
Multi-language Dynamic Taint Analysis
in a Polyglot Virtual Machine∗

Jacob Kreindl
Johannes Kepler University Linz

Austria
jacob.kreindl@jku.at

Daniele Bonetta
Oracle Labs

USA
daniele.bonetta@oracle.com

Lukas Stadler
Oracle Labs
Austria

lukas.stadler@oracle.com

David Leopoldseder
Oracle Labs
Austria

david.leopoldseder@oracle.com

Hanspeter Mössenböck
Johannes Kepler University Linz

Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Dynamic taint analysis is a popular program analysis technique
in which sensitive data is marked as tainted and the propagation
of tainted data is tracked in order to determine whether that data
reaches critical program locations. This analysis technique has been
successfully applied to software vulnerability detection, malware
analysis, testing and debugging, and many other fields. However,
existing approaches of dynamic taint analysis are either language-
specific or they target native code. Neither is suitable for analyz-
ing applications in which high-level dynamic languages such as
JavaScript and low-level languages such as C interact. In these
approaches, the language boundary forms an opaque barrier that
prevents a sound analysis of data flow in the other language and
can thus lead to the analysis being evaded.

In this paper we introduce TruffleTaint, a platform for multi-
language dynamic taint analysis that uses language-independent
techniques for propagating taint labels to overcome the language
boundary but still allows for language-specific taint propagation
rules. Based on the Truffle framework for implementing runtimes
for programming languages, TruffleTaint supports propagating
taint in and between a selection of dynamic and low-level program-
ming languages and can be easily extended to support additional
languages. We demonstrate TruffleTaint’s propagation capabilities
and evaluate its performance using several benchmarks from the
Computer Language Benchmarks Game, which we implemented
as combinations of C, JavaScript and Python code and which we
adapted to propagate taint in various scenarios of language inter-
action. Our evaluation shows that TruffleTaint causes low to zero
slowdown when no taint is introduced, rivaling state-of-the-art
dynamic taint analysis platforms, and only up to ∼40x slowdown
when taint is introduced.

∗This research project is partially funded by Oracle Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MPLR ’20, November 4–6, 2020, Virtual, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8853-5/20/11. . . $15.00
https://doi.org/10.1145/3426182.3426184

CCS CONCEPTS
• Security and privacy → Information flow control; • Soft-
ware and its engineering→ Interpreters; Runtime environments.

KEYWORDS
Cross-Language,Multi-Language, Dynamic Taint Analysis, GraalVM,
LLVM, Node.js, JavaScript, Python, Native Extensions

ACM Reference Format:
Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, andHans-
peter Mössenböck. 2020. Multi-language Dynamic Taint Analysis in a Poly-
glot Virtual Machine. In Proceedings of the 17th International Conference
on Managed Programming Languages and Runtimes (MPLR ’20), Novem-
ber 4–6, 2020, Virtual, UK. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3426182.3426184

1 INTRODUCTION
Dynamic taint analysis [43, 55] is a program analysis technique
which tracks the propagation of critical data between defined pro-
gram locations as the analyzed program is executed. Concrete im-
plementations of this analysis technique (we refer to them as taint
analysis applications) mark sensitive or interesting data as tainted by
attaching a taint label to it. These taint labels are propagated along
the flow of data in the analyzed application, enabling the taint anal-
ysis application to perform appropriate actions when tainted data
reaches certain analysis-defined program locations. The concrete
analysis goal determines the program locations at which tainted
data is introduced or must be reacted to. These locations therefore
differ between taint analysis applications. Dynamic taint analysis
has been used extensively to tackle problems of various fields[55].
For example, by tainting data from untrusted sources such as user
input such data can be prevented from being used in program lo-
cations at which code injection vulnerabilities may occur [20, 46].
However, previous implementations of dynamic taint analysis are
all limited to a single programming language or program repre-
sentation, and therefore fail to propagate taint when data crosses
language boundaries.

Programs today often make use of multiple programming lan-
guages [31]. For example, many dynamic programming languages
such as Python and Ruby support native extensions, that is, pro-
grams implemented in these languages can invoke native code that

https://doi.org/10.1145/3426182.3426184
https://doi.org/10.1145/3426182.3426184
https://doi.org/10.1145/3426182.3426184

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

was implemented in another language like C. Similarly, by embed-
ding engines for programming languages in a common runtime,
interactions between arbitrary programming languages are possi-
ble. The popular node.js [10] framework is an example of such a
language embedding in which JavaScript, C++ and WebAssembly
code may interact. The choice of implementation languages is not
always up to application developers. External libraries are often
retrieved from public package repositories using, e.g., npm [11]
for node.js programs. However, there have been instances of such
repositories being hijacked to inject malicious code into unsuspect-
ing users’ applications [4, 5, 60, 71]. As dynamic taint analysis is
often used to detect vulnerabilities, it is paramount that attackers
cannot use the language boundary as a means to evade the anal-
ysis. Interactions between multiple programming languages are
commonly bidirectional and may involve cross-language function
calls as well as sharing of language-specific objects. To support
such interactions, and therefore to perform a sound analysis of
applications in which they occur, dynamic taint analysis needs to
be able to propagate taint across the language boundary.

So far, there has not been a common practical solution for per-
forming dynamic taint analysis on applications in which code of
multiple programming languages interacts. One approach is to com-
pile the code to a common program representation, such as native
code, and to apply a taint analysis for that representation. While
this approach can be applied to languages like C that are compiled
anyway, it is unpractical for interpreted high-level languages as it
prevents more high-level language-specific instrumentation. Taint
analysis applications for higher-level languages may instead deter-
mine the data flow effects behind a language boundary from an
externally supplied specification [33, 35]. However, especially for
larger libraries such specifications are tedious to maintain and are
not guaranteed to reflect the actually executed code. We propose
a platform for dynamic taint analysis that solves these problems
by combining language-specific taint analyses using a common
technique for propagating taint across the language barrier.

We propose language-agnostic techniques for propagating taint
that can be applied in otherwise language-specific taint analysis
applications and can facilitate their interaction. We furthermore
propose a core taint propagation semantics for features commonly
found in various programming languages to restrict the need for
language-specific instrumentation to truly language-specific fea-
tures. We implemented these techniques and semantics in Truffle-
Taint, a platform for multi-language dynamic taint analysis. Truf-
fleTaint is implemented on top of GraalVM1 [63], a virtual machine
capable of executing programs implemented in various program-
ming languages. The novelty of TruffleTaint is its ability to combine
taint analyses for various languages which may each propagate
taint using language-level instrumentation and which may use
language-specific rules for taint propagation. TruffleTaint is cur-
rently able to track taint in and between code implemented in C,
C++, JavaScript and Python, and can be extended to support addi-
tional programming languages. Rather than being a concrete taint
analysis application itself, TruffleTaint is a platform for implement-
ing taint analysis applications. To this end, it can also be extended
to support different taint propagation semantics.

1GraalVM is available at https://www.graalvm.org/.

(1)

Function getCode

(2)

(4)

(5)

(6)

(7)
(8)

(9)

Python

JavaScript
(8,9) eval(
(7) getCode());

def getCode():
(6) return \
(1) 'log(' \
(2) + obj \
(3) .secret \
(4) + ')'

ReadVar
(‘obj’)

Literal LiteralReadField
(‘secret’)

Op(‘+’)

ControlFlow
(‘Return’)

(3)

Call

ReadArg

Root

Call

Builtin
(‘eval’)

C/C++
struct Object {
.secret = /*tainted*/ } Object

Figure 1: Multi-language program that leaks secret data.
Numbers in parentheses identify expressions.

In our evaluation we showcase that TruffleTaint is able to prop-
agate taint in programs implemented in multiple programming
languages, that it can propagate taint also across the language
boundary, and that it is fairly efficient in doing so. We implemented
a set of non-trivial multi-language benchmarks that apply com-
mon schemes of language interaction and propagate tainted data in
these interactions. While we originally focused on interactions of
C and JavaScript code, we also extended our benchmarks to Python
code and found it quite easy to extend TruffleTaint to also support
this additional programming language. Furthermore, we found that
in most cases TruffleTaint causes no or only little slowdown on
program code that does not operate on tainted data, while code that
does operate on tainted data is slowed down by a factor between
5% and 40.37x depending on the instrumented application.

This paper makes the following contributions:
(1) We devised language-agnostic techniques for propagating

and storing taint in language-specific runtimes.
(2) We propose a strategy for propagating taint across multi-

ple languages by leveraging a common tainting technique
employed by multiple language-specific runtimes.

(3) We defined a core taint propagation semantics for common
features of programming languages which can be extended
to cover language-specific features.

(4) We implemented our proposed technique in a prototype
platform for dynamic taint analysis on top of GraalVM.

(5) We evaluate our platform for dynamic taint analysis with
a set of well-known benchmarks regarding aspects of func-
tionality, language support and performance.

This paper is structured as follows. In Section 2 we give an
overview of dynamic taint analysis and GraalVM. Section 3 de-
scribes TruffleTaint and the language-agnostic tainting techniques
it employs. Next, we evaluate TruffleTaint in Section 4. Section 5
presents our plans for extending TruffleTaint in further research.
Section 6 discusses related work and Section 7 concludes the paper.

2 BACKGROUND
Dynamic taint analysis is a common approach to preventing the
exploitation of software vulnerabilities. However, separate runtime

https://www.graalvm.org/

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

environments and propagation rules make taint propagation across
language boundaries a complex problem which is unsolved by
previous dynamic taint analysis approaches. Consider the program
shown in the left-hand side of Figure 1. In the program, the getCode
function, which is implemented in Python, concatenates two String
literals and a value read from a field of an object. That field belongs
to an object that was allocated in C/C++ code and contains data
which ought not to be revealed. However, the concatenated String
value contains code that would print that value. The JavaScript code
that calls getCode uses JavaScript’s builtin eval function to execute
that code. Language interactions like this can arise, for example,
from the use of language embeddings or native extensions. Many
languages provide builtins to execute code that is generated at run
time, but using them is generally considered a security risk. In our
example, the generated code leaks confidential data, but an attacker
who is able to manipulate that data could also inject arbitrary code
to be executed. By tracking sensitive or unsanitized data, dynamic
taint analysis can prevent eval from executing code contained in
such tainted data. However, language-specific approaches cannot
reliably detect whether tainted data is introduced from another
language. Such approaches could therefore not track tainted data
from a C/C++ object across Python code to JavaScript code.

2.1 Truffle and GraalVM
Our research is based on the GraalVM platform. GraalVM is a virtual
machine capable of executing and instrumenting code of various
programming languages [63]. At the heart of GraalVM’s language
support is the Truffle framework for implementing runtimes for
programming languages. Itself implemented in Java, Truffle defines
language-agnostic interfaces for the nodes of an abstract syntax
tree (AST) and the values flowing through it. Truffle-based language
runtimes, we refer to them as Truffle runtimes, implement these
interfaces in terms of language-specific AST nodes and data types
to represent the semantic elements of their targeted programming
language. Truffle runtimes represent each function contained in
the programs they execute as a Truffle AST made up of these AST
nodes. Using Truffle’s Polyglot API, Truffle ASTs and values can be
shared between Truffle runtimes [31], which enables the interaction
of user code in different programming languages.

