
1

Conditional LSTM-GAN for Melody Generation from Lyrics
Yi Yu1, Abhishek Srivastava2, Simon Canales3,

1Digital Content and Media Sciences Research Division, National Institute of Informatics, Tokyo, Japan
2Multimodal Digital Media Analysis Lab, Indraprastha Institute of Information Technology Delhi, India

3Institut de génie électrique et électronique, École Polytechnique Fédérale de Lausanne, Switzerland

Abstract—Melody generation from lyrics has been a challenging
research issue in the field of artificial intelligence and music, which
enables to learn and discover latent relationship between interesting
lyrics and accompanying melody. Unfortunately, the limited availability
of paired lyrics-melody dataset with alignment information has hindered
the research progress. To address this problem, we create a large dataset
consisting of 12,197 MIDI songs each with paired lyrics and melody
alignment through leveraging different music sources where alignment
relationship between syllables and music attributes is extracted. Most
importantly, we propose a novel deep generative model, conditional Long
Short-Term Memory - Generative Adversarial Network (LSTM-GAN) for
melody generation from lyrics, which contains a deep LSTM generator
and a deep LSTM discriminator both conditioned on lyrics. In particular,
lyrics-conditioned melody and alignment relationship between syllables of
given lyrics and notes of predicted melody are generated simultaneously.
Extensive experimental results have proved the effectiveness of our
proposed lyrics-to-melody generative model, where plausible and tuneful
sequences can be inferred from lyrics.

Index Terms—Lyrics-conditioned melody generation, conditional
LSTM-GAN

I. INTRODUCTION

Music generation is also referred to as music composition with the
process of creating or writing an original piece of music, which is one
of human creative activities [1]. Without understanding music rules
and concepts well, creating pleasing sounds is impossible. To learn
these kinds of rules and concepts such as mathematical relationships
between notes, timing, and melody, the earliest study of various
music computational techniques related to Artificial Intelligence (AI)
has emerged for music composition in the middle of 1950s [2].
Markov models as a representative method of machine learning have
been applied to algorithmic composition [3]. However, due to the
limited availability of paired lyrics-melody dataset with alignment
information, research progress of lyrics-conditioned music generation
has been obstructed.

With the development of available lyrics and melody dataset and
deep neural networks, musical knowledge mining between lyrics
and melody has gradually become possible [4],[5]. Melody [6] is
a sequence of musical notes over time, in which each note is
sounded with a particular pitch and duration. Generating a melody
from lyrics is to predict a melodic sequence when given lyrics
as a condition. Existing works, e.g., Markov models [7], random
forests[8], and recurrent neural network (RNN)[9], can generate
lyrics-conditioned music melody. However, these methods cannot
ensure that the distribution of generated data is consistent with that
of real samples. Generative adversarial networks (GANs) proposed
in [10] are a generative model which can generate data samples
following a given distribution, and have achieved a great success
in the generation of image, video, and text.

Inspired by the great success of GANs in various generative models
in the area of computer vision and national language processing,

Abhishek was involved in this work during his internship from August
to September, 2020 in National Institute of Informatics (NII), Tokyo.
Simon was involved in this work during his internship from June to
August, 2019 in National Institute of Informatics (NII), Tokyo.

we propose a conditional LSTM-GAN model to compose lyrics-
conditioned melody where a discriminator can help to ensure that
generated melodies have the same distribution as real ones. To the
best of our knowledge, this is the first study that conditional LSTM-
GAN is proposed for melody generation from lyrics, which takes
lyrics as additional context to instruct deep LSTM-based generator
network and deep LSTM-based discriminator network. Our proposed
generation framework has several significant contributions, as fol-
lows:

i) A LSTM network is trained to learn a joint embedding in the
syllable-level and word-level to capture syntactic structures of lyrics,
which can represent semantic information of lyrics.

ii) A conditional LSTM-GAN is optimized to generate discrete-
valued sequences of music data by introducing a quantizer.

iii) A large-scale paired lyrics-melody dataset with 12,197 MIDI
songs is built to demonstrate that our proposed conditional LSTM-
GAN can generate more pleasant and harmonious melody compared
with baseline methods.

II. RELATED WORKS

Automatic music generation has experienced a significant change
in computational techniques related to artificial intelligence and
music [11], spanning from knowledge-based or rule-based methods to
deep learning methods. The majority of traditional music generation
methods are based on music knowledge representation, which is a
natural way to solve the issue with some kind of composition rules
[12]. Knowledge-based music rules are utilized to generate melodies
when given the specified emotions by users [13]. Moreover, several
statistical models [14] such as hidden Markov models, random walk,
and stochastic sampling are discussed for music generation. For
example, Jazz chord progressions are generated by Markov model
for music generation in [15] and statistical models are applied to
music composition in [16].

With rapid advancement of neural networks, deep learning has
been extended to the field of music generation. A hierarchical RNN
for melody generation is proposed in [17], which includes three
LSTM subnetworks. Beat profile and bar profile are exploited to
represent rhythm features at two different time scales respectively. A
neural network architecture [18] is suggested to compose polyphonic
music with a manner of preserving translation invariance of dataset.
Motivated by convolution that can obtain transposition-invariance and
generate joint probability distributions over a musical sequence, two
extended versions, Tied-parallel LSTM-NADE and bi-axial LSTM,
are proposed to achieve better performance. A continuous RNN with
adversarial training (C-RNN-GAN) [19] is proposed to compose
MIDI classical music. RNN is considered to model sequences of
MIDI data during adversarial learning. The generator is to transform
random noise to MIDI sequences, while the discriminator is to
distinguish the generated MIDI sequence from real ones.

Earliest work [20] for lyrics-conditioned melody generation is
defined as generating a melody when given Japanese lyrics, patterns
of music rhythms, and harmony sequences. Some constraints are

ar
X

iv
:1

90
8.

