
Principles and Patterns of
JastAdd-Style Reference Attribute Grammars

Niklas Fors
niklas.fors@cs.lth.se
Lund University
Lund, Sweden

Emma Söderberg
emma.soderberg@cs.lth.se

Lund University
Lund, Sweden

Görel Hedin
gorel.hedin@cs.lth.se

Lund University
Lund, Sweden

Abstract
Reference attribute grammars (RAGs) have reached a level of
maturity where they are supported by several tools, and have
gained traction in both academic and industrial language
tool development. However, despite a lot of accumulated
knowledge of how to best develop RAGs in practice, there is
limited support to guide practitioners.
In this paper, we address this issue by focusing on one

RAG tool, JastAdd, and by defining principles and patterns
for development of RAGs with this tool. We evaluate the
proposed principles and patterns with an exploratory em-
pirical study with 14 practitioners, with a mix of beginners
and experienced users from both academia and industry. The
results indicate that the principles and patterns capture the
practice of developing JastAdd RAGs well, help practitioners
to become aware of useful patterns, and provide a common
language to more efficiently reason about the practice of
developing JastAdd RAGs.

CCS Concepts: • Software and its engineering → For-
mal language definitions; Translator writing systems
and compiler generators; Designing software.

Keywords: reference attribute grammars, semantic specifi-
cation, patterns

ACM Reference Format:
Niklas Fors, Emma Söderberg, and Görel Hedin. 2020. Principles
and Patterns of JastAdd-Style Reference Attribute Grammars. In
Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering (SLE ’20), November 16–17, 2020,
Virtual, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3426425.3426934

SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8176-5/20/11.
https://doi.org/10.1145/3426425.3426934

1 Introduction
Reference attribute grammars (RAGs) [Hedin 2000] is an
executable specification formalism that can be used for gen-
erating extensible compilers and other language-based tool-
ing. Fundamental differences to classical attribute gram-
mars [Knuth 1968] include that attributes can be reference-
valued, which supports superimposing graphs on top of ab-
stract syntax trees, and on-demand evaluation, which sup-
ports more flexible attribute dependencies.
RAGs have reached a level of maturity where several

systems support them, like JastAdd [Hedin and Magnus-
son 2003], Silver [Van Wyk et al. 2010], and Kiama [Sloane
2009], and they are used for development of language tools
in both academia and industry. For example, there are Java
and C compilers implemented using RAGs, like ExtendJ [Ek-
man and Hedin 2007b], ableJ [Van Wyk et al. 2007], and
ableC [Kaminski et al. 2017], as well as industrial products,
like Modelon’s Optimica Compiler Toolkit [Åkesson et al.
2010a] that implements the Modelica language [Modelica
2017]. RAGs are also used in numerous research projects,
and taught in graduate courses.

However, despite a lot of accumulated knowledge of how
to best develop RAGs in practice, the support for practi-
tioners is limited. In the early days of a formalism/tool, the
knowledge around good practices for it is typically limited,
and possibly also less needed since applications are usually
small. But as the user population grows, as applications grow
in size, and as new users start to use the tool, with little per-
sonal connection to the tool creators, the lack of explicit
guidelines hampers developers in gaining proficiency with
the tool. Consequently, there is a need to find suitable means
to document existing knowledge of good practices.

In this paper, we pick one RAG tool, JastAdd, and attempt
to describe the main principles and patterns for designing
JastAdd RAGs, to guide practitioners. To formulate these
principles and patterns, we draw on extensive experience
of RAGs from developers of JastAdd, from developers of
many applications using the tool, and from courses that use
JastAdd. We evaluate the proposed list of principles and
patterns empirically via four focus groups with a mix of
beginners and experienced JastAdd RAG users, from both
academia and industry. We find support for the proposed
list in that the principles and patterns appear to capture
how JastAdd RAGs are developed in practice, and we further

86

This work is licensed under a Creative Commons Attribution International 4.0 License. 

https://doi.org/10.1145/3426425.3426934
https://doi.org/10.1145/3426425.3426934
https://doi.org/10.1145/3426425.3426934
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3426425.3426934&domain=pdf&date_stamp=2020-11-15


SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

see that the list helps participants to become aware of new
patterns, and provide them with a language to reason about
their development of JastAdd RAGs. The contributions of
this paper are the following

• a list of principles and patterns for JastAdd-style RAGs.
• an empirical evaluation of the suggested patterns and
principles.

We believe that the principles and many of the patterns hold
also for other RAG systems, but the exact patterns might
vary due to differences in features and the supported AST
model. To aid further work in investigating this, we have
identified which particular RAG features are used for each
pattern.
The rest of this paper is structured as follows; we set

the stage with some background about JastAdd RAGs in
Section 2, introduce identified principles and patterns in Sec-
tion 3 and Section 4, empirically evaluate principles and pat-
terns in Section 5, review related work in Section 6, discuss
our results in Section 7, and conclude the paper in Section 8.

2 JastAdd RAGs
The JastAdd RAG tool represents programs as abstract syntax
trees (ASTs) defined by node types specified in an object-
oriented abstract grammar. Attributes are added to node
types or node type interfaces in aspect modules, using inter-
type declarations like in AspectJ [Kiczales et al. 2001]. An
attribute is a derived node property defined by an equa-
tion. The tool generates Java code where the node types and
interfaces are translated to Java classes and interfaces, and
attributes to methods on the classes.
An equation is associated with an AST node type, and

defines an attribute (its left-hand-side) as equal to a right-
hand side expression over attributes in the AST node and its
children. The defined attribute can be either an attribute in
the node itself, or an attribute of a child node. In JastAdd, the
expression is written as an arbitrary Java expression, but that
must be observationally pure [Naumann 2007], i.e., without
externally visible side-effects. For practical purposes, it may
be written as a Java method body with local side-effects.
An attribute value can be accessed in an equation right-

hand side, or from an external tool. To access the value, its
corresponding method is called. The attribute evaluator then
computes the value of the attribute by evaluating the right-
hand side of its defining equation, which may in turn lead
to new attribute evaluations. Attribute values are memo-
ized (cached), so that if an attribute value is accessed more
than once, the memoized value is returned directly at future
accesses [Jourdan 1984]. (If the AST is edited, dependent
memoized attributes need to be updated or cleared, e.g. us-
ing the algorithm presented in [Söderberg and Hedin 2012].)

2.1 Attribution Mechanisms
A JastAdd attribute can have any Java type, including refer-
ences to AST nodes. With reference attributes, it is possible
to specify graph structures, like name binding graphs, inher-
itance graphs, control-flow graphs, etc.

JastAdd supports the following attribute mechanisms:

• An intrinsic attribute is declared in the abstract gram-
mar and is given a value when the AST is constructed.
Typically, it is used for representing a token value, but
it can also be a reference to a node in the AST.

• A synthesized attribute has a defining equation in
the same node as the attribute declaration.

• An inherited attribute has a defining equation in
some ancestor of the node declaring the attribute. It
can be used for propagating information downwards
in an AST.

• An equation for an inherited attribute of a child node
holds for the whole subtree of that child. The value
is said to be broadcasted to the child subtree. Many
AG systems have similar mechanisms for avoiding so
called copy rules.

• A higher-order attribute (HOA) has the value of a
fresh AST, and it can itself have attributes [Vogt et al.
1989]. HOAs are also known as nonterminal attributes.

• A parameterized attribute (and its corresponding
method) takes one or more arguments. The defining
equation can make use of the arguments to define the
value, so that there is in effect one attribute value per
combination of argument values. Each such value is
memoized individually. Synthesized, inherited, and
higher-order attributes can all be parameterized.

• A node type interface can contain both attribute dec-
larations and equations. The interface can be applied to
an arbitrary node type, which will then be a subtype of
the interface, and inherit (in the object-oriented sense)
all the attributes and equations in the interface.

• An equation can be overridden in a subtype. This
allows default equations to be defined in supertypes
By placing equations in a most general node type
ASTNode (supertype of all other node types), defaults
can be defined for the whole AST.

• A collection attribute is defined by contributions
that can be anywhere in the AST. The value of a collec-
tion is the combination of all its contributions using
a commutative operation, for example additions to a
set [Boyland 1996].

• A circular attribute has a definition that may transi-
tively depend on itself, and is evaluated using fixed-
point iteration [Magnusson and Hedin 2007]. In-place
attribute-dependent node rewrites are also supported
and are equivalent to circular higher-order attributes
[Söderberg and Hedin 2015].