Figure 1 also shows the Truffle AST for our running example.
Each AST node implements an expression in the program code.
The numbers in parenthesis denote which node corresponds to
which source code expression and additionally denote the order in
which each node is executed. Nodes with white background repre-
sent JavaScript expressions, while nodes with green background
represent Python expressions. The blue box labeled obj represents
the object which was allocated in C/C++ code but is stored in a
Python scope and accessed by Python code. In contrast to regular
functions, builtins such as eval have no AST of their own, but are
instead implemented as a single node. The children of such nodes
only provide the values passed to the builtin as call arguments.

GraalVM supports executing code implemented in, among other
languages, JavaScript, Python and LLVM-based languages such
as C and C++ and enables complex interactions between these
languages [7]. GraalVM contains a Truffle runtime for JavaScript,
called Graal.js [6], as well as an implementation of node.js based

try {
onEnter();
result = onResult(node.execute());
parentOnInput(result);
return result;

} catch (Exception e) {
onError(e); throw e;

}

parent

Instr.
Node

node

Figure 2: Structure of instrumentation nodes that can be in-
serted into a Truffle AST.

on it. Sulong [51] implements GraalVM’s support for LLVM-based
languages such as C and C++ in the form of a Truffle runtime for
LLVM IR, a program representation used by the LLVM compiler
infrastructure [40]. Various Truffle runtimes for dynamic languages
use Sulong to run native extensions of programs they execute. One
such runtime is GraalPython, which executes Python code.

Truffle provides a language-independent framework for dynamic
program instrumentation [61], which has been used to implement
both language-specific and language-independent tools. This in-
strumentation framework enables analysis tools to instrument the
nodes of a Truffle AST. In support of this, Truffle runtimes anno-
tate the nodes they implement with semantic tags. A semantic tag
represents a semantic construct such as function call, literal ex-
pression or binary operation. Analysis tools can use these tags to
determine the semantics of the instrumented nodes independent
of their implementation. Semantic tags can be language-specific or
language-agnostic, and they can be defined by Truffle, Truffle run-
times or Truffle-based tools. GraalVM’s debugger back-end [39, 61],
for example, uses only language-agnostic tags defined by Truffle
such as Statement and FunctionRoot to identify nodes at which
to set breakpoints and to suspend execution during stepping [61].
Nodes can also provide additional metadata, e.g., the name of a
builtin they implement or of an object field they access. The nodes
in Figure 1 are labeled with the tags (e.g., Literal, ReadVar) and
metadata they provide.

Dynamic analyses can be implemented on top of GraalVM in
the form of Truffle-based instruments. Truffle defines instrumenta-
tion nodes which Truffle’s instrumentation framework can insert
between nodes and their original parents in the AST as shown
in Figure 2. The pseudo-code in this example illustrates that an
instrumentation node executes callbacks whenever the node it in-
struments is entered, when one of its children produces a value,
and when it returns either successfully or with an error. Instru-
ments implement instrumentation nodes for specific semantic tags
to execute instrumentation code in these callbacks. Like Truffle
runtimes, instruments can also use the Polyglot API to interact
with language-specific objects. Since the structure of instrumen-
tation nodes is language-independent, they can be used across
language runtimes. This language-independence of the underlying
instrumentation framework enables the same Truffle instrument
to support multiple languages. To do so, the instrument can ei-
ther implement language-agnostic instrumentation nodes or it can
target language-specific semantic tags of multiple languages with
specialized instrumentation nodes.

Due to its multi-lingual nature and instrumentation capabili-
ties, the GraalVM [63] platform is suited to support cross-language

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

taint propagation. GraalVM supports both language embeddings
and dynamic language programs using native extensions. The plat-
form’s support for program instrumentation allows for fine-grained,
language-specific instrumentation that can be used for implement-
ing language-specific dynamic taint analyses. At the same time,
GraalVM’s support for language interoperability offers an opportu-
nity to integrate these language-specific instrumentations to also
enable cross-language dynamic taint analysis.

2.2 Dynamic Taint Analysis
Taint analysis[43, 55], also referred to as taint tracking, is a program
analysis technique which aims to detect data dependencies between
sensitive program locations. Program locations that produce sen-
sitive data are referred to as taint sources. Data originating from
a taint source is marked as tainted by attaching a taint label to it.
For each kind of operation supported by the targeted programming
language, a propagation semantics specifies a rule to determine
whether the values produced by this operation should be tainted.
For example, a rule that often appears in various propagation se-
mantics is that the result of an addition is tainted if either of the
addition’s inputs was tainted. A data dependency can be detected
when tainted data reaches certain program locations, which are
referred to as taint sinks. The selection of taint sources, taint sinks
and propagation semantics depends on the purpose for which taint
analysis is applied, and therefore varies between concrete taint
analysis implementations.

In contrast to static taint analysis that is performed at compile
time, dynamic taint analysis is performed at run time [55]. It is com-
monly implemented by instrumenting the program to be analyzed
so that it propagates taint labels. Such instrumentation employs a
tainting technique, that is, a mechanism to associate a taint label
to a value. That tainting technique determines how to access the
taint labels of values flowing into an operation and how to attach
taint labels, which are determined by the implemented propagation
semantics, to the values produced by that operation. Compared to
a static taint analysis, a dynamic taint analysis can use its access to
run-time data for more precise taint propagation and more versatile
instrumentation of taint sources and sinks. For example, a dynamic
taint analysis can support selective taint sources, propagate taint
according to the observed control flow, and access the actual val-
ues in taint sinks. While system-level approaches to dynamic taint
analysis exist [26, 29, 69], application-level dynamic taint analysis
can allow for a more fine-grained selection of taint sources and
sinks, e.g. specific functions or conditions instead of system calls.
Application-level dynamic taint analysis is commonly implemented
by extending a language runtime, by applying source transforma-
tions, or on top of a binary analysis platform. Some programming
languages, e.g., Ruby [13], Perl [12] and Ballerina [1], have limited
built-in support for marking values as tainted. They do not, how-
ever, feature adaptable propagation semantics and do not propagate
taint in native extensions.

Dynamic taint analysis is well suited to detect certain kinds of
injection vulnerabilities [41, 46, 62, 70]. Our running example from
Figure 1 also constitutes such a vulnerability. By using dynamic
taint analysis to track external data such as user input, data re-
trieved from the file system, from the network, or from untrusted

Truffle

TruffleTaint

Instrumentation Framework

Language Runtime

Taint Analysis Applications

Language Runtime...

Figure 3: TruffleTaint System Overview.

libraries, the eval function can detect when it is called with such
tainted data and throw an error instead of executing potentially
malicious code contained in it. In the Truffle AST shown in Figure 1
the flow of tainted data is depicted using dashed purple arrows. The
Figure assumes that, when the Truffle AST is executed, the value
stored in obj.secret is tainted because it originated from one of
the aforementioned external sources. The Figure further assumes
a propagation semantics which defines that a concatenated String
value is tainted if at least one of the String values used in the con-
catenation was tainted. Therefore, the concatenated String value
is tainted and when it used as input to eval the instrumentation
throws an error to prevent the code it contains from being executed.
Dynamic taint analysis also has applications to vulnerability detec-
tion in binaries [20], attack prevention [32, 37, 47, 54, 56, 57, 64, 68],
malware analysis [28, 46, 49, 65, 67], fuzz-testing [21, 22, 30, 34],
debugging [24], program comprehension [44, 45, 66], reverse engi-
neering [19, 25, 27], and other fields.

3 TRUFFLETAINT
In this paper we propose TruffleTaint, an extensible platform for
multi-language dynamic taint analysis built on top of GraalVM.
TruffleTaint applies language-agnostic tainting techniques in sepa-
rate runtimes for various programming languages. Each of these
runtimes provides support for language-specific instrumentations
that apply these generic techniques.2 By using a common taint-
ing technique, these instrumentations can share the taint labels
attached to values that cross the language boundary by traversing
from one runtime to another. As a result, a taint analysis applica-
tion built on top of TruffleTaint can target multiple programming
languages each with language-specific propagation semantics and
can track tainted data as it crosses language boundaries. If propa-
gation semantics for individual features or actions to be performed
in taint sinks are similar in multiple languages, these applications
can also reuse code between language-specific instrumentations.
TruffleTaint embraces this principle by providing a default propa-
gation semantics and implementation thereof for several features
often found in programming languages. This default semantics
and its implementation can be reused and extended to implement
language-specific propagation semantics.

An overview of TruffleTaint is shown in Figure 3. TruffleTaint is
implemented on top of Truffle and its instrumentation framework.
Truffle runtimes additionally integrate with TruffleTaint to support
its tainting techniques. TruffleTaint can be used to implement taint
analysis applications of various kinds. Such applications may target

2 Our previous work [38] suggested that a similar composition of language-agnostic,
language-specific and analysis-specific components can potentially be used for a
dynamic taint analysis platform. This paper describes in the form of TruffleTaint how
that suggestion can be realized in practice.

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

Expression

Taint Node
value

Read/Call/
Arg/Catch

Taint Node
valueWrite/Call/

Return/Throw

Taint Node

B
o
x

T
a
i
n
t
e
d Expression

Taint Node

U
n
b
o
x

T
a
i
n
t
e
d

Expression

Taint Node

TS2

Expression

Taint Node

Expression

Taint Node

TS4

TS1 TS3

TS5

(value,tainted)(value,tainted)

L
a
n
g
u
a
g
e

B
o
u
n
d
a
r
y

Taint Slot
#4

(2)

(1)

Figure 4: Tainting techniques in TruffleTaint.

implementations of language-specific propagation semantics, taint
sources and taint sinks to semantic tags provided by the respective
language runtimes. TruffleTaint also provides language-agnostic
semantic tags for common language features such as variable write
or function call, which taint analysis applications may target as
well. Truffle runtimes support these tags alongside equivalent but
language-specific tags of their own. Targeting these tags can avoid
duplication of instrumentation code for a feature that appears in
multiple programming languages.

Taint analysis applications built on top of TruffleTaint implement
propagation semantics in terms of taint nodes. TruffleTaint provides
a base class for such taint nodes, which is itself an extension of Truf-
fle’s instrumentation nodes and implements TruffleTaint’s tainting
techniques. Taint nodes are inserted into the instrumented program
using Truffle’s instrumentation framework. When an instrumented
node returns a value, the corresponding taint node decides based
on its implemented propagation semantics whether that value is
tainted. If so, the taint node uses an appropriate tainting technique
to attach a taint label to that value. For each language-specific se-
mantic tag, and therefore for each language feature, as well as for
each language-agnostic tag, taint analysis applications can define
specialized taint nodes that implement the corresponding part of a
propagation semantics.