05
55

1v
2

 [
cs

.A
I]

 2
1

A
pr

 2
02

1

2

determined to associate syllables with notes. Melody generation is
realized by dynamic programming. In [21] the rhythmic patterns
occurred in notes can be classified. Pitches that are most suitable for
accompanying the lyrics are generated using n-gram models. Three
stylistic categories such as nursery rhymes, folk songs, and rock
songs are generated for given lyrics. A recently proposed ALYSIA
songwriting system [8] is a lyrics-conditioned melody generation
system based on exploiting a random forest model, which can predict
the pitch and rhythm of notes to determine the accompaniments
for lyrics. When given Chinese lyrics, melody and exact alignment
are predicted in a lyrics-conditional melody composition framework
[9], which is an end-to-end neural network model including RNN-
based lyrics encoder, RNN-based context melody encoder, and a
hierarchical RNN decoder. The authors create large-scale Chinese
language lyrics-melody dataset to evaluate the proposed learning
model.

Our work focuses on lyrics-conditioned melody generation using
LSTM-based conditional GAN, which is first proposed for tackling
melody generation from lyrics. Distincting from the existing works,
our generative model can ensure that the distribution of generated
melody mimics that of real sample melodies. A skip-gram model
is trained to transform raw textual lyrics into syllable embedding
vector which is taken as input together with noise vector for training
a deep generator model. A deep discriminator model is trained
to distinguish generated MIDI note sequences from real ones. A
large English language lyrics-melody dataset is built to validate the
effectiveness of our proposed recurrent conditional GAN for lyrics-
to-melody generation. Novel ideas are designed to evaluate melody
generation, which is also very useful reference for measuring various
generative models.

III. PRELIMINARIES

Before we describe our melody generation algorithm, a brief
introduction is given in the following to help understanding musical
knowledge, the sequential alignment relationship between lyrics and
melody, and how to build the lyrics-melody music dataset.

A. Melody

Melody and lyrics provide complementary information in un-
derstanding a song with the richness of human beings’ emotions,
cultures, and activities. Melody, as a temporal sequence containing
musical notes, plays an important role. A note contains two music
attributes: pitch and duration. Pitches are perceptual properties of
sounds that organize music by highness or lowness on a frequency-
related scale, which can be played in patterns to create melodies
[22]. Piano keys have MIDI numbers ranging from 21 to 108, which
also represent the corresponding pitch numbers. For example, ‘D5’
and ‘A4’ can be respectively represented as 74 and 69 according to
the mapping between notes and MIDI numbers. In music, duration
[23] represents the length of time that a pitch or tone is sounded.
Rests [24] are intervals of silence in pieces of music, marked by
symbols indicating the length of the pause. If we treat a rest as a
note with a special pitch value, it is hard to find a syllable paired
with it. Therefore, to ensure one-syllable-to-one-note alignment, in
this work, we take the “rest” as one of music attributes contained in
a sequence of triplets.

B. Lyrics

Lyrics as natural language represent music theme and story, which
are a very important element for creating a meaningful impression
of the music. An English syllable [25] is a unit of sound, which may
be a word or a part of a word. According to timestamp information

in MIDI files of music tracks, melodies and lyrics are synchronized
together to parse the data and extract alignment information.

C. Alignment

6

0.5 1 0.5

0 0

Lyrics

List toen

Note

Duration

Rest

D5 C5 C5

Rest

List en to the rhy thm of the fall ing rain Tel ing me

D5 C5 C5 A4 A4 G4 G4 F4 G4 F4 F4 D5 C5 C5

0.5 1 0.5 1 0.5 1 1 0.5 2.5 1 4 1 0.5 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0

Fig. 1: An example of alignment between lyrics and melody.

An English syllable [25] is a unit of sound, which may be a word
or a part of a word. One syllable may correspond to one or more
notes in English songs. Accordingly, the alignment between lyrics
and melody could be a paired sequence of one-syllable-to-one-note or
one-syllable-to-multiple-notes. Following the existing research such
as [8] on melody generation from lyrics, currently we only exploit the
pairs of one-syllable-to-one-note to train our conditional LSTM-GAN
model for melody generation from lyrics, and investigate the pairs of
one-syllable-to-multiple-notes in the future work. An example data
structure of the alignment between lyrics and melodies is shown
in Fig. 1. Lyrics are divided to syllables. Each column represents
one syllable with its corresponding triplet of music attributes {note,
duration, rest}. Accordingly, a lyrics sample can be associated with a
sequence of {note, duration, rest} triplets. With these music attributes,
sheet music can be produced.

IV. MELODY GENERATION FROM LYRICS

Our aim is to learn a deep model that is able to represent the distri-
bution of real samples, which further has the capability of generating
new samples from this estimated distribution. In particular, using
the capability of deep learning and generative modeling, sequential
alignment relationship can be learned between lyrics and melody
from real musical samples. As the number of epochs increases, the
learning goes deeper, and the distribution of generated samples is
more consistent with the distribution of real samples. Our training
data contains the sequential alignment relationship between syllables
and notes, which can be learned by conditional LSTM-GAN. During
the training, GAN actually can resemble the distribution of the
training samples and LSTM can learn the sequential alignment
relationship.

Our proposed conditional LSTM-GAN for lyrics-to-melody gen-
eration model is shown in Fig. 2, which is an end-to-end generative
learning conditioned with lyrics. A sequence of syllable embedding
vectors concatenated with noisy vectors is taken as input of the
generator network. The generated MIDI sequences together with the
sequence of syllable embedding vectors are taken as input of the
discriminator network, which aims to train a model for distinguishing
generated MIDI note sequences from real ones. In addition, a tuning
scheme is introduced to quantize MIDI numbers so as to generate
melody sequence with discrete attributes. Both the generator and
discriminator are unidirectional RNN networks with the configuration
shown in Table I.

A. Problem formulation

Taking lyrics as input, our goal is to predict a melody sequentially
aligned with the lyrics, where MIDI numbers, note duration, and rest

3

RNN1 (generator) RNN2 (discriminator)
Input 30 (random noise), 20 (syll. embedding) 3 (MIDI attributes), 20 (syll. embedding)

Layer 1 400, Fully-connected, ReLU 400, LSTM, tanh
Layer 2 400, LSTM, tanh 400, LSTM, tanh
Layer 3 400, LSTM, tanh 2 (real or fake), sigmoid
Output 3 (MIDI attributes), fully-connected, linear N/A

TABLE I: Configuration of the generator and discriminator.