87



Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

A

B
n:2

C
m:5

→c
c = new C(5)
c.r = b

↑p(v), p(5):10
p(v) = n * v

↑s:50
s = m * r.p(m)

↓r:

b c

A

C
m:5

Legend
↑
↓
→
(.)
=

synthesized attr
inherited attr
higher-order attr
parameterized attr
equation
derived value
child
HOA
reference

Figure 1. Core visual syntax used in structure diagrams

e = A.c.s

= A[c=new C(5)]

= {memo A.c=new C(5)}

= A.c.s

= A.c[s = m * r.p(m)]

= A.c.m * A.c.r.p(A.c.m)

= 5 * A.c.r.p(5)

= A[c.r = b]

= {memo A.c.r = A.b}

= 5 * A.b.p(5)

= A.b[p(5) = n * 5]

= A.b.n * 5

= {memo A.b.p(5) = 10}

= 5 * 10

= {memo A.c.s = 50}

= 50

Figure 2. Trace of evaluating the expression A.c.s

2.2 Structure Diagrams
We will describe the patterns using structure diagrams an-
notated with pseudocode. The symbols ↑↓→ are used for
denoting synthesized, inherited, and higher-order attributes
respectively. An example illustrating core attribution mech-
anisms is shown in Figure 1. Here, A and B are nodes in the
initial AST, as constructed by, e.g., a parser. C is a node con-
structed as part of the attribute evaluation, using a higher-
order attribute →c. Furthermore, n and m are intrinsic at-
tributes, ↑s is a synthesized attribute, ↓r is an inherited
reference attribute, and ↑p(v) is a synthesized parameter-
ized attribute. For each node in the diagram, attributes and
equations are instantiated from the specification. Derived
attribute values are shown in orange, and are the result of
attribute evaluation using the equations.

To illustrate how attribute evaluation works, consider the
attribute expression A.c.s. The trace in Figure 2 shows
how the expression is evaluated, by recursively evaluat-
ing attributes and memoizing them. For each evaluated at-
tribute, a box shows its subevaluation, ending in a memoiza-
tion of the attribute ({memo 𝑎𝑡𝑡𝑟 = 𝑣𝑎𝑙𝑢𝑒}). An expression
𝑛𝑜𝑑𝑒𝑝𝑎𝑡ℎ[𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛] means evaluate the right-hand side of
the 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 in the context of the node denoted by 𝑛𝑜𝑑𝑒𝑝𝑎𝑡ℎ.

3 Principles
To guide JastAdd RAG design, we have identified three over-
arching design principles: declarative thinking,AST-embedded
data structures, and structure-shy specification. These princi-
ples are intended to help developers construct reusable and
extensible specifications, taking advantage of RAG features
and avoid resorting to conventional programming.

3.1 Declarative Thinking
In writing an equation defining an attribute, it is advised
to formulate the definition as an expression over other at-
tributes, introducing new helper attributes as needed. This
is called the declarative thinking principle [Hedin 2009], in
contrast to more operational thinking that focuses on how
to traverse the AST in order to compute things. Once the
new attributes have been introduced, the principle is applied
again in order to define their values.

Declarative thinking in RAGs has similarities to stepwise
refinement in imperative programming and functional de-
composition in functional programming, but requires spe-
cific design decisions that newcomers may need some time to
learn: deciding where to declare a new attribute (in the same
node as the equation, in a child node, or in a remote node),
deciding what kind of attribute it should be (synthesized,
inherited, collection, higher-order, ...), and avoid thinking
about order of computation.
While deciding where to place attributes and what kind

to use is often quite easy, it is a learning threshold to under-
stand when to use inherited attributes. The key is to think of
inherited attributes as queries delegated to the context. An-
other learning threshold is to avoid thinking about order of
computation. A key to accepting why order of computation
is unimportant is understanding that accessed attributes are
memoized, so that calling them several times will not lead
to inefficiencies.

3.2 AST-Embedded Data Structures
Claiming that the AST is sufficient as a data structure may
be counterintuitive for developers that have worked with
traditional compilers, and are used to constructing separate
symbol tables, call graphs, etc. However, because the AST
can be extended in a number of ways, it is possible to embed
elaborate structures in the AST: reference attributes allow
graphs to be constructed, higher-order attributes allow the
AST to be extended with new structure, and abstract inter-
faces with attributes allow new roles to be added to existing
AST nodes. The advantage of using the (attributed) AST
this way is that the embedded data structures themselves
become extensible, and that computations over them can be
formulated declaratively using attributes [Hedin 2000].

88



SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

3.3 Structure-Shy Specification
Structure-shy software means that computations should use
minimal information about the specific data structure they
are operating on [Lieberherr 1996] [Lämmel et al. 2003]. In
particular, the goal is to make the computation indepen-
dent on data types that need to be traversed in order to
find the interesting parts of the data structure. XPath ex-
pressions [Clark et al. 1999] is one example of constructs
supporting structure-shy programming.
In RAGs, structure-shy specifications are supported, in

particular, by inherited attributes, broadcasting, collection
attributes, and equations on the ASTNode type. With inher-
ited attributes, equations do not have to explicitly traverse
the parent (with getParent) to get information from the con-
text, thus making the node structure-shy both to the type
of its parent and to its position among the children of its
parent. With broadcasting, an inherited attribute of a node
is computed by an ancestor node, and is independent on all
intermediate nodes in the AST. With collection attributes,
the collection value is constructed from contributions any-
where in the AST, independently of other nodes. The use
of equations on the most general node type ASTNode can be
used, e.g., for generic traversal of the tree, without having
to take specific node types into account.
All these mechanisms make it easy to write high-level

structure-shy specifications where new node types can be
added that either reuse or adapt the specification, e.g., by
overriding equations. At the same time, a specification can
be complex to understand, since equations that may apply to
a specific node type may be located in many different places
in the specification. Understanding how to extend and adapt
a specification can therefore be non-trivial. Tooling that can
help in understanding and debugging RAG specifications
is a largely unexplored area. An example of a simple tool
is DrAST [Lindholm et al. 2016] that can visualize ASTs
and their attribute values, allowing a developer to explore a
specification interactively.

3.4 Design Trade-Offs
Design involves trade-offs, and just because a principle is
possible to apply, it does not mean that it has to be followed
slavishly. The goal of the above principles is to make spec-
ifications concise, modular, and extensible, but there may
also be costs involved, both in performance and in complex-
ity of the specification. Some attributes (rewrites, circular,
collection) have higher overhead than others (synthesized, in-
herited, HOAs), and refactorings to the simpler attributes can
lead to more efficient but less elegant and/or less structure-
shy code.

Furthermore, it is possible to combine attributes with im-
perative code. One way is to encapsulate an imperative com-
putation by an attribute, in which case the imperative compu-
tation must only have local effects. Another way is to simply

let imperative code use attributes. The border between what
is computed by attributes and what is computed by impera-
tive code can then be a design trade-off. In JastAdd, external
tools can use the AST and access the attributes for any pur-
pose. The external tools can treat the AST as if it is fully
evaluated with all attributes according to the specification,
although the evaluation of the attributes will actually not
happen until they are accessed.
Encapsulating imperative code by an attribute can some-

times be preferable to breaking down the computation into
many small attributes. An example of this trade-off is the
problem of assigning a unique number to each node in an
AST. One design is to use a map attribute in the root node and
let the equation right-hand-side do an imperative traversal
to fill the map. An alternative design is to define an attribute
pred that refers to the predecessor in a preorder traversal,
and define the number of each AST node as one more than
the number of its predecessor [Öqvist 2018, Chapter 3.7].
This latter design may be seen as following the declarative
thinking and AST-embedded data structures principles more
closely. But defining the pred attribute is fairly complex, and
the solution might be less efficient than the map attribute be-
cause of the many small attributes that need to be evaluated.
An example of adjusting the border between imperative

code and attributes is code generation. In a more declarative
design, the code can be a synthesized attribute at the root
node that is accessed and printed to a file by the main pro-
gram. In a more imperative design, code generation can be a
side-effectful method that traverses the AST, using attributes
to compute code and printing it to a file during the traversal.

4 Patterns
We wanted to identify a number of RAG patterns that solve
commonly occurring problems, that are not completely triv-
ial, and that consequently help practitioners take the "next
step" in learning about JastAdd RAGs—after reading intro-
ductory tutorials and mastering the basics of how different
attribute kinds work.

We did not attempt to create a pattern language [Alexander
1977], covering the complete domain of language implemen-
tation. Rather, a key source of inspiration were the 23 object-
oriented design patterns, where a few objects and methods
interact in a “microarchitecture” [Gamma et al. 1995]. In a
similar way, we describe microarchitectures with a few AST
nodes and attributes.

To identify the patterns, we started with a brainstorming
session with JastAdd developers to document all patterns
and anti-patterns they knew about. Then we systematically
checked articles describing RAG mechanisms, and experi-
ence papers discussing language tools built with JastAdd. We
also looked at course material (in particular the Compilers
course, EDAN65, given at Lund University).

89



Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

Table 1. Patterns, (A)ttribution mechanisms used, and Usage.
Mechanisms are ↑ (synthesized), ↓ (inherited), → (higher-
order), () (parameterized), 𝑖 (intrinsic reference), 𝑏 (broad-
casting), 𝑜 (equation overriding), and 𝐼 (attribute interface).

