occurrences of a unique
location. Figure 7.(b) shows two clusters, few points of local noise and one point classified as transition. A cluster
is described by a segment, i.e. a symbol and a temporal extent. Our hypothesis is that a cluster identifies the
occurrence of an attractive location. We refer to this technique as SeqScan-d (discrete). Similar to RLE+, SeqScan-d
requires the specification of two parameters N and δ. The model and the algorithm are detailed in the following.

The model

The model is built on the concept of dominant symbol. Intuitively, a dominant symbol (or location) is a symbol
that is representative of a time period. The number of occurrences is a natural relevance metric. For example, in
the sequence: (a, t1)(a, t2)(b, t3)(a, t4), the symbol a appears 3 times in the period I = [t1, t4], thus a is dominant in
I, irrespective of the presence of b. However, sequences can be quite complex and long, and different symbols can
compete for the role. For a more selective competition, symbols are given a weight. Such weight awards temporally
correlated occurrences of the same symbol. Initially every symbol has weight 0; afterwards, if two consecutive symbols
at time ti and ti+1 are identical, the weight of that symbol increases of a certain amount. In particular, the amount
is given by the temporal distance |ti+1− ti|. A dominant location is a location that is sufficiently frequented and has
high weight. More formally, consider a trajectory T = (l1, t1)..(ln, tn), defined in the interval [t1, tn].

Definition 4.1 (Weight function) We introduce:

• The function computing the weight of the occurrence of l ∈ L at position j in T , is defined as:

w(l, j, T ) =

{
|tj − tj−1|, if j > 0 and lj = lj−1 = l

0, otherwise.

• The weight W (l, T ) of a symbol l over the trajectory T is given by the sum of the weights of the symbol occurrences:

W (l, T ) =

n∑
j=1

w(l, j, T ). (1)



Time interval N Location area 

24/04/2012  16:35:49 24/04/2012 16:35:49 1 CASTELLO 

24/04/2012 16:36:17 24/04/2012 16:36:17 1 BRISA 

24/04/2012 16:37:34 24/04/2012 16:37:34 1 CASTELLO 

24/04/2012 17:15:47 24/04/2012 17:15:47 1 BRISA 

24/04/2012 17:20:57 24/04/2012 17:43:18 2 CASTELLO 

24/04/2012 17:44:31 24/04/2012 17:44:31 1 MERAVIGLI 

24/04/2012 17:53:10 24/04/2012 18:02:59 3 CASTELLO 

24/04/2012 18:06:25 24/04/2012 18:09:28 4 BRISA 

24/04/2012 18:10:24 24/04/2012 18:18:42 11 CASTELLO 

24/04/2012 18:19:01 24/04/2012 18:19:01 1 BRISA 

24/04/2012 18:19:07 24/04/2012 18:19:07 1 CASTELLO 

24/04/2012 18:19:58 24/04/2012 18:19:58 1 BRISA 

24/04/2012 18:21:25 24/04/201218:21:25 1 CASTELLO 

 

(a)
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(b)

Figure 5: (a) Fragment of RLE-trajectory (Id=1470402) reporting the three adjacent locations displayed in (b).
The portion of trajectory is displayed in the spatio-temporal coordinate system. The N = 4, δ = 16′, the RLE+
compression yields an empty sequence. Using our technique, the sequence is summarized in the location ’Castello’
(in the period from 16:35 to 18:21 of the day 24/04/2012). The location information is thus not lost

Figure 6: Density-based segmentation of a spatial trajectory [14]. The spatio-temporal points are classified as: cluster
point, noise, transition point

Example 1. Consider the following trajectory from t1 to t10 consisting of 10 occurrences, homogeneously spaced
in time of 2 time units.

T = (a, t1)(a, t2)(c, t3)(a, t4)(c, t5)(b, t6)(b, t7)(a, t8)(b, t9)(b, t10) (2)

The symbols in T have the following weight:

W (a, T ) = (t2 − t1) = 2

W (b, T ) = (t7 − t6) + (t10 − t9) = 4

W (c, T ) = 0

It can be seen that the symbol b has the highest weight. �

We now introduce the notion of dominant symbol. The definition is built on the auxiliary definition of well-formed
sequence. Consider a sequence T = (l1, t1)..(ln, tn), N ≥ 2 and δ ≥ 0.

Definition 4.2 (Well-formed sequence) We say that T is a well-formed sequence if the following conditions are
satisfied:

i. l1 = ln;

ii. W (l, T ) ≥ δ;



Figure 7: (a) Telco trajectory with 6 different locations (on space) and 12 occurrences (in space-time); (b) The
rectangles contains two groups of occurrences for the same symbol, representing clusters along the temporal line.
There are also 3 noisy points and one transition point

iii. |{lj ∈ T | lj = l1}| ≥ N .

Condition (i) states that the sequence S is bounded by l; (ii) and (iii) define lower bounds for the relevance measures.
Now, the dominant symbol can be defined as follows:

Definition 4.3 (Dominant symbol) Given a symbol l, we say that l is dominant in T if the following conditions
are satisfied:

i. T is a well-formed sequence having l as first symbol, i.e. l = l1;

ii. Let (l1, t1)..(lk, tk) the minimal-length well-formed sub-sequence of T that starts at index 1; then
(lk+1, tk+1)..(ln, tn), if not empty, does not contain well-formed sub-sequences having l′ 6= l as first symbol.

If l is dominant in T , the period I = [t1, tn] is called the dominance period of l.

The minimal-length well-formed sub-sequence at point (ii) represents the initial cluster of symbol occurrences.
Such a cluster is then extended with occurrences of the same symbol and possibly noise, until a new cluster is found.
As a consequence of the definition, the dominant symbol is unique in the time frame of T . Finally we define a
summary trajectory a sequence of dominant symbols.

Definition 4.4 (Summary trajectory) A summary trajectory T̂ is a trajectory of length w:

T̂ = (I1, l1)..(Iw, lw)

where the unit (Ij , lj) specifies the symbol lj dominant in the period Ij, and Ij is maximal. The dominant symbols
are the attractive locations in the native trajectory T .

Example 2. Consider again trajectory (2). If N = 3, δ = 2, the summary trajectory is:

T̂ = ([t1, t4], a)([t6, t10], b) (3)

If N = 3, δ = 4, the summary trajectory is:
T̂ = ([t6, t10], b) (4)

Note that the summary trajectory in (4) is obtained by specifying a more restrictive temporal constraint than in (3)
�.

The condition on the maximality of the dominance period implies that the sequence is to be as long as possible,
compatibly with the constraints. Summary trajectories can be straightforwardly represented using the symbolic
trajectories data model in [34]. The dominant symbol identifies a cluster of occurrences, while the symbols other
than the dominant symbol in a period are local noise [14] or absences in that period. Note that summarizing
trajectories determines a loss of information.