3.1 Taint Propagation
Taint nodes based on TruffleTaint use two language-agnostic taint-
ing techniques, which are illustrated in Figure 4. The first technique
is applied if an expression produces a tainted value that flows into
a potential language boundary. The taint node instrumenting that
expression combines both that value and the corresponding taint
label into a boxed value, and lets that boxed value flow into the
language boundary instead. Conversely, a taint node that instru-
ments an operation which reads such values, potentially in another
language, may split up boxed values and propagate the taint labels
stored in them using the second tainting technique instead. The
second tainting technique is used for operations that create new
values. Taint nodes instrumenting these operations allocate taint
slots, that is, special storage locations into which the taint labels of
their input values are stored directly. An input taint node, i.e., the
taint node that determines the taint labels of values that flow into

a certain expression, asks its parent taint node, i.e. the taint node
instrumenting that expression, which tainting technique to use.

TruffleTaint’s first language-agnostic tainting technique is based
on boxed values. This technique is applied to propagate taint for
operations that only move or store existing data. More specifically,
it is applied to propagate taint for values that are (1) written to a
field of an object, to an element of an array, or to a named symbol, (2)
used as argument to a function call, (3) returned from a function, or
(4) thrown as an exception. As is shown in Figure 4, taint nodes that
instrument such operations direct the corresponding input taint
nodes to employ boxing. This means that when such an input taint
node determines that the input value is tainted, it merges that input
value and the corresponding taint label into a boxed value. Figure 4
depicts boxed values, which consist of a value and an arbitrary
attachment3, as tuples of a value and the tainted label. The input
taint node returns that boxed value instead of the original input
value to the instrumented move or store operation. Truffle runtimes
need to accept boxed values as valid inputs to these operations as
part of their runtime support for TruffleTaint. Whether such an
input value is tainted can be determined by checking whether it is
a boxed value and contains a taint label as an attachment.

Operations that compute new values from their inputs typically
require a semantic understanding of these inputs. These operations
include, among others, arithmetic, conditional and bitwise oper-
ations and some builtin functions. To access these inputs, these
operations would need to internally unbox these values, i.e., ex-
tract the original values while ignoring the attachment objects. For
example, an integer addition needs to know the type and content
of its operands to produce a meaningful result, thus unboxing is
necessary. TruffleTaint permits such unboxing; the taint labels for
new values are determined and attached solely by taint nodes that
instrument the nodes which produce them. By keeping runtimes
and propagation semantics separate, TruffleTaint is not limited to a
single propagation semantics. Instead, each individual taint analysis
application can implement its own propagation semantics.

Boxing tainted values that flow into expressions which immedi-
ately unbox them would negatively impact TruffleTaint’s run-time
overhead due to many short-lived object allocations. To avoid this
overhead, TruffleTaint employs a separate tainting technique for
such expressions. Each taint node anyways allocates a taint slot,
that is, an object which can hold a taint label, for each input to the
expression it instruments. When that expression receives a boxed
value as input, the respective taint label is stored into the corre-
sponding taint slot until the taint node returns a value. When the
propagation semantics is applied to decide whether to taint that
value, the taint node can retrieve the taint labels of the inputs even
if these inputs were internally unboxed. In TruffleTaint’s second
tainting technique, the input taint nodes are directed to store the
taint labels for the respective input values into the taint slots of
their parent taint node directly. This way, unnecessary boxing can
be avoided. In practice, this second tainting technique also saves
implementation effort in Truffle runtimes. Since values are only

3While TruffleTaint currently supports only one taint label, the tainted flag, we plan
to eventually support arbitrary analysis-defined taint labels.

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

boxed for operations that do not need to unbox them, other opera-
tions need not actually implement unboxing and can instead just
throw an exception if a boxed value occurs unexpectedly.

TruffleTaint enables the propagation of taint labels across lan-
guage boundaries by defining a common representation for boxed
values. TruffleTaint requires that tainted values may cross the
language boundary only in the form of a boxed value. Since the
instrumentations for the value-producing language and for the
value-receiving language use the same kind of boxed values, which
language produced the tainted value is irrelevant for the instru-
mentation. Scenarios in which tainted data may cross the language
boundary include (1) function calls to another language, (2) accesses
to a field or array element of an object defined in another language,
and (3) catching an exception thrown by another language. On the
value-producing side, taint nodes that instrument nodes which may
make data accessible to another language direct their input taint
nodes to box all tainted values flowing into these nodes. On the
value-receiving side, nodes that access values which could have
been tainted in another language may thus return boxed values.
The taint nodes instrumenting these nodes may unbox these values
and propagate the corresponding taint labels in some other way.
This unboxing is necessary if the propagation semantics determines
that these values should not be tainted and thus the taint labels
need to be removed. However, the respective parent taint nodes
may demand propagation by boxing too, in which case boxed values
that are still tainted need not be unboxed.

TruffleTaint uses boxing to propagate taint for all operations
which could make data accessible to another language, regardless
of whether they actually do. For example, call arguments are boxed
even if caller and callee are implemented in the same language.
Also, tainted values that are written to objects are boxed even if that
object is only ever accessed in the same language. Because of this,
language-specific taint nodes do not need to handle interactions
between multiple languages separately and language-specific taint
instrumentations can interact seamlessly.

TruffleTaint requires Truffle runtimes to support boxed values
as inputs for all nodes that move or store data and may thus be
instrumented by taint nodes that force such inputs. Conversely,
nodes that access this data again must be able to return boxed
values. Attachments also must not be lost or changed between data
being stored and being read again. For example, when a boxed value
is stored to a field of an object, the next time a node reads this field
it needs to get a boxed value with the same attachment. Similarly,
when builtins like LLVM’s memmove move or copy multiple values
the according attachments must be moved and copied, respectively,
as well. These restrictions allow Truffle runtimes various freedoms
in working with boxed values. One such freedom is the ability to
internally access the original values stored in boxed values, ignoring
the attachments. For example, a node that catches exceptions of
specific types may access the original exception object to determine
whether to catch or rethrow a boxed exception.

Another aspect of runtime support required by TruffleTaint is
the presence of semantic tags of sufficient detail. For example, tags
provided by a Truffle runtime must clearly separate operations that
move, read or store data from operations that create new data to
allow for selecting the correct tainting technique for each. Because
of this, in Sulong LLVM IR instructions are represented as nodes

TNVar

Function

ReadVar

Literal LiteralReadField

Op(‘+’)

ControlFlow
Call

ReadArg

Root

Call Builtin

TNLit1 TNProp TNLit2

TNRet

TN+

TNCall1

TNArg

TNCall2

(secret,
tainted)

secret

code

(code,tainted)

(code,
tainted)

code

TNeval

TS2

TS1
TS3

TS4

TS5

Object

Figure 5: Taint propagation using boxed values and taint
slots in the example AST of Figure 1. Taint nodes are labeled
TN. Purple arrows indicate taint propagation via taint slots
while gray arrows indicate boxing or unboxing.

that read the inputs, which are children of the node that executes
the instruction, which is itself a child of the node writing the result.
Sulong provides separate tags for each of these nodes, even though
producing a value and storing that value in a frame slot are an
atomic action in LLVM IR. If value computation and value storage
could not be instrumented separately, instrumentation could not
apply taint labels to the value before it is stored. Truffle runtimes are
also required to provide semantic tags of sufficient detail to target
each semantic element of their respective language separately.

Using boxed values to propagate taint in function calls as well
as for arbitrary storage operations simplifies instrumentation code.
This simplification is most noticeable in terms of language support.
Truffle runtimes already implement the language-specific semantics
of many high-level operations. For example, storing a value to a
variable may involve traversing runtime-specific data structures for
a scope hierarchy. By boxing the value to store, the instrumentation
can delegate such implementation details of language-specific se-
mantics to the Truffle runtimes that already implement them. This
delegation also enables TruffleTaint to provide several language-
agnostic semantic tags for its default propagation semantics. Fur-
thermore, the boundary between value storage and function calls is
blurred in some languages. For example, in JavaScript objects can
defineGetter and Setter functions which are implicitly invoked to ac-
cess certain fields. Since instrumentation propagates taint for both
value access and function calls in the same way, this is supported by
default. Similarly, whether a local variable receives its value from
an expression or from a caught exception object is irrelevant.

Taint nodes implement the onResult function of instrumentation
nodes, which is referenced in Figure 2, to determine and propagate
the taint label of the produced value. More specifically, the following
steps are performed.

(1) Apply propagation semantics. Based on the propagation se-
mantics the taint label of the output value is computed. To do so,
the taint node can access the taint labels of the operation’s input

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

values which are stored in the respective taint slots. The taint node
can also access the instrumented node’s input values as well as
the output value that is produced. Taint analysis applications can
implement taint sources and taint sinks in this step by tainting the
produced value or reacting to the inputs’ taint labels.

(2) Select tainting technique. The parent taint node is queried
which tainting technique to use to propagate the taint label for the
input value produced by the instrumented node.

(3) Update Taint Slots. If requested by the parent taint node, the
taint label of the value produced by the instrumented node is stored
into the corresponding taint slot. The concrete taint slot to use is
queried from the instrumented node’s parent’s taint node, which
may allocate that slot on demand. That parent taint node may react
to the particular taint label being stored, allowing it to perform
actions as a taint sink before the instrumented node is executed.

(4) Apply Boxing or Unboxing. If requested by the parent taint
node, the produced value is boxed or unboxed depending on the
value and its determined taint label. Some nodes that read data
(for example read accesses to local variables or function calls) may
produce a boxed value themselves. However, if the propagation
semantics determines that that value should not be tainted after all,
that value is unboxed.

Figure 5 illustrates how a potential taint analysis application
built on top of TruffleTaint propagates taint in order to prevent the
data leak in our running example from Section 2. The first node
to produce a value (i.e., the first String literal) produces a value
that is not tainted. This value flows into an expression that com-
putes new data, namely the String concatenation. The taint node
instrumenting the literal node, TNLit1 thus stores the correspond-
ing taint label, that is, an empty label, into a taint slot allocated by
TN+. Next, the value stored in the local variable obj is not tainted
and therefore the node reading it does not produce a boxed value.
The ReadField node allocates a taint slot to store that its input is
not tainted. ReadField returns a boxed value, which contains the
tainted taint label as an attachment, but the concatenation requires
its inputs to be unboxed. Thus that taint label is stored in a second
taint slot allocated by TN+. Like the first String literal, the second
one is not tainted either. The value returned by TN+ is tainted, but
will also be returned from getCode. TNRet therefore directs TN+
to box this value instead of allocating a taint slot. In the JavaScript
code, the value returned by the call to getCode is directly used
as an argument in another call and therefore remains boxed. As a
result, the node reading eval’s argument returns this boxed value.
The corresponding taint node, TNArд , unboxes it since the eval
builtin requires unboxed inputs. However, when TNeval receives
the tainted label for the String which contains the code to execute, it
can abort the program before that code would be executed.TNeval
thus acts as a taint sink that effectively prevents the secret value
that originated behind a language boundary from being leaked.

