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ABSTRACT

In this paper we introduce SAIBERSOC, a tool and methodology
enabling security researchers and operators to evaluate the per-
formance of deployed and operational Security Operation Cen-
ters (SOCs) (or any other security monitoring infrastructure). The
methodology relies on the MITRE ATT&CK Framework to define a
procedure to generate and automatically inject synthetic attacks in
an operational SOC to evaluate any output metric of interest (e.g.,
detection accuracy, time-to-investigation, etc.). To evaluate the ef-
fectiveness of the proposed methodology, we devise an experiment
with n = 124 students playing the role of SOC analysts. The exper-
iment relies on a real SOC infrastructure and assigns students to
either a BADSOC or a GOODSOC experimental condition. Our results
show that the proposed methodology is effective in identifying
variations in SOC performance caused by (minimal) changes in
SOC configuration. We release the SAIBERSOC tool implementation
as free and open source software.
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1 INTRODUCTION

The growing importance of effective security monitoring solutions
calls for appropriate measures of their effectiveness. The operation
of Security Operation Centers (SOCs) is the recommended best
practice to which large and medium-size enterprises rely for the
detection, notification, and ultimately response to cybersecurity in-
cidents [16, 20]. Yet, the average time for detecting an attack ranges
between several weeks to years [36]. In a recent study, Kokulu et
al. [16] interviewed security analysts and mangers, who explicitly
identify the issue of measuring SOC performance as one of the main
obstacles towards effective detection and response operations.

The problem of measuring security (performance) is a long-
standing and difficult one [12].

Measuring the performance of SOCs is no exception. Whereas
numerous performance metrics exist (e.g., number of detected inci-
dents, time to detection, time to response, etc.) [30], it is still unclear
how to obtain reliable and reproducible measures over those met-
rics. As incoming attacks are, by definition, unknown, a ground
truth on which to base the measurements cannot be easily defined;
on the other hand, performing measurements in in-vitro settings
limits the representativeness of those measurements in real-world
settings [16, 29].

However, the problem of measuring the performance of infras-
tructures and systems dedicated to the detection of rare events of
unknown magnitude is not new. For example, the LIGO (Laser Inter-
ferometer Gravitational-Wave Observatory) infrastructure has been
built with the goal of detecting perturbations in the spacetime con-
tinuum caused by ‘rippling effects’ of large-scale events, such as the
collapse of a binary blackhole system. Despite the completely differ-
ent settings and event generation processes, the challenges faced by
the LIGO interferometer and SOCs are quite similar: both must de-
tect unknown, unpredictable, and arbitrarily ‘small’ manifestations
of an event, and both must know whether the detection procedure
is accurate while operating in the absence of a ground-truth on the
events that ought be detected.

This paper presents SAIBERSOC, a practical and deployable solu-
tion for SOC performance evaluation based on the same working
principle as the LIGO infrastructure [1]: to generate and automati-
cally inject ‘events’ (in our case, cyber-attacks) into the detection
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infrastructure at random instants in time, with the purpose of eval-
uating, in a controlled fashion, the performance of the detection
system. The SAIBERSOC methodology and tool can be employed
by researchers and security operatives alike to evaluate the impact
of various factors on SOC performance, such as analyst training,
experience , and skill composition, or the relative change in effec-
tiveness of the deployed analysis and visualization tools as the SOC
configuration and processes change.

SAIBERSOC automatically generates the injected attacks relying
on the MITRE ATT&CK Framework[34] and is structured over four
components providing automated methods for attack definition,
generation, injection, and analysis. The SAIBERSOC tool is publicly
available as free and open source software (see subsection 6.1).

To evaluate the effectiveness of the method at the core of SAIBER-
SOC, we design and run an experiment employing n = 124 students
enrolled in a security course of a medium-sized technical university
in Europe. The experiment relies on a real SOC infrastructure (nor-
mally monitoring network events at the M&CS department of the
university) where students operate as SOC analysts. In particular,
we measure detection accuracy in terms of both attack identifica-
tion and investigation, injecting two attacks based on the Mirai [4]
and Exim [7] scenarios over two SOC configurations (BADSOC and
GOODSOC). Our evaluation shows that the SAIBERSOC methodology
correctly identifies and can quantify the relative change in detec-
tion accuracy across SOC configurations and, importantly, does not
‘overshoot’ or reveal differences where there should be none.