The algorithm

Given the input parameters N and δ, the algorithm extracts a series of dominant symbols as temporally separated
clusters. The symbols of the sequence are processed one at a time. As a dominant symbol is found, a cluster is
created and becomes the active cluster. The algorithm proceeds trying to expand the active cluster, while monitoring
at the same time the emergence of other clusters. If the active cluster is no longer expanded, and a new symbol
becomes dominant, the active cluster is closed and appended to the output clusters, while a new cluster is created.
The process terminates when the scan of the sequence is complete. The outcome is a series of temporally annotated
clusters, each representing a dominant location.

The algorithm is detailed in Algorithm 1. The information relevant for the processing of symbols is kept in a hash
table for the symbols of the telco space. For every distinct symbol s of the trajectory, the tuple (n,w, l)s reports the
number of occurrences, the weight and the index of the first occurrence in the portion of trajectory being processed.
As a symbol s becomes dominant, the hash table, except for the dominant symbol entry, is reset and the phase of
cluster expansion starts. Upon the reading of a symbol s′, two cases may occur: a) if s′ is an occurrence of the
dominant symbol, the entry is updated while the hash table is reset again, as above. Note that the reset operation
is necessary to ensure that clusters are temporally disjointed. b) If s′ is not an occurrence of the dominant symbol,
the corresponding entry in the hash table is updated and the input constraints are checked. Hence, if the symbol s′

becomes dominant, the current cluster is closed and the pair (I, s), with I denoting the time interval between the
first and the last occurrence of s, is stored as unit of the summary trajectory. The output of the algorithm is a list
of units defined over temporally separated time intervals.

The time complexity of the algorithm is linear with respect to the number of points in the original trajectory.
The usage of the hash table guarantees a constant access time. As for the space requirement, the algorithm keeps
in memory the original trajectory T , the hash table H and the summary trajectory T̂ . The size of the hash table
equals the size of the dictionary L. Large datasets of trajectories can be summarized using modern multi-core CPUs
and parallel computational frameworks. Moreover, the algorithm can be used in both batch and streaming mode.

Input : T = [(l1, t1), (l2, t2), ...] //trajectory

N , δ //input parameters

Result: T̂ //summary trajectory

C=∅ //Active cluster ;
H //Hash table of |L| entries ;
for (l, t) in T do

H.UpdateEntry( l, t);
if C=∅ then

if getsDominant(l) then
C ← Cluster(l);
H.ResetNonDominantSymbols(l);

end

else
if l==dominant(C) then

H.ResetNonDominantSymbols(l);
else

if getsDominant(l) then

T̂ .Add(close(C));
C ← Cluster(l);
H.ResetNonDominantSymbols(l);

end

end

end

end

Algorithm 1: Summarization algorithm



Evaluation metrics

To evaluate the segmentation, we use two measures: summarization rate and summarization goodness, respectively,
defined as follows:

• The summarization rate Srate(T ) specifies the percentage of locations types (i.e. different symbols) in the native

trajectory T that do not appear in the summary trajectory T̂ , in other words, the percentage of irrelevant
locations. Let R() be the number of location types in the input trajectory. We have:

Srate(T̂ ) = 1− R(T̂ )

R(T )
(5)

Srate ≈ 0 means limited or even no summarization; Srate ≈ 1, a high level of summarization.

Example 3. Consider the trajectory T , consisting of 10 occurrences, i.e. |T | = 10 and 3 distinct location
types, i.e. a, b, c:

(a, t1)(b, t2)(a, t3)(a, t4)(c, t5)(b, t6)(c, t7)(c, t8)(a, t9)(a, t10)

We have R(T ) = 3. Assume the following summary trajectory:

T̂ = ([t1, t4], a)([t5, t8], c)([t9, t10], a)

As T̂ contains only 2 distinct symbols, the summarization rate is: Srate(T ) = 1/3.

Finally, we define the summarization rate Srate(D̂) for the whole dataset as the average summarization rate of
the trajectories, i.e.;

Srate(D̂) =
1

|D̂|

|D̂|∑
i=1

Srate(T̂i)

• The goodness of a summary trajectory Q(T̂ ) measures the quality of clustering. For the evaluation of clustering,
we use the internal index proposed for the validation of the SeqScan method [35] (stationary index ). Accordingly,
the quality of clustering is measured in terms of temporal density of clusters. In essence, the less the local noise
in the period, the stronger the dominance and thus the goodness of the cluster.

In more formal terms, let T ′ ⊆ T be a subsequence summarized in the unit ui = (Ii, li), with li the dominant
location in the period Ii = [tb, te]. We define the goodness of the unit, denoted q(ui), as the ratio of the symbol

weight in T ′ and the length of the dominance period, i.e., q(ui) = W (li,T
′)

(te−tb) . Intuitively, it can be seen as the

percentage of time estimated to be spent in the dominant location. The goodness of a summary trajectory is the
average goodness of the units Q(T̂ ) = 1

n

∑n
i q(ui), with n = |T̂ |. Finally, the goodness of the summary dataset

Q(D̂) is the average goodness of summary trajectories, i.e.:

Q(D̂) =
1

|D̂|

|D̂|∑
i=1

Q(T̂i)

Example 4. Consider trajectory (2) and its summarization in two units, denoted hereinafter u1, u2, i.e. T̂ =
([t1, t4], a)([t6, t10], b). We have:

• Srate(T ) = 1/3. In fact, there is only one irrelevant symbol, i.e. c.

• Q(T̂ ) = 5/12, where:

– q(u1) = (t2 − t1)/(t4 − t1) = 1/3

– q(u2) = [(t7 − t6) + (t10 − t9)]/(t10 − t6) = 1/2
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Figure 9: Location taxonomy

4.3 Insights into the nature of locations: the proposal of a location taxonomy

Trajectory summarization is applied to the extraction of attractive locations from telco trajectories. We now turn
to discuss the nature of the relationship between location frequency and attractiveness.

The frequency of visiting a location in fact accounts for how many times a person is there but is unable to give
any information on the attractiveness that the location has on it. There may be locations, such as the bus stop,
which are often visited by a person who has no specific interest in it, but just transits through it. On the contrary,
we find examples such as a museum, a place that is rarely visited but that expresses a strong cultural attraction, a
place therefore detected as attractive by SeqScan-d, even if visited only sporadically. The synergy between the two
metrics reinforces the role that a location plays in a person’s life: locations that are both attractive and frequent are
clearly very significant, while non attractive and infrequent ones are non-significant. Thus, by combining these two
dimensions, we can gain further insights into the nature of the visited locations.