1

Generator

LSTMLSTMLSTM ……

Discriminator

LSTMLSTMLSTM ……

Lyrics
embedding

“Listen to the rhythm of the
falling rain.”

Real or fake?

Generated MIDI
sequences

Real MIDI
sequences

Training
data

Sequences of syllable
embedding vectors

Sequences of noisy
vectors

Fig. 2: Conditional LSTM-GAN for melody generation from lyrics.

duration are synthesized with lyrics to generate a song. Our research
problem can be formulated as follows: The syllables of lyrics as input
are represented by a sequence Y = (y1, · · · , y|K|). The melody as
output is a sequence X = (x1, · · · , x|K|), where MIDI numbers,
note duration, and rest duration are simultaneously predicted as the
xi = {xiMIDI , x

i
dur, x

i
rest}. Moreover, the time length of the output

sequence
|K|∑
i=1

xidur + xirest (1)

determines the length of synthesized song with lyrics.

B. Lyrics embedding

As the vocabulary of our lyrics data is large without any labels,
we need to train an unsupervised model that can learn the context of
any word or syllable. Specifically, we utilize our lyrics data to train a
skip-gram model, which enables us to obtain the vector representation
that can encode linguistic regularities and patterns in the context of
given lyrics.

Our method encodes lyrics information at two different semantic
levels: syllable-level and word-level, and two skip-gram models are
trained respectively, which aim at associating a vector representation
with an English syllable. Specifically, lyrics of each song are divided
into sentences, each sentence is divided into words, and each word
is further divided into syllables. Words W = {w1, w2, w3, ..., wn}
are taken as tokens for training a word-level embedding model and
syllables S = {s1, s2, ..., sm} are taken as tokens for training
a syllable-level embedding model. Then, we train each skip-gram
model as a logistic regression with stochastic gradient decent as the
optimizer, and the learning rate with an initial value 0.03 is gradually
decayed every epoch until 0.0007. Context window spans 7 adjacent
tokens and negative sampling distribution parameter is α = 0.75. We

train the models to respectively obtain the word-level and syllable-
level embedding vectors of dimensions V = 10.

Let Ew(·) and Es(·) denote the word-level and syllable-level
encoders respectively, and s denote a syllable from word w. Then,
syllable embedding and word embedding are concatenated as follows:

y = Ew(w)||Es(s) = w||s (2)

where s = Es(s) ∈ R10 and w = Ew(w) ∈ R10 are the embedding
of syllable s and word w, respectively. The dimension of the overall
embedding is V = 20. Accordingly, lyrics sequences each with 20
syllables, each syllable being encoded in 20-dimension, are used in
our experiment.

C. Condtional LSTM-GAN model

In our work, an end-to-end deep generative model is proposed
for lyrics-conditioned melody generation. LSTM is trained to learn
semantic meaning and relationships between lyrics and melody
sequences. Conditional GAN is trained to predict melody when given
lyrics as input based on considering music alignment relationship
between lyrics and melody.

1) LSTM: LSTM [26] networks are an extension to RNNs, which
not only contain internal memory but also have capability of learning
longer dependencies. An LSTM cell has three gates: input, forget, and
output. These gates decide whether or not allow new input in, forget
old information, and affect output at current time-step. In particular,
at time-step t, the three states of the gates in an LSTM cell are given
by:

it = σ(wi[ht−1, xt] + bi) (3)

ft = σ(wf [ht−1, xt] + bf) (4)

ot = σ(wo[ht−1, xt] + bo) (5)

where it, ft and ot denote the input, forget, and output gates states
respectively, ht−1 is the output of the LSTM cell at previous time-
step, w’s and b’s are weights and biases, xt is the input of the LSTM
cell, and σ(·) is the sigmoid function.

Then, the current output of the cell is computed by:

ht = ot ◦ tanh(ct) (6)

ct = ft ◦ ct−1 + it ◦ c̃t (7)

c̃t = tanh(wc[ht−1, xt] + bc). (8)

where ◦ denotes the element-wise multiplication between vectors.
2) GAN: A GAN is proposed by Ian Goodfellow, et al. [10], which

aims to train generative models by mitigating complex computation
of approximating many probabilities. The general idea of GAN is
to simultaneously train a generator G(·) and a discriminator D(·)
with conflicting objectives. This method learns to predict new data
with the same statistics as the training set. The generator G(·) tries
to capture data distribution of training set. It takes an uniform noise
vector z as an input and outputs a vector x̃ = G(z). In an adversarial
way, the discriminator D(·) tries to identify samples produced by the

4

2

Fully-connected layer

LS
T
M

LS
T
M

Fully-connected layer

Syllable
embedding

Noise
vector

Generated
MIDI

Fig. 3: Generator network for one MIDI note generation, conditioned
with an encoded syllable y ∈ R20, with an input random noise vector
n ∈ R30, and output MIDI attributes x̂ ∈ R3.

generator from real ones. That is to say, G(·) and D(·) play the
following two-player minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(9)

3) Lyrics-conditional GAN: Conditional GAN is proposed in [27],
with the goal of instructing the generation process by conditioning
the model with additional information, which motivates us to train a
generative model for lyrics-conditioned melody generation. In this
work, the generator and discriminator are conditioned on lyrics.
The lyrics are encoded to a sequence of 20-dimensional embedding
vectors.

The melody contains a sequence of music attributes x(i), repre-
senting MIDI note, duration, and rest. Therefore, in the context of
lyrics-conditioned melody generation, the input of the generator is
the paired sequences of syllable embedding vectors y(i) and uniform
random vector n(i) in [0, 1]k, where k = 30. The generated music
attributes, syllable embedding vectors y(i), and real music attributes
x(i), are fed to the discriminator. G(z(i)|y(i)) is a sequence of triplets
containing attributes x̂i = {x̂iMIDI , x̂

i
dur, x̂

i
rest}. Both the generator

and the discriminator contain LSTM cells. The loss functions in
the following are implemented to jointly train the generator and
discriminator, where m is mini batch size.