This paper develops as follows: Section 2 provides a background
on SOC operations and discusses relevant literature. Section 3 de-
scribes the proposed methodology and section 4 the experimental
validation strategy. Experimental results follow in section 5. Sec-
tion 6 discusses our results and presents the SAIBERSOC software
implementation in detail. Finally, section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 Attack frameworks

Defensive operations against increasingly sophisticated attacks re-
quire a deep understanding of how adversaries conduct offensive
operations, how threats unfold and how security breaches esca-
late into major incidents. The MITRE PRE-ATT&CK[8], MITRE
ATT&CK [34], and Cyber Kill Chain[17] frameworks aim at build-
ing a knowledge base of adversary TTPs (Tactics, Techniques, and
Procedures) from real-world observations, grouping them in a tax-
onomy of attack stages to describe the anatomy of any attack. The
extensive and detailed enumeration of the attack techniques pro-
vided by the frameworks and stages can be, roughly, grouped in four
phases: Reconnaissance, Exploitation, Delivery and Control (Table 1).
Reconnaissance groups data gathering operations performed by the
adversary, ranging from subject information for the development
of social engineering attacks, to probing the network surface of the
infrastructure to derive paths of compromise. During Exploitation,
the attacker evaluates the measured attack surface (vulnerabili-
ties, misconfigured software, phishing opportunities) and creates or
acquires the attacks (vulnerability exploits, phishing artefacts, mal-
ware, ...) to perform information leak, lateral movement (e.g., inside
the organization), command execution, and/or privilege escalation.
Delivery covers the vectors adopted from the adversary to drop
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Table 1: Attack phases

Phase Description

Reconnaissance Techniques to research, identify and select tar-
gets using active or passive reconnaissance.

Exploitation Techniques employed by attackers to gain ini-
tial control over (vulnerable) target systems.

Delivery Techniques resulting in the transmission of the
weaponized object to the targeted environment.

Control Techniques used by attackers to communicate

with controlled systems in a target network.

malicious software that will act as a foothold for further actions.
This includes spear phishing and supply chain compromise. Control
includes the techniques adopted by the adversary to control the
system and reliably execute commands on it, compromising system
integrity, confidentiality and availability. This can be achieved via
remote management interfaces, custom software and web services.

2.2 Security monitoring operations

Tools and procedure to support security analysts in incident re-
sponse and network monitoring (such as Network Intrusion De-
tection Systems (NIDS) and Security Information and Event Man-
agement (SIEM)) are at the core of modern security monitoring
in operational settings. Security Operation Centers (SOCs) are the
center of monitoring operations in medium or large organizations,
either internally or outsourced to service providers [16, 20].

SOCs are organized hierarchically in (generally three) tiers [20],
where analysts with different skills and expertise monitor the net-
work activity and take action against a threat. Tier 1 is the first
frontier where alerts are investigated by analysts, identifying pos-
sible threats among the non-significant ones and prioritizing them.
Identified threats are escalated to Tier 2, where more qualified
analysts with forensics and incident response skills correlate the
information with threat intelligence to identify threat actors. Tier 2
is in charge to determine a strategy for containment, remediation
and recovery. If the threat targets business critical operations, Tier 3
analysts identify and develop tailored responses to the identified
threats and attack patterns.

In general, incident investigation can be split in two phases [20]:
Attack identification, where Tier 1 analysts evaluate incoming alerts
to identify possible attacks; Attack investigation, where Tier 1 and
Tier 2 analysts investigate the identified attack over its phases (ref.
Table 1) to, for example, identify victims, attack timing, payloads,
and propagation. Once these two phases are complete, the attack is
reported and responded to, depending on the service level agree-
ment at which the SOC operates.

The large amount of alerts and potential security events detected
in a SOCs make it impossible, operationally to ‘investigate every-
thing’ [30]: the more relevant are the alerts generated by a SOC (e.g.,
through accurate use-cases), the fewer ‘false positives’ a (Tier 1) an-
alyst will have to investigate before passing the baton on to higher
tiers (i.e., Tier 2 and 3).

However, measuring how SOC operations respond to changes
in the SOC configuration (e.g., a refined use-case, a different alert
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investigation process, new rulesets, etc.) remains an open and criti-
cal challenge [16], in terms of analyst competences as well as for
metric definition and measurement [11, 29, 30, 38].