In particular, we distinguish four classes of locations that we label: significant (SL), transit (TL), sporadic (PL),
insignificant (IL), respectively (in Figure 9). The semantics of these classes can be straightforwardly defined in
set-based terms. For the sake of generality, assume a generic frequency metric. Consider a trajectory T and denote
with Tu and T̂u the two sets of distinct locations in T and T̂ , respectively. Moreover, denote with Nu the top-n
frequented locations in T , where n = |T̂u| = |Nu|, as shown in Figure 8. We define:

• Significant locations are those that are both frequent and attractive, i.e., SL = Nu ∩ T̂u;

• Transit locations are those that are frequent but not attractive, for example the locations where the user passes
quickly daily, i.e., TL = Nu \ T̂u;

• Sporadic locations are those that are attractive but not frequent, for example, the locations hosting some event
of interest for the user, e.g., PL = T̂u \Nu;

• Insignificant locations are those that are neither attractive or frequent, i.e., IL = Tu \ (T̂u ∪Nu).



Location area Frequency
1 ABRUZZI 723
2 LAGOSTA 129
3 ACCURSIO 124
4 PORTA NUOVA 79
5 BACONE 48
6 NIGUARDA 33
7 PIOLA 23
8 MM2 CENTRALE 16
9 CARACCIOLO 16
10 STELVIO 15
11 BELGIOIOSO 12
12 VIA DE PREDIS 12
13 MARCHE 11
14 STUPARICH 10
15 MINCIO 10
16 GORINI 9
17 MORBEGNO 8
18 BUENOS AIRES PONCHIELLI 7
19 STOPPANI 7
20 PALAVOBIS 6
21 DAMIANO CHIESA 6
22 PISANI 6
23 GOBBA 6
24 GASPAROTTO 5
25 VIALE UMBRIA 5
26 LORETO 5
27 MOLINO DORINO 4

. . .
38 MM1 DUOMO 4
39 ROGOREDO 3

. . .
45 PIAZZA XXV APRILE 3
46 CASA DEL SOLE 2

. . .
53 MAFFUCCI 2
54 DE LELLIS 1

. . .
72 CONSERVATORIO 1

(a) Tu (ordered by frequency)

Location area
1 ABRUZZI
2 ACCURSIO
3 BELGIOIOSO
4 CHIESE
5 GORINI
6 LAGOSTA
7 MINCIO
8 NIGUARDA
9 PORTA NUOVA

(b) T̂u

Location area
1 ABRUZZI
2 LAGOSTA
3 ACCURSIO
4 PORTA NUOVA
5 BACONE
6 NIGUARDA
7 PIOLA
8 MM2 CENTRALE
9 CARACCIOLO

(c) Nu

Location area
1 ABRUZZI
2 ACCURSIO
3 LAGOSTA
4 NIGUARDA
5 PORTA NUOVA

(d) SL = Nu ∩ T̂u

Location area
1 PIOLA
2 MM2 CENTRALE
3 CARACCIOLO
4 BACONE

(e) TL = Nu \ T̂u

Location area
1 BELGIOIOSO
2 CHIESE
3 GORINI
4 MINCIO

(f) PL = T̂u \Nu

Transit locations Significant locations

%TL = |TL|
|Tu| %SL = |SL|

|Tu|
5.6% 6.9%

Insignificant locations Sporadic locations

%IL = |IL|
|Tu| %PL = |PL|

|Tu|
81.9% 5.6%

(g) Percentage of locations in classes

Figure 10: Partitioning of locations in classes, based on the proposed taxonomy, for the trajectory with ID=1470401.
The set of insignificant locations is omitted for readability. (a) The set Tu of distinct locations in the native trajectory

ordered by frequency descending order. (b) The set T̂u of distinct locations in the summary trajectory. (c) The set
Nu of the top frequent locations. (d) to (f): the location taxonomy; (d) the set of locations in the significant class
SL, (e) the set of locations in the transit class TL, (f) the set of locations in the sporadic class PL. (g) Percentage
of locations in each class

As a result, given an input trajectory T and its summarization T̂ , we can label each distinct location in T , based on
the proposed taxonomy. To better illustrate the operation, we use an example.

Example 5. The trajectory with ID=1470401 is summarized with parameters N = 4, δ = 16′. Figure 10 shows
the set Tu of locations ordered by descending frequency, the set T̂u of 9 locations detected by the summarization
algorithm, the corresponding set of the 9 most frequent locations, i.e. Nu. The location classes SL, TL, PL, IL,
drawn from the previous sets, are reported along with the percentage of locations for each class. It can be seen
that, in this specific case, the attractive locations amount to about 12% of the total, nearly equally subdivided in
significant and sporadic locations.

5 Location diversity analysis: metrics

In this section we extend the analysis from locations to trajectories and discuss possible metrics for measuring
the individual mobility, focusing in particular on entropy-based metrics. We start presenting some background on
diversity indices, hence we introduce the metrics of concern.

5.1 Diversity indices

Richness, Shannon-Weiner, Simpson

We briefly overview three among the most popular diversity indices: richness, Shannon-Wiener, and Simpson. To
illustrate the differences, consider an example population of 99 elements of type a, and 1 element of type b.



• Richness. Richness (R) is given by the number of types [36]. This metric does not take into account occurrences
(or type abundance). Therefore, the population of the running example presents the same degree of diversity
(R=2) of a population in which the elements of type a and type b are equally common. This index can thus
yield too coarse results.

• Shannon-Wiener index. The Shannon-Wiener index is sensitive to the relative frequency of types. The index
is based on the Shannon entropy:

H = −
R∑
i=1

pi ln pi

where pi is the percentage of elements of type i, R the richness (i.e. number of types), and ln the natural
logarithm. The entropy is maximal if types are equally common, i.e. Hmax = lnR, and minimal (i.e. H=0) if
there is a unique type. In the previous example, the entropy is: H ≈ 0.056.

• Simpson index. This index is defined as:

S =

R∑
i=1

p2i

It holds that S ≥ 1
R , with S = 1/R when the types are equally common. With reference to the previous example,

we have S ≈ 0.98.

True diversity
Diversity measures are hard to interpret and compare. For example, given a population A with 8 equally common
types and another population B with 16 equally common types, the intuition is that the diversity of B is double the
diversity of A. Yet, the Shannon entropy (calculated using base 2 logarithm) is 3 for A, and 4 for B. This is because
entropy gives the uncertainty in type of a sample, not the number of types in the set [36]. A different approach
measures the diversity in terms of Hill numbers. Proposed in the second half of the past century, Hill numbers
have been recently reintroduced by biologists, e.g., [36–38]. Hill numbers are a family of diversity indices, differing
among themselves only by an exponent q, and expressing diversity in terms of ”number of types”. The mathematical
formulation is:

qD = (

R∑
i=1

pqi )
1

1−q (6)

The measure qD is also called true diversity, while q ≥ 0 is the diversity order. Popular diversity indices and true
diversity are tightly interrelated:

• q=0: true diversity equals richness, i.e. 0D = R

• q=2: the true diversity is the inverse of the Simpson index, i.e.