LG =
1

m

m∑
i=1

log(1−D(G(z(i)|y(i))|y(i))). (10)

LD =
1

m

m∑
i=1

[−logD(x(i)|y(i))− log(1−D(G(z(i)|y(i))|y(i)))].

(11)
4) Generator network in Fig.3: The generator is to learn the

distribution of real samples, which is trained to increase the error
rate of the discriminator. To learn a distribution over the data, the
generator builds a mapping function from a prior noise distribution
to the data space. By concatenating the syllable embedding and
noise as input, GAN is expected to instruct the melody generation
process (by lyrics) while generating diverse melodies (by random
noise). In this work, each melody sequence has 20 notes, which
needs 20 LSTM cells to learn the sequential alignment between
lyrics and melody. The first layer in the generator network uses
ReLU (rectified linear unit). When given a 50-dimensional vector
concatenated by an encoded syllable y ∈ R20 and an input random
noise vector n ∈ R30, the output of the first layer is scaled to a
400-dimensional vector to fit the number of internal hidden units of
the LSTM cells. We tried different amounts of LSTM layers and
found that 2 layers are sufficient in generator network for MIDI note

3

LS
T
M

LS
T
M

Fully-connected layer

Syllable
embedding

Real or fake?

Generated
MIDI

Fig. 4: Discriminator network for one MIDI note, conditioned with
an encoded syllable y ∈ R20, with the generated MIDI attributes
x̂ ∈ R3, and output the decision of real or fake.

generation. Then, the fourth linear layer produces a triplet of music
attributes x̂i = {x̂iMIDI , x̂

i
dur, x̂

i
rest}.

The same LSTM cell is used for each syllable in the lyrics. The
output with the triplet music attributes of previous LSTM cell is
concatenated with current 20-dimensional syllable embedding, which
are further fed to current LSTM cell. This procedure is repeated until
the generator can succeed to fool the discriminator.

5) Discriminator network in Fig.4: The discriminator is to distin-
guish real melody samples from generated ones, which is trained by
estimating the probability that a sample is from real training dataset
rather than the generator. The discriminator loss function penalizes
the discriminator for misestimating a real sample as fake or a fake
sample as real. Because the input of the discriminator is a sequence,
LSTM is also used here. Since lyrics as context information are
used as condition in the discriminator, the generated triplet of music
attributes concatenated with syllable embedding together as a 23-
dimensional vector is input to the first LSTM cell in the discriminator.
The hidden size of the LSTM cell in the discriminator is also 400. The
output 400-dimensional vector from the second LSTM layer is input
to the third linear layer, followed by a sigmoid activation function
which estimates the decision output of real or fake by a value in the
range [0, 1]. With conditioning lyrics, the discriminator and generator
are simultaneously learned until the training process converges.

D. Tuning scheme

The output from the generator is a continuous-valued sequence,
which needs to be constrained to the underlying musical repre-
sentation of discrete-valued MIDI attributes. Quantization of music
attributes (MIDI number, note duration, and rest duration) are done
during the generation in the experiments of validation and testing.
Music attributes are constrained to their closest discrete values.

The concept of standard scales is important for the melody genera-
tion task. If a melody contains notes belonging to one of the standard
scales, it indicates this melody has a perfect scale consistency. Below
are three examples of standard scales 1:
• Cmajor = {C,D,E, F,G,A,B};
• Dmajor = {D,E, F],G,A,B,C]};
• Dnatural minor = {D,E, F,G,A,B[, C}, where B[is equiv-

alent to A].
The quantized music attributes are estimated to see if each gener-

ated sequence has a perfect scale consistency of melody. In particular,
the most likely standard scale of music attributes this sequence
belongs to is generated from syllable embedding in validation and
testing datasets. The remaining out-of-tune notes are mapped to their
closest in-tune music attributes.

1https://en.wikipedia.org/wiki/Scale (music)

https://en.wikipedia.org/wiki/Scale_(music)

5

V. LYRICS-MELODY DATA ACQUIREMENT

There is no aligned lyrics-melody music dataset publicly available
for music generation. In this work, a large-scale music dataset
with sequential alignment between lyrics and melody is created
to investigate the feasibility of this research with deep conditional
LSTM-GAN. We acquire lyrics-melody paired data from two sources
based on considering melodies with enough English lyrics, where
7,998 MIDI files come from the LMD-full MIDI Dataset [28] and
4,199 MIDI files come from the reddit MIDI dataset [29]. Altogether
there are 12,197 MIDI files in the dataset, which contain 789.34 hours
of melodies. The average length of melodies is 3.88 minutes. This
dataset is available on Github 2.

1) Data selection: In our experiment, 20,934 unique syllables and
20,268 unique words from the LMD-full MIDI and reddit MIDI
dataset are used for training a skip-gram model to extract embedding
vectors of lyrics. As for training the LSTM-GAN model, only
paired lyrics-melody sequences in the LMD-full dataset are used.
In particular, if a MIDI file has more than 20 notes but less than 40
notes, one 20-note sequence is taken as our data sample; if a MIDI
file has more than 40 notes, two 20-note sequences are taken as our
data samples. Accordingly, 13,251 sequences each with 20 notes and
265,020 syllable-note pairs are acquired, which are used for training,
validation, and testing.

2) Parsing MIDI file: Triplets of music attributes with {MIDI
Number, note duration, rest duration} are obtained by parsing each
MIDI file from the LMD-full dataset which contains English lyrics.
The parsing is made as follows:

• The beats-per-minute (BPM) value for each MIDI file is ex-
tracted.

• If a note has a corresponding English syllable, its MIDI Number
is extracted. This value is taken as the first of music attributes
in our melody representation.

• If a note has a corresponding English syllable, its note-on and
note-off values are stored.

• From the note-on and note-off values, the note duration and rest
duration attributes are calculated, using the formula

x = φ(t× BPM
60

) (12)

where x is an attribute of note k (either note duration or rest
duration), t is a time in seconds (t = note-offk − note-onk to
calculate note duration and t = note-onk−note-offk-1 to calculate
rest duration) and φ(·) is an operator which constrains the value
to the closest value in the set of values used to represent the
corresponding attribute.