2.3 SOC performance evaluation

Albeit attempts have been made in trying to tackle these problems,
the scientific literature proposing methods to measure SOC perfor-
mance is still limited. Effectiveness of a SOC depends on both the
qualities of the tools adopted, their configurations and capabilities,
and on skills of the personnel. For what concerns the correlation
between human capabilities and a SOC’s performance, a few studies
have been made[31, 32]. In [31], Sundaramurthy et al., they trained
three students to work as SOC analysts and embedded them in
three different SOCs. While working as operational components,
they were required to produce reports on their observations and
meet with an anthropologist involved in the research. By compar-
ing reports and interviews, is was possible to draw conclusions
on the aspects that may be more promising to the effectiveness
of a SOC and which not, in terms of its architecture, experience
of analysts, nature and degree of their interactions, workflow for
incident reports and the quality of work itself for the employee.
Kokulu et al. [16] investigate through interviews to both SOC ana-
lysts and SOC managers about technical and non-technical issues
of a SOC; from their interviews emerge how often SOCs fail to
provide substantial support against specific types of attacks, over-
loading analysts with low-quality threat intelligence, long reports
and logs, and more. Albeit evidences are supported by interviews,
the authors point out that metrics to measure security quantita-
tively and qualitatively are rudimentary [16]. Jacobs et al. [15]
propose a method to systematically and quantitatively evaluate
SOC’s maturity by identifying a set of capabilities that a SOC em-
bodies, i.e. log analysis, event correlation, incident management,
threat identification and reporting, scoring each of them [14] [15].
The SOC aspects analyzed derive from a number of industrial se-
curity management and control frameworks, including ISO 27000
series [13] and SANS Critical Controls and each of them is scored
with respect to their maturity; however, the score attribution is left
as an expert-driven task, rather than a data-driven measurement. A
simulation-optimization approach is proposed by Shah et al. [29],
where they identified some of the causes that negatively affect the
throughput of a SOC in terms of efficiency. They propose the Time
to Analyze Alert (TTA) metric to evaluate the efficiency of a SOC
by measuring the time that goes from the alert generation to its
analysis. By monitoring SOC’s TTA, Shah et al. are able to gener-
ate advice for the SOC Manager, suggesting live corrective actions
towards a desired benchmark. In subsequent work Shah et al.[30]
also model the problem as a simulation-optimization problem and
evaluated it from data derived from a simulated SOC, to obtain a set
of metrics that allow the optimization of some of a SOC capabilities;
however, a procedure to test the resulting SOC performance in
real-world scenarios remains to be identified and tested.

Research gap. Whereas current research has focused mostly on
the identification of metrics [30] and procedures [15, 29, 30] to eval-
uate SOC performance, an empirical method capable of capturing
the complexity of a SOC operation (including alert configuration,
analyst capabilities, etc.) has yet to be proposed and validated [16].

ACSAC 2020, December 7-11, 2020, Austin, USA

AC-3 - Attack
Injection

e e L o
> T @ 2
000 4

s

(P <o
T

Automated output  sssssase
Human output o o =)
Legitimate traffic

Attacker traffic >

The platform uses (network) traces characterizing the ‘building blocks’ of an
attack (AC-1), and (re-)combines them to generate new attacks (AC-2). The
generated attacks are then injected into the network (AC-3). The SOC analysts
perform and report on the investigation results, which can be checked (AC-4)
against the known ground-truth (derived from the attacks generated in AC-2).

Figure 1: Schematic depiction of the SAIBERSOC solution

3 THE SAIBERSOC SOLUTION

To address this gap, we propose SAIBERSOC, a method and solu-
tion to perform systematic SOC performance evaluations through
automated attack injection. Our solution is composed of four Ar-
chitectural Components (AC-{1. .4}) constituting of a library of
(attack) traces (AC-1), and components to generate (AC-2), inject
(AC-3), and report (AC-4) the synthetic attacks.

SAIBERSOC can be used to inject attacks into a SOC during oper-
ation, or alternatively in a ‘virtual’ SOC testing environment where
all network traffic is replaced by pre-recorded background traffic.
Once the attack has been detected, the SOC analysts perform the in-
vestigation following their normal procedure. The type of injected
attack as well as its timing, targets and sources, and velocity are
unknown to the SOC analysts. Finally, the analyst’s attack report
is automatically

evaluated against the ground truth obtained from the attack
assembly phase. A more detailed description of the SAIBERSOC
architecture can be found in subsection 3.2, we present our software
implementation in subsection 6.1.
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3.1 Solution requirements

To guide the development of the proposed solution, we pose a list
of requirements that a real-world SOC performance evaluation
framework should fulfill. A summary of the identified requirements
is provided in Table 2.