3.2 Propagation Semantics
TruffleTaint aims to support the implementation of arbitrary taint
propagation semantics. Taint analysis applications built on top of
TruffleTaint implement propagation semantics in terms of taint
nodes. Nodes that provide a specific semantic tag are instrumented
by taint nodes that implement the propagation semantics for the

Table 1: Language-agnostic semantic tags defined by Truffle-
Taint and expected tainting technique for each input.

Semantic Tag Input Values Tainting Technique
UnaryOp / BinaryOp Operands Taint Slot
WriteVar Value Boxed Value
ReadVar - -
WriteField Target Object Taint Slot

New Value Boxed Value
ReadField Source Object Taint Slot
WriteElt Target Object Taint Slot

Identifier Taint Slot
New Value Boxed Value

ReadElt Source Object Taint Slot
Identifier Taint Slot

Call Arguments Boxed Value
Call Target Taint Slot

ReadArg - -
Literal Elements Boxed Value
Cast Source Value Both
ControlFlow Various Per Control Flow Kind
Input/Expression/ Optional Taint Slot
Statement

Builtin Optional Per Builtin

specific language feature denoted by that tag. This requires taint
analysis applications to provide taint nodes for each semantic fea-
ture of each language they wish to support.

There are certain semantic features that often occur in various
programming languages. For example, most languages have a con-
cept of named variables and feature corresponding read and write
operations. TruffleTaint provides language-agnostic semantic tags
for many similarly generic operations, which are listed in Table 1.
Truffle runtimes annotate their nodes with these tags, which are
generic enough to enable various kinds of dynamic analyses. Tar-
geting instrumentation to these tags can avoid code duplication
if the actions to be performed for the corresponding features are
equivalent in multiple languages.

In addition to implementing a propagation semantics, each taint
node must also choose tainting techniques for the taint labels of
each input to the operation it instruments. As stated in Section 3.1,
this choice depends on the kind of instrumented operation and how
it processes the respective input values. Table 1 states appropriate
choices for each semantic tag defined by TruffleTaint.

TruffleTaint defines a default propagation semantics for the lan-
guage features covered by its language-agnostic semantic tags. Taint
propagation semantics for various languages often contain simi-
lar rules for these features, which form the basis of this default
propagation semantics. TruffleTaint also provides taint nodes that
implement this default propagation semantics and use the tainting
techniques stated in Table 1. By using this semantics and its imple-
mentation as a basis, the effort to support the full semantics of a par-
ticular programming language can be focused on language-specific

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

features. We applied this default taint propagation semantics, ex-
tended to support some language specific builtins, to propagate
taint in LLVM IR, JavaScript and Python code.4

Our work focuses on propagating taint across language bound-
aries and thus completeness with regards to language features that
do not involve that boundary is out of scope. Nevertheless, Truf-
fleTaint’s language support is sufficient to analyze the non-trivial
JavaScript, Python and C benchmark programs we used in our eval-
uation. To cover all features of these languages, either specific taint
nodes can be implemented or the language-specific features can be
broken down to already supported features. The latter approach
may be desirable, e.g., for language features that constitute syntactic
sugar as it requires no additional taint nodes. However, this is not
possible for, e.g., features related to asynchronous execution, and
may increase the run-time analysis overhead due to the increased
number of instrumentation events.

In the following, we list the language-independent semantic tags
provided by TruffleTaint and describe TruffleTaint’s default taint
propagation semantics for nodes annotated with them.

UnaryOp& BinaryOp. These tags represent operations that com-
pute a new value based on one or two input values, respectively.
That output value is tainted if at least one of the input values is
tainted. The operator, such as + or !, is provided as metadata by
the instrumented node. Some taint analysis applications, such as
Cai et al. [20], require this metadata to determine, e.g., whether an
overflow occurred in the operation. Furthermore, it is not uncom-
mon in low-level taint analyses to drop taint when, e.g., a value is
XOR’d with itself or ANDed with a constant 0.

WriteVar & ReadVar. Nodes that provide either of these tags
access a named variable, e.g., a local variable, and provide the name
of that variable as metadata. Instrumentation delegates choosing
the correct variable and its corresponding storage location to the
instrumented node. Corresponding taint nodes ensure that tainted
inputs to write accesses are boxed, and that boxed values returned
from read accesses are unboxed depending on the parent taint
nodes’ choice of tainting technique.

WriteField & ReadField. Nodes that provide either of these
tags access a field of an object and provide the name of that field
as metadata. The first input to such nodes is the object whose
field to access. Instrumentation delegates the access scheme to
the instrumented node. Corresponding taint nodes ensure that
tainted inputs to write accesses are boxed, and that boxed values
returned from read accesses are unboxed depending on the parent
taint nodes’ choice of tainting technique. Values read from tainted
objects are also tainted.

WriteElt & ReadElt. Nodes that provide either of these tags
access an element of an array or a dynamic property of an object.
The first inputs to such nodes are the object which to access and
the identifier of the element or property to access. Corresponding
taint nodes ensure that tainted inputs to write accesses are boxed,
and that boxed values returned from read accesses are unboxed
depending on the parent taint nodes’ choice of tainting technique.
Values read from tainted objects are also tainted.

4Note that for reason of brevity in Figures 1 and 5 we omitted the Cast nodes and
reduced two nested BinaryOp nodes to a combined node for the String concatenation.

TruffleTaint currently ignores the taint status of element indices.
This decision for a propagation semantic is not uncommon. For
example, Araujo et al. [16] have found that ignoring the taint status
of a pointer when reading from it does not significantly reduce
analysis precision but instead reduces overtainting, and our de-
cision is to a similar effect. However, writing to a property of a
JavaScript object may, in fact, modify the object by adding that
property. Therefore, the presence or absence of a property on an
object already constitutes an implicit data dependency. Since sup-
porting implicit data dependencies is not in scope for TruffleTaint’s
reference implementation, this is an acceptable limitation. However,
in JavaScript it is also possible to iterate over all properties of an
object. By not storing taint labels for them, TruffleTaint misses an
explicit data dependency here. It would be possible to store taint
labels also for properties in addition to their values by requiring lan-
guage runtimes to support property identifiers with metadata, but
since this feature was not required to correctly run our benchmark
applications, its implementation is part of future work.

Literal. Nodes that provide this tag return a literal. Literals are
not tainted, but may contain values which are provided as boxed
inputs by the instrumented children of these nodes.

Call. Nodes that provide this tag perform a call to an either user-
defined or builtin function.While the call arguments are boxed since
the call target may be implemented in another language, the call
targets themselves are unboxed inputs to these nodes. The values
returned by these nodes, i.e., the values returned by the called
functions, are unboxed depending on the parent taint nodes’ choice
of tainting technique.

Builtin. Nodes that provide this tag implement a builtin and
provide the name of that builtin as metadata. As builtin functions
are language-specific per definition, taint analysis applications need
to provide a corresponding taint node for each builtin that is used in
programs they intend to analyze. Although languages often define
a large number of builtins, not all of them are frequently used. For
example, Rigger et al. [52, 53] found out that most software projects
in the C language only use a small subset of the inline assembly
and compiler-specific builtins available.

ReadArg.Nodes that provide this tag read an argument value that
their parent function or builtin was called with. Corresponding taint
nodes ensure that boxed argument values are unboxed depending
on the parent taint nodes’ choice of tainting technique.

ControlFlow. Nodes that provide this tag affect control flow.
The kind of this control flow, which may include conditions, loop
entry and exit, throw or catch statements, and function returns,
is provided as metadata. For reasons already stated, the inputs for
function returns and throws are boxed. Less generic kinds of control
flow, such as Python’s yield and JavaScript’s await keyword, can
be supported by language-specific taint nodes.

Cast.Nodes that provide this tag represent an explicit or implicit
type cast. Casting a value may entail calling a conversion function.
For example, adding a number and an object in JavaScript code
may involve executing a conversion function defined in the object.
Depending on the parent taint nodes’ choice of tainting technique,
taint nodes targeting this tag may unbox boxed values returned
from such internal calls. In general, the taint labels of the input
value are applied also to the output value.

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

Input, Expression& Statement. Nodes that provide these tags
have no specifically defined semantics, but produce a value without
side effects. Such a value is tainted if the node producing it received
a tainted input. The presence of such nodes is a remnant of previous
support for Truffle’s instrumentation framework by certain Truffle
runtimes, such as GraalVM’s Python and JavaScript runtimes.

3.3 Platform Extensibility
TruffleTaint is intended as a platform to build various dynamic taint
analysis applications upon. This is suggested in Figure 3, and is also
the reason why TruffleTaint is implemented using the Truffle instru-
mentation framework rather than being integrated into Truffle and
the language runtimes based on it. Taint analysis applications can
change all aspects of TruffleTaint. This includes choosing whether
to use and extend the default propagation semantics or to use only
their own taint nodes. By providing taint nodes for certain lan-
guage features, taint analysis applications can also implement taint
sources and taint sinks.

To evaluate TruffleTaint, we implemented a reference taint anal-
ysis application on top of it. This reference application applies the
default propagation semantics, extends it with support for some
language-specific builtins, and additionally provides builtins for
each supported language which an instrumented program can use
to manually introduce and check for tainted values. These builtins
enable programs to query and change whether a value is tainted.
They are listed in Appendix A for reference.

Our reference taint analysis application supports JavaScript,
Python and LLVM-based languages such as C/C++ in the form
of LLVM IR. We modified GraalVM’s Truffle runtimes for LLVM
IR, JavaScript and Python code to support boxed values. We addi-
tionally extended the JavaScript and Python runtimes to provide
TruffleTaint’s language-agnostic tags. However, TruffleTaint’s tags
are intended to represent source-level operations, but Sulong does
not have enough information to instrument LLVM IR at this level.
Thus we instead targeted language-specific tags provided by Su-
long to instrument LLVM IR programs. Since TruffleTaint supports
this by design, the taint instrumentations for LLVM IR and for the
dynamic languages interact seamlessly. The instrumentation for
LLVM IR even reuses taint nodes from the default propagation
semantics for equivalent features in LLVM IR. For example, LLVM
IR-specific tags equivalent to Read-/WriteVar, Literal, Call, and
ReadArg are targeted with the same taint nodes. Random byte-wise
access to heap memory has proven to be the most significant dif-
ference between instrumentations. To support such read accesses,
Sulong takes advantage of the fact that TruffleTaint currently only
supports a single taint label. When Sulong reads multiple bytes and
finds that only some of them are boxed values, it can assert that all
these boxed values contain the same attachment. This attachment is
then used when boxing the result of that read operation. To enable
analysis-defined taint labels instead, TruffleTaint could provide an
API for merging such taint labels.