Pattern A Usage
P1: Lookup ↑,↑(),↓(), 𝑏 Name lookup
P2: Local map ↑ Name lookup
P3: Expected type ↑,↓ Type analysis
P4: Double dispatch subtype comparison ↑(), 𝑜 Type analysis
P5: Reified structure → Reification
P6: Null higher-order attributes (HOAs) →, ↓, b Reification
P7: On-demand loading →() Reification
P8: Local compile-time instantiation →, 𝑖 Expansion
P9: Shared compile-time instantiation →(), 𝑖 Expansion
P10: Desugaring via HOA → Expansion
P11: Plugin component via interfaces 𝐼 , 𝑜 Reuse
P12: Plugin component via HOA →, 𝑖 Reuse

Out of around 20 candidate patterns, we decided on 12 that
we deemed to be the most interesting ones, and that would
be the most useful to practitioners, as shown in Table 1. As
seen from the table, we have introduced a few main groups
of usage to give some organization of the patterns. For each
pattern, we also list the key attribute mechanisms used in
the pattern.

We noted that there were some attribute mechanisms that
did not turn up in any of the patterns, notably collection
attributes, circular attributes, and rewrites. The reason is that
we deemed the canonical examples for these mechanisms
to be sufficient documentation. However, including these
examples as patterns is something that could be considered
for future work.

For each pattern, we show a structure diagram with nodes
and attributes, illustrating a typical use of the pattern. The
node and attribute names correspond to roles in the pattern.
In applying the pattern, there could be several different node
types or attributes that correspond to the same role, similar
to how ordinary object-oriented design patterns work.

4.1 Lookup (P1)
Intent: Specify name analysis in a flexible way.
Structure: (see Figure 3)

• Each Use node connects to a declaration, by a reference
attribute ↑decl

• ↑decl is implemented using an inherited attribute
↓lookup(id), parameterized with the identifier

• A node with the Scope role implements scope rules. It
can introduce specific scopes implemented by syn-
thesized attributes, like ↑localLookup(id) for a lo-
cal scope. It can provide equations for ↓lookup of its
descendents, where it can delegate to other specific
scopes, like ↑localLookup, and to a context Scope by
using its own ↓lookup attribute.

Scope0

Scope1

Local decls

Scope1

Local decls

Use
ID: ...

children.lookup(id) = null

↑localLookup(id), ↓lookup(id)
localLookup(id) = <search locally>

children.lookup(id) =
let d = localLookup(id)
in if (d != null) then d else lookup(id)

↑localLookup(id), ↓lookup(id)
localLookup(id) = <search locally>

children.lookup(id) =
let d = localLookup(id)
in if (d != null) then d else lookup(id)

↓lookup(id)
decl = lookup(ID)

↑decl:

Legend
subtree
transitive child

Figure 3. Lookup (P1)

Variants: While the example structure shows only nested
scopes, Scope nodes can also define attributes by delegating
to specific scopes in distant Scope nodes referred to by ref-
erence attributes. This can be used, for example, to handle
inheritance. Multiple overlapping name spaces (for different-
kinded names) are typically handled by repeating the pattern
for each separate name space. Overloading can be handled
by letting ↓lookup return a set of declarations that is later
disambiguated. Declare-before-use for children in a list is
handled by using the child index in the ↓lookup equation.
If different children have different visibility rules, different
↓lookup equations can be given for them.
Discussion: The pattern is a typical example of using an
AST-embedded data structure, with both the name bindings
and scope rules embedded as attributes in the AST. The
pattern is structure-shy in that the ↓lookup definitions use
broadcasting, allowing nodes between Uses and Scopes to be
ignored. The pattern differs from the “Environment” pattern
in traditional attribute grammars, where all visible names
for a given node are defined as an inherited attribute ↓env.
The Environment pattern typically uses an abstract data type
with an elaborate implementation to share and update simi-
lar environments [Kastens and Waite 1991], and thus does
not follow the AST-embedded data structure principle.
Examples: This pattern is used in virtually any JastAdd-
based compiler, and is discussed in [Ekman and Hedin 2007b].

4.2 Local Map (P2)
Intent: Replace search by map to improve performance.
Structure: (see Figure 4)

90



SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

Scope
↑localMap , ↑localLookup(id)
localMap = <create map of local decls>

localLookup(id) = localMap.get(id)

Figure 4. Local Map (P2)

• In the Lookup pattern, the simplest way to implement
a ↑localLookup attribute is to linearly search a sub-
tree for a particular name. The subtree will then be
searched once for each different name that is queried.

• In the Local Map pattern, the ↑localLookup queries a
↑localMap attribute instead of doing the search. The
↑localMap attribute traverses the subtree to compute
a map with all local declarations. Because of memo-
ization, this computation is done at most once. This
improves complexity from quadratic to linear.

Discussion: This pattern can be ignored for toy languages,
but is important for real tools. It trades off a bit of the AST-
embedded data structure principle to gain performance.
Examples: This pattern is used in production-quality com-
pilers like ExtendJ and JModelica.org. See, e.g., the attribute
↑TypeDecl.localFieldsMap in the API documentation of Ex-
tendJ. Another example use is in one of the RAG-based im-
plementations of the train benchmark by Mey et al. [2020b].

4.3 Expected Type (P3)
Intent: Simplify type checks by performing them in expres-
sions rather than in the context.
Structure: (see Figure 5)

• Each expression has an attribute ↑type describing the
actual type, computed from subexpressions or vari-
ables.

• Each expression has an attribute ↓expectedType de-
scribing the type expected by the context.

• The actual and expected types should be compatible.
Incompatibilities can be reported as compile-time er-
rors. Compatible types that are different can be used
for generating type-conversion code, e.g., from ints
to floats.

• The checks and conversions can be performed in the
expression instead of in the context which simplifies
the specification.

Examples: This is a classical pattern in attribute grammars,
and is described in [Alblas 1991]. Examples can be found in
the Oberon-0 compilers in JastAdd [Fors and Hedin 2015]
and Kiama [Sloane and Roberts 2015]. A concrete example
is shown below, where the expected type for the right-hand
side expression of an assignment depends on the type of the
left-hand side variable:
// Abstract grammar production:

Assignment ::= Var Expr

// Equation defining expected type of rhs of assignment:

Assignment.Expr.expectedType = Assignment.Var.type

Context

Expr

child.expectedType = ...

↑type, ↓expectedType
type = ...

Figure 5. Expected Type (P3)

<<abstract>>
Type

↑isSubtypeOf(t)
↑isSupertypeOfT1(t1)
↑isSupertypeOfT2(t2)
isSubtypeOf(t) = false
isSupertypeOfT1(t1) = false
isSupertypeOfT2(t2) = false

T1
isSubtypeOf(t)=t.isSupertypeOfT1(this)
isSupertypeOfT1(t1) = true
isSupertypeOfT2(t2) = true

T2
isSubtypeOf(t)=t.isSupertypeOfT2(this)
isSupertypeOfT2(t2) = true

Figure 6. UML diagram for Double-Dispatch Subtype Com-
parison (P4). This example specifies that T2 is a subtype
of T1 and that subtyping is reflexive. T2 can be specified
modularly in a separate aspect (highlighted in light brown).

4.4 Double-Dispatch Subtype Comparison (P4)
Intent: Specify subtype comparison in an extensible way.
Structure: (see Figure 6)

• The types in the implemented language are repre-
sented by an AST class Type, and subclasses thereof,
e.g., IntType, FloatType, etc. (T1, T2 in the diagram).

• To check if one type is a subtype of another, Type
nodes have an attribute ↑isSubtypeOf(t). The imple-
mentation uses double dispatch to disambiguate the
two types.

• Each Type subclass, say T1, introduces an attribute
↑isSupertypeOfT1(t) with the default value false.
Any type that might be a supertype of T1 provides an
equation for this attribute. This way, unrelated types
can rely on the default behavior.

• Each class T implements ↑isSubtypeOf(t) by simply
delegating to ↑t.isSupertypeOfT(this), thereby im-
plementing the double dispatch.

• Extending the language with a new type, say T2, can be
done in a separate aspect, providing the ↑isSubtype-
Of(t) equation, the ↑isSupertypeOfT2(t) attribute
and equations for it, as well as equations for ↑isSuper-
typeOfX(t) for any type X that T2might be a supertype
to.