2D = 1/(

R∑
i=1

p2i ) (7)

• q=1: Eq. 6 is not defined, but its limit exists and equals the exponential of the Shannon-Wiener entropy:

1D = exp(−
R∑
i=1

pi ln pi) = exp(H) (8)

While we refer to the literature for further details, we highlight a few features that are relevant for our study:

• The measures of popular diversity indices can be translated into true diversity, and thus be expressed in terms
of number of types. Intuitively, given the value of a diversity index, say x, the corresponding true diversity
indicates the number of equally common types in an “equivalent” population exhibiting diversity x.

• The diversity order indicates the sensitivity of the diversity measure to the relative frequencies of types. In
particular, the exponential of the Shannon-Wiener index (q=1) weights types by their frequency, without dis-
proportionately favoring either rare or common types. In contrast, the inverse of the Simpson index (q=2)
places more weight on the frequencies of abundant types and discounts rare types. In this sense it measures the
diversity of the most popular types [38].



5.2 True location diversity and location diversity profile

We introduce the notion of true location diversity by extension. The set of locations in a summary trajectory
represents the population of concern, where locations have a type and a number of occurrences. We consider the
three indices: R, indicating the location richness; the true location diversity of order 1, based on Shannon Entropy,
denoted TDH ; and the true location diversity of order 2, the inverse of the Simpson index, denoted TDS .

Example 1. Consider two trajectories T̂1 and T̂2. We only report, for brevity, the series of locations forming the
two trajectories, omitting the temporal information.

T̂1 = a, b, c, d, e, a, b, c, d, e, a, b, c, d, e, a, b, c, d, e, a, b, c, d, e

T̂2 = a, b, a, b, a, b, a, c, a, b, a, b, a, b, a, d, a, b, a, c, a, b, a, e, a

Table 2 shows the relative frequencies of the 5 locations in the two trajectories.

Table 2: Relative frequency of 5 types in T̂1 and T̂2

Types T̂1 T̂2

a 0.2 0.52
b 0.2 0.32
c 0.2 0.08
d 0.2 0.04
e 0.2 0.04

Table 3: Diversity measures in T̂1 and T̂2

Measures T̂1 T̂2

R 5 5
TDH 5 3.2
TDS 5 2.6

The diversity measures, homogeneously expressed in term of ’number of types’, are reported in Table 3.
It can be seen that the diversity of order > 0 is significantly lower than R = 5, coherently with the fact that

locations are not evenly frequented. The value TDH = 3.2 measures the diversity of the typical locations in T̂2, while
TDS = 2.6, the diversity of the highly frequented locations.

Location diversity profile. Diversity measures provide complementary information on mobility. Since all of them
are relevant, we follow the approach presented by ecologists in [38], and introduce the notion of location diversity
profile. The location diversity profile provides a multi-level characterization of location heterogeneity through a
multiplicity of diversity indicators, globally enhancing the interpretation of the user behavior. To better illustrate
the information conveyed by the diversity profile, we present an example.

Definition 5.1 (Location diversity profile) The location diversity profile of trajectory i is defined by the triple:

Pr(i) = (Ri, TDi
H , TD

i
S) (9)

Example 2. Table 4 reports, for comparison, the Shannon entropy and the location diversity profile of four
summary trajectories from the reference dataset. The Table reports two cases, discussed below:

• (Case 1). Consider the first two trajectories T̂1=1595546 and T̂2=1686599. We can see that entropy H is greater

in T̂1. Thus, we can infer that the uncertainty in type of a location randomly selected in T̂1 is greater that that
of a location selected in T̂2. The diversity profile, however, provides more explicit information. In fact, we can
see that T̂1 contains fewer locations than T̂2 (i.e. 15 locations instead of 30); in addition, the locations in T̂1



Table 4: Shannon-Wiener entropy (H) and location diversity profile

Traj. ID H R TDH TDS

1595546 2.48 15 12.01 9.97
1686599 1.96 30 7.07 3.8
1477366 1.74 10 5.73 4.03
1733146 1.74 30 5.74 3.31

are nearly all equally frequented. The second user instead, although visiting double the number of locations,
frequent intensively only few locations. The behavior of the two users is thus quite different and that is also
evident in the plots in Figure 11.(a)-(b), representing the summary trajectories in space and time at population
scale;

• (Case 2). Consider now the last two trajectories T̂3=1477366 and T̂4=1733146. In this case, the value of H is
identical. Yet, the diversity profile shows that the two users frequent a different number of locations (i.e. T3
reports 10 locations, T4, 30 locations), while the number of location types in TDH and TDS is similar. The two
users thus exhibit a different behavior, and that finds visual confirmation in the plots in Figure 11.(c)-(d).

(a) ID 1595546 (b) ID 1686599

(c) ID 1477366 (d) ID 1733146

Figure 11: Summary trajectories represented in space (axes x,y) and time (z). The points in space are the centroids
of the Location Areas



5.3 Entropy rate

The diversity indices and derived measures presented in the previous section are all based on either the number of
unique visited locations or their relative frequency, so that – for example – the two trajectories

T̂1 = a, a, a, b, b, c

T̂2 = a, b, a, c, a, b

have the same location diversity profile. Clearly these two trajectories convey different information about the mobility
of the user they refer to; in other words, intuition suggests that, in addition to the frequency of visitation, the order
in which locations are visited may also be a relevant property in the assessment of the mobility behavior of an
individual.

To this intent, we consider the entropy rate as another useful indicator of users’ mobility. Entropy rate is a well-
known indicator and has already been used in [39] to estimate an upper bound of predictability in human mobility.
In the following, we summarize its definition and propose an algorithm to estimate the entropy rate from finite
sequences.

Entropy rate of stochastic processes

The content presented in this subsection is derived from [40], to which the reader is invited to refer to for a more
detailed explanation.

Let X = (Xi)
+∞
1 be a discrete-valued stochastic process. The entropy rate of X is defined as

Hr(X ) = lim
n→+∞

1

n
H(X1, X2, . . . , Xn) (10)

(when the limit exists) where H denotes entropy. This definition expresses the notion that entropy rate is the
per-symbol entropy of the n jointly distributed random variables X1, X2, . . . , Xn.

If the process X is stationary (i.e. the joint distribution of any subset of random variables is invariant with respect
to shifts in the index), it can be shown that Hr(X ) exists and equals to

Hr(X ) = lim
n→+∞

H(Xn | X1, X2, . . . , Xn−1), (11)

thus expressing that, in this case, the entropy rate is the conditional entropy of the last random variable given the
past.

Entropy rate estimation for finite sequences

Let x = (x1, x2, . . . , xn) be a data realization of length n drawn from the stochastic process X . Given only x, an
exact value for the entropy rate of the originating process X can not be calculated, not only because we observe a
merely finite-length sample of the process, so we can not compute the limit for n→ +∞, but also because the joint
probability distributions (of X1, . . . , Xn in (10) and of X1, . . . , Xn−1 in (11)) are not known. To be able to calculate
any statistical estimate, a necessary assumption is that the process is ergodic, i.e. that its statistical properties can
be deduced from a sufficiently long random sample.