3) Note duration: A note duration means the length of time that
a note is played. Note durations frequently appearing in our dataset
have been shown in Fig.5, and are summarized in Table II. When we
discretize note lengths of the generated melody, only note durations
in Table II are considered. In the future, we will try to collect more
lyrics which include other note durations.

0.25 0.5 0.75 1 1.5 2 3 4 6 8 16 32
ˇ “) ˇ “(ˇ “(‰ ˇ “ ˇ “‰ ˘ “ ˘ “‰ ¯ ¯ ‰ 2× ¯ 4× ¯ 8×̄

TABLE II: Relationship between note duration and note.

4) Rest: A rest means how long the silence in a piece of melody
will last. The rest values and corresponding rest symbols are shown
in Table III.

2https://github.com/yy1lab/Lyrics-Conditioned-Neural-Melody-Generation

0 1 2 4 8 16 32

No rest > < (half rest) < (whole rest) 2× < 4× < 8× <
TABLE III: Relationship between rest values and corresponding
symbols.

5) Distribution of music attributes: The distribution of each at-
tribute in our music dataset is respectively shown in Fig. 5, which
indicates that most MIDI note numbers range from 60 to 80, quarter
note is most frequently played, and rest = 0 appeared in most cases
of melodies.

VI. EVALUATION

In this section, experimental setup, validation method, and exper-
imental results are introduced to investigate the feasibility of our
proposed conditional LSTM-GAN model.

A. Experimental setup

The entire dataset is split with a 0.8/0.1/0.1 proportion between
training, validation and testing sets. The model is trained using mini-
batch gradient descent for a total of 400 epochs. The learning rate
starts at a value of 0.1, and gradually decreases.

During both validation and testing stages, the sequences of triplet
continuous-valued attributes are first constrained to their closest
discrete value. The candidate values for the MIDI Numbers are in the
range {21, . . . , 108}. In addition, the quantized sequence is checked
to see if it belongs to most likely scale, where the MIDI number of
the out-of-tune notes is changed to the closest MIDI number in the
most likely scale.

B. Validation using MMD

The validation is made using a Maximum Mean Discrepancy
(MMD) [30] unbiased estimator. Giving two sets of samples, MMD2

takes a value between 0 and 1, indicating how likely the two sets of
samples are coming from the same distribution (a value of 0 indicates
that the two sets are sampled from the same distribution). Here, a
melody sequence of notes is regarded as a set. At the end of each
training epoch, the MMD between the generated sequences and the
validation sequences is calculated. The weights and biases from the
model corresponding to the lowest MMD value are selected.

Let Xm := {x1, . . . , xm} and Yn := {y1, . . . , yn} be two sets of
independently and identically distributed (i.i.d) samples from Px and
Py respectively. Then, an unbiased empirical estimate of MMD2 is
given by [31]:

MMD2
u(F , Xm, Yn) =

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj)

+
1

n(n−1)

n∑
i=1

n∑
j 6=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj).

(13)

where F is a reproducing kernel Hilbert space (RKHS), with the
kernel function k(x, x′) := 〈φ(x), φ(x′)〉, and continuous feature
mapping φ(x) ∈ F for each x. We used k(x, x′) = exp(−‖x −
x′‖2/(2σ2)) as the kernel function, with kernel bandwidth σ set
such that ‖x− y‖/(2σ2) equals 1 when the distance between x and
y is the mean distance between points from both datasets Xm and
Yn [32].

https://github.com/yy1lab/Lyrics-Conditioned-Neural-Melody-Generation

6

Fig. 5: Distribution of music attributes in our dataset.

C. Comparison methods

The Random baseline model for the following experiments is
inspired by [33]. Melodies of 20 notes are created by randomly
sampling the testing set based on the dataset distribution for music
attributes (i.e. the distribution shown in Fig. 5). Sequences generated
by the baseline model are also judged to see if out-of-tune MIDI
number needs to be changed. The MIDI numbers are restricted in
the set {60, . . . , 80}, meaning that if a MIDI number lower than 60
is sampled from the MIDI numbers distribution, then it takes a value
of 60, and similarly a MIDI number higher than 80 is set to 80.

Besides the Random baseline model, we also use a stronger
baseline model trained with the Maximum Likelihood Estimation
(MLE) objective which exploits a single-layered LSTM network [34]
as the generator. We refer to it as the MLE baseline model in our
experiments. This MLE baseline is trained by mini-batch gradient
descent over the gradient of a log-maximum likelihood estimator as
follows:

l̂ = − 1

M ×N

M∑
i=1

N∑
j=1

log pi,j (14)

where M is the batch size, N is the sequence length, and pi,j is
the estimated probability (i.e. output of the softmax function) with
which the i, j-th generated note is the same as the i, j-th note from
the batch taken from the training set. MLE with a single LSTM layer
is selected as the baseline according to our experimental results. The
configuration for the MLE baseline model is shown in Table IV.

D. Training stage analysis

The MIDI note number, spectrum, and relative amplitude of
generated songs are investigated at 1, 51, and 351 epochs as shown
in Fig. 6. The corresponding sheet score with alignment between
lyrics and melodies at 1, 51, and 351 epochs are shown in Fig. 7. It
is obvious that the generated melody gets better when the learning
goes deeper by increasing the number of epochs. Additionally, we
ask volunteers to listen to the generated songs at different epochs.
Their feedback also confirms the effectiveness of our deep conditional
LSTM-GAN.

E. Music quantitative evaluation

In order to investigate if lyrics-conditioned LSTM-GAN can gener-
ate melodies that resemble the distribution of training samples, some
quantitative measurements are designed to compare the melodies
generated by our proposed model, the Random baseline, and MLE
baseline, which are shown in the following:
• MIDI numbers span: the difference between the highest MIDI

number and the lowest one of a sequence.
• 3-MIDI-number repetitions: the sum of the “count of each

distinct 3-MIDI occurrence minus 1” (a melody slice consisting

of 3 adjacent notes) throughout the sequence, which is a metric
similar to the one used in previous work [19].