Examples: This pattern is based on the general double dis-
patch pattern [Ingalls 1986]. It is used for type checking in
several JastAdd compilers, including the ExtendJ Java com-
piler [Ekman and Hedin 2007b]. The pattern avoids having
to list all possible type combinations by viewing types as a

91

http://extendj.org
http://extendj.org


Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

Root

→preDecls , ↑preLookup(id)
preDecls = <create list of predefined decls>

preLookup(id) = <search in preDecls>

children.lookup(id) =
let d = preLookup(id)
in if (d != null) then d else null

preDecls

decl

Root

Figure 7. Reified Structure (P5)

lattice and providing default equations. For handling sub-
type comparison of classes, equations look at the inheritance
chain. An example of a modular extension using this pattern
is the addition of non-null types for Java in [Ekman and
Hedin 2007a].
Discussion: This pattern is a clear example of the AST-
embedded data structure principle, where types are repre-
sented as AST nodes, and the type comparison implemented
as attributes.

4.5 Reified Structure (P5)
Intent:Make implicit elements explicit.
Structure: (see Figure 7)

• Make predefined implicit elements explicit by defin-
ing them as higher-order attributes (HOAs), typically
in the root of the AST. Examples of predefined ele-
ments could be type definitions for primitive types,
like IntType, FloatType, etc. For a Java compiler, an-
other example could be the predefined class Object.

• Make the reified elements available throughout the
AST using inherited attributes.

Variants: In the diagram, the inherited attribute ↓lookup
(from the Lookup pattern) is used for making the reified
types available throughout the AST. Another variant is to
use an inherited reference attribute ↓root referring to the
root node, and broadcast it throughout the AST, so all nodes
can easily access the reified structures via that attribute. In
some cases, reified structures are local, and placed in specific
nodes instead of in the root.
Examples: This pattern is used in virtually all JastAdd com-
pilers. For example, ExtendJ has a root node, Program, with
a HOA →getPrimitiveCompilationUnit that contains all
primitive types. An example of a local reified structure is
the extension of Java with Non-Null types. A Non-Null ver-
sion of each class type is reified and placed as a HOA of the
normal class type [Ekman and Hedin 2007b].

4.6 Null Higher-Order Attribute (P6)
Intent: Simplify the specification by reifying missing ele-
ments and using the null object pattern.
Structure: (see Figure 8)

Root

UnknownDecl

→unknownDecl
unknownDecl = new UnknownDecl
children.unknownDecl = unknownDecl

type = <permissive type>

unknownDecl

decl

Root

UnknownDecl

Figure 8. Null Higher-Order Attribute (P6)

Root
→cu(t)
cu(t) = <load t from file>

cu(’A’)

cu(’B’)

decl

Root

Figure 9. On-Demand Loading (P7) of compilation units.

• Instead of using null to represent missing elements,
like the missing declaration of an undeclared variable,
reify the missing element as a HOA in the root, using
the Reified Structure pattern. Typically call it unknown-
Decl or unknownType.

• Make the type of the HOA a subtype of the general
kind of element, e.g., Decl or Type.

• Add attributes to the HOA subtype so that it can be
treated just like an ordinary element. Typically imple-
ment the attributes to be as permissive as possible to
avoid that errors are propagated. E.g., for a missing
type, make it compatible with all other types.

• This pattern allows client code to be simplified by
not having to distinguish between missing and real
elements.

Examples: This pattern is based on the Null Object pat-
tern [Woolf 1997]. It is used in most JastAdd compilers, and
is discussed in [Hedin and Magnusson 2003]. As an example,
the JastAdd implementation of Oberon-0 uses the pattern for
missing types (but not for missing declarations) [Fors and
Hedin 2015].

4.7 On-Demand Loading (P7)
Intent: Dynamically load files depending on usage.
Structure: (see Figure 9)

• During analysis of a file, dependencies on other files
may be discovered, making it necessary to load those
files in order to proceed with the analysis. To specify
this in a declarative way, use a parameterized HOA.

• The parameterized HOA is typically placed in the root,
using the Reified Structure pattern. The parameter
specifies which file to load. When the attribute is ac-
cessed, the file is read and parsed into an AST subtree.

92



SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

Decl Use →inst
inst = ...i

n
s
t

origin Legend
intrinsic reference

Figure 10. Local Compile-Time Instantiation (P8)

Decl

origin

Use
’int’

Use
’int’

→inst(v)
inst(v) = ... ↑inst: ↑inst:inst(’int’)

inst(’float’)

Decl

Figure 11. Shared Compile-Time Instantiation (P9)

Due to memoization, multiple accesses of the same file
will reuse the same subtree.

Examples:This pattern is used in ExtendJwhere both source
code files and bytecode files can be loaded dynamically. The
attribute is called →Program.getLibCompilationUnit and
is parameterized with the fully qualified type name. The dy-
namically loaded source files are also checked for errors. This
is implemented using robust iterators [Kofler 1993] over the
HOA arguments, since the checks might cause more source
files to be loaded.

4.8 Local Compile-Time Instantiation (P8)
Intent: Instantiate and expand definitions at use sites.
Structure: (see Figure 10)

• For uses of macro-like definitions where compile-time
instantiation is needed, use a HOA to represent the
expanded instance of the definition.

• The HOA subtree might have an intrinsic reference
attribute pointing back to the definition, to share in-
formation common to all instances.

Examples: The modeling language Modelica has compile-
time instantiation of objects, and complex typing rules that
allow the structure of objects to be changed at the object allo-
cation site. This is solved using this pattern in the JModelica
compiler [Åkesson et al. 2010b]. This pattern is also used
for visualization and data-flow analysis for the automation
language Bloqqi, which has compile-time instantiation of
blocks [Fors 2016].

NewStmt
→desugared , ↑code
desugared = ...

code = desugared.codedesugared

NewStmt

Figure 12. Desugaring via HOA (P10)

4.9 Shared Compile-Time Instantiation (P9)
Intent: Instantiate a specialized variant of a definition and
share it between uses of the same variant.
Structure: (see Figure 11)

• For parameterizable definitions, like generic types, use
a parameterized HOA to represent the different vari-
ants used. Multiple uses of the same variant reuse
(point to) the same HOA subtree.

• Similar to P8, a HOA subtree might have an intrinsic
reference attribute pointing back to the definition, to
share information common to all variants.

Examples: Generics in Java are solved using this pattern in
ExtendJ. A generic class has a higher-order attribute that cre-
ates a specialized variant of the class with field and method
declarations, where the type parameters are substituted with
the type arguments. However, the class variants do not in-
clude method bodies, since Java uses type erasure for code
generation, but reuses these from the original class defini-
tion. The attribute is called →GenericTypeDecl.lookupPar-
TypeDecl. The technique is described in [Ekman and Hedin
2007b].

4.10 Desugaring via HOA (P10)
Intent: Translate new language construct to core language.
Structure: (see Figure 12)

• For a new language construct, use a HOA (e.g., →de-
sugared) to construct a semantically equivalent sub-
tree using the core language.

• The original sugared construct can delegate some com-
putations to the desugared variant, e.g., code genera-
tion.

• Other computations, like error reporting, can be done
in terms of the original sugared variant, to not confuse
the user of the language.

Examples: An example of this pattern is the ExtendJ imple-
mentation of Try With Resources that was added in Java 7.
The pattern is applied to transform the statement into a reg-
ular Try statement, in order to reuse code generation [Öqvist
and Hedin 2013]. Another example is the JastAdd and Silver
Oberon-0 compilers [Fors and Hedin 2015; Kaminski and
Van Wyk 2015], where CASE statements are desugared to
IFs, and FOR to WHILE for code generation. For the Silver
implementation, the delegating equations can be left out,

93



Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

<<interface>>
GenericComponent

↑generic, ↑specific
generic = ... uses specific ...

NodeLangA

specific = ...
NodeLangB

specific = ...

Figure 13. UML diagram for Plugin Component via Inter-
faces (P11)

because they are implicit due to Silver’s support for attribute
forwarding [Van Wyk et al. 2002] (not supported in JastAdd).

4.11 Plugin Component via Interfaces (P11)
Intent: Create a generic component that can be reused for
different languages.
Structure: (see Figure 13)

• A generic component can be defined by specifying
interfaces with attribute declarations and equations.
To apply the component, add the interfaces to selected
classes in the source language.

• The classes can provide equations that define attributes
and override equations in the interface, and thereby
adapt the behavior to the language.

Examples:An implementation of intra-procedural control-
and dataflow uses this pattern [Söderberg et al. 2013]: An
interface CFGNode captures the general behavior of a node in
a control-flow graph, with ↑succ and ↑pred attributes. De-
fault equations make it easy to apply and adapt the module
to a specific language. The dataflow component builds on
the control-flow component and defines, e.g., liveness as
attributes on the CFGNode interface.

Another use of this pattern is scope rule attribution mod-
ules as discussed by Kastens and Waite [1994]. They used
syntax-independent nonterminal symbols that correspond
to interfaces, and supported overriding of equations.
Discussion: A limitation of this pattern is that a compo-
nent can only be applied once for a language. For example,
it might be desirable to construct two control-flow graphs
but with different granularity. This is not supported by this
pattern since a class can only implement an interface once.