Several entropy rate estimators have been proposed with varying requirements, theoretical properties and per-
formance. Here we describe the estimator defined by Theorem 1 c) in [41], derived from Lempel-Ziv compression
algorithm. This estimator has a good combination of desirable properties: it is consistent (i.e. for n → +∞ it
converges to the entropy rate of the process); it does not require preprocessing of data; is parameter-free; it has good
performance on short sequences; is very easy to implement. The only hypothesis on X needed by this estimator,
other than the ergodicity of the process, is the so-called Doeblin Condition, which requires that, after some number
of steps, every outcome is possible again with positive probability, independently of whatever may have occurred in
the past (see [41] for a formal definition).

Given a sequence x = (x1, x2, . . . , xn) of length n and the current position i ∈ {1, 2, . . . , n} in the sequence, the
main quantity of interest of the presented estimator is the longest match-length

li(x) = max

k
∣∣∣∣∣∣∣
k ∈ {0, . . . , n− i+ 1}
(xi, . . . , xi+k−1) = (xj , . . . , xj+k−1)

j ∈ {1, . . . , i− 1}

 , (12)



that is the length of the longest subsequence starting from i that has already been encountered before. The quantity

H̃r(x) =
n log2(n)∑n

i=1(li(x) + 1)
(13)

is an estimator for Hr(X ). To compute this estimate we propose a straightforward algorithm 2 (see Algorithm 2)
having an O(n3) worst-case complexity.

Data: a finite sequence (x1, . . . , xn)
Result: an estimate of the entropy rate of the process from which (x1, . . . , xn) is drawn
n ← length ((x1, . . . , xn))
if n ≤ 1 then

return 0
end
sum← n
for i← 2 to n do

l ← 0
for j← 1 to i− 1 do

k ← 0
while i + k ≤ n && xj+k == xi+k do // &&: short-circuit AND

k← k + 1
end
if k > l then

l← k
end

end
sum← sum + l

end

return n log2(n)
sum

Algorithm 2: Entropy rate estimation.

Entropy rate estimation for trajectories

A summary trajectory can be considered as a finite-length sample of a discrete-valued time-correlated ergodic process;
the Doeblin Condition is clearly satisfied in our application, where the history of locations visited by a user does not
limit the location that they could visit in the future, so the entropy rate can be estimated from trajectories using
(13). Note that, since the entropy rate depends on the order of visited locations, it carries different information with
respect to the indicators discussed in the previous section. Therefore the entropy rate can be useful to distinguish
users who have different mobility patterns despite having the same location diversity profile. An example from the
reference dataset is reported in Figure 12.

6 Experiments

We turn to evaluate the analytical framework through a series of experiments conducted on the trajectory dataset
described in Section 3. The experimental activity is split into the following four tasks:

• To evaluate the SeqScan-d algorithm against the RLE-centric baseline method. The goal is to compare the
summarization capabilities;

• To validate the hypothesis that attractiveness and frequency are two distinct though interrelated dimensions of
location relevance. Definitely, the goal is to quantify the relation between frequent locations in native trajectories
and attractive locations in summary trajectories, at population scale;

2A Julia implementation of the proposed algorithm is publicly available at https://gist.github.com/matteorossini/
1c53b28efad63a8326e418bd1c3645a2.

https://gist.github.com/matteorossini/1c53b28efad63a8326e418bd1c3645a2
https://gist.github.com/matteorossini/1c53b28efad63a8326e418bd1c3645a2


(a) (b)

Figure 12: Summary trajectories in space and time: (a) Trajectory 1748734. (b) Trajectory 1900971. Despite having
very similar location diversity profile, namely Pr(1748734) = (16, 7.34, 3.88) and Pr(1900971) = (16, 7.31, 3.87), the
entropy rates of these two users are quite different (1.53 and 3.12 bits respectively) suggesting that their mobility
behavior is different, as shown in the pictures.

• To evaluate the utility of summary trajectories. The goal is to assess whether major statistical properties of
telco trajectories reported in the literature are preserved when trajectories are summarized;

• To compute diversity measures and related metrics at population scale, and relate, where possible, those results
to the literature on human mobility modeling.

In the following, we describe the experiments conducted to accomplish the above tasks. The experimental setting is
defined below.

6.1 Experiment setting

Dataset. We recall that the dataset consists of 100,000+ telco trajectories in the area of Milan, of various length
and duration, over a period of 67 days. The total number of samples in the dataset amounts to about 54 million
points. The telco space consists of 685 locations at the granularity of Location Area, and identified by a label. Table
5 reports the summary statistics on the number of trajectories (i.e. users), number of records, average and standard
deviation of trajectory length.

Table 5: Summary statistics of the dataset

# Traj # Records # Loc Avg(trj len) Std(trj len)

104,413 54,193,257 685 3151 1650

Hw/sw platform. Data summarization is performed on a Linux-Ubuntu Server DELL T620, 362 GB Ram,
equipped with 2 six-cores XEON CPUs that provide 24 logic CPUs. The summarization operation is performed
by partitioning the input dataset among the CPUs, and processing in parallel the smaller datasets. Data analysis is
performed on a standard Windows 10 PC.

6.2 Evaluation of the summarization technique

We conduct three experiments: (a) the first is to analyze the sensitivity of summarization to the SeqScan-d parame-
ters. This also provides the basis for the choice of the parameter configurations used in the rest of this Section. (b)
The second experiment details the reduction in the number of distinct locations due to summarization. (c) The third
and core experiment compares the summary trajectories generated by SeqScan-d with the set of RLE+ trajectories.



Parameter sensitivity analysis

We start running the summarization algorithm with different values for the clustering parameters N and δ. Table
6 reports the chosen parameters with N ranging in {2, 4, 6, 8} and δ varying in 8 intervals from 0′ to 120′. We run

the algorithm for each combination of the input values, obtaining 32 summarized datasets {D̂1, .., D̂32}. Hence, for

each summary dataset D̂i, we compute the two performance measures, the summarization rate Srate(D̂i) and the

summarization goodness Q(D̂i).

Table 6: Input parameters for data summarization

N δ(day)

2, 4, 6, 8 0.0000 ≈ 0′

2, 4, 6, 8 0.0014 ≈ 2′

2, 4, 6, 8 0.0028 ≈ 4′

2, 4, 6, 8 0.0055 ≈ 8′

2, 4, 6, 8 0.0111 ≈ 16′

2, 4, 6, 8 0.0208 ≈ 30′

2, 4, 6, 8 0.0417 ≈ 60′

2, 4, 6, 8 0.0833 ≈ 120′

Figure 13 shows the four plots reporting the performance measures for varying values of δ, and N = 2, 4, 6, 8. It can
be seen that the goodness of summarization is generally high. For example, the plot in Figure 13a (for N=2) shows
that, for δ = 16′, the measure is 0.75. Following the experience in [35], the value of 0.7 is chosen as lower bound for
a clustering of high quality. It can be also seen that the summarization rate is quite high, with the percentage of
irrelevant locations (types) varying approx from 40% to 90%. In particular, with N = 2 and δ = 16′, we achieve a
summarization rate of 0.74.

