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Abstract

To efficiently execute dynamically typed languages, many
language implementations have adopted a two-tier architec-
ture. The first tier aims for low-latency startup times and
collects dynamic profiles, such as the dynamic types of vari-
ables. The second tier provides high-throughput using an
optimizing compiler that specializes code to the recorded
type information. If the program behavior changes to the
point that not previously seen types occur in specialized code,
that specialized code becomes invalid, it is deoptimized, and
control is transferred back to the first tier execution engine
which will start specializing anew. However, if the program
behavior becomes more specific, for instance, if a polymor-
phic variable becomes monomorphic, nothing changes. Once
the program is running optimized code, there are no means to
notice that an opportunity for optimization has been missed.

We propose to employ a sampling-based profiler to moni-
tor native code without any instrumentation. The absence of
instrumentation means that when the profiler is not active,
no overhead is incurred. We present an implementation is
in the context of the R just-in-time, optimizing compiler for
the R language. Based on the sampled profiles, we are able to
detect when the native code produced by R is specialized for
stale type feedback and recompile it to more type-specific
code. We show that sampling adds an overhead of less than
3% in most cases and up to 9% in few cases and that it reliably
detects stale type feedback within milliseconds.
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1 Introduction

Efficiently executing dynamic languages is a challenging
endeavor as the many articles, conferences and industry
resources dedicated to this topic prove. The hurdles are plen-
tiful, solutions must account for dynamically typed vari-
ables [Gal et al. 2009], for values with dynamic object lay-
outs [Chambers and Ungar 1989], for late-bindings affecting
the call-graph [Paleczny et al. 2001], for introspective and
reflective operations [Duboscq et al. 2013], just to name
a painful few. Most successfully adapted to this environ-
ment are virtual machines with multi-tier just-in-time com-
pilers. The idea being to combine different execution en-
gines occupying different points in the compile-time versus
execution-time trade-off space. Early tiers, typically imple-
mented by interpreters, favor low latency, whereas late tiers
favor throughput and are realized by optimizing native com-
pilers [Fink and Qian 2003]. To deal with the aforementioned
dynamic nature of the source languages, the virtual machine
monitors program execution and collects profiles to be propa-
gated from one tier to the next [Hélzle and Ungar 1994]. This
allows the compiler to use information from previous runs
to tailor optimized code of future runs to the observed behav-
ior. Programs are assumed to behave such that the observed
properties stabilize over time and after a so-called warm up
phase the execution reaches a stable peak performance level.
Unfortunately, as noted empirically by Barrett et al. [2017]
reality does not necessarily conform to this model. If the
behavior of programs changes over time, performance can
still degrade late in the execution due to a newly emerged
behavior, defying the traditional notion of a clear warmup
phase. At the same time, profiles recorded early in the ex-
ecution of a program can still affect performance of a later
tier by degrading optimization choices, even if that profile
information is stale. The reason is that the highest tier, re-
served for the hottest functions, does not collect profiling
information anymore, to avoid overheads that would reduce
the peak performance. In other words, in this post-warmup
phase, the execution flies blind and the compiler commits
to optimizations which, barring deoptimization, stay fixed
for the rest of the execution. While a VM has guards and
deoptimization to detect when types change, such that past
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Figure 1. R compilation pipeline

assumptions do not hold anymore, there is typically no mech-
anism to detect when new optimization opportunities arise
and new assumptions could be made.

In this article we propose to combine traditional instru-
mentation based type feedback, with another well-known
technique, namely a sampling-based profiler. While we use
instrumentation to propagate information from baseline to
optimized code, the sampling profiler is used to monitor
values in optimized native code and trigger re-optimization.
With this additional profiler we specifically address the issue
of optimized code being compiled for stale type feedback.
The advantage of a sampling profiler is that it does not rely
on instrumentation and only incurs overhead when it is en-
gaged. In particular, our aim is to detect when the feedback
collected with instrumentation during warmup indicated a
more generic behavior than what is observed after optimiza-
tions, in the random samples gathered later in the execution.
Our implementation currently focuses on sampling the prim-
itive types of boxed values in optimized native code. We
detect, for instance, variables in optimized code that were
assumed to be more polymorphic than the actual values ob-
served in the samples. Or, in general, any program location
where the type feedback used during optimization is more
generic than the current samples. We show that for three
benchmarks representing different origins of stale type feed-
back we identified in R, automatic re-optimization leads to
significant peak performance speedups between 1.1X and
1.5X. Our evaluation shows the overhead of our profiler on
the R benchmark suite to be mostly within 3% and sometimes
up to 9%, when the profiler is continuously running. With
this overhead, stale type feedback can be detected within
milliseconds. Finally, we discuss exciting new profiling op-
portunities by random sampling over instrumentation that
could be explored in future work.

We present the following contributions:

1. A strategy for a posteriori detection of missed specula-
tion opportunities using a backup sampling-based pro-
filer monitoring heap values. The profiler uses the Per-
formance Monitoring Unit (PMU) as a low-overhead
sample trigger in an uncooperative environment.

2. An evaluation of this strategy with an implementa-
tion on top of the R research virtual machine for R.
We report on overhead, stability and performance im-
provements.
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The following section 2 provides an introduction to the
difficulties in optimizing R and discusses related work. Then,
we present our solution in section 3, an in-depth presentation
of the implementation in section 4, and our evaluation in
section 5. We discuss the results and future work in section 6
and conclude in section 7.