4.12 Plugin Component via Higher-Order
Attributes (P12)

Intent: Create a generic component that can be reused for
different languages.
Structure: (see Figure 14)

• Define a generic component with an abstract grammar
and attributes. The component is reused by creating
a mapping from the source language to the abstract
grammar in the reusable component. The mapping
creates a subtree that is attached to the source AST as

→comp
comp = <create subtree of

generic abstract grammar>

comp

Figure 14. Plugin Component via HOA (P12)

a higher-order attribute, with possible intrinsic refer-
ence attributes pointing back to the source AST.

Examples: This core ideas in this pattern were described
by [Saraiva 2002], but for grammars without reference at-
tributes. [Mey et al. 2020a] describes the full pattern with
back links using reference attributes, and shows how it can
be used for developing language independent components
for cycle detection analysis and variable shadowing analysis.
Discussion: In comparison to P11, this pattern does not
have the same limitations, since a component can be applied
multiple times to the same language by defining different
mappings. It is, however, a bit more heavyweight than P11
in that defining a grammar mapping may be more work than
just applying interfaces.

5 Empirical Study
To better understand how well the proposed principles and
patterns capture use of JastAdd RAGs, we performed an
exploratory empirical study with 14 practitioners. We sought
to answer the following research questions:
RQ1 How do practitioners learn to use JastAdd RAGs?
RQ2 How do practitioners develop JastAdd RAGs in prac-

tice?
RQ3 To what extent do practitioners follow the presented

principles?
RQ4 To what extent do practitioners use the presented pat-

terns?

5.1 Methodology
We ran four semi-structured focus groups [Kontio et al. 2008]
with participants from industry and academia. Each focus
group was run as a two-hour session with the following
structure; a presentation of around an hour about the prin-
ciples and patterns proposed in this paper1, a short break,
and then a focus group for approximately an hour using the
interview protocol included in Appendix A. Our questions
covered use of JastAdd RAGs, and in that context principles
and patterns. For use of JastAdd RAGs we encouraged par-
ticipants to help us identify potential improvements of the
tool and tell us about issues.
During the focus group session, the first author of the

paper gave the presentation, while the second author ran the
1Some patterns and principles were renamed after the focus groups; P8 was
called ’Compile-time instantiation’, P9 was called ’Definition variant’, P11
was called ’Attribute interfaces’, P12 was called ’Augment ASTwith reusable
subtrees’. The principle of AST-embedded data structure was previously
called ’The AST is the data structure’.

94



SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

focus group (with the first author taking notes). One focus
group was carried out in person, while three were carried out
over video. All focus groups were recorded to complement
the taken notes. The resulting material from the focus groups
was analyzed by the first and second author and summarized
with key observations.

The composition of the focus groups is illustrated in Fig-
ure 15, showing the experience of the participants and the
division of participants between industry and academia. Par-
ticipants were identified via past and current collaborations
of the authors. The specific composition of each group was
dependent on who volunteered to participate at each con-
tacted collaborator, where a contact personwould ask around
among colleagues. While we strived to get different kinds
of groups in terms of industry/academia and beginner/ex-
perienced, we did not aim for a specific composition within
each focus group.

Threats to Validity In recruiting participants for the fo-
cus groups, there may be selection bias in who decided to par-
ticipate and sampling bias in our selection of people to con-
tact. For the latter, we aimed to vary the experience of partici-
pants and their affiliation (industry vs. academia). We further
aimed for focus groups of at least three participants [Kontio
et al. 2008] but ended up with one smaller group (AExp). We
also planned for in-person focus groups but had to run all
but the first over video due to unexpected circumstances
(covid-19). The final focus groups may not be representative
for all users of JastAdd RAGs, but we tried to get variation
to cover different kinds of users (industry / academia, novice
/ experienced). To compensate for response bias, we encour-
aged participants to give frank feedback about issues and
we told them we wanted to identify ways of improving the
JastAdd system. Our study further focuses on JastAdd RAGs
and may not generalize to other RAG systems.

5.2 Results
In the following subsections, we address each research ques-
tion and list key observations.

5.2.1 RQ1: HowdoPractitioners Learn toUse JastAdd
RAGs? Several participants mentioned that they have learn-
ed about JastAdd RAGs in a compiler course (INov, IExp,
AMix), and beyond that primarily from looking at exam-
ples (INov, AMix), for instance, from the ExtendJ compiler.
They further mention that they talk to colleagues, via con-
versations (AMix) or code review (INov), and they may also
inspect the Java code generated by JastAdd (AMix).

Observation 1: Participants learn from examples,
collegial knowledge, and by inspecting the generated
Java code.

When trying to understand a JastAdd RAG, participants
mention a couple of pain-points having to do with docu-
mentation and tool support. They mentioned that it can be

difficult to locate attributes (AExp) and there is no support
for code browsing (INov). As a reaction to the difficulty of
reading someone else’s JastAdd RAG, one participant said
"it is easier if you have written everything yourself" (INov).
On the specification level, participants mention a lack of
documentation of features, for instance, for how interfaces
work (AMix), or interaction between features, for instance,
how HOAs are traversed (IExp). They also mention that
"rewrites are difficult to understand" (IExp) and that collec-
tion attributes may be computed in unexpected ways.

Observation 2: Participants lack support to more
easily understand a JastAdd RAG specification, and
the hidden details of how the declarative specification
is evaluated may hinder adoption of features.

5.2.2 RQ2: How do Practitioners Develop JastAdd
RAGs in Practice? For this question we analyzed the focus
group results with regard to common software development
activities; documenting, coding, and testing.

Documenting Participantsmention that it can be difficult
to locate attributes (AExp), but also express appreciation for
available tools helping with documentation of attributes2
(AExp). One participant mentioned that the company may
require models such as sequence diagrams for a system and
expressed uncertainty about how to create such diagrams
for a JastAdd RAG (INov).

Observation 3: Participants appreciate existing tool
support for documentation, but struggle to document
and model RAG artifacts to comply with company
standards.

Coding Participants in three of the groups develop Jast-
Add RAGs together (INov, IExp, AExp), with the industry
groups (INov, IExp) using software development practices
like code review. In the remaining academic group, partici-
pants primarily develop JastAdd RAGs separately, but discuss
with colleagues to solve issues. In the experienced industry
group (IExp), the team has developed practices manifesting
as antipatterns. They especially mention two antipatterns; 1)
’don’t put cached attributes on nodes that occur a lot in the
AST’, due to the added memory cost, and ’don’t use rewrites’,
they are nice but tricky to understand.

Observation 4: Practitioners in industry collaborate
on joint RAG specifications to a larger extent than in
academia, and develop antipatterns.

Participants express appreciation over the possibility to
use Java tooling, for instance, for debugging, but they also
miss tool support for JastAdd RAGs and mention some issues
due to this. For instance, the difficulty of locating attributes

2JastAdd RAGs can be documented via tools generating documentation for
attributes in a style similar to Javadoc.

95



Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

U1

U2

U3

U4

Group INov
Industry participants
with (primarily) little
JastAdd RAG experi-
ence.

U1

U2

U3

U4

U5

Group AMix
Academic participants
with mixed JastAdd
RAG experience.

U1

U2

U3

Group IExp
Industry participants
with a lot of JastAdd
RAG experience.

U1

U2

.

.

Group AExp
Academic participants
with a lot of JastAdd
RAG experience.

Legend Software development experience Compiler experience JastAdd RAG experience

Figure 15. Composition of focus groups, number of JastAdd RAG users (U) in each group and their experience in software
development, compilers, and JastAdd RAGs. All axes are in years and experience is shown up until 10 years.

is mentioned as something that may lead to code duplica-
tion (AExp). Another participant mentions using the IntelliJ
IDE for Java but that, for instance, code completion doesn’t
work very well because it exposes a lot of internal generated
methods (AExp). Participants would also appreciate more
support for aspects, for instance, to show dependencies be-
tween aspects (AExp).

Observation 5: Participants would like more tool
support, especially for locating of attributes, editor
services like code completion, and support for seeing
dependencies between aspects.

Participants experience a lack of convention for how to
manage aspects and find refactorings challenging. One par-
ticipant mentioned that it can be difficult to structure files
with aspects and to know where to put attributes, with the
end result being that things are being renamed and moved
around a lot (INov). Difficulties to refactor or change a RAG
was also mentioned; aspects can be difficult to refactor due
to the lack of dependency information (AMix), a grammar
change may lead to a lot of equation updates (AExp), and
switching between a rewrite or a HOA solution can be diffi-
cult when equations need to be added (AMix).

Observation 6: Participants lack coding conventions
for JastAdd RAGs, especially on the aspect level, and
refactoring a JastAdd RAG can be challenging.