The parameter N has a strong impact on the summarization performance. That is not surprising: the higher N ,
the longer the sequences representing clusters and thus the chance of absences in the period. Therefore, the highest
goodness is achieved with N = 2. In contrast, δ is an application-oriented parameter specifying the maximum
temporal granularity of relevant locations. For example, the value δ = 16′ means that the temporal extent of a
cluster shall be at least 16’ (ruling out absences). For N = 2, the two curves of the performance metrics intersect
for δ = 16′, which is also a reasonable value, for example, when colocated events have to be detected [42]. Thus, for
N = 2 it is convenient to set δ = 16′. As N increases, both Q(D) and Srate(D) vary slightly with its variation; even,
for N = 8 they are almost constant. Based on above considerations and for the sake of readability, in the following
sections we will report the results only for the four series of trajectories obtained with N=2,4,6,8 and δ = 16′.

Number of distinct locations in summary trajectories

This experiment provides further details on the set of locations obtained from summarization. Such a set is the
basis of additional analysis that will be presented later on in the article. Figure 14 shows the distribution of the
cardinality of the location sets obtained by running SeqScan-d with the aforementioned parameter configurations.
As an example, for N = 4, summary trajectories contain on average 12 distinct locations against 61 location in the
original trajectories. Such locations are those that, based on our model, are attractive.

Comparison of SeqScan-d with the RLE-centric baseline technique

We compare the trajectories generated by SeqScan-d with the RLE+ trajectories. We recall that RLE+ segments
denote sequences of the original trajectories reporting a unique location, thus RLE+ is sensitive to noise. We
hypothesize that noise determines an excessive fragmentation of the input trajectories causing location information
loss. In this experiment, we want to evaluate the impact of noise on summarization capabilities, based on the
following two metrics: (a) the number of distinct locations in resulting trajectories; (b) the trajectory length, i.e. the
number of segments in the trajectory. Note that we do not refer to the quality indicator Q (Section 4.2), because it
makes sense only for SeqScan-d and, more in general, for noise insensitive techniques.

Table 7 reports the summary statistics about the two measures computed for the reference dataset. It can be seen
that:

• SeqScan-d generates shorter trajectories. For example, with N = 4, δ = 16′, summary trajectories are around
33% shorter than RLE+ trajectories. This result can be explained as follows: SeqScan-d not only can recognize
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Figure 13: The summarization goodness Q(D) and the summarization rate Sr(D) for δ ranging in
{0, 2, 4, 8, 16, 30, 60, 120}, and for N= 2, 4, 6 and 8, respectively

RLE+ segments as key locations, but also is capable of aggregating RLE+ segments separated by noise, in a
unique segment. The result is a reduced fragmentation.

• SeqScan-d identifies a higher number of distinct locations. For example, with the above parameters, the average
number of distinct locations in summary trajectories and RLE+ trajectories is 12.28 and 11.43, respectively. In
general, the set of locations types in the summary trajectories is a superset of the corresponding set in RLE+
trajectories. Thus the location information loss is lower.

6.3 Classifying locations based on frequency and attractiveness

We conduct a first experiment to classify the location based on the taxonomy presented in Section 4.3; next we
highlight an interesting property of ’significant’ locations in summary trajectories.
Given a dataset D, for every trajectory Ti ∈ D, and T̂i ∈ D̂, we determine the classes of (distinct) locations labeled
significant, transit, sporadic, insignificant in accordance with the definition given in Section 4.3. Let us denote the
generic class as Xi ∈ {SLi, TLi, PLi, ILi}, respectively. At population scale, the percentage of locations in class X
is simply computed as average:

X% =
1

|D|

|D|∑
i=1

|Xi|
|Tui
|

Table 8 reports the percentages of locations in each class computed for the four datasets of summary trajectories
(i.e., N = 2, 4, 6, 8, δ = 16′) . It can be seen that:
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Parameters Median Mean Std

Original 56.0 61.09 30.11
N=2, δ=16′ 14.0 15.61 8.71
N=4, δ=16′ 10.0 12.28 7.75
N=6, δ=16′ 8.0 9.47 6.59
N=8, δ=16′ 6.0 7.40 5.57

(c)

Figure 14: (a) Empirical Cumulative Distribution Function (ECDF) of the number of distinct locations in original
trajectories. (b) ECDF of the number of distinct locations in summary trajectories. (c) Summary statistics of the
number of visited distinct locations in original trajectories and in summary trajectories

• The vast majority of locations in native trajectories are classified as insignificant. The percentage varies from
approx. 67% to 84%. Thus, the two approaches are in agreement that around 70% of the locations in the native
trajectory are not important for the user. This result is substantially in line with the literature.

• The percentage of significant locations, i.e. frequent and attractive, computed for the whole set of locations
visited by an individual varies between 9% and 19%.

• Transit (frequent but not attractive) and sporadic (infrequent but attractive) locations, together, account for
7-14%, on average, of the locations.

An interesting aspect to investigate is the possible dependence of the percentage of significant locations on the
number of attractive locations. Thus, we zoom in on summary trajectories, i.e. for every summary trajectory, we
compute the ratio between the cardinality of the set of significant locations and the number of distinct locations in
the summary trajectory. The boxplot in Figure 15 reports the percentage of significant locations in the summary
trajectories, grouped by the number of distinct locations, i.e. each bar represents the distribution of the percentage
of significant locations of all the trajectories with a given number of distinct locations (the value on the x-axis). It
turns out that the majority of attractive locations, around 70%, are the most frequently visited, too. Surprisingly,
we find that this result does not depend on the number of distinct locations in the summary trajectory, i.e. it holds
both for people with high mobility and for more settled people visiting a limited number of locations.

6.4 Utility of summary trajectories

The question is whether summary trajectories preserve key statistical properties of human mobility data, that are
found in literature, and, thus, data utility. We perform two experiments: (a) the first experiment is to analyze the
location rank distribution in native and summary trajectories; (b) the second one is to evaluate the level of matching
between the two location rankings.