• 2-MIDI-number repetitions: the sum of the “count of each
distinct 2-MIDI occurrence minus 1” throughout a sequence.

• Number of unique MIDI numbers: a count of how many different
MIDI numbers are present in a sequence.

• Number of notes without rest: a count of how many rest duration
have a value of 0 throughout a sequence.

• Average rest value within a song: an average value of the rest
duration attribute.

• Song length: the sum of all the note duration attributes and all
the rest duration attributes of a sequence.

Figure 8 demonstrates the evolution of each of these values
averaged over 1,051 generated sequences (one sequence per testing
set lyrics).

For pitch-related attributes, the proposed model outperforms the
baseline in every aspect and outperforms MLE in most aspects. The
proposed model tends to converge to a value which is relatively close
to the ground truth (i.e. the average value from the dataset). However,
the 2-MIDI numbers and 3-MIDI numbers repetitions converge to
values which are significantly lower than the corresponding mea-
surement over the dataset, but is still much better than that of MLE
baseline.

For metrics which are related to temporal attributes (i.e. note
duration and rest duration), the baselines are closer to the ground
truth value. This is expected, since these metrics are nothing but an
average of attributes which the baseline samples from the ground
truth distribution. Hence, these values tend to the ground truth value
as the number of generated examples increases. Table V shows the
numerical values of the results.

We also investigated scale-consistency of generated melodies. The
mean accuracy of scale-consistency for the conditional LSTM-GAN
model is 48.6%. In contrast, for the MLE baseline and Random
baseline models, it is 47.3% and 46.6% respectively. The mean
accuracy of scale-consistency is not high due to two main reasons: i)
the mapping between lyrics and melody is not unique, i.e., for a given
lyrics there can be multiple melodies belonging to different standard
scales. ii) some notes overlap between different standard scales, e.g.,
D,E,F,G,A appear in both Cmajor and Dnatural minor .

Another important attribute in music is the distribution of the
transitions between MIDI numbers. Figure 9 shows the distributions
of the transitions for the melodies generated by our model, the
MLE and Random baseline models and the testing set. The melody
generated by the proposed model approximates well the distribution
of the human composed music. Although the testing set melody has
a slightly higher transition from a note to a lower-pitched one, the
melody generated by our model has more transitions from a note to
a higher-pitched one.

To compare the qualities of generated melodies, standard BLEU

7

Generator
Input 20 (embedded syllable); 1 (melody-token representing triplet of music attributes)
Layer 1 32, Embedding Layer (for embedding a melody-token)
Layer 2 32, LSTM, tanh
Output 3397, fully-connected, log-softmax; 3 (predicted triplet of music attributes)

TABLE IV: Configuration of MLE baseline.

Fig. 6: Generated songs by generators trained for 1, 51 and 351 epochs respectively.

Ground truth Conditional LSTM-GAN MLE baseline Random baseline
MIDI numbers span 10.8 7.7 14.2 18.1
3-MIDI numbers repetitions 3.8 2.9 2.2 0.4
2-MIDI numbers repetitions 7.4 7.7 5.9 2.3
Number of Unique MIDI 5.9 5.1 6.5 9.0
Number of notes without rest 15.6 16.7 15.4 15.6
Average rest value within song 0.8 0.6 0.8 0.8
Song length 43.3 39.2 43.4 43.6

TABLE V: In-songs attributes metrics evaluation.

scores as evaluation metrics 3 for conditional LSTM-GAN, MLE
baseline, and Random baseline are respectively calculated, which are
shown in Table VI. From this table, we can find that our conditional
LSTM-GAN model achieves the highest BLEU scores compared with
the other two baseline methods. This also concludes that our method
can generate melodies of relatively higher qualities.

F. Effect of lyrics conditioning

1) Distribution of MIDI numbers: The experiments show that the
proposed LSTM-GAN model without conditioning on lyrics leads
to a model which generates a narrower-band distribution of MIDI
number as shown in Fig. 10. Here are the MIDI number distributions,
which are smoothed by using kernel density estimation. It is obvious

3https://en.wikipedia.org/wiki/BLEU

Scores BLEU-2 BLEU-3 BLEU-4
Random baseline 0.499 0.157 0.036
MLE baseline 0.659 0331 0.137
Conditional LSTM-GAN 0.735 0.460 0.230

TABLE VI: BLEU scores for Random and MLE baseline methods
and proposed conditional LSTM-GAN.

in Fig. 11 that the estimated distribution of generated MIDI numbers
conditioned on lyrics is more consistent with the distribution of
ground truth MIDI numbers.

An example of the influence of lyrics on the generated MIDI
numbers is shown in Fig. 12. Given two kinds of lyrics, 1,000 songs
are generated for each lyrics, and the distribution of the generated
MIDI numbers is estimated. In our example, the second lyrics leads

8

(a) Model trained for 1 epoch

(b) Model trained for 51 epochs

(c) Model trained for 351 epochs

Fig. 7: Different sheet music trained for 1, 51 and 351 epochs
respectively.

to songs with lower MIDI numbers than the first one, which helps to
deliver some semantic information latent in the lyrics.

2) Note duration and rest duration: In this experiment, an evalu-
ation method to seeing if the lyrics conditioning has an effect on the
generated note duration and rest duration is presented. The following
focuses on note duration attribute, but the same is valid for rest
duration as well.

Let D ∈ RN×M be a matrix composed of N note duration (or
note rest) sequences of M note durations, where each sequence is
taken from a different song from a N songs dataset used to train a
generator G. Therefore, Di,j is the j-th note duration of the i-th song.
Let G ∈ RN×M be a matrix composed of note duration sequences
generated by G by feeding the syllables sequences corresponding to
each row of D. This means that Gi,j is the j-th note duration of the
sequence generated by G when the syllables corresponding to di are
fed to it, where di denotes the i-th row of D.