4 EVALUATION
TruffleTaint is a novel framework for dynamic taint analysis that
targets applications in which code of multiple programming lan-
guages interacts. For a taint analysis framework to be practical,

Compute New Coordinates and Velocity

Store New Coordinates and Velocity

Bodies as Untainted Function Argument

Distance as Tainted Function Argument

Tainted Values Stored to C Memory Allocation

Taint Initial Coordinates
C

C

Compute Distance
JS

PY

Figure 6: Language interaction and taint flow in our multi-
language implementation of the NBody benchmark.

the imposed run-time overhead has to be low. Furthermore, bench-
marks should show the effectiveness of language interoperability.
However, existing benchmarks are normally designed to use only a
single programming language instead of multiple ones. To demon-
strate TruffleTaint’s capabilities we therefore implemented several
benchmarks from the Computer Language Benchmarks Game [3]
as a combination of C, JavaScript and Python code and adapted
them to operate on tainted data. These benchmarks are often used
to demonstrate the performance of a programming language im-
plementation by implementing a fixed algorithm in that language
and comparing the results to those achieved with other languages.
For our purposes, we developed multi-language versions of these
benchmarks5 that are aimed at stressing the performance of taint
propagation across multiple languages. These benchmarks show
that TruffleTaint is indeed capable of multi-language taint propa-
gation. To execute these benchmarks, we compiled the C code to
LLVM IR for execution on Sulong in managed mode [2, 14]. Our
benchmarks show that the tainting techniques we implemented in
TruffleTaint enable it to propagate taint across multiple languages,
and that TruffleTaint does not exhibit prohibitive slowdown in do-
ing so. In the following we will illustrate the structure of these
benchmarks and present initial performance numbers.

4.1 Cross-Language Taint Propagation
We demonstrate how we implemented our multi-language bench-
marks using theNBody benchmark as an example. NBody computes
the position and velocity of five celestial bodies in a star system after
a fixed time interval has elapsed for a certain number of times. We
implemented this benchmark using the C, JavaScript and Python
programming languages, and connected them using GraalVM’s
polyglot API which is also used in several Truffle runtimes to im-
plement the foreign function interfaces of the respective languages.
In our implementation, the planetary bodies are represented as
C structs which are allocated by LLVM IR compiled from C code
and are executed on Sulong. Each of these structs stores the cur-
rent position and velocity of the respective celestial body, which
are continuously updated by JavaScript and Python code. These
languages can access the structs as if they were objects native to
them. They do so in order to compute the new position and velocity
of each body based on the current values they can read from the
structs and store these new values back. The distribution of tasks
to languages in our multi-language benchmarks is arbitrary. As our
goal in these implementations was to stress language interactions

5The code of these benchmarks is available at https://github.com/jkreindl/taint-
benchmarks.

https://github.com/jkreindl/taint-benchmarks
https://github.com/jkreindl/taint-benchmarks

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

of various kinds (as discussed in Section 3.1) and in both directions,
this distribution differs between benchmarks.

In our multi-language NBody benchmark, taint needs to be prop-
agated correctly across C, JavaScript and Python code as well as
across expressions, object properties and function calls. The flow
of tainted data between languages in the benchmark is also sum-
marized in Figure 6.

In C code. When the celestial bodies are initialized in C code,
their position values are tainted. These tainted values are stored
in memory allocated by the C code, which is executed by Sulong
in managed mode. A pointer to this allocated memory is passed to
the JavaScript code. Using GraalVM’s polyglot API (and Sulong’s
special support for this) the JavaScript code can interact with this
pointer as if the referenced object were an array of JavaScript
objects providing the same properties as the C structs. Note that,
while the structs partially contain tainted values, the pointer that
is passed to JavaScript is not tainted itself. However, the JavaScript
code accesses these tainted position values in order to compute the
distance between bodies.

In JavaScript code. In order to compute the distance between
two bodies, their x ,y and z coordinates are subtracted and the result
is stored in local variables. When reading these coordinates from
the C structs, TruffleTaint also accesses their taint labels. This taint
is then propagated across the subtraction expression and stored
it in local variables. These local variables are then read again and
passed as function arguments to the Python functions computing
new position and velocity values. This time, the arguments passed
in a cross-language call are tainted.

In Python code. The Python code receives the tainted distance
value, as well as the respective celestial bodies. The same mecha-
nism that enables JavaScript code to treat these structs as JavaScript
objects also enables Python code to treat them as Python objects.
The new position and velocity values are computed based on tainted
function arguments, and are therefore tainted themselves.

The benchmark harness verifies that taint is propagated cor-
rectly when our multi-language NBody benchmark is executed. It
introduces taint into the benchmark by tainting the initial position
values of the celestial bodies in C code, while the initial velocity
values are left untainted. After this initialization, the benchmark
only writes to the fields containing the velocity values in Python
code. If any part of the aforementioned taint propagation were to
drop taint, the velocity values would be untainted after the bench-
mark completes. Furthermore, if the taint propagation failed, the
final position values would not be tainted anymore, even though
they also always depend on the tainted original position values.
The benchmark harness considers the benchmark to have failed if
the benchmark produces an incorrect result, if the final position
values are not tainted anymore, and if the final velocity values are
not tainted. In doing so, it checks that the taint propagation did
not incorrectly interfere with the program semantics, that the taint
propagation did propagate the taint labels according to the present
data dependencies, and that it did not mistakenly drop taint. Since
TruffleTaint executes the benchmark successfully, we see that it
correctly propagates taint between (1) a read access to memory
allocated by C code performed in JavaScript, (2) expressions and
local variables in JavaScript and Python code, (3) a function call

between JavaScript and Python code, (4) a write access to mem-
ory allocated by C performed in Python code and (4) a memory
read performed in C code. Our other multi-language benchmarks
similarly introduce taint to data that is propagated throughout the
benchmark and verify that at the end of each benchmark all data
exhibits the appropriate taint labels.

4.2 Multi-Language Taint Propagation
Benchmarks and Tests

In addition to NBody, we also implemented several other bench-
marks of the Computer Language Benchmarks game to propagate
taint in multiple languages. More specifically, we selected the Bi-
naryTrees, FannkuchRedux, Fasta, Mandelbrot, NBody, and Spectral-
Norm benchmarks. Additionally, we implemented 3 separate ver-
sions of the NBody benchmark, which each exercise different styles
of language interactions. We implemented each of these bench-
marks in a combination of C and JavaScript code, a combination
of C and Python code, a combination of all three languages, as
well as in each of these languages individually. We selected these
combinations of languages since they commonly interact in real-
world programs. In node.js, programs are commonly implemented
in JavaScript, but make heavy use of node.js’ API which is largely
implemented in C++. Similarly, Python’s foreign function interface
is often used in popular Python libraries, such as numpy. Truffle-
Taint is able to execute all our benchmarks correctly, both in that
taint labels are propagated correctly and the benchmarks produce
the correct values.

Our multi-language benchmarks each exercise various kinds of
language interaction. In some benchmarks, tainted data is used
in function calls. In others, tainted data is stored in objects. Some
benchmarks exercise their workload in one language, but use ob-
jects of another language to store tainted values in. TruffleTaint
supports all constellations of language interactions.

We originally implemented taint propagation only for C and
JavaScript, but extending the propagation support to Python re-
quired only to implement taint nodes for the Python builtin func-
tions used in our benchmarks. Since the taint propagation logic
for the language-agnostic tags was already implemented, we only
needed to annotate the nodes provided by the Python runtime with
these tags. Besides these necessarily language-specific additions,
no further additions to the taint agent were required to execute
our benchmarks implemented in C and Python. Since Python is
a dynamically typed language, it even supported storing boxed
values in its data structures out of the box, which was also the case
for JavaScript. This ease of adding support for a new language il-
lustrates the effectiveness of TruffleTaint’s propagation capabilities
and the suitability of the default propagation semantics it defines.

We also implemented a number of language-specific unit tests to
test TruffleTaint’s functionality and verify its semantically correct
taint propagation.While these tests are limited in number and make
no claim to cover the entire semantics of any of these languages,
they do exercise the most elementary features of these languages as
well as all those language features used in our benchmarks. These
tests each use TruffleTaint’s reference taint analysis application’s
language-specific builtins to (1) taint a value, (2) exercise a syntactic
feature of the tested language using that value in any possible way,

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

and (3) check that any values used in or created by this exercise
are appropriately tainted or not tainted. Each syntactic feature is
also exercised with multiple types of values which it can be used
with. For example, LLVM IR binary operations are tested with both
integer and floating point types of various bit widths.

4.3 Performance Evaluation
TruffleTaint imposes little slowdown when no taint is introduced
and is able to propagate taint with non-prohibitive slowdown. Ta-
ble 2 states the average slowdown TruffleTaint causes for each of
our benchmarks both when taint is actually introduced in a bench-
mark run and when it is not. The slowdown is computed relative
to the baseline of uninstrumented execution and is an average of
10 benchmark runs after appropriate warmup iterations.

The first number shown in Table 2 for each benchmark is the
slowdown caused by instrumenting the benchmark to propagate
taint, but not actually introducing taint. As tainted data often
reaches only few parts of a program [50], we specifically optimized
TruffleTaint’s implementation for this case, and plan to extend these
optimizations in the future. Our optimizations are proven effective
for this case, as some benchmarks exhibit almost no overhead. These
numbers rival even self-described fast taint propagation platforms
such as libDFT [36] and Decaf++ [26]. The speedup exhibited by
some benchmarks comes from the fact that certain instrumenta-
tions coincidentally lead GraalVM’s optimizing JIT compiler to
make better optimization choices, an effect that can be observed
also for other Truffle instruments [61].

The second number shown in Table 2 for each benchmark is
the slowdown caused by actually propagating taint. Depending on
the number and kind of taint propagation events, this slowdown
ranges between 5% and 4̃0x. This slowdown is partly caused by
implementation choices in the taint propagation and runtime sup-
port preventing GraalVM’s JIT compiler from performing certain
optimizations. We plan to address these issues in future work.

Overall, the benchmarks show that TruffleTaint achieves multi-
language taint propagation with non-prohibitive execution time
overhead. While dynamic taint analysis is often associated with
significant slowdown [43, 55], TruffleTaint limits this slowdown
to code that actually operates on tainted data. When no taint is
introduced, TruffleTaint exhibits better performance than state-of-
the-art platforms in some cases. While highly-optimized dynamic
taint analysis platforms such as libDFT [36] may exhibit less slow-
down when taint is introduced, TruffleTaint’s performance is still
in range of other taint analysis platforms such as Dytan [23], which
exhibits up to 50x slowdown.