Analysis of the location rank distribution
For this experiment, we refer to a key result in literature, that the frequency of visits exhibits a heavy-tail

distribution, where few locations account for more than half of visiting frequencies, a limited set of locations are



Table 7: RLE+ Vs. SeqScan-d. Summary statistics of the number of distinct locations per trajectory and trajectory
length

Distinct locations Trajectory length

RLE+ SeqScan-d RLE+ SeqScan-d

Median Mean Std Median Mean Std Median Mean Std Median Mean Std

N=2 14 15.53 8.8 14 15.61 8.87 113 122.98 67.44 75 82.63 52.52
N=4 10 11.43 7.26 10 12.28 7.75 79 89.48 52.85 52 60.47 43.22
N=6 7 8.31 5.86 8 9.47 6.59 55 64.05 42.43 34 43.26 35.29
N=8 5 6.18 4.73 6 7.4 5.57 39 47.27 34.99 23 31.6 28.98

Table 8: Percentage of locations in native trajectories classified accordingly to the proposed taxonomy

Location class n=2 n=4 n=6 n=8

Significant (SL) 18.67 % 14.37 % 10.96 % 8.61 %
Transit (TL) 7.13 % 5.74 % 4.43 % 3.41 %
Sporadic (PL) 7.13 % 5.74 % 4.43 % 3.41 %
Insignificant (IL) 67.05 % 74.16 % 80.17 % 84.58 %

visited occasionally, while the long tail accounts for a large number of locations visited rarely or even once [1]. To
show that this mobility dataset follows the same behavior and that the summarization algorithm does not alter
the nature of this primary feature of human mobility, we follow the approach in [1], in particular, we compute the
probability distribution of the location rank over the user population.
Given a generic telco dataset D, we define the probability P (r,D) to find a user in a location with a rank r as follows.
For every trajectory T ∈ D, we compute the visiting frequency of every location l ∈ T and assign l a univocal rank r
in the range [1, |L|]. Hence, the probability P (r, T ) to find the user in the location of rank r, is given by the number

of occurrences of the location of rank r, occ(r), over the length of the trajectory, denoted: P (r, T ) = occ(r)
|T | . Scaling

up, we define the average probability P (r,D) to find a user in a location of rank r as:

P (r,D) =
1

|D|
∑
Ti∈D

P (r, Ti) (14)

If we compute this measure of probability over the sets D and D̂, i.e. P (r,D), P (r, D̂), we obtain two distributions
of the location rank that can be compared.
The log-log plot of these two distributions is reported in Figure 16 for multiple choices of the two parameters of the
summarization algorithm. Referring to the red curve, which provides the most different trajectory from the original
one, we find that the average probability for users to be in their first relevant locations is very high and equal to
0.48 and 0.61 for r = 1, to 0.16 and 0.21 for r = 2, and to 0.07 and 0.09 for r = 3 in the original and summary
trajectories, respectively. We find that these values are reassuringly aligned with the literature. The discrepancies
are even smaller for the other parameter settings, i.e. with N decreasing, highlighting the consistency between the
performance measures and the location ranking frequency. In fact, as observed in Figure 13, the lower the value
of N , the higher the goodness of the summarization. In particular, with N = 2 we obtain the best summarization
goodness in Figure 13 and the closest curve to the original trajectories one in Figure 16 [1]. Figure 16 also shows
that the overall shape of the curve is not altered and the visiting probabilities are very similar in the original and
summary trajectories up to around the first most visited ten locations. The summarization mainly impacts the long
right tail which is shortened as the low-ranked locations are discarded by the clustering algorithm. This first result
only accounts for the fact that the algorithm does not alter the probability of visiting the locations for high ranks,
while eliminating the tail of visiting probabilities of low ranking locations. However, this result does not provide
any evidence on the matching between the locations and their rank in the original and summarized trajectories. We
can here conclude that, the summarization technique is able to preserve the frequency of the highly ranked, while
discarding the locations with very low ranks. To fully affirm that the summarization technique really preserves the
locations regularly frequented, while discarding the locations that are largely irrelevant to a person as they have only



Figure 15: Boxplot of the percentage of significant locations in the summary trajectories with parameters set N = 2,
δ = 16′. Each bar represents the distribution of the percentage of significant locations of all the trajectories of a
given number of distinct attractive locations (the value on the x-axis)

been there even once or may be passed through them once by chance, we will investigate the degree of matching in
the following section.

Analysis of the matching degree

The problem is formulated as follows: for each trajectory, determine the maximum value k, such that the top-k most
frequented locations in Tu, denoted Nu(k), are also attractive, i.e. included in T̂u.

Figure 17 reports the cumulative distribution function of the variable k for different values of the parameters of the
summarization algorithm. The value of k is around 5, meaning that the summarization algorithm captures the 5 most
frequently visited locations, on average. Therefore, importantly, the summarization can detect not only the routine
locations as home, work and similar, but also locations which are out of the daily routine and only occasionally
visited.
A related question is whether the matching degree depends on the length of the trajectory. Figure 18 plots the
matching degree as function of the number of distinct locations in the summary trajectory. Interestingly, it can be
seen that the matching degree k tends to increase linearly with the number of attractive locations.

6.5 Evaluating location diversity

We perform two experiments: (a) the analysis of location diversity profiles based on summary trajectories; (b) the
analysis of the entropy rate.

Analysis of location diversity profiles

This experiment is organized in two steps: the first step is to compute the location diversity profile of every single
trajectory; the second step is to categorize users based on location diversity indices.

Table 9: Summary statistics on the variables of the location diversity profiles.

Metric Max Min Avg Std

R 108 1 15.61 8.87
TDH 91 1 6.95 3.84
TDS 74.6 1 4.49 2.41

We consider the summarized dataset D̂ obtained by setting the parameters: N = 2, δ = 16′. For every trajectory
T̂i ∈ D̂, we compute the diversity profile: Pr(i) = (Ri, TDi

H , TD
i
S). The summary statistics for the variables of the

profile are reported in Table 9. It can be seen that, on average, a trajectory contains about 15 relevant locations,
while the true diversity of order 1 (TDH) amounts to about 7 locations, and the true diversity of order 2 (TDS) to
about 4 locations. There is thus a significant gap between the values of R and TDx, indicating that locations are
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Figure 16: Plot in log-log scale of the average probability to find users in their locations as ranked by the frequency
of visit. x-axis: locations ordered by descending frequency of visit and labeled by their rank. y-axis: probability to
find users at a ranked location computed as the average percentage of times users were recorded in that location

not evenly frequented. Moreover, the diversity of core locations is quite small. Further details are provided in the
next step.
User classification is performed as follows: for every variable (i.e., R, TDH , TDS), we consider the sorted sequence
of values (one value per trajectory). Every sequence is next partitioned in a series of 1-D clusters using the Jenks
algorithm [43], finally, the relative size of every cluster is plotted as a histogram.

The Jenks algorithm is a data classification method that optimizes the arrangement in classes of 1D values by
minimizing the within-class variance and maximizing between-class variance. As a result, the elements within each
class are as close as possible in value to each other. In more detail, the algorithm splits a sequence of sorted
data (unidimensional) into k intervals so as to minimize the internal measure of quality, the goodness-of-variance-fit
(GVF) [44]. GVF ranges between 0 and 1, with 0 indicating the worst fit and 1 the best fit. To determine a suitable
value for k, the empirical rule is to run the algorithm for increasing value of k until the GFV exceeds a threshold
value. With a threshold of 0.7, we obtain k = 3.