2 Background

R is a programming language mainly used for statistical and
computational data science applications [R Core Team 2020].
The language is notoriously difficult to compile, mainly be-
cause of its rich reflective interface, late binding, lazy evalu-
ation and exposed internals [Morandat et al. 2012]. For ex-
ample, it is possible for a function to modify, add or remove
local variables at runtime. R' is a relatively new just-in-time
compiler for R which integrates into the reference R imple-
mentation [Fliickiger et al. 2019]. As shown in Figure 1, R
features a two-tier optimization pipeline with a bytecode
called RIR, an optimizing compiler with a custom interme-
diate representation called PIR, and an LLVM based native
backend. The RIR interpreter gathers type feedback that is
later used for optimization decisions. To that end there are
several recording bytecodes that can be used to track values,
types, call targets and branch targets. This profiling infor-
mation is then used to annotate PIR values in the optimizer,
and consumed by speculative optimization passes. The final
optimized native functions will contain type checks to guard
for behaviors that fall outside the profiled range. In case they
fail, functions are deoptimized and execution transferred
back to the interpreter.

Since R is dynamically typed, for most values the type of a
variable is only known at runtime. In GNU R values are stored
in a structure named SEXP for S-expression. Those contain a
header with common information such as the primitive type,
the size, and more attributes that allow, for example, to tag
the different object types of the different object systems in R.
All values are vectorized, scalars are represented by vectors
of length one. R has decided to keep the object layout of
GNU R for compatibility reasons with packages that rely on
their exact layout. This means that all variables are stored
boxed on the heap by default. The IR of the optimizer, PIR,
is typed and uses speculative optimizations to narrow down
the static type of values. For instance, numbers which are
speculated (or inferred) to be monomorphic and scalar will
be lowered to unboxed registers in LLVM. For boxed values,
R maintains a shadow stack of local pointers to make them
reachable by the GNU R garbage collector [Henderson 2002].
As type feedback, R records the primitive type, whether a
value is a scalar (i.e., a vector of length one), eagerness of
call-by-need arguments, and very approximate information
about attributes. Type feedback is recorded by a dedicated

Thttps://github.com/reactorlabs/rir
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RIR instruction which records the type of the value at the top
of the operand stack. The result is an approximation of the
union type of all observed values and can then be extracted
to a PIR type used for speculation.

Where does stale type feedback originate from in R? One
possible origin comes from changing global state. R is de-
signed to be an interactive environment and there are also
frontends following the notebook paradigm. During such an
explorative session, it is common that some values are in-
teractively changed and a part of the computation executed
again. The traditional idea of collecting profiles during a
warmup phase and then indefinitely committing to a specu-
lation on the future behavior is not well suited for live envi-
ronments. Another very common problem in R programs are
accidentally polymorphic variables. Consider for instance
the following implementation of a counter using a closure:

counter <- function() {
count <- 1L
function ()
count <<- count + 1

3

Here, the variable count was intended to be an integer as
the 1L suffix suggests. However, accidentally on the first in-
crement a floating-point 1 is added, converting it to double
from then on. Therefore, the observed types of counter are
integer and double, but dynamically the integer only occurs
up to the first invocation. From then on, the function might
as well be specialized for the double case. A third very com-
mon case for erroneous feedback is not really a case where
the feedback is stale, but instead a case where the dynamic
analysis is not precise enough and merges unrelated profiles.
A typical situation occurs in polymorphic library code with
different callers. If we consider the following add function:

add <- function(a,b) a+b
add (1,2)
add(c(1,1),c(2,2))

As can be seen, this function is called with scalars as well as
vectors. Therefore the profiling information for add records
both arguments to be either scalar or vectors. When this add
function is inlined, the PIR optimizer imports type feedback
from the inlinee into the caller. Therefore at both call sites
add(1,2) and add(c(1,1),c(2,2)) the merged type feedback
of both invocations will be imported. The problem is that,
in general, type feedback lacks dynamic context. Of course
in this simplistic example the actual type of the variables
can be inferred from the static context. But in general this
is a problem that can easily be observed in practice and
does have negative effects on performance. As expressed by
Pizlo [2018], it is one of the reasons for the appeal of multi-
tier architectures, e.g. employed in JSCore. The second tier
performs inlining, and at the same time still features instru-
mentation to record profiles. This allows a virtual machine
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to record context sensitive profiles for inlined functions, as
for instance Wiirthinger et al. [2012] mention, by resetting
profiling after inlining.

2.1 Related Work

Several advances towards using a continuously running pro-
filer with a just-in-time compiler in what is essentially a
feedback-directed optimization loop have been made:

Whaley [2000] describe a low-overhead sampling profiler
for Jalapefio, a Java virtual machine. Their profiler is im-
plemented with a busy loop in a dedicated thread and is
able to capture profiles concurrently to the user program
threads execution. They also present an efficient data struc-
ture to record context-sensitive profiling information. As
described by Burke et al. [1999], in Jalapefio optimization
decisions are primarily directed by the sampling-based pro-
filing. The approach is further refined by Suganuma et al.
[2011] by enriching the profiling with instrumentation that
is dynamically added and removed through recompilation.
In that sense our approach has the inverse priorities. We rely
mainly on traditional instrumentation already present in R,
and only engage the sampling approach to detect changing
behavior over time that would not be visible otherwise.

Arnold et al. [2012] present a profiler for the Jikes RVM
that performs probabilistic sampling using instrumentation.
The advantage being that the approach is portable and does
not rely on operating system or hardware support. The pro-
file information focuses on low-level control flow, such as
edge counters, and is used for optimizations such as splitting,
reordering, or unrolling.

Another approach for gathering probabilistic samples with-
out instrumentation is to use hardware performance mon-
itors by the CPU. Schneider et al. [2007] query the perfor-
mance counters on cache misses and use that information to
improve allocation co-locality in a virtual machine for Java.
Kistler and Franz [2003] propose techniques for continuous
program optimization at the native code level. Their system
instruments compiled binaries at load time. They are able to
improve cache usage and instruction-level parallelism.