5 FUTUREWORK
TruffleTaint is currently a prototype platform for dynamic taint
analysis with opportunities for future work in several directions.
We are developing TruffleTaint as a platform for our research in
the field of dynamic taint analysis. As part of this research we plan
to improve TruffleTaint with respect to its performance and taint
propagation capability, and to evaluate possible application areas.

We see significant potential in leveraging GraalVM’s dynamic
JIT compiler and its speculative optimization capabilities to opti-
mize taint propagation. Using this approach, we were already able

to significantly reduce TruffleTaint’s run-time overhead for cases
where no taint is introduced. We plan to devise new optimization
strategies for taint propagation that similarly benefit code in which
taint is propagated. In addition to optimizing TruffleTaint’s prop-
agation performance, we also plan to evaluate it in more detail
using larger and more diverse benchmark applications. Most of the
benchmarks we presented so far are CPU-bound, but we intend to
also evaluate IO-bound workloads such as file compression.

TruffleTaint currently supports the most common instructions
of LLVM IR as well as basic features of JavaScript and Python.
Missing functionality includes mostly builtins, but also features
related to asynchronous execution which may require more specific
instrumentation. Furthermore, certain kinds of loops and meta-
programming of the dynamic languages are currently not supported.
In general, our plan is to extend TruffleTaint’s language support as
required by the applications and benchmarks wewill use to evaluate
TruffleTaint in the future. Especially with regard to builtins this
means to focus on the most commonly used ones, rather than to
strive for completeness.

We also plan to apply TruffleTaint in practice. As we stated in Sec-
tion 2.2, dynamic taint analysis has many applications. We would
like to apply such existing applications to a multi-language environ-
ment. For example, tracing program inputs to aid delta debugging,
such as in Penumbra [24], may be useful in identifying bugs in
native extensions. Similarly, applying dynamic taint analysis to
debugging would allow for implementing value-specific stepping
strategies and breakpoints. We have also previously noted that
language boundaries could be used as a means to defeat a vulnera-
bility detection taint analysis, while TruffleTaint could avoid such
exploits. Data provenance is another possible application area. For
example, a system based on dynamic taint analysis to trace sensible
information in multi-language programs, perhaps even multi-host
systems and across database interaction, would have applications
for auditing in enterprise systems as well as to prevent the leak-
age of said data, e.g., personally identifiable information. Program
comprehension is another interesting area, where dynamic taint
analysis could, e.g., be used to collect information about how often
specific values cross the language boundary or where each part of
a value is often used, which may be of use to identify opportunities
for refactoring to improve performance. Another useful application
would be to infer data-flow specifications of libraries in order to
aid static taint analysis, which Taser [58], a dynamic taint analysis
implemented on top of GraalVM’s JavaScript-specific NodeProf [59]
analysis framework, has shown to be feasible. Multi-language dy-
namic taint analysis may also guide a fuzzer such as Angora [22]
more effectively for applications that use multiple languages.

Verifying correctness of taint propagation is a challenge for all
languages supported by TruffleTaint. Taint analyses tend to use
analysis-specific propagation semantics and usually do not provide
a test suite that TruffleTaint could be tested against. These analyses
usually argue for their correctness and coverage of language seman-
tics by presenting results such as found program vulnerabilities
or correctly reverse-engineered protocol format. One approach to
verify correctness of TruffleTaint could be to reimplement such pre-
vious applications of dynamic taint analysis on top of TruffleTaint
and reproduce the results of these applications.

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

Table 2: Average slowdown of execution with taint propagation compared to uninstrumented execution.

Benchmark Slowdown for language combination (without tainted data / with tainted data)
C JS Python C & JS C & Python C & JS & Python

BinaryTrees 1.16x/1.79x 1.06x/1.28x 1.39x/1.93x 1.15x/1.84x 1.16x/1.75x 1.16x/1.96x
FannkuchRedux 1.00x/3.92x 1.06x/3.32x 1.41x/6.08x 1.29x/3.44x 1.00x/10.72x 1.19x/1.74x
Fasta 1.01x/2.52x 1.11x/1.31x 1.13x/1.28x 0.85x/1.59x 1.06x/1.27x 0.99x/1.05x
Mandelbrot 1.00x/15.44x 0.99x/11.96x 1.20x/40.37x 1.00x/18.94x 1.00x/19.36x 1.00x/20.49x
NBody 1 1.02x/19.36x 0.94x/11.81x 1.57x/17.96x 1.27x/1.22x 1.00x/1.18x 1.76x/3.74x
NBody 2 0.88x/5.74x 1.20x/7.30x 2.44x/16.00x 0.80x/1.16x 1.01x/1.23x 1.00x/1.20x
NBody 3 1.22x/11.04x 1.72x/8.08x 2.60x/16.68x 1.06x/15.72x 1.30x/3.10x 1.07x/5.49x
SpectralNorm 1.00x/6.46x 1.00x/2.23x 1.08x/2.06x 1.00x/7.73x 1.00x/4.77x 1.12x/1.41x

6 RELATEDWORK
Previous work on dynamic taint analysis is large in quantity but
has so far not directly addressed language interactions. Publications
mostly focus on specific programming languages, runtime environ-
ments or binary analysis platforms. Frameworks for implementing
taint analysis applications, while more generic, are also not geared
towards supporting language interactions.

Language-specific dynamic taint analysis systems typically treat
data flow outside of the targeted programming language as a black
box. For example, for language-embeddings such as node.js, the
instrumentation typically only supports the dynamic language
code [35, 58]. Some of these systems, e.g. Karim et al. [35], allow for
manual specification of the taint flow in the other language. Such
specifications can even take the form of complex models that take
into account dynamic data flow to some degree [33]. However, these
models have to be provided by users and cannot be guaranteed to
match the executed code. TruffleTaint, in contrast, does not require
such specifications and can instead observe the actual data flow.

On top of Graal.js, Staicu et al. [58] have implemented dynamic
taint analysis for JavaScript applications. Azadmanesh at al. [17]
have extracted data dependencies for offline analysis tools using
Truffle instrumentation. In contrast to these approaches, Truffle-
Taint, supports taint propagation across multiple languages as well
as adaptable propagation semantics, taint sources and taint sinks.

Multi-language taint analysis can be achieved by compiling all
involved code to the same intermediate representation or to na-
tive code and applying a dynamic taint analysis which targets that
representation. For example, the LLVM Dataflow Sanitizer (DF-
San) [9], which is part of the LLVM tool-chain [40], instruments
LLVM IR to propagate user-defined taint labels together with data.
Although DFSan’s API is limited to languages of the C family, it
can in principle support any language also supported by LLVM.
Similarly, Phosphor [18] can instrument Java bytecode to perform
taint propagation. Many languages can be compiled to LLVM IR
or Java bytecode [8, 15, 42, 51]. This approach to multi-language
taint tracking is similar to TruffleTaint in that all code is executed
using the same analysis platform. However, in contrast to this ap-
proach, TruffleTaint allows for language-level instrumentation and
can target specific language features in its taint sources, sinks and
propagation policy. Additionally, the reduced number and lower
granularity of instrumentation events compared to low-level instru-
mentation reduces excessive taint spread and run-time overhead.

Another approach to multi-language dynamic taint analysis is
to execute the runtime environments of all involved languages on
a binary analysis platform. DECAF++ [26] and libDFT [36] use
such platforms to implement dynamic taint analysis for native code.
While libDFT is an application-level analysis platform, DECAF++
is a whole-system analysis platform based on the QEMU emulator.
However, while this approach can support even applications whose
source code is not available, it does not allow for language-specific
propagation semantics without being tailored towards a specific
language runtime. In contrast, TruffleTaint allows for language-
specific instrumentation by design and could be extended to support
native code using a suitable Truffle runtime, e.g., by Pekarek [48].

7 CONCLUSION
In this paper we presented TruffleTaint, a platform for dynamic taint
analysis in and across multiple languages. TruffleTaint employs
language-agnostic tainting techniques which enable it to propagate
taint labels in multiple languages even for data that crosses lan-
guage boundaries. Furthermore, we introduced a language-agnostic
core taint propagation semantics which can be reused when adding
support for another programming language. Moreover, TruffleTaint
can be extended to support additional programming languages and
taint analysis applications. TruffleTaint is currently capable of prop-
agating taint across code implemented in C, JavaScript and Python.
Evaluation using well-known benchmarks from the Computer Lan-
guage Benchmarks Game has shown that TruffleTaint exhibits little
run-time overhead in code that is not reached by tainted data. In the
future, we plan to improve TruffleTaint’s language support, taint
propagation functionality and performance as well as to apply it
in practice by implementing concrete taint analysis applications to
support multiple programming languages. We believe that Truffle-
Taint has the potential to become a premier platform for research
on multi-language dynamic taint analysis.

ACKNOWLEDGMENTS
We thank all members of the Virtual Machine Research Group and
the Program Analysis Group at Oracle Labs. Oracle, Java, GraalVM,
and HotSpot are trademarks or registered trademarks of Oracle
and/or its affiliates. Other names may be trademarks of their respec-
tive owners. We also thank all researchers at the Johannes Kepler
University Linz’s Institute for System Software for their support of
and valuable feedback on our work.

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

Table 3: Builtins provided by the TruffleTaint reference instrument to represent taint sources and sinks.

Action C/C++ Function JavaScript/Python Function
Mark value as tainted __truffletaint_add_<type>((<type>) value) Taint.add(value)
Mark value as not tainted __truffletaint_remove_<type>((<type>) value) Taint.remove(value)
Check if value is tainted __truffletaint_check_<type>((<type>) value) Taint.check(value)
Throw error if value is not tainted __truffletaint_assert_<type>((<type>) value) Taint.assertTainted(value)
Throw error if value is tainted __truffletaint_assertnot_<type>((<type>) value) Taint.assertNotTainted(value)

A TRUFFLETAINT REFERENCE
INSTRUMENT

As stated in Section 3.3, TruffleTaint provides a reference imple-
mentation of a taint analysis application. This reference instrument
provides the user with builtins to facilitate the addition, removal,
and querying of taint labels for runtime values. In C/C++ code these
builtins can be accessed by calling intrinsified functions, which are
declared in a header file provided by the reference instrument. For
JavaScript and Python code, the reference instrument provides a
special module, named Taint, which exposes these builtins. Table 3
shows the available builtins and their function.

REFERENCES
[1] 2020. Ballerina Taint Checking. https://ballerina.io/learn/by-example/taint-

checking.html. Accessed: 2020-07-29.
[2] 2020. Compiling Native Projects via the GraalVM LLVM Toolchain. https:

//medium.com/graalvm/graalvm-llvm-toolchain-f606f995bf. Accessed: 2020-05-
20.

[3] 2020. The Computer Language Benchmarks Game. https://benchmarksgame-
team.pages.debian.net/benchmarksgame/index.html. Accessed: 2020-04-24.