Let randrow(·) be an operator which randomizes the order of the
row of a matrix. Therefore Drs = randrow(D) can be seen as a
matrix with correct in-sequence note duration order, but wrong song
order when compared to D. Drn =

(
randrow(DT)

)T can be seen as
a matrix for which the song order is the same as D’s, but the note
duration sequences are randomized. Finally, Drns = randrow(Drn)
can be seen as a matrix in which both the song and note order
are randomized when compared to D. The subscripts rs, rn and rns

denote “random songs”, “random notes”, and “random notes + songs”
respectively. Since randrow(·) is a random operator, Drs, Drn, Drns

are matrices of random variables (random matrices).
In this experiment, d = 1

NM
‖D − G‖F (which is a real value)

is compared to the distribution of the random variables drs =
1

NM
‖Drs−G‖F , drn = 1

NM
‖Drn−G‖F and drns =

1
NM
‖Drns−G‖F ,

with N = 1, 051 (number of songs in testing set) and M = 20. The
experiment is made on the testing set.

Results are shown in Fig. 13 (note duration), and Fig. 14 (rest
duration). The three distributions are estimated using 10,000 samples
for each random variable. In each case, d is statistically lower than the
mean value, indicating G learned useful correlation between syllable
embeddings and note/rest durations.

G. Subjective evaluation

4 different lyrics are randomly selected from the ground truth
dataset. Accordingly, 16 melodies are obtained by using Random
baseline, MLE baseline, our model, and ground truth. These melodies
can be downloaded from the link 4.

All melodies are sung by a female voice produced by synthesizer V
[35]. 4 male and 3 female subjects without knowing our research and
any musical knowledge were invited to listen to these 16 melodies,
where each melody with around 20 seconds is played 2 times in a
random order. Three questions as metrics are used for evaluation:
how about the entire melody? how about the rhythm? and does the
melody fit the lyrics well? The subjects are asked to give a score
from 1 to 5 (where 1 corresponds to “very bad”, 2 to “bad”, 3 to
“OK”, 4 to “good” and 5 to “very good”).

The first run is taken to enable subjects to get used to the type of
melodies they were listening to. The scores of evaluation metrics are
respectively averaged based on listening results of Random baseline,
MLE baseline, our model, and ground truth on the second run.

Evaluation results are shown in Figure 15. It is obvious that
the melodies generated by the proposed model are closer to the
ones composed by humans than the baseline in each metric. This
also verifies the proposed conditional LSTM-GAN can predict the
plausible sequential alignment relationship between syllables and
notes. The feedback from subjects indicates that relatively low scores
of melody evaluation are generated which might be due to the limited
capability of the synthesizer for high pitches. From these results of
all three metrics, we also can find there still are the gaps between
melodies generated by our model and ones from human composition,
which tells us there is much space we can investigate to improve
capability of neural melody generation.

VII. CONCLUSION AND FUTURE WORK

Melody generation from lyrics in music and AI is still unexplored
well. Making use of deep learning techniques for melody generation
is a very interesting research area, with the aim of understanding
music creative activities of human. Several contributions are done
in this work: i) the largest paired English lyrics-melody dataset
is built to facilitate the learning of alignment relationship between
lyrics and melody. This dataset is very useful for the area of melody
generation. ii) a skip-gram model is trained to exact lyrics embedding
vectors, which can be taken as a lyrics2vec model for English
lyrics feature extraction. iii) Conditional LSTM-GAN is proposed to
model sequential alignment relationship between lyrics and melody,
followed by a tuning scheme that has the capability of constraining
a continuous-valued sequence to the closest in-tune discrete-valued
sequence. iv) Evaluation method of melody generation is suggested to
demonstrate the effectiveness of our proposed deep generative model.

The continuous-valued sequence generated by the generator needs
to be constrained to the underlying musical representation of discrete-
valued MIDI attributes. Due to the quantization error, the generated
note could be associated to an improper duration, which would
destroy the rhythm. But this probability could be low after apply-
ing LSTM in the melody generation. In the future, we plan to
apply Gumbel-Softmax relaxation technique [36] to train a lyrics-
conditioned LSTM-GAN for the discrete generation of music at-
tributes.

In addition, several interesting future works will be investigated as
follow: i) How to compose a melody with the sketch of uncomplete
lyrics, ii) how to compose a polyphonic melody with lyrics, and iii)
how to predict lyrics when given a melody as a condition.

4https://drive.google.com/file/d/1ugOwfBsURax1VQ4jHmI8P3ldE5xdDj0l/
view?usp=sharing

https://drive.google.com/file/d/1ugOwfBsURax1VQ4jHmI8P3ldE5xdDj0l/view?usp=sharing
https://drive.google.com/file/d/1ugOwfBsURax1VQ4jHmI8P3ldE5xdDj0l/view?usp=sharing

9

Fig. 8: Music-related measurements.

Fig. 9: Distribution of transitions.

Fig. 10: Estimated distribution of generated MIDI numbers (no
conditioning on lyrics).

REFERENCES

[1] G. A. Wiggins, “A preliminary framework for description, analysis and
comparison of creative systems,” Journal of Knowledge Based Systems,
vol. 19, no. 7, pp. 449–458, 2006.

[2] L. A. Hiller and L. M. Isaacson, “Musical composition with a high-speed
digital computer,” Journal of the Audio Engineering Society, vol. 6, no. 3,
pp. 154–160, 1958.

[3] D. Ponsford, G. Wiggins, and C. Mellish, “Statistical learning of
harmonic movement,” Journal of New Music Research, vol. 28, no. 2,
pp. 150–177, 1999.

[4] J. Briot and F. Pachet, “Music generation by deep learning - challenges
and directions,” CoRR, vol. abs/1712.04371, 2017. [Online]. Available:
http://arxiv.org/abs/1712.04371

[5] Y. Yu, S. Tang, F. Raposo, and L. Chen, “Deep cross-modal correlation
learning for audio and lyrics in music retrieval,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 15, no. 1.

[6] https://en.wikipedia.org/wiki/Melody.
[7] M. Scirea, G. A. B. Barros, N. Shaker, and J. Togelius, “Smug: Scientific

music generator,” in Sixth International Conference on Computational
Creativity, 2015, pp. 204–211.