3 Detecting Stale Type Feedback

To understand how our sampling profiler is integrated
into R, let us introduce a concrete benchmark for measuring
the impact of stale type feedback. In the following Listing 1,
the flag POLLUTE causes the function f to be invoked twice
with the global variable x being a double. All subsequent
invocations are on integers. When the POLLUTE flag is unset,
then this snippet executes 25% faster in R, due to the variable
x being fully unboxed in f. If on the other hand, the POLLUTE
flag is set, the function f compiles to the RIR code in Listing 2.
At offset 9 there is a type recording instruction and it has
recorded the top of the operand stack to be either a double
scalar or an integer scalar. When this function is optimized
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f <- function() x+x+x+x+1L
if (POLLUTE) {

x <=1
fO; O
3
x <- 1L

for (i in 1:1000000) x <- x+f()
Listing 1. Example of Feedback Pollution

[} ldvar x

9 [double(s), integer(s)]
14 ldvar x

23 add

Listing 2. Byte code of function f

in PIR, the variable x loaded from the global environment is
speculated to be an integer or a double. The optimized func-
tion is also annotated with a map as metadata, associating
slots in the shadow stack (which are used by native code for
storing boxed values), with original type feedback locations.
In this case after a number of iterations the map contains
the following entries:

- #2->9 [int(s)] (4), [dbl(s), int(s)]
- #3->9 Lint(s)] (4), [dbl(s), int(s)]
- #4->29: [int(s)] (2), [dbl(s), int(s)]
- #7->81: [<?>] (@), [dbl(s), int(s)]

For instance, the first row reads as follows: In the second
slot of the shadow stack, we find a value that corresponds
to a type feedback that was recorded at bytecode offset 9
(see previous listing). The profile of this value indicates that
it is a scalar integer, we have collected 4 samples and the
previous feedback was double or integer. As can be seen in
this example, during optimizations it is possible for a value
to appear multiple times (in which case said values will be
aggregated when taking decisions), or to be absent from the
table if it cannot be traced back to the original type feedback.
For some slots we will be able to collect many samples; for
others, the samples will be sparse or even completely missing.
The goal of the profiler is to detect when a function has many
slots with several samples where the profiled types differ
substantially from the previous one. In this case, the function
is marked for recompilation. Recompilation always starts
from the original source function, however, any sampled
profile entry with enough samples overrides the original
type feedback. This enables the optimizer to then ignore
the stale, or wrong type feedback that we collected in the
initial run and produce a new function with better peak
performance.
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As a concrete example, consider an R user trying to com-
pute values produced by a linear congruential generator,
implemented as follows:

lcg <- function(n)
for (i in 1:n)
state <<- (state * 48271) %% Ox7fffffff

Say the user is interested in the billionth value after an initial
seed of 1, 2 and 3. So they will run the following queries in
the REPL:

> state <- ¢(1,2,3)

> lcg(le7)

> state

[1] 1901417813 1655351979 1409286145

As can be seen here, R is a vectorized language. Therefore,
multiple instances of this pseudo random generator can be
run in parallel. As the language also encourages an inter-
active exploration style, the user might continue to query
different values for lcg, using differently sized vectors for
state. Assume we record the run times in seconds of each
invocation of 1cg during an interactive session in R:

0 10 20 30
iteration

Let us focus on a number of interesting change points in that
graph. First at (1) the 1cg function is compiled and execution
speeds up by a factor of 1.3. Then at (2) the user switches
from triples to vectors with 6 entries, the execution takes
longer again, but not twice as much, thanks to the built in
vectorization. At point (3) the user starts querying lcg with
a scalar state and performance improves again. Since scalar
vectors are so common in R, the R compiler has special sup-
port for them and can treat them as machine floating-point
numbers. However the stale type feedback from earlier runs
has caused the lcg to be optimized to the least upper bound
of all observed types so far, which is a vector of numbers. At
(4) we see the two lines to start differing. The one staying
flat is our baseline, the red line dropping below includes
our sampling profiler. The profiler has detected that state
is now scalar and that 1cg should be reoptimized with that
information. The subsequent specialization leads to an over
2 times faster execution.
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4 Implementation

This section is dedicated to implementation considerations.
Some of the problems encountered are specific to having
to integrate the profiler with an existing system, others are
more generic. We will start with the way we trigger the
profiler to records samples. Next, we will cover how these
samples are recorded and what they contain. Finally, we will
explain how we decide when to recompile a function and
how the recorded data is used by the compiler in order to
improve the compiler’s output.

4.1 Sample Triggering

The main goal of the sample triggering mechanism is to
be performance neutral when disabled, to record uniformly
distributed samples, and to be compatible with the existing
infrastructure. Since GNU R and hence also R are single-
threaded, it would be difficult to asynchronously collect the
results. Therefore, our implementation relies on interrupting
the program at regular intervals. An obvious approach con-
sists of a separate thread or a POSIX timer interrupting the
program using signals. The issue with said strategy is that
interruption can occur during the execution of a syscall (i.e.,
when the process is executing in kernel mode) and, in par-
ticular, blocking syscalls are aborted or restarted by signals.
Since R packages can contain arbitrary C code, we have no
control over when and how syscalls are executed. We must
therefore avoid triggering signals during syscalls, which is
not possible with a timer based approach.

An alternative mechanism for triggering repeating signals
is to use the Performance Monitoring Unit (PMU) present
on modern Intel processors. The PMU allows monitoring of
a multitude of information on the performance of a proces-
sor, from counting the number of retired instructions, up to
recording a dynamic call graph. The PMU was first intro-
duced to Intel Pentium processors in 1993 and expanded in
capabilities over time. All Intel Core and Intel Xeon since the
Nehalem architecture (released in 2008), and all Intel Atom
processors provide a very capable PMU with most modern-
day features supported [Intel 2019]. Other processor manu-
facturers offer similar capabilities. For example, AMD Zen
processors provide Performance Monitor Counters (PMC)
[AMD 2017] and some ARM processors also provide sim-
ilar capabilities [ARM 2014]. In the following sections we
will simply refer to this hardware as the PMU as the work
presented in this paper focuses on Intel processors running
Linux. The ideas should however be transferable to other
CPU architectures.