[4] 2020. CVE Entry for Hijacking of RubyGem rest-client. https://nvd.nist.gov/
vuln/detail/CVE-2019-15224. Accessed: 2020-04-20.

[5] 2020. CVE Entry for Hijacking of RubyGem strong-password. https://nvd.nist.
gov/vuln/detail/CVE-2019-13354. Accessed: 2020-04-20.

[6] 2020. GraalVM. https://www.graalvm.org. Accessed: 2020-04-21.
[7] 2020. GraalVM Polyglot Reference Manual. https://www.graalvm.org/docs/

reference-manual/polyglot/. Accessed: 2020-08-11.
[8] 2020. Incomplete List of Languages with LLVM Backend. https://llvm.org/

ProjectsWithLLVM/. Accessed: 2020-09-24.
[9] 2020. LLVM Data-Flow Sanitizer. https://clang.llvm.org/docs/DataFlowSanitizer.

html. Accessed: 2020-04-17.
[10] 2020. Node.js. http://www.nodejs.org/. Accessed: 2020-04-20.
[11] 2020. Node.js Package Manager. http://www.npmjs.com/. Accessed: 2020-04-20.
[12] 2020. Perl Taint Mode. https://perldoc.perl.org/perlsec.html. Accessed: 2020-04-

17.
[13] 2020. Ruby Taint Flags. https://ruby-doc.com/docs/ProgrammingRuby/html/

taint.html. Accessed: 2020-04-17.
[14] 2020. Safe and Sandboxed Execution of Native Code. https://medium.com/

graalvm/safe-and-sandboxed-execution-of-native-code-f6096b35c360. Ac-
cessed: 2020-04-23.

[15] K. Ali, X. Lai, Z. Luo, O. Lhotak, J. Dolby, and F. Tip. 2019. A Study of Call
Graph Construction for JVM-Hosted Languages. IEEE Transactions on Software
Engineering (2019), 1–1.

[16] Frederico Araujo and Kevin W. Hamlen. 2015. Compiler-instrumented, Dy-
namic Secret-Redaction of Legacy Processes for Attacker Deception. In 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, Au-
gust 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associa-
tion, 145–159. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/araujo

[17] Mohammad Reza Azadmanesh, Matthias Hauswirth, and Michael L. Van De Van-
ter. 2017. Language-Independent Information Flow Tracking Engine for Program
Comprehension Tools. In Proceedings of the 25th International Conference on
Program Comprehension (ICPC ’17). IEEE Press, Piscataway, NJ, USA, 346–355.
https://doi.org/10.1109/ICPC.2017.5

[18] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating Dynamic Data Flow
in Commodity JVMs. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications (Portland,
Oregon, USA, 2014-10-15) (OOPSLA ’14). Association for Computing Machinery,
83–101. https://doi.org/10.1145/2660193.2660212

[19] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-
matic Extraction of Protocol Message Format Using Dynamic Binary Analysis.
In Proceedings of the 14th ACM Conference on Computer and Communications
Security (CCS ’07). ACM, New York, NY, USA, 317–329. https://doi.org/10.1145/
1315245.1315286

[20] Jun Cai, Peng Zou, Jinxin Ma, and Jun He. 2016. SwordDTA: A Dynamic Taint
Analysis Tool for Software Vulnerability Detection. Wuhan University Journal
of Natural Sciences 21, 1 (Feb. 2016), 10–20. https://doi.org/10.1007/s11859-016-
1133-1

[21] J. Cai, P. Zou, D. Xiong, and J. He. 2015. A Guided Fuzzing Approach for Security
Testing of Network Protocol Software. In 2015 6th IEEE International Conference
on Software Engineering and Service Science (ICSESS). 726–729. https://doi.org/10.
1109/ICSESS.2015.7339160

[22] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. IEEE Computer Society, 711–725. https:
//doi.org/10.1109/SP.2018.00046

[23] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dy-
namic Taint Analysis Framework. In Proceedings of the 2007 International Sym-
posium on Software Testing and Analysis (ISSTA ’07). ACM, New York, NY, USA,
196–206. https://doi.org/10.1145/1273463.1273490

[24] James Clause and Alessandro Orso. 2009. Penumbra: Automatically Identifying
Failure-Relevant Inputs Using Dynamic Tainting. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis (ISSTA ’09). ACM, New
York, NY, USA, 249–260. https://doi.org/10.1145/1572272.1572301

[25] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz.
2008. Tupni: Automatic Reverse Engineering of Input Formats. In Proceedings of
the 15th ACM Conference on Computer and Communications Security (CCS ’08).
ACM, New York, NY, USA, 391–402. https://doi.org/10.1145/1455770.1455820

[26] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. 2019. DECAF++: Elastic
Whole-System Dynamic Taint Analysis. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019). USENIX Association,
Chaoyang District, Beijing, 31–45. https://www.usenix.org/conference/raid2019/
presentation/davanian

[27] Rich Dill. 2018. Automating Mobile Device File Format Analysis. Doctoral Disser-
tation. Airforce Institute of Technology, Air University, Wright-Patterson Air
Force Base, Ohio.

[28] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Xiaodong
Song. 2007. Dynamic Spyware Analysis. In Proceedings of the 2007 USENIX
Annual Technical Conference, Santa Clara, CA, USA, June 17-22, 2007, Jeff Chase
and Srinivasan Seshan (Eds.). USENIX, 233–246. http://www.usenix.org/events/
usenix07/tech/egele.html

[29] Andrey Ermolinskiy, Sachin Katti, Scott Shenker, Lisa L. Fowler, and Murphy
Mccauley. 2010. Towards Practical Taint Tracking.

[30] Vijay Ganesh, Tim Leek, andMartin Rinard. 2009. Taint-Based DirectedWhitebox
Fuzzing. In Proceedings of the 31st International Conference on Software Engineering
(ICSE ’09). IEEE Computer Society, Washington, DC, USA, 474–484. https:
//doi.org/10.1109/ICSE.2009.5070546

[31] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössen-
böck. 2015. Dynamically Composing Languages in a Modular Way: Supporting
C Extensions for Dynamic Languages. In Proceedings of the 14th International
Conference on Modularity (MODULARITY 2015). ACM, New York, NY, USA, 1–13.
https://doi.org/10.1145/2724525.2728790

[32] W. Halfond, A. Orso, and P. Manolios. 2008. WASP: Protecting Web Applications
Using Positive Tainting and Syntax-Aware Evaluation. IEEE Transactions on
Software Engineering 34, 1 (Jan. 2008), 65–81. https://doi.org/10.1109/TSE.2007.
70748

[33] Daniel Hedin, Alexander Sjösten, Frank Piessens, and Andrei Sabelfeld. 2017. A
Principled Approach to Tracking Information Flow in the Presence of Libraries.
In Principles of Security and Trust - 6th International Conference, POST 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in
Computer Science, Vol. 10204), Matteo Maffei and Mark Ryan (Eds.). Springer,
49–70. https://doi.org/10.1007/978-3-662-54455-6_3

https://ballerina.io/learn/by-example/taint-checking.html
https://ballerina.io/learn/by-example/taint-checking.html
https://medium.com/graalvm/graalvm-llvm-toolchain-f606f995bf
https://medium.com/graalvm/graalvm-llvm-toolchain-f606f995bf
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://nvd.nist.gov/vuln/detail/CVE-2019-15224
https://nvd.nist.gov/vuln/detail/CVE-2019-15224
https://nvd.nist.gov/vuln/detail/CVE-2019-13354
https://nvd.nist.gov/vuln/detail/CVE-2019-13354
https://www.graalvm.org
https://www.graalvm.org/docs/reference-manual/polyglot/
https://www.graalvm.org/docs/reference-manual/polyglot/
https://llvm.org/ProjectsWithLLVM/
https://llvm.org/ProjectsWithLLVM/
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
http://www.nodejs.org/
http://www.npmjs.com/
https://perldoc.perl.org/perlsec.html
https://ruby-doc.com/docs/ProgrammingRuby/html/taint.html
https://ruby-doc.com/docs/ProgrammingRuby/html/taint.html
https://medium.com/graalvm/safe-and-sandboxed-execution-of-native-code-f6096b35c360
https://medium.com/graalvm/safe-and-sandboxed-execution-of-native-code-f6096b35c360
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/araujo
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/araujo
https://doi.org/10.1109/ICPC.2017.5
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1145/1315245.1315286
https://doi.org/10.1145/1315245.1315286
https://doi.org/10.1007/s11859-016-1133-1
https://doi.org/10.1007/s11859-016-1133-1
https://doi.org/10.1109/ICSESS.2015.7339160
https://doi.org/10.1109/ICSESS.2015.7339160
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1572272.1572301
https://doi.org/10.1145/1455770.1455820
https://www.usenix.org/conference/raid2019/presentation/davanian
https://www.usenix.org/conference/raid2019/presentation/davanian
http://www.usenix.org/events/usenix07/tech/egele.html
http://www.usenix.org/events/usenix07/tech/egele.html
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1109/TSE.2007.70748
https://doi.org/10.1109/TSE.2007.70748
https://doi.org/10.1007/978-3-662-54455-6_3

MPLR ’20, November 4–6, 2020, Virtual, UK Kreindl et al.