The plots in Figure 19 report, for each diversity measure, the three classes, i.e. low, middle and high diversity,
along with the percentage of users falling in each class. Figure 19(a) shows the classification based on R. It can
be seen that for 87% of users, the number of relevant locations is at maximum 25, while for 13% of users, it ranges
between 25 and 108 locations, Figure 19(b) shows a refined classification based on TDH : for 65% of users, the
diversity of “typical location” amounts to 7 locations, while only for 4% of users the diversity is greater than 15
locations. Finally, Figure 19(c) shows the further refined classification based on TDS . We see that, for 79% of users,
the maximum diversity is 5 locations, while only for 2% of users, the diversity is greater than about 12 locations.

These results are qualitatively in line with what is reported in literature (see Section 2). We find particularly
interesting the inverse of the Simpson Index, i.e. TDS , as it provides a measure of the diversity of core locations,
typically home, work, a few others. Such a measure is in line with what is known, that the great majority of people
frequent assiduously only few locations.

Entropy rate at population scale

We have estimated the entropy rate of summary trajectories of the reference dataset. Summary trajectories have a
rather short length (typically a few dozen symbols) and we found that the worst-case O(n3) complexity of Algorithm 2
is not a limitation in practice, being able to estimate the entropy rate of a typical summary trajectory in about 10 µs
on a standard PC. The cumulative distribution function of the entropy rate of summary trajectories of the reference
dataset is shown in Figure 20. The mean value is 1.97 bits; the most complex trajectory has an entropy rate of 5.11
bits.



Parameters Median Mean Std

N=2, δ=16′ 6.0 6.31 3.77
N=4, δ=16′ 4.0 5.10 3.20
N=6, δ=16′ 4.0 4.16 2.71
N=8, δ=16′ 3.0 3.49 2.32

Figure 17: Empirical Cumulative Distribution Function (ECDF) and summary statistics of the matching degree k
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Figure 18: Boxplot of the matching degree k as a function of the number of distinct locations in the summary
trajectory with parameters set N = 2, δ = 16′. Each bar represents the distribution of the matching degree of all the
trajectories with a given number of distinct attractive locations (the value on the x-axis). The orange line represents
the linear regression of the matching degree over the number of attractive locations

7 Discussion

In this work, we use a research methodology that combines computational models with methods taken from human
mobility modeling and ecology, for analyzing the nature of the locations frequented by individuals and thus their
mobility behavior. The main findings of this effort can be summarized as follows:

• We have introduced the notion of trajectory summarization and presented the SeqScan-d algorithm for the ex-
traction of attractive locations from symbolic trajectories with repeating symbols, in particular telco trajectories.
SeqScan-d is capable of identifying key locations for each user and dispensing with the irrelevant ones, despite
the high noise and uncertainty of the data. Unlike methods relying on the compression of symbolic sequences,
for example based on RLE, this technique is robust against noise. That is important for the effectiveness of
summarization, in that it reduces fragmentation, while preserving the semantic coherence of location visits.
Concerning the parameters, the summarization goodness index is optimal with N=2. Consequently, solely the
parameter δ needs to be specified, based on the applications characteristics. That streamlines the use of the
operation. With the parameters N = 2, δ = 16′, the number of locations (as types) is reduced by 74% on
average.

• We have devised a framework for classifying locations along the two dimensions of frequency and attractiveness.
The result is a novel location taxonomy which consists of four formally defined location classes. The class of
insignificant locations accounts for 67% of the locations in the native trajectory with a very high concordance
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Figure 19: User classification based on diversity indicators. The x-axis reports the number of locations, the y-axis
the percentage of users

between the frequency-based and the attractive-based approach. The taxonomy highlights two particularly
interesting classes, the transit and the sporadic locations, that on average accounts for the 14% of the locations
with the parameters N = 2, δ = 16′. Transit locations are for example the areas crossed by a traveler. Therefore,
if a trajectory presents a high percentage of transit locations, the user is likely very mobile. Sporadic are the
locations that, though important for the user, are only occasionally visited. A trajectory with many sporadic
locations is typical of an individual with a non-routinary life. In synthesis, we show that the two relevance models
- frequency-based and attractiveness-based - are not in contrast, but rather offer complementary viewpoints on
the user behavior.

• We have shown that summary trajectories preserve the basic and universal statistical property of human mobility,
that the frequency of visits follows a heavy-tail distribution, where few locations account for more than half of
visiting frequencies, a limited set of locations are visited occasionally, while the long tail accounts for a large
number of locations visited rarely or even once. Additionally, it is shown that the summarization operation
captures the 6 most frequently visited locations, on average, with the parameters N = 2, δ = 16′ .

• We have introduced the notion of location diversity profile to capture different and multi-level facets of location
diversity. This is another way for characterizing the individual mobility, this time at trajectory level and not at
location level, as above. We have seen, for example, that the diversity of the locations based on the Shannon-
Weiner measure amounts, on average, to seven locations (based on the exponential of the Shannon-Weiner
measure), while the diversity based on the inverse Simpson index to about four locations. These results, though
computed on summary trajectories, are in line with the state-of-the-art. Finally, we have introduced the entropy
rate to measure entropy over sequences. Although the use of this metric for the modelling of human mobility is



0 1 2 3 4 5
Entropy rate (bits)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

Figure 20: Empirical Cumulative Distribution Function (ECDF) of the entropy rate of summary trajectories of the
reference dataset

known, we believe it can be of broad interest also for the spatial computing community.

8 Conclusion

To summarize, in this article we have presented a location-centric framework for the analysis of the individual
mobility behavior. Such analysis relies on symbolic trajectories resulting from a process of ’semantic compression’
of telco data. The code of SeqScan-d is publicly available (https://github.com/SeqScan/SeqScan-D). We have also
emphasized the distinction between places of attractiveness, where users are willing to spend their time, and the
locations that are frequent but not relevant where users often pass but without consuming time as those locations
are not attractive to them. This distinction can be of interest in all those applications that focus on places of
interest for people such as epidemics, where the identification of places where people spend time is fundamental, or
recommendation systems focused on the attractiveness of places. The third and last core topic - perhaps the most
challenging - regards the specification of suitable metrics for measuring the mobility behavior of individuals. This is a
complex topic that requires further investigation along diverse directions, e.g. [45]. Measuring the mobility behavior
can be of practical interest in many applications in which the movement of people can be naturally represented
in symbolic form, such as indoor movement analysis, e.g., measuring the movement in shopping areas, museums,
airports, or in urban settings. To conclude, the study of human mobility calls for a strong multidisciplinary effort
to integrate data management and related application areas, e.g. urban computing, with mathematically grounded
human mobility models.
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