In general, PMU configuration options in Linux can be
categorized into either counting or sampling mode. In count-
ing mode, the PMU counts a configurable number of simple
events occurring in the CPU, such as retired instructions or
cache misses [Ammons et al. 1997; Moore 2002]. The data is
kept by counters in the CPU and retrieved by polling. On the
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other hand, sampling mode provides access to more complex
metrics. The main difference is that the recorded data must
not be polled; instead, the data is written into a buffer in
memory. There is a configurable sampling period specifying
a threshold for a particular counter after which a sample is
taken and written to said buffer. Additionally, this configura-
tion mode provides the option to trigger a signal whenever
new data is available.

To use the PMU for sample triggering we configure it in
sampling mode and set a sampling period for the retired in-
structions. While this number is irrelevant to us, we use it to
force a change in the sample buffer which in turn triggers a
signal to interrupt the running program. The key feature we
need for our profiler is that it allows us to configure filters
such that events in kernel or hypervisor mode are ignored.
This in turn prevents the counter of retired instructions to
be incremented during syscalls, which also prevents the pro-
gram from being interrupted at that point [Zaparanuks et al.
2009]. The actual sampling is not done by the PMU, but im-
plemented in a dedicated value profiler. The main ingredients
in our PMU configuration are a PMU configuration to trigger
a perf event at regular intervals (but not in kernel mode),
an event handler on the perf event to raise a signal, and a
signal handler that starts the actual profiling. The perf event
is created and linked with a signal by:

// PMU configuration

struct perf_event_attr pe;

memset (&pe, 0, sizeof(pe));

pe.type = PERF_TYPE_HARDWARE;

pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.sample_type = PERF_SAMPLE_IP;
pe.sample_period = 1000000;
pe.exclude_kernel = 1;

pe.precise_ip = 3;

// Setup PMU

int fd = perf_event_open(&pe,0,-1,-1,0);
// Connect perf event fd to signal
fentl(fd, F_SETFL, O_NONBLOCK | FASYNC);
fcntl (fd, F_SETSIG, signal);

fentl (fd, F_SETOWN, getpid());

// Setup signal handler

// Reset events and enable signaling
ioctl(fd, PERF_EVENT_IOC_RESET, 0);
ioctl(fd, PERF_EVENT_IOC_REFRESH, -1);

The full listing for the PMU configuration is included in
Appendix A.

There are some issues with this approach. Depending on
the kernel settings, PMU access is disabled by default for secu-
rity reasons to prevent unprivileged users from attaching the
PMU to other processes. Moreover, interrupting execution
using signals is not appropriate in all contexts. For instance,



DLS ’20, November 17, 2020, Virtual, USA

it is not applicable for VMs which allow being embedded
into other processes. Therefore, this part of our approach
is R specific and for other systems it might be possible to
choose a simpler strategy.

4.2 Sample Collection

To keep a low overhead and since we are mainly interested
in profiling hot functions, the profiler only inspects the top-
most frame. Since our triggering mechanism invokes it at
arbitrary points in the execution, it is not guaranteed that
the function currently being executed is indeed a function
produced by the native backend; it could also be interpreted
bytecodes, or some other library, or user code. In order to
detect native code, a reference to the closure object of the
native function is pushed as a marker value at the top of the
current frame in the shadow stack upon entry. This solves
two issues at the same time. First, the profiler is able to
detect when a native function is currently executing. Second,
it gains access to the aforementioned metadata map and to
the backing store for the sampled type feedback (both stored
in the closure object).

The native backend in R performs unboxing of monomor-
phic scalar integers or floating-point numbers. All other
values are stored boxed on the heap. Boxed values need to
be reachable by the garbage collector to accurately track
their liveness, which is implemented by keeping them on a
shadow stack. To be able to inspect values in native code,
it is therefore sufficient to produce an accurate mapping of
stack slots back to their source value in the backend. There
is a certain disconnect between the original RIR code and
the resulting native code. RIR contains many instrumented
locations where values are sampled for their type. In the
optimizer only part of this information is used; values might
be eliminated or duplicated during optimizations. To address
these issues, any type feedback annotation in PIR carries
metadata about the originating location of the feedback. This
enables the backend to reconstruct a mapping from shadow
stack slot to the originating position in the RIR bytecode
stream. It is possible that multiple locations map to the same
original position, and most likely many type feedback ori-
gins are not present at all after optimizations. The mapping
must account for different stack contents at different pro-
gram counter positions. At the time of writing we avoid this
complication by preventing the backend from sharing slots
we wish to sample, thus keeping the mapping static for the
whole function.

Once sufficient data has been recorded we might want to
trigger the recompilation of a function. For this decision we
take into consideration how many samples we collected, how
many slots we have samples for and, most importantly, how
different those samples are with regards to the original type
feedback that was used for optimization. The threshold we
use for our experiments is to trigger recompilation if more
than half of the slots are not equal to the previously used
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feedback. To ensure the samples themselves are not stale,
the recorded results are cleared periodically. Recompilation
happens before the next invocation, since R does not fea-
ture a concurrent compiler. On recompilation, the optimized
function is discarded and optimizations start anew using the
source version. However, type feedback with a high sample
count (ie., high confidence on their accuracy) overrides any
type feedback from the original source version.

There are several issues with this simplistic approach.
For instance, a program featuring phase changes which are
slightly above the recompilation threshold will trigger re-
compilations, which will then be swiftly invalidated. To use
the sampling profiler in practice it will be necessary to fine
tune the heuristics. For example, it should take into account
past deoptimizations indicating incomplete samples by the
profiler, or adaptive sampling rates to cater to different kinds
of functions.