Testing Participants mentioned how they test their Jast-
Add RAG and related this to other testing that they do in
their software development (INov), for instance, while they
typically use unit tests for testing of Java classes, they rarely
do this for their RAG. Instead, they primarily use acceptance
and function tests. They further mention that they have

difficulty expressing test coverage for JastAdd code due to
uncertainty about to what extent they should test generated
internal code.

Observation 7: Participants find it unclear how to
best test a RAG artifact and how to comply with
company standards for testing.

5.2.3 RQ3: To What Extent do Practitioners Follow
the Presented Principles? Reviewing the results from the
focus groups with each principle in mind they reason about
declarative thinking and structure-shy in particular, while
they mention no issues with using AST-embedded data struc-
tures, which they appear to accept as natural when using
JastAdd RAGs.

Observation 8: Practitioners appear to embrace us-
ing AST-embedded data structures.

Declarative thinking The extent with which partici-
pants reason about problems declaratively varies and appears
to correlate with experience. One group expressed their way
of reasoning about solutions as "attributes - that’s how we
solve problems" (IExp), while another group expressed appre-
ciation for gradually being able to adopt declarative concepts
(INov). The gradual adoption was also expressed as an active
choice to incur technical debt in order to get deliverables
ready (INov). Another case where participants decide to not
use a declarative specification is when they want to stay
close to a documented imperative algorithm (IExp). In ad-
dition, the notion of backsliding into imperative Java code
was expressed as something that easily happened (AMix).

96



SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

Table 2. Use of patterns, summarized for each focus group.
Y (for Yes) means used and W (for Want) means that they
would like to use a pattern but haven’t yet.

Pattern
Group 1 2 3 4 5 6 7 8 9 10 11 12
INov Y Y W W W W W

IExp Y Y Y Y Y Y

AMix Y Y Y Y Y Y Y Y Y Y Y

AExp Y Y Y Y Y Y Y Y W Y

Observation 9: Practitioners gradually embrace
declarative thinking by partly using imperative code,
or actively use imperative code to stay closer to a
documented imperative algorithm.

Structure-shy specification Participants generallywrite
structure-shy specifications but mention that they may step
away from a structure-shy specification for performance
reasons (AExp, IExp). Especially circular attributes and col-
lection attributes was mentioned as not providing the needed
performance; the fix-point evaluation sometimes used unnec-
essary iterations for circular attributes (AExp), or because
too many nodes were visited when computing collection
attributes (IExp). The combination of circular collection at-
tributes was also mentioned as having performance issues
(AExp). In addition, one group mentioned using getParent
more than they should, and expressed a wish to becomemore
proficient in using inherited attributes (INov).
Observation 10: Practitioners step away from using
circular attributes and collection attributes to improve
performance.

5.2.4 RQ4: To What Extent do Practitioners Use the
Presented Patterns? The patterns used and the patterns
that participants would like to use, as mentioned during the
focus groups, are summarized in Table 2. We summarize the
content in the table with the following observation:
Observation 11: All groups have used the lookup
patterns (P1, P2), and the number of patterns used
increase with more experience, but even more so in a
research setting.

As listed in Table 2, several participants (INov, AMix,
AExp) mentioned patterns that they would like to use. One
participant (AExp) summarized their view on the patterns as
"this pattern list would be useful to have earlier", referring
to when they started to use JastAdd.
Observation 12: The list of patterns appears to aid
participants in becoming aware of new patterns, but
the applicability of patterns varies - with more appli-
cability at the top of the list than at the bottom.

Participants were generally positive about the listed pat-
terns, but some participants (INov) asked for more examples
of when some of them (P8, P9, P10) should be used and men-
tioned that some did not feel as relevant to them (P11, P12).
The latter two patterns, the reuse patterns (P11, P12), were
also referred to as being more on a meta level and more ab-
stract by other participants (AExp). As an observation, one
participant further pointed out that there are no patterns
involving rewrites or circular attributes (INov), and some
participants suggested additional possible patterns (AMix);
using collection attributes to collect errors, and using inheri-
tance in the type hierarchy to avoid instanceof checks by
overriding attributes on subtypes.

6 Related Work
Spinellis [2001] describes design patterns for domain-specific
languages (DSLs), identifying different main approaches
to implementing DSLs, like Pipeline, Language Extension,
and Source-to-Source transformation. These patterns are at a
much higher level than our patterns, dealing with architec-
tural choices. Mernik et al. [2005] define additional high-level
architectural patterns, splitting them into the development
phases of Decision, Analysis, Design, and Implementation.

Parr [2009] defines a number of patterns for language im-
plementation with Java and ANTLR. These patterns are at a
similar level as ours in that they discuss how to effectively
use a specific tool and paradigm (in this case Java/ANTLR
and imperative OOP) in building language tools. Since the
patterns are based on imperative programming, several of
them deal with tree walking, like Tree Walker, Tree Visitor,
and Tree Pattern Matcher, as well as Symbol Table that ex-
plains how to traverse the AST in passes to populate a global
symbol table.
Cordy [2009] provides a cookbook for how to use the

source transformation tool TXL. This work is aimed at ap-
proximately the same level as our patterns, namely at how to
solve problems once a developer has learned the basics of the
specification language. The cookbook does not talk about de-
sign patterns, but instead uses the term "coding paradigms",
where some are formulated as advice, e.g., Use sequences, not
recursion, and some as recipes, e.g., Preserving comment in
the output.
Kats et al. [2009] propose using attribute decorators to

abstract over common patterns in attribute grammars, and
extend the attribute grammar formalism. Examples include
defining constructs to avoid copy rules, like the INCLUDING
mechanism from [Kastens et al. 1982], as well as collection
attributes and circular attributes like in JastAdd. They focus
on patterns that can be replaced by language constructs.
Most of our patterns don’t immediately stand out as potential
new language constructs. However, some of them might be
candidates. For example, it might be useful to express our P2
Local Map as a new kind of attribute.

97



Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

7 Discussion
Reviewing the results of the empirical study, all participants
use the presented principles and patterns to some extent. The
principles are in some cases used by all (AST-embedded data
structures, Observation 8), gradually adopted (declarative
thinking, Observation 9), or explicitly not followed to get a
specific benefit, like performance or an imperative algorithm
(declarative thinking / structure-shy, Observation 10). The
patterns are broadly adopted at the top of the list (especially
the lookup patterns, Observation 11) and less so towards
the bottom (e.g., the reuse patterns, Observation 12). We
speculate that the reason may be that the patterns at the end
of the list are more abstract and suitable for less common
problems, but also more exploratory. This suggests that the
patterns towards the top of the list are more mature than
those at the bottom.

Further, we saw an interest among participants to try new
patterns after becoming aware of them when summarized in
the style presented in the paper (Observation 12). We note
that participants mention that they primarily learn from ex-
amples (Observation 1), but despite having looked at, for
instance, the ExtendJ compiler which uses most patterns,
they had not been inspired to try these patterns earlier. We
see this as an indication that a list of patterns fills a need
otherwise not filled by only examples, and we further specu-
late that summarizing and naming patterns help to clarify
whether a pattern is used or not.

Still, more examples are also useful, especially canonical
examples of how a certain kind of attribute is to be used,
for instance, using collection attributes to gather errors, pro-
posed as a pattern in one focus group. We note that the line
between what constitutes as a canonical example and a pat-
tern may not always be clear, for instance, desugaring may
be considered to be a canonical example of a HOA but we
include this as a pattern (P10). Perhaps there should be a
notion of maturity of patterns - we leave exploration of this
notion to future research.
Moreover, we note that several observations concern a

lack of tool support for activities such as documentation (Ob-
servation 3), code search and browsing (Observation 5), and
refactoring (Observation 6). We see this as an effect of the
often limited resources that can be spared for maintenance of
open-source tools in academia, but we also see that available
(limited) tool support is appreciated (Observation 3). Beyond
a lack of tools, we also see a lack of conventions (especially
for aspects, Observation 6) and participants mention devel-
oping a team practice to avoid anti-patterns (Observation 4).
We observe a lack of guidelines for practitioners (Observa-
tion 1), and see the presented principles and patterns as a
couple of steps in this direction.
Finally, we see the results from the empirical study as

indicators that the proposed principles and patterns capture
the practice of developing JastAdd RAGs well. However, we

also recognize that our study is limited and could be com-
plemented with a more extensive qualitative evaluation and
quantitative study of JastAdd RAG code, which we see as
possible directions for future research.

8 Conclusions
To address the need to better document accumulated knowl-
edge of RAGs, we have presented principles and patterns for
JastAdd-style RAGs, and evaluated them empirically in 4 fo-
cus groups with 14 participants, from academia and industry
with varying JastAdd RAG experience. We find indicators
that the proposed principles and patterns appear to capture
the practice of developing JastAdd RAGs well, help prac-
titioners to become aware of useful patterns, and provide
a common language to more efficiently reason about the
practice of developing JastAdd RAGs. We hope that JastAdd
RAG developers find this work useful, and perhaps we can
inspire future research in this direction both for other RAG
systems and for other formalisms/tools. An interesting line
of future research is to investigate if some of the patterns can
be generalized to build a common list for all RAG systems.