[34] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. 2018. TIFF: Using
Input Type Inference To Improve Fuzzing. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC ’18). ACM, New York, NY,
USA, 505–517. https://doi.org/10.1145/3274694.3274746

[35] R. Karim, F. Tip, A. Sochurkova, and K. Sen. 2018. Platform-Independent Dynamic
Taint Analysis for JavaScript. IEEE Transactions on Software Engineering (2018),
1–17. https://doi.org/10.1109/TSE.2018.2878020

[36] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Vir-
tual Execution Environments (VEE ’12). ACM, New York, NY, USA, 121–132.
https://doi.org/10.1145/2151024.2151042

[37] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and
Michael Franz. 2013. Information Flow Tracking Meets Just-in-Time Compilation.
ACM Trans. Archit. Code Optim. 10, 4 (Dec. 2013), 38:1–38:25. https://doi.org/10.
1145/2541228.2555295

[38] Jacob Kreindl, Daniele Bonetta, and Hanspeter Mössenböck. 2019. Towards
Efficient, Multi-Language Dynamic Taint Analysis. In Proceedings of the 16th
ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes - MPLR 2019. ACM Press, Athens, Greece, 85–94. https://doi.org/
10.1145/3357390.3361028

[39] Jacob Kreindl, Manuel Rigger, and Hanspeter Mössenböck. 2018. Debugging
Native Extensions of Dynamic Languages. In Proceedings of the 15th International
Conference on Managed Languages & Runtimes (ManLang’18). ACM, Linz, Austria,
12:1–12:7. https://doi.org/10.1145/3237009.3237017

[40] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004,
San Jose, CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.
2004.1281665

[41] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows Later:
Large-Scale Detection of DOM-Based XSS. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS ’13). ACM, New York,
NY, USA, 1193–1204. https://doi.org/10.1145/2508859.2516703

[42] Wing Hang Li, David R. White, and Jeremy Singer. 2013. JVM-Hosted Languages:
They Talk the Talk, but Do They Walk the Walk?. In Proceedings of the 2013
International Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (Stuttgart, Germany) (PPPJ ’13).
Association for Computing Machinery, New York, NY, USA, 101–112. https:
//doi.org/10.1145/2500828.2500838

[43] Benjamin Livshits. 2012. Dynamic Taint Tracking in Managed Runtimes. Technical
Report MSR-TR-2012-114. Microsoft Research. https://www.microsoft.com/en-
us/research/publication/dynamic-taint-tracking-in-managed-runtimes/

[44] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary Hunting with
Inter-procedural Control Flow. In Information Security and Cryptology - ICISC 2012
- 15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 7839), Taekyoung Kwon, Mun-Kyu
Lee, and Daesung Kwon (Eds.). Springer, 92–109. https://doi.org/10.1007/978-3-
642-37682-5_8

[45] Shashidhar Mysore, Bita Mazloom, Banit Agrawal, and Timothy Sherwood. 2008.
Understanding and Visualizing Full Systems with Data Flow Tomography. In
Proceedings of the 13th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XIII). ACM, New York, NY,
USA, 211–221. https://doi.org/10.1145/1346281.1346308

[46] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analy-
sis for Automatic Detection, Analysis, and SignatureGeneration of Exploits
on Commodity Software. In Proceedings of the Network and Distributed Sys-
tem Security Symposium, NDSS 2005, San Diego, California, USA. The Internet
Society. https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-
automatic-detection-analysis-and-signaturegeneration-exploits-commodity/

[47] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. 2005. Automatically Hardening Web Applications Using Precise Tainting.
In Security and Privacy in the Age of Ubiquitous Computing (IFIP Advances in
Information and Communication Technology), Ryoichi Sasaki, Sihan Qing, Eiji
Okamoto, and Hiroshi Yoshiura (Eds.). Springer US, 295–307.

[48] Daniel Alexander Pekarek. 2019. A Truffle-based Interpreter for x86 Binary Code.
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-27719

[49] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. 2006. Argos: An Emula-
tor for Fingerprinting Zero-Day Attacks for Advertised Honeypots with Auto-
matic Signature Generation. In Proceedings of the 2006 EuroSys Conference on -
EuroSys ’06. ACM Press, Leuven, Belgium, 15. https://doi.org/10.1145/1217935.
1217938

[50] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. 2006. LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06).
IEEE Computer Society, 135–148. https://doi.org/10.1109/MICRO.2006.29

[51] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and
Hanspeter Mössenböck. 2016. Bringing Low-level Languages to the JVM: Efficient

Execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop
on Virtual Machines and Intermediate Languages (Amsterdam, Netherlands) (VMIL
2016). ACM, New York, NY, USA, 6–15. https://doi.org/10.1145/2998415.2998416

[52] Manuel Rigger, Stefan Marr, Bram Adams, and Hanspeter Mössenböck. 2019.
Understanding GCC Builtins to Develop Better Tools. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
74–85. https://doi.org/10.1145/3338906.3338907

[53] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and Hanspeter
Mössenböck. 2018. An Analysis of X86-64 Inline Assembly in C Programs.
In Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (Williamsburg, VA, USA) (VEE ’18). Association
for Computing Machinery, New York, NY, USA, 84–99. https://doi.org/10.1145/
3186411.3186418

[54] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019.
Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks.
In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-
smart-contracts-against-re-entrancy-attacks/

[55] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA.
IEEE Computer Society, 317–331. https://doi.org/10.1109/SP.2010.26

[56] R. Sekar. 2009. An Efficient Black-box Technique for Defeating Web Application
Attacks. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2009, San Diego, California, USA, 8th February - 11th February 2009. The
Internet Society. https://www.ndss-symposium.org/ndss2009/an-efficient-black-
box-technique-for-defeating-web-application-attacks/

[57] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2013. Diglossia: Detecting
Code Injection Attacks with Precision and Efficiency. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security (CCS ’13).
ACM, New York, NY, USA, 1181–1192. https://doi.org/10.1145/2508859.2516696

[58] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and
Michael Pradel. 2020. Extracting Taint Specifications for JavaScript Libraries. In
Proc. 42nd International Conference on Software Engineering (ICSE).

[59] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Ef-
ficient Dynamic Analysis for Node.Js. In Proceedings of the 27th International
Conference on Compiler Construction (Vienna, Austria) (CC 2018). Association for
Computing Machinery, New York, NY, USA, 196–206. https://doi.org/10.1145/
3178372.3179527

[60] the npm blog. 2020. Details about the event-stream incident. https://blog.npmjs.
org/post/180565383195/details-about-the-event-stream-incident. Accessed:
2020-04-20.

[61] Michael Van De Vanter, Chris Seaton, Michael Haupt, Christian Humer, and
Thomas Würthinger. 2018. Fast, Flexible, Polyglot Instrumentation Support for
Debuggers and Other Tools. The Art, Science, and Engineering of Programming 2,
3 (March 2018), 14:1–14:30. https://doi.org/10.22152/programming-journal.org/
2018/2/14

[62] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christo-
pher Krügel, and Giovanni Vigna. 2007. Cross Site Scripting Preven-
tion with Dynamic Data Tainting and Static Analysis. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2007, San
Diego, California, USA, 28th February - 2nd March 2007. The Internet
Society. https://www.ndss-symposium.org/ndss2007/cross-site-scripting-
prevention-dynamic-data-tainting-and-static-analysis/

[63] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187–204. https://doi.org/10.
1145/2509578.2509581

[64] Wenmin Xiao, Jianhua Sun, Hao Chen, and Xianghua Xu. 2014. Preventing Client
Side XSS with Rewrite Based Dynamic Information Flow. In Sixth International
Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2014,
Beijing, China, July 13-15, 2014, Hong Shen, Yingpeng Sang, and Hui Tian (Eds.).
IEEE Computer Society, 238–243. https://doi.org/10.1109/PAAP.2014.10

[65] Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhiqiang Lin. 2013. AUTOVAC:
Automatically Extracting System Resource Constraints and Generating Vaccines
for Malware Immunization. In IEEE 33rd International Conference on Distributed
Computing Systems, ICDCS 2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA.
IEEE Computer Society, 112–123. https://doi.org/10.1109/ICDCS.2013.69

[66] Hongfa Xue, Guru Venkataramani, and Tian Lan. 2018. Clone-Slicer: Detecting
Domain Specific Binary Code Clones through Program Slicing. In Proceedings
of the 2018 Workshop on Forming an Ecosystem Around Software Transformation.
ACM. https://doi.org/10.1145/3273045.3273047

https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1145/2151024.2151042
https://doi.org/10.1145/2541228.2555295
https://doi.org/10.1145/2541228.2555295
https://doi.org/10.1145/3357390.3361028
https://doi.org/10.1145/3357390.3361028
https://doi.org/10.1145/3237009.3237017
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2500828.2500838
https://doi.org/10.1145/2500828.2500838
https://www.microsoft.com/en-us/research/publication/dynamic-taint-tracking-in-managed-runtimes/
https://www.microsoft.com/en-us/research/publication/dynamic-taint-tracking-in-managed-runtimes/
https://doi.org/10.1007/978-3-642-37682-5_8
https://doi.org/10.1007/978-3-642-37682-5_8
https://doi.org/10.1145/1346281.1346308
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-27719
https://doi.org/10.1145/1217935.1217938
https://doi.org/10.1145/1217935.1217938
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3338906.3338907
https://doi.org/10.1145/3186411.3186418
https://doi.org/10.1145/3186411.3186418
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://doi.org/10.1109/SP.2010.26
https://www.ndss-symposium.org/ndss2009/an-efficient-black-box-technique-for-defeating-web-application-attacks/
https://www.ndss-symposium.org/ndss2009/an-efficient-black-box-technique-for-defeating-web-application-attacks/
https://doi.org/10.1145/2508859.2516696
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3178372.3179527
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://www.ndss-symposium.org/ndss2007/cross-site-scripting-prevention-dynamic-data-tainting-and-static-analysis/
https://www.ndss-symposium.org/ndss2007/cross-site-scripting-prevention-dynamic-data-tainting-and-static-analysis/
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1109/PAAP.2014.10
https://doi.org/10.1109/ICDCS.2013.69
https://doi.org/10.1145/3273045.3273047

Multi-language Dynamic Taint Analysis in a Polyglot Virtual Machine MPLR ’20, November 4–6, 2020, Virtual, UK

[67] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: Capturing System-Wide Information Flow for Malware De-
tection and Analysis. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS ’07). ACM, New York, NY, USA, 116–127.
https://doi.org/10.1145/1315245.1315261

[68] Jinfeng Yuan, Weizhong Qiang, Hai Jin, and Deqing Zou. 2014. CloudTaint: An
Elastic Taint Tracking Framework for Malware Detection in the Cloud. The
Journal of Supercomputing 70, 3 (Dec. 2014), 1433–1450. https://doi.org/10.1007/
s11227-014-1235-5

[69] Qing Zhang, John McCullough, Justin Ma, Nabil Schear, Michael Vrable, Amin
Vahdat, Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. 2010. Neon:
System Support for Derived Data Management. In Proceedings of the 6th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’10). ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/1735997.1736008

[70] Ruoyu Zhang, Shiqiu Huang, Zhengwei Qi, and Haibing Guan. 2012. Static
Program Analysis Assisted Dynamic Taint Tracking for Software Vulnerability
Discovery. Computers & Mathematics with Applications 63, 2 (Jan. 2012), 469–480.
https://doi.org/10.1016/j.camwa.2011.08.001

[71] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small World with High Risks: A Study of Security Threats in
the npm Ecosystem. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor
(Eds.). USENIX Association, 995–1010. https://www.usenix.org/conference/
usenixsecurity19/presentation/zimmerman

https://doi.org/10.1145/1315245.1315261
https://doi.org/10.1007/s11227-014-1235-5
https://doi.org/10.1007/s11227-014-1235-5
https://doi.org/10.1145/1735997.1736008
https://doi.org/10.1016/j.camwa.2011.08.001
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

	Abstract
	1 Introduction
	2 Background
	2.1 Truffle and GraalVM
	2.2 Dynamic Taint Analysis

	3 TruffleTaint
	3.1 Taint Propagation
	3.2 Propagation Semantics
	3.3 Platform Extensibility

	4 Evaluation
	4.1 Cross-Language Taint Propagation
	4.2 Multi-Language Taint Propagation Benchmarks and Tests
	4.3 Performance Evaluation

	5 Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	A TruffleTaint Reference Instrument
	References