5 Evaluation

To evaluate our solution we investigate four facets of our
implementation, each of these targets one aspect of the pro-
filer. The first evaluation measures the overhead introduced
by merely running the profiler. The second, attempts to find
a sensible re-optimization threshold. The third evaluation
highlights the examples where our profiles produce useful
performance improvements. Finally, we estimate how com-
mon it is for R optimized code to be specialized for less
generic types than what is actually observed at runtime.

The R benchmark suite used in this paper consists of 46
programs that range from solutions to small algorithmic
problems, and real-world code. Some programs are variants;
they use different implementations to solve the same prob-
lem. The suite and R baseline performance is discussed in
detail by Fliickiger et al. [2020a]. This pre-existing suite was
also expanded and three benchmarks were added to show
potential performance improvements to be gained through
use of the profiler.

To deal with warmup phases of the virtual machine (i.e.,
iterations of a benchmark during which compilation events
dominate performance), we run each benchmark fifteen
times in the same process and discard the first five itera-
tions. Remaining data is aggregated using mean. We ran
experiments on a dedicated i7-6700K CPU, clocked at 4 GHz,
stepping 3, microcode version 0xd6, with 32 GB of RAM and
Ubuntu Bionic on Linux kernel version 4.15.0-88.

Our work is an extension to an open-source virtual ma-
chine, available at f-vm.net. We publish an executable artifact
to reproduce the results [Fliickiger et al. 2020b].

5.1 Overhead Evaluation

This first evaluation was used to measure the pure perfor-
mance overhead introduced by running the profiler. To be
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Figure 2. Profiling Overhead per Benchmark

able to perform these measurements we modified the pro-
filer such that while it continues to record type information,
that information is never used in the compiler and a recom-
pilation is never triggered. Doing so, we avoid measuring
potential compiler overhead caused by the profiler triggering
a recompilation. The memory requirements are negligible, as
the few recorded slots each only require 64 bits of additional
storage for the metadata, which is very small compared to
the size of the native code itself.

The measurements were performed with four different
configurations: The first was a baseline run with the profiler
completely disabled. This was followed by three runs with
the profiler enabled with different sampling periods: One trig-
gered a sample every 100,000 instructions, one with a sample
every 500,000 instructions and the last one with a sample
every 1 million instructions. For each benchmark in these
runs the median run times were normalized against those of
the baseline run. While the data is somewhat noisy, we can
still gather important information. In some configurations
we see apparent improvements compared to the baseline
values. These can be attributed to the inherent noisiness
of the benchmark environment as well as some additional
noise introduced through the randomized sampling locations
hit by the profiler and do not indicate actual reproducible
performance improvements.

As is clearly visible in Figure 2, with a sampling period of
1 million instructions the overhead is minimal. Most bench-
marks had a slowdown of less than 3% compared to the
baseline. Only 4 benchmarks had a slowdown above 3%. The
worst-performing benchmark was Storage with a slowdown
of 9.9%. The mean slowdown over all benchmarks was just
0.6%. With a sampling period of 500,000 instructions we
observed very similar behavior as before, with only 5 bench-
marks showing a slowdown above 3%. The worst-performing
benchmark was, once again, Storage with a slowdown of 9.1%.
The mean slowdown was 0.3%. Using a sampling period of
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Figure 3. Outlier Frequencies

100,000 instructions we see a significant slowdown compared
to the previous configurations. Now, 19 benchmarks showed
a slowdown of more than 3% and Storage even exceeded 10%
slowdown at 12.7%. The mean slowdown was 2.7%.

5.2 Threshold Configuration

This second part of the evaluation was designed to find sensi-
ble recompilation thresholds for the different sample period
configurations: Low recompilation thresholds allow for quick
action by the profiler. This can improve performance in situa-
tions where the resulting compilation produces a good result.
But with too low a threshold we introduce a higher risk of
having incomplete data at our disposal when the profiler
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decides to trigger a recompilation. This can lead to the newly
compiled version being incompatible with what actually is
required at that time. This will invariably lead to subsequent
deoptimization events. At too low thresholds this behavior
can even become cyclic where the profiler repeatedly tries
to step in and trigger recompilations but never manages to
gather a complete picture before this happens. In such a
situation we could observe extreme performance impacts.
An obvious approach to preventing this situation is to use
high thresholds. But while this helps to reduce detrimental
recompilations it also delays useful ones. This reduces the
performance gains we can expect in cases where the pro-
filer can theoretically improve performance. We need to find
thresholds that are large enough to avoid having too many
detrimental recompilations while still keeping it as small as
possible in order to maximize potential benefits.

We started with a very low threshold of 10 samples and
raised it until significant performance impacts were no longer
observed. This was done for the three sampling periods of 1
million, 500,000 and 100,000 instructions individually. The
main difference in profiler configuration compared to the
first part of the evaluation is that now the profiler was al-
lowed to trigger recompilation and the compiler was allowed
to use data collected by the profiler during compilation.

The collected data was then compared to the overhead
measurements gathered in subsection 5.1. Each run that had
a slow-down of more than 10% compared to the median
run time of the overhead measurements was flagged as an
outlier. The total number of these outliers was counted and
reported as a fractional value relative to the total number of
runs recorded. Figure 3 shows these outlier frequencies for
different thresholds. In general for the same threshold the
higher sampling rate produced more outliers. We can likely
attribute that to the fact that with higher sampling rates
we effectively shorten the time required to reach the recom-
pilation threshold. This shortened sampling time increases
the risk of premature recompilation. Such premature recom-
pilations lead to deoptimization events soon after. When
this happens often enough it is even possible to have a re-
compilation and a deoptimization event in each run. This
significantly impacts performance.