Acknowledgements
We thank Jesper Öqvist for contributing to initial discus-
sions of the patterns. We are grateful to the participants
in the focus groups for valuable input. We also thank the
SLE reviewers and René Schöne for their valuable feedback.
This work is partly supported by the Swedish Governmen-
tal Agency for Innovation Systems (VINNOVA) in the PiiA
project 2017-02371 and by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation (KAW).

A Focus Group Protocol
Introduction:

0 Gathered informed consent from participants.
Questions about participants background:

1 How much experience do you have of software engi-
neering? compiler development? development of Jast-
Add RAGs?

Questions about working with JastAdd RAGs:
2 What have you used JastAdd RAGs for?
3 What type of problems have you solved with JastAdd
RAGs?

4 How did you solve these problems? What was simple?
What was tricky? How did you proceed when you had
a problem?

5 Are there problems that you haven’t solved and don’t
know how to solve?

Questions about principles and patterns:
6 How well do you think the presented principles and
patterns describe how you work with JastAdd RAGs?

98



SLE ’20, November 16–17, 2020, Virtual, USA Niklas Fors, Emma Söderberg, and Görel Hedin

7 How would you describe your solutions in the form
of these patterns?

8 Have you noticed more patterns than the ones we
presented?

References
Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and Hu-

bertus Tummescheit. 2010a. Modeling and optimization with Optimica
and JModelica.org - Languages and tools for solving large-scale dynamic
optimization problems. Comput. Chem. Eng. 34, 11 (2010), 1737–1749.
https://doi.org/10.1016/j.compchemeng.2009.11.011

Johan Åkesson, Torbjörn Ekman, and Görel Hedin. 2010b. Implementation
of a Modelica compiler using JastAdd attribute grammars. Sci. Comput.
Program. 75, 1-2 (2010), 21–38. https://doi.org/10.1016/j.scico.2009.07.003

Henk Alblas. 1991. Introduction to Attribute Grammars. In Attribute Gram-
mars, Applications and Systems, International Summer School SAGA,
Prague, Czechoslovakia, June 4-13, 1991, Proceedings (Lecture Notes in
Computer Science), Henk Alblas and Borivoj Melichar (Eds.), Vol. 545.
Springer, 1–15. https://doi.org/10.1007/3-540-54572-7_1

Christopher Alexander. 1977. A pattern language: towns, buildings, construc-
tion. Oxford university press.

John T Boyland. 1996. Descriptional composition of compiler components.
Ph.D. Dissertation. University of California, Berkeley.

James Clark, Steve DeRose, et al. 1999. XML path language (XPath), version
1.0. Technical Report. W3C.

James R. Cordy. 2009. Excerpts from the TXL Cookbook. In Generative and
Transformational Techniques in Software Engineering III - International
Summer School, GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised
Papers (Lecture Notes in Computer Science), João M. Fernandes, Ralf Läm-
mel, Joost Visser, and João Saraiva (Eds.), Vol. 6491. Springer, 27–91.
https://doi.org/10.1007/978-3-642-18023-1_2

Torbjörn Ekman and Görel Hedin. 2007a. Pluggable checking and infer-
encing of nonnull types for Java. J. Object Technol. 6, 9 (2007), 455–475.
https://doi.org/10.5381/jot.2007.6.9.a23

Torbjörn Ekman and Görel Hedin. 2007b. The JastAdd Extensible Java
Compiler. SIGPLAN Not. 42, 10 (Oct. 2007), 1–18. https://doi.org/10.
1145/1297105.1297029

Niklas Fors. 2016. The Design and Implementation of Bloqqi - A Feature-Based
Diagram Programming Language. Ph.D. Dissertation. Lund University,
Sweden.

Niklas Fors and Görel Hedin. 2015. A JastAdd implementation of Oberon-0.
Science of Computer Programming 114 (2015), 74 – 84. https://doi.org/
10.1016/j.scico.2015.02.002 {LDTA} (Language Descriptions, Tools, and
Applications) Tool Challenge.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns Elements of reusable object-oriented software. Addison
Wesley.

Görel Hedin. 2000. Reference Attributed Grammars. In Informatica (Slovenia)
(24(3)). 301–317.

Görel Hedin. 2009. An Introductory Tutorial on JastAddAttribute Grammars.
In Generative and Transformational Techniques in Software Engineering
III - International Summer School, GTTSE 2009, Braga, Portugal, July 6-
11, 2009. Revised Papers (Lecture Notes in Computer Science), João M.
Fernandes, Ralf Lämmel, Joost Visser, and João Saraiva (Eds.), Vol. 6491.
Springer, 166–200. https://doi.org/10.1007/978-3-642-18023-1_4

Görel Hedin and Eva Magnusson. 2003. JastAdd: An Aspect-oriented Com-
piler Construction System. Sci. Comput. Program. 47, 1 (April 2003),
37–58. https://doi.org/10.1016/S0167-6423(02)00109-0

Daniel H. H. Ingalls. 1986. A Simple Technique for Handling Multiple
Polymorphism. In Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’86), Portland, Oregon, USA, Pro-
ceedings, Norman K. Meyrowitz (Ed.). ACM, 347–349. https://doi.org/10.
1145/28697.28732

Martin Jourdan. 1984. An Optimal-time Recursive Evaluator for Attribute
Grammars. In International Symposium on Programming, 6th Colloquium,
Toulouse, France, April 17-19, 1984, Proceedings (Lecture Notes in Computer
Science), Manfred Paul and Bernard Robinet (Eds.), Vol. 167. Springer,
167–178. https://doi.org/10.1007/3-540-12925-1_37

Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.
Reliable and automatic composition of language extensions to C: the
ableC extensible language framework. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 98:1–98:29. https://doi.org/10.1145/3138224

Ted Kaminski and Eric Van Wyk. 2015. A modular specification of Oberon0
using the Silver attribute grammar system. Sci. Comput. Program. 114
(2015), 33–44. https://doi.org/10.1016/j.scico.2015.10.009

Uwe Kastens, Brigitte Hutt, and Erich Zimmermann. 1982. GAG: A Prac-
tical Compiler Generator. Lecture Notes in Computer Science, Vol. 141.
Springer. https://doi.org/10.1007/BFb0034297

Uwe Kastens and William M. Waite. 1991. An Abstract Data Type for Name
Analysis. Acta Informatica 28, 6 (1991), 539–558. https://doi.org/10.1007/
BF01463944

Uwe Kastens and William M. Waite. 1994. Modularity and Reusability in
Attribute Grammars. Acta Informatica 31, 7 (1994), 601–627. https:
//doi.org/10.1007/BF01177548

Lennart C. L. Kats, Anthony M. Sloane, and Eelco Visser. 2009. Decorated
Attribute Grammars: Attribute Evaluation Meets Strategic Programming.
In Compiler Construction, 18th International Conference, CC 2009, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in
Computer Science), Oege de Moor and Michael I. Schwartzbach (Eds.),
Vol. 5501. Springer, 142–157. https://doi.org/10.1007/978-3-642-00722-
4_11

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. 2001. An Overview of AspectJ. In ECOOP
2001 - Object-Oriented Programming, 15th European Conference (LNCS),
Vol. 2072. Springer, 327–353. https://doi.org/10.1007/3-540-45337-7_18

Donald E. Knuth. 1968. Semantics of Context-Free Languages. Math. Syst.
Theory 2, 2 (1968), 127–145. https://doi.org/10.1007/BF01692511

Thomas Kofler. 1993. Robust Iterators in ET++. Struct. Program. 14, 2 (1993),
62–85.

Jyrki Kontio, Johanna Bragge, and Laura Lehtola. 2008. The Focus Group
Method as an Empirical Tool in Software Engineering. In Guide to
Advanced Empirical Software Engineering, Sjøberg D.I.K. Shull F., Singer J.
(Ed.). Springer, London, 93–116. https://doi.org/10.1007/978-1-84800-
044-5_4

Ralf Lämmel, Eelco Visser, and Joost Visser. 2003. Strategic programming
meets adaptive programming. In Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development, AOSD 2003, Boston,
Massachusetts, USA, March 17-21, 2003, William G. Griswold and Mehmet
Aksit (Eds.). ACM, 168–177. https://doi.org/10.1145/643603.643621

Karl Lieberherr. 1996. Adaptive object-oriented software, the Demeter method.
PWS Boston.