[8] M. Ackerman and D. Loker, “Algorithmic songwriting with ALYSIA,”
CoRR, vol. abs/1612.01058, 2016. [Online]. Available: http://arxiv.org/
abs/1612.01058

[9] H. Bao, S. Huang, F. Wei, L. Cui, Y. Wu, C. Tan, S. Piao, and M. Zhou,
“Neural melody composition from lyrics,” CoRR, vol. abs/1809.04318,
2018. [Online]. Available: http://arxiv.org/abs/1809.04318

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

http://arxiv.org/abs/1712.04371
http://arxiv.org/abs/1612.01058
http://arxiv.org/abs/1612.01058
http://arxiv.org/abs/1809.04318

10

Fig. 11: Left: estimated distribution of generated MIDI numbers conditioned on lyrics. Right: estimated distribution of ground truth MIDI
numbers.

Fig. 12: Estimated distributions of MIDI numbers generated by two
different lyrics. Lyrics 1 are taken from the song It Must Have Been
Love (Christmas for the Broken Hearted) by Roxette (written by Per
Gessle). Lyrics 2 are taken from Love’s Divine by Seal (written by
Mark Batson and Sealhenry Samuel).

Fig. 13: Boxplots of the distributions of drs, drn and drns (For the
note duration attribute). d = 0.788 is highlighted in red in each
boxplot. Mean values are µrs = 0.802, µrn = 0.801 and µrns = 0.802
respectively.

Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial
Networks,” arXiv e-prints, 2014.

[11] J. D. F. Rodriguez and F. J. Vico, “AI methods in algorithmic compo-
sition: A comprehensive survey,” CoRR, vol. abs/1402.0585, 2014.

[12] T. Anders and E. R. Miranda, “Constraint programming systems for
modeling music theories and composition,” ACM Comput. Surv.

[13] M. Delgado, W. Fajardo, and M. Molina-Solana, “Inmamusys: Intelligent
multiagent music system,” Expert Syst. Appl.

[14] D. Conklin, “Music generation from statistical models,” in SAISB
Symposium on Artificial Intelligence and Creativity in the Arts and
Sciences, 2003, pp. 30–35.

[15] A. Eigenfeldt and P. Pasquier, “Realtime generation of harmonic progres-
sions using controlled markov selection,” in International Conference on

Fig. 14: Boxplots of the distributions of drs, drn and drns (for the
rest duration attribute). d = 1.336 is highlighted in red in each
boxplot. Mean values are µrs = 1.404, µrn = 1.407 and µrns = 1.404
respectively.

Computational Creativity, 2010, pp. 16–25.
[16] D. Cope, Computer Models of Musical Creativity. The MIT Press,

2005.
[17] J. Wu, C. Hu, Y. Wang, X. Hu, and J. Zhu, “A hierarchical re-

current neural network for symbolic melody generation,” CoRR, vol.
abs/1712.05274, 2017.

[18] D. D. Johnson, “Generating polyphonic music using tied parallel net-
works,” in International Conference on Evolutionary and Biologically
Inspired Music and Art, 2017, pp. 128–143.

[19] O. Mogren, “C-RNN-GAN: continuous recurrent neural networks with
adversarial training,” CoRR, vol. abs/1611.09904, 2016.

[20] S. Fukayama, K. Nakatsuma, S. Sako, T. Nishimoto, and S. Sagayama,
“Automatic song composition from the lyrics exploiting prosody of the
japanese language,” in International Conference of Sound and Music
Computing, 2010, pp. 299–302.

[21] K. Monteith, T. R. Martinez, and D. Ventura, “Automatic generation
of melodic accompaniments for lyrics,” in Proceedings of the Third
International Conference on Computational Creativity, 2012., 2012, pp.
87–94.

[22] http://www.musiccrashcourses.com/lessons/pitch.html/.
[23] [Online]. Available: https://en.wikipedia.org/wiki/Duration (music)/
[24] [Online]. Available: https://en.wikipedia.org/wiki/Rest (music)/
[25] https://en.wikipedia.org/wiki/Syllable.
[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[27] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” CoRR, vol. abs/1411.1784, 2014. [Online]. Available: http:
//arxiv.org/abs/1411.1784

[28] https://colinraffel.com/projects/lmd/.
[29] https://www.reddit.com/r/datasets/.
[30] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A hilbert space

embedding for distributions,” in Algorithmic Learning Theory, M. Hutter,
R. A. Servedio, and E. Takimoto, Eds. Springer Berlin Heidelberg,
2007.

https://en.wikipedia.org/wiki/Duration_(music)/
https://en.wikipedia.org/wiki/Rest_(music)/
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784

11

Fig. 15: Subjective evaluation results.

[31] W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and
A. Gretton, “A Test of Relative Similarity For Model Selection in
Generative Models,” arXiv e-prints, 2015.

[32] S. J. Reddi, A. Ramdas, B. Poczos, A. Singh, and L. Wasserman, 2014.
[33] H.-P. Lee, J.-S. Fang, and W.-Y. Ma, “iComposer: An automatic song-

writing system for Chinese popular music,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations).

[34] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” 2016.

[35] https://synthesizerv.com/en/.
[36] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with

gumbel-softmax,” 2016.

	I Introduction
	II Related works
	III Preliminaries
	III-A Melody
	III-B Lyrics
	III-C Alignment

	IV Melody generation from lyrics
	IV-A Problem formulation
	IV-B Lyrics embedding
	IV-C Condtional LSTM-GAN model
	IV-C1 LSTM
	IV-C2 GAN
	IV-C3 Lyrics-conditional GAN
	IV-C4 Generator network in Fig.3
	IV-C5 Discriminator network in Fig.4

	IV-D Tuning scheme

	V Lyrics-melody data acquirement
	V-1 Data selection
	V-2 Parsing MIDI file
	V-3 Note duration
	V-4 Rest
	V-5 Distribution of music attributes

	VI Evaluation
	VI-A Experimental setup
	VI-B Validation using MMD
	VI-C Comparison methods
	VI-D Training stage analysis
	VI-E Music quantitative evaluation
	VI-F Effect of lyrics conditioning
	VI-F1 Distribution of MIDI numbers
	VI-F2 Note duration and rest duration

	VI-G Subjective evaluation

	VII Conclusion and future work
	References