With a sampling period of 1 million instructions we ob-
served 25 (5.4%) outliers with a threshold of 10 samples. This
dropped to 12 (2.6%) outliers for a threshold of 50 samples.
Increasing the threshold further does not seem to improve
things: At 100 samples we recorded 14 (3%) outliers. In fact,
starting at a threshold of 20 no significant changes can be
observed anymore.

In addition to the overall observations we can look at spe-
cific benchmarks for more information: The nbody_naive_2
benchmark, for example, had a mean run time of 290 seconds
(due to a deoptimization, re-optimization loop) and a median
run time of 5 seconds with a threshold of 10 samples. These
values dropped to 1 second each when using a threshold
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of 20 samples. This shows both a significant reduction in
run time and increased consistency: With a threshold of 20
the closely matched mean and median indicate the absence
of significant spikes. Of course, the extreme outliers in the
lower threshold must be mitigated by back-off strategies in
practice.

There are, however, a few benchmarks where the increased
threshold actually reduced the measured performance: For
example, the reversecomplement_naive benchmark had a
mean runtime of 323ms at a threshold of 10. It increased
to 393ms at a threshold of 20. This is attributable to the
fact that, at larger thresholds, a recompilation event is mea-
sured in the ten benchmark runs that were hidden inside the
warmup phase for smaller thresholds.

Overall, for a sampling period of 1 million instructions
and thresholds starting at 20, we observed exactly one slow
run that significantly increased mean run times. The median
run times however remained essentially unchanged.

When considering a sampling period of 500,000 instruc-
tions, the behavior is very similar as before: While at a thresh-
old of 10 we observed 43 (9.3%) outliers, this dropped to just
14 (3%) at a threshold of 20. And above 20 samples we ob-
served basically identical outlier counts as with a sampling
period of 1 million instructions.

With a sampling period of 100,000 instructions we see
a high outlier count of 92 (20%) for a threshold of 10. This
drops down to 20 (4.3%) at a threshold of 75. At a threshold of
10 it behaves clearly worse than with a sampling period of 1
million instructions. Due to the significantly lower sampling
period we will collect samples quicker. When using the same
threshold we effectively make the profiler more eager in its
optimizations since it only needs to measure over a shorter
time frame.

5.3 Performance Improvements

The third part of the evaluation is designed to show potential
performance improvements gained through use of the pro-
filer. To that end we added three additional benchmarks to
the R benchmark suite: profiler_microbenchmark, profiler_rsa
and profiler_shared.

The profiler_microbenchmark is essentially the same as the
example function f in section 3. It is designed to test a situa-
tion where a single stale type was introduced before compil-
ing the function. Here we start with a floating-point number.
But after two calls we change to an integer. The function
will initially be specialized to both integer and floating-point
numbers. The profiler should detect that only integers are
present from now on and should at some point trigger a
re-optimization. If the pollution is statically removed, then
R executes the function about twice as fast.

The profiler_rsa benchmark shown in Listing 3 contains a
simple RSA encryption implementation with small key num-
bers. In this function we start with the key element n1 as a
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pl <- 971
p2 <- 383
nl <- pl * p2 # float
e <- 17
encrypt <- function(msg) {
p <- 1

al <- msg

for(i in 1:e) {
p <- p*al
p <- p%%ni

}

for(i in 1:n) encrypt(i)

nl <- 371893L # integer
for(i in 1:n) encrypt(i)

Listing 3. Naive RSA implementation

floating-point number (calculated from p1 and p2). The func-
tion is repeatedly called and is therefore compiled expecting
floating-point numbers in n1. At some point, however, n1
changes and is set to an integer. After that, the function is
again called several times. This will lead to a deoptimiza-
tion followed by compilation for floating-point and inte-
gers. At this point the profiler is supposed to step in and
detect the stale feedback for floating-point and cause func-
tion encrypt to be recompiled to only support integers in
n1. This benchmark shall serve as an example for a program
with a phase change: After a stable behavior in a first phase,
some datatypes change as the program transitions into its
second phase. For a monomorphic n1 the function executes
about twice as fast. This is due to R not yet supporting un-
boxed values that can be either integers or floating-point
values, since the resulting dynamic type conversions would
be difficult to track.

id <- function(a) {

# prevent inlining

while (F) a;

while (F) a;

a
}
add <- function(a, b) id(a)+id(b)
poison=structure(l, class="foo")
add(poison, poison)
test <- function() {

s =0

for (num in 1:500000) {

s = add(s, num)

3

for (i in 1:n) test()

Listing 4. Trivial functions polluted by multiple callers

The third benchmark profiler_shared shown in Listing 4
features trivial id and add functions with two different callers.
Initially the add function is called with a number that has
a class attribute attached to it, namely with the argument
poison=structure(1, class="foo").Because poisonisanob-
ject and add does not use it directly, it is passed as a promise
to id where it is in fact evaluated. The id function is also
written in such a way that it will not be inlined. This prevents
add from observing that poison is in fact a number. In the
following part of the benchmark, the test function is called
repeatedly which, in turn, repeatedly calls the add function
with simple numbers. The add function is inlined into test
importing with it the unrelated type feedback of the earlier
calls with poison as arguments. We lose performance im-
provements we could have had if add had the information
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that it was dealing with normal numbers. This is, however,
a fact the profiler should be able to detect and trigger reopti-
mization for. This is a second example of a scenario where
previously relevant type information is no longer needed.
But other than in the profiler_microbenchmark this time it
is the combination of an object and a number type instead
of two number types. And instead of a global variable that
changes, it is the method’s parameter in a situation where
the function would normally not be specialized. By statically
removing the add(poison, poison) calls, R is able to execute
this function six times faster.