Joel Lindholm, Johan Thorsberg, and Görel Hedin. 2016. DrAST: an inspec-
tion tool for attributed syntax trees (tool demo). In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engi-
neering, Amsterdam, The Netherlands, October 31 - November 1, 2016, Tijs
van der Storm, Emilie Balland, and Dániel Varró (Eds.). ACM, 176–180.
https://doi.org/10.1145/2997364.2997378

Eva Magnusson and Görel Hedin. 2007. Circular reference attributed gram-
mars – their evaluation and applications. Science of Computer Program-
ming 68, 1 (2007), 21–37. https://doi.org/10.1016/j.scico.2005.06.005

Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how
to develop domain-specific languages. ACM Comput. Surv. 37, 4 (2005),
316–344. https://doi.org/10.1145/1118890.1118892

Johannes Mey, Thomas Kühn, René Schöne, and Uwe Assmann. 2020a.
Reusing Static Analysis across Different Domain-Specific Languages
using Reference Attribute Grammars. Art Sci. Eng. Program. 4, 3 (2020),
15. https://doi.org/10.22152/programming-journal.org/2020/4/15

99

https://doi.org/10.1016/j.compchemeng.2009.11.011
https://doi.org/10.1016/j.scico.2009.07.003
https://doi.org/10.1007/3-540-54572-7_1
https://doi.org/10.1007/978-3-642-18023-1_2
https://doi.org/10.5381/jot.2007.6.9.a23
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1016/j.scico.2015.02.002
https://doi.org/10.1016/j.scico.2015.02.002
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1145/28697.28732
https://doi.org/10.1145/28697.28732
https://doi.org/10.1007/3-540-12925-1_37
https://doi.org/10.1145/3138224
https://doi.org/10.1016/j.scico.2015.10.009
https://doi.org/10.1007/BFb0034297
https://doi.org/10.1007/BF01463944
https://doi.org/10.1007/BF01463944
https://doi.org/10.1007/BF01177548
https://doi.org/10.1007/BF01177548
https://doi.org/10.1007/978-3-642-00722-4_11
https://doi.org/10.1007/978-3-642-00722-4_11
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1145/643603.643621
https://doi.org/10.1145/2997364.2997378
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.22152/programming-journal.org/2020/4/15


Principles and Patterns of JastAdd-Style Reference Attribute Grammars SLE ’20, November 16–17, 2020, Virtual, USA

Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg, Thomas Kühn,
Niklas Fors, Jesper Öqvist, and Uwe Aßmann. 2020b. Relational reference
attribute grammars: Improving continuous model validation. J. Comput.
Lang. 57 (2020), 100940. https://doi.org/10.1016/j.cola.2019.100940

Modelica 2017. Modelica - A Unified Object-Oriented Language for Systems
Modeling, Language Specification Version 3.4, The Modelica Association.
https://www.modelica.org

David A. Naumann. 2007. Observational purity and encapsulation. Theor.
Comput. Sci. 376, 3 (2007), 205–224. https://doi.org/10.1016/j.tcs.2007.02.
004

Jesper Öqvist. 2018. Contributions to Declarative Implementation of Static
Program Analysis. Ph.D. Dissertation. Lund University.

Jesper Öqvist and Görel Hedin. 2013. Extending the JastAdd extensible Java
compiler to Java 7. In Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, Stuttgart, Germany, September 11-13,
2013, Martin Plümicke and Walter Binder (Eds.). ACM, 147–152. https:
//doi.org/10.1145/2500828.2500843

Terence Parr. 2009. Language implementation patterns: create your own
domain-specific and general programming languages. Pragmatic Book-
shelf.

João Saraiva. 2002. Component-Based Programming for Higher-Order
Attribute Grammars. In Generative Programming and Component Engi-
neering, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh, PA,
USA, October 6-8, 2002, Proceedings (Lecture Notes in Computer Science),
Don S. Batory, Charles Consel, and Walid Taha (Eds.), Vol. 2487. Springer,
268–282. https://doi.org/10.1007/3-540-45821-2_17

Anthony M. Sloane. 2009. Lightweight Language Processing in Kiama. In
Generative and Transformational Techniques in Software Engineering III -
International Summer School, GTTSE 2009, Braga, Portugal, July 6-11, 2009.
Revised Papers (Lecture Notes in Computer Science), João M. Fernandes,
Ralf Lämmel, Joost Visser, and João Saraiva (Eds.), Vol. 6491. Springer,
408–425. https://doi.org/10.1007/978-3-642-18023-1_12

Anthony M. Sloane and Matthew Roberts. 2015. Oberon-0 in Kiama. Sci.
Comput. Program. 114 (2015), 20–32. https://doi.org/10.1016/j.scico.2015.
10.010

Emma Söderberg, Torbjörn Ekman, Görel Hedin, and Eva Magnusson. 2013.
Extensible intraprocedural flow analysis at the abstract syntax tree level.
Sci. Comput. Program. 78, 10 (2013), 1809–1827. https://doi.org/10.1016/j.
scico.2012.02.002

Emma Söderberg and Görel Hedin. 2012. Incremental Evaluation of Reference
Attribute Grammars using Dynamic Dependency Tracking. Technical
Report 98. Lund University. LU-CS-TR:2012-249, ISSN 1404-1200.

Emma Söderberg and Görel Hedin. 2015. Declarative rewriting through
circular nonterminal attributes. Comput. Lang. Syst. Struct. 44 (2015),
3–23. https://doi.org/10.1016/j.cl.2015.08.008

Diomidis Spinellis. 2001. Notable design patterns for domain-specific lan-
guages. J. Syst. Softw. 56, 1 (2001), 91–99. https://doi.org/10.1016/S0164-
1212(00)00089-3

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010. Silver:
An extensible attribute grammar system. Sci. Comput. Program. 75, 1-2
(2010), 39–54. https://doi.org/10.1016/j.scico.2009.07.004

Eric VanWyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski. 2002.
Forwarding in Attribute Grammars for Modular Language Design. In
Compiler Construction, R.Nigel Horspool (Ed.). LNCS, Vol. 2304. Springer,
128–142. https://doi.org/10.1007/3-540-45937-5_11

Eric VanWyk, Lijesh Krishnan, Derek Bodin, andAugust Schwerdfeger. 2007.
Attribute Grammar-Based Language Extensions for Java. In ECOOP 2007 -
Object-Oriented Programming, 21st European Conference, Berlin, Germany,
July 30 - August 3, 2007, Proceedings (Lecture Notes in Computer Science),
Erik Ernst (Ed.), Vol. 4609. Springer, 575–599. https://doi.org/10.1007/978-
3-540-73589-2_27

Harald Vogt, S. Doaitse Swierstra, andMatthijs F. Kuiper. 1989. Higher-Order
Attribute Grammars. In Proceedings of the ACM SIGPLAN’89 Conference
on Programming Language Design and Implementation (PLDI). 131–145.
https://doi.org/10.1145/73141.74830

Bobby Woolf. 1997. Null object. In Pattern languages of program design 3.
Addison-Wesley Longman Publishing Co., Inc., 5–18.

100

https://doi.org/10.1016/j.cola.2019.100940
https://www.modelica.org
https://doi.org/10.1016/j.tcs.2007.02.004
https://doi.org/10.1016/j.tcs.2007.02.004
https://doi.org/10.1145/2500828.2500843
https://doi.org/10.1145/2500828.2500843
https://doi.org/10.1007/3-540-45821-2_17
https://doi.org/10.1007/978-3-642-18023-1_12
https://doi.org/10.1016/j.scico.2015.10.010
https://doi.org/10.1016/j.scico.2015.10.010
https://doi.org/10.1016/j.scico.2012.02.002
https://doi.org/10.1016/j.scico.2012.02.002
https://doi.org/10.1016/j.cl.2015.08.008
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1007/3-540-45937-5_11
https://doi.org/10.1007/978-3-540-73589-2_27
https://doi.org/10.1007/978-3-540-73589-2_27
https://doi.org/10.1145/73141.74830

	Abstract
	1 Introduction
	2 JastAdd RAGs
	2.1 Attribution Mechanisms
	2.2 Structure Diagrams

	3 Principles
	3.1 Declarative Thinking
	3.2 AST-Embedded Data Structures
	3.3 Structure-Shy Specification
	3.4 Design Trade-Offs

	4 Patterns
	4.1 Lookup (P1)
	4.2 Local Map (P2)
	4.3 Expected Type (P3)
	4.4 Double-Dispatch Subtype Comparison (P4)
	4.5 Reified Structure (P5)
	4.6 Null Higher-Order Attribute (P6)
	4.7 On-Demand Loading (P7)
	4.8 Local Compile-Time Instantiation (P8)
	4.9 Shared Compile-Time Instantiation (P9)
	4.10 Desugaring via HOA (P10)
	4.11 Plugin Component via Interfaces (P11)
	4.12 Plugin Component via Higher-Order Attributes (P12)

	5 Empirical Study
	5.1 Methodology
	5.2 Results

	6 Related Work
	7 Discussion
	8 Conclusions
	A Focus Group Protocol
	References