Results. For the evaluation we used the threshold values
determined in subsection 5.2. For each sampling period con-
figuration, we used the smallest measured threshold above
which no significant improvements in the outlier count could
be observed. This is 20 for periods of 1 million and 500,000
instructions and 75 for 100,000 instructions. Tuning the com-
pilation threshold is not easy and there is a clear trade-off:
These benchmarks take about 1 to 2 seconds to complete.
With a lower threshold, optimizations can be applied much
quicker but we risk overly eager optimization. With a higher
threshold, we reduce the risk of overly eager optimization
but delay optimization where they would make sense. The
microbenchmark and the rsa benchmark could be improved
by at most 2X, the shared benchmark by 6x. The actual
improvements are more modest for three reasons: First, it
takes the profiler some time to detect the phase change. Sec-
ond, the benchmark includes re-compilation time. Lastly, the
theoretical limit was determined by statically changing the
benchmarks to exhibit only the stable behavior, whereas the
profiler must use speculative optimizations with run-time
guards.

Figure 4 shows that for all three benchmarks, the 1 million
instruction sampling period performed the worst of all three.
In fact, for each benchmark, the smaller sampling periods
are always performing better. This makes sense, since the
difference in thresholds is smaller than the difference in
the sampling period. This leads to shorter sampling times
and quicker reoptimization when using smaller sampling
periods.

We also observe a sampling period of 1 million instruc-
tions and a threshold of 20 to not yield any substantial perfor-
mance improvements. In all three benchmarks there are runs
that show a reduction in performance. However, with a sam-
pling period of 500,000 instructions at the same threshold,
we are capable of reoptimization soon enough that we see a
significant increase in performance in all three benchmarks.

While using a sampling period of 100,000 instructions
with a threshold of 50 yields better performance, it is also
the configuration that produces the most outliers in sub-
section 5.2 of the configurations presented here. This once
more highlights the trade-off present in tuning the profiler
for a specific application. To conclude, taking into account
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narrower changed optimizable

warmup (mean) 4 21 13
warmup (median) 1 1 0
stable (mean) 0.6 6 3.5
stable (median) 0 0 0

Figure 5. Optimization Opportunities

both the outliers produced in subsection 5.2 and the benefit
gained in these three examples, we consider a sampling pe-
riod of 500,000 instructions and a threshold of 20 to be the
best combination.

5.4 Estimation of Impact

To estimate how common it is for R code optimized by R to
feature types which are not as narrow as actually observed
at run time, we performed an additional experiment on the
benchmark suite using a modified version of R. The backend
was changed to instrument the native code such that every
boxed value produced is recorded according to the same
approach as the sampling profiler would. This allows us
to simulate a maximally accurate profiling run. During the
execution of the benchmark suite we observed that 36 out of
46 benchmark programs contained at least one instance of
optimized code encountering less generic value types, mostly
during warmup (i.e. before inlining).

However, as can be seen in Figure 5, after the warmup
phase R does not under-speculate much, as expected since it
is optimized for this suite. If it does, the missing speculation
would not always lead to improvements, since there might
not be a target optimization. The row narrower indicates that
the profiled type is a subtype of the original type feedback,
and changed indicates that it is a different, unrelated type.
We conservatively define narrower or changed types to be an
optimization opportunity (labeled optimizable), if they would
lead to either unboxing, or optimizations through ruling out
dynamic dispatch. Some benchmarks contain a large number
of recorded optimization opportunities, since one missed
opportunity likely occurs multiple times if it concerns the
same variable.

6 Discussion and Future Work

There are several open questions which are not answered
yet in this work. The main question of course being, whether
the technique is successful at improving the performance
of real world R programs. We believe to answer this ques-
tion our implementation has to be extended to include more
properties and provide a slightly more holistic notion of
missed optimization opportunities. Moreover, the evaluation
we performed of the current implementation led us to the re-
alization that the traditional benchmarking methodology has
limitations that prevent us from measuring any performance
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gains of such a system. The existing R benchmark suite is de-
signed to measure peak performance. The approach involves
repeatedly invoking the same function and only measure the
run time once it stabilized. Each in-process iteration of one
benchmark performs the same sequence of operations from
start to finish. Contrasting this with the goal of profile guided
re-optimization, we notice that any profile information that
appears stale within one iteration of the benchmark, is guar-
anteed to repeat again when the next iteration is invoked.
Not surprising we do not measure any performance improve-
ment, since every iteration does exactly the same thing; if the
profiler triggers some re-optimization, we are guaranteed to
cause a deoptimization event on the next in-process iteration,
since we always start again from the same state. To be able
to measure a positive effect within this framework we are
therefore presented with two equally unattractive choices:
Either we keep some global state across iterations and cause
the first iteration to be different from all subsequent ones, or
we reset all compiled code at the beginning of each iteration
(or similarly, measure whole-process iterations instead of
in-process iterations). The former approach does not allow
us to measure how fast the profiler is at engaging the com-
piler and causing the performance to improve, since all of the
re-optimization happens in the first few iterations and which
we will discard as warmup runs. With the latter approach,
taken in subsection 5.3, we simulate the whole process from
warm up, then optimization with stale feedback, then re-
optimization, for every measured iteration. This means our
reported numbers include compilation time, profiling time,
time spent in the interpreter, and so on. Such a measure-
ment includes much more noise from unrelated causes and
therefore we need to take adequate precautions to correctly
interpret the numbers. For instance, the benchmark needs
to be such that the majority of the time is spent in the fi-
nal, stable, re-optimized native code. If not, the comparison
is meaningless, since the run time is dominated by other
effects.

Selecting a good sampling frequency is also a difficult
problem and it might be necessary to choose an adaptive
strategy. Especially if the distribution of types is skewed such
that some types occur very infrequently, the profiler might
suggest wrong speculations and we must have a mechanism
in place to detect and prevent them from repeating. For
instance, one example we found in the benchmarks suite is
the following snippet from the nbody_2 benchmark:

drr <- array(dim=c(n_bodies, n_bodies, 3))
for (i in 1:n_bodies)
for (j in 1:n_bodies)
drr[i, j,] <- body_r[,i] - body_r[,j]

Here, the variable drr is defined as an uninitialized array
and then subsequently updated with concrete values. The
array function from the standard library initializes arrays
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with logical NA values and therefore the initial type of the
array is of type logical. However the body_r variable is
a double array, causing the first assignment to convert drr
to double as well. When sampling the nbody_2 benchmark
in the default configuration, less than one in ten samples
of that function contain the initial logical type. On the
other hand, this particular problem can also be solved by
improving type inference. In this case adding a single rule
to the type inference pass of the compiler is sufficient to
statically infer the type of array when the initial value is left
out. In general, we observed type inference to be very robust
at discarding or complementing implausible type feedback.
In particular, in combination with sampling-based profiling,
where the feedback can be sparse with many missing entries,
we believe that an inference pass to infer the most likely
type could further improve our results.

For a few benchmarks we have observed the profiler to
incur a substantial overhead. This overhead could be further
reduced by running the profiler in bursts. We are also inter-
ested in exploring the use of profiles which are simply too
expensive to gather by instrumentation. For example, we
would like to evaluate the use of context sensitive profiling
proposed by Whaley [2000] in our context. Context sensitive
profiling would allow us to detect candidates for splitting,
where different callers should be presented duplicates of
their common callee, hence avoiding false sharing of type

feedback.

7 Conclusion

We present a sampling-based profiler for a virtual machine,
capable of monitoring native code without instrumentation,
used to detect inefficient code with missed optimization op-
portunities. The absence of instrumentation has the advan-
tage that when the profiler is not engaged, no additional
overhead is incurred. We evaluate the approach on an im-
plementation for the R research virtual machine for the R
language. Our profiler uses the Performance Monitoring
Unit (PMU) to trigger samples, allowing to reliably interrupt
the program only when running in user-level code and not
during syscalls.

Preliminary measurements indicate that it is possible to
accurately detect stale or too generic specialization in na-
tive code and improve peak performance by recompilation
with subsequent specialization to the sampled information.
The profiling was found to incur small overheads of typ-
ically below 3% and up to 13% for some benchmarks and
configurations. The main trade-off observed concerns the
recompilation threshold, that needs to be tuned to trigger
as early as possible while avoiding the use of incomplete
data leading to wrong speculation. Our evaluation considers
many combinations of sampling intervals and recompila-
tion thresholds, which allowed us to determine a sweet-spot
for our implementation. Three short running benchmarks,
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which are representative for real-world situations with stale
type feedback, show encouraging improvements of 1.1-1.5X%.

It still remains to be seen if the proposed technique can be
tuned and made robust enough to improve the performance
of real world R programs without causing unexpected per-
formance behavior. As future work, we proposed to explore
more robust heuristics, sampling of more properties besides
types and the recording of context sensitive samples.
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A Appendix // excluding hypervisor events
One large obstacle in the works presented in this paper was pe.exclude_hv = 1;

the correct configuration of the PMU. We found the avail- // precise event triggering
able documentation to be somewhat lacking in detail about pe.precise_ip = 3;

achieving specific configurations. In Listing 5 we present the
configuration we used.
The first part configures a function handler (not shown)

// configure PMU for all threads of the
current process and all CPUs

as the signal handler for the SIGUSR1 signal. Next, we pre- int fd = perf_event_open(&pe, 0, -1, -1, 0)
pare the PMU configuration. We configure the PMU to count ;

retired hardware instructions and to sample the instruction if (fd 1= 0)

pointer at a set period. In this configuration the PMU reads exit (FAIL);

the current instruction pointer after the set number of in-

structions. We also exclude the kernel and hypervisor. This // Connect perf event fd to signal

prevents the PMU from taking a sample while executing in fentl(fd, F_SETFL, O_NONBLOCK | FASYNC);
these two modes. The precise_ip flag set to 3 forces the fentl(fd, F_SETSIG, signal);

PMU to take the sample immediately when the instruction fentl(fd, F_SETOWN, getpid());

counter reached its set limit. These two configurations work

together to prevent signal produced by the sampling from // Reset event counter to 0

interferingwith system calls. ioctl(fd, PERF_EVENT_IOC_RESET, @);
Applying these configurations using perf_event_open // Allow first signal
returns a file descriptor. The samples taken by the PMU are loctl(fd, PERF_EVENT_IOC_REFRESH, -1);

written to a buffer associated with that descriptor. Next, we
take that file descriptor and configure it using fcntl to send
a SIGUSR1 signal whenever new data becomes available (i.e.,
a new sample has been taken).

Finally we reset the PMU and refresh the sample limit.
Setting it to a value of —1 allows the PMU to take the maxi-
mum number of samples (usually 2%°). By using this, we get
a basically unlimited number of samples and don’t have to
refresh again.

Listing 5. PMU settings for repeatedly triggering signals
int signal = SIGUSRT1;

// Register a signal handler

struct sigaction sa;

memset (&sa, @, sizeof(sa));

// register handler function

sa.sa_handler = handler;
sa.sa_flags = 0;
if (sigaction(signal, &sa, NULL) != 0)

exit (FAIL);

// Configure PMU

struct perf_event_attr pe;

memset (&pe, 0, sizeof(pe));

pe.type = PERF_TYPE_HARDWARE;

pe.size = sizeof(pe);

// Count retired hardware instructions
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 1;

pe.sample_type = PERF_SAMPLE_IP;
pe.sample_period = 1000000;

// excluding kernel-space events
pe.exclude_kernel = 1;
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