Independence (R-1) To measure and compare SOC performance,
the framework must apply to all SOCs, regardless of how they are
implemented. Further, the results must be reproducible, regardless
of who uses the framework. Those are fundamental requirements
for any measure or assessment [24]. Therefore, a solution must be
able to work with various SOC configurations and implementations.
Versatility (R-2) To be able to create meaningful measures cover-
ing the whole scope of the SOC, all aspects of a potential attack must
be covered. Thus, a metric should cover the complete value-space
to assure meaningful results reflecting real-world performance [16].
Because attackers continuously adapt their behavior, a solution
must be capable to simulate past, current, as well as future attacks
in realistic ways to be able to measure real-world security.
Realism (R-3) Real-world security is influenced by numerous fac-
tors, sometimes in unpredictable ways. For example, wrong pre-
sumptions about context or human behavior in unforeseen situa-
tions leads to alleged security measures and therefore a false sense
of security[2, 6]. This can be avoided by assessing real-world per-
formance, i.e., a setup that is as close as possible) to reality. In case
of a SOC this means measuring a real SOC (including software and
configuration), realistic work environments, and realistic attacks. It
is therefore imperative that the evaluation is performed under real
or realistic operational conditions (e.g., the analysts do not know
the attacks in advance, and the injected attacks are realistic).
Traceability (R-4) The framework must be able to link SOC re-
actions i.e., reports, to the attacks that caused those reactions in
the SOC. Only if both input and output are known, a meaningful
evaluation of the SOC performance can be made by comparing the
expected output to the realized output.

3.2 The SAIBERSOC solution architecture

Figure 1 provides a schematic depiction of the architecture behind
the proposed SAIBERSOC solution. Table 2 reports the mapping
of the architectural components to the identified requirements. A
running example of implementation of the proposed workflow is
reported in Table 8 in the appendix and discussed below.

3.2.1 Attack Traces (AC-1). All attack simulations or scenarios
deployed in SAIBERSOC are constructed by combining multiple pre-
defined attack traces. An attack trace consists of a set of network
packets (e.g., stored in a pcap file) that reproduces the network
traffic generated by an attack during a specific attack phase. These
traces can be extended to non-network events (e.g., syslog activity
to reproduce events at the host level). To structure traces in attack
phases, we rely on the ATT&CK Framework([34] to create and store
a library of different attack traces reflecting different phases of
ongoing attacks (see Table 1).

The MITRE CALDERA[19] and Atomic Red Team[26] already
maintain some form of an attack-database with attacker actions
mapped to the ATT&CK Framework[34].
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Impl. example: with reference to the example reported in Table 8,
AC-1 generates a set of traces characterizing events in each phase of
the ATT&CK framework; for example, portscan(src_ip, dst_ip) will
reproduce network traffic (to be parameterized with src_ip, dst_ip
associated to the Reconnaissance phase of the MITRE ATT&CK
framework (ref. Table 1). Similarly, expl_cve() will reproduce traces
corresponding to the exploitation of a known vulnerability (e.g., as
derived from an exploit on ExploitDB [21].

3.2.2  Attack Generation (AC-2). Multiple attack traces are com-
bined to generate fully-fledged attack simulations. Attacks are com-
posed following the ATT&CK framework[34] (i.e., reconnaissance
happens before exploit delivery, which happens before command
and control communication, which happens before data exfiltra-
tion).

The CALDERA framework is already capable of automatically
generating meaningful attacks from attack traces[19].

In this step, the generic attack traces are matched to the specific
environment monitored by the SOC (e.g., IP ranges, exploits vs
vulnerable systems, etc.). This process can be automated by relying
on asset information available to any SOC during normal operation.

The result of this phase is a ready-to-inject attack simulation.

The ‘ground-truth’ of the simulation (e.g., attacker’s IP addresses(es))
can be extracted from the parameterized attack traces composing
the attack. Once re-parameterized (i.e., victim IP addresses match-
ing the range of a monitored network and system functionality),
attack scenarios can be reused the SOC or organization’s network.

Impl. example: with reference to Table 8, a sequence of (attack)
traces is selected and parameterized. In this example, the IP of the at-
tacker and the receiving victim system(s) are identified (src_ip,dst_ip),
as well as the exploited vulnerability (cve), and protocols used for
the command and control (proto). The parametrized attack traces are
then composed following the MITRE ATT&CK framework phases;
the parameters of the attack are used to generate the ground truth
against which the analysts’ reports will be checked in AC-4.

3.2.3 Attack Injection (AC-3). Attack simulations retrieved from
AC-2 are injected in the network traffic monitored by the SOC. This
can be either executed on the live infrastructure, or on a virtual
‘shadow network’ separate from the operative environment. In the
latter setting, the entire (virtual) network traffic is recorded and later
forwarded to the Network Intrusion Detection sensors employed
by the SOC. The attack simulation can be merged seamlessly into
(real-world) traffic streams either on a SOC sensor or on network
infrastructure devices (i.e., network switches or routers). To make
simulations as realistic as possible, (optional) background traffic
that was previously recorded on site can be mixed with the attack
simulation. Attack simulations can be injected, recorded, and re-
played at any point in time (i.e., record network traffic from virtual
environment instead of passing to the SOC immediately). The SOC
will then raise the respective events and alerts as if the injected
traffic was real traffic to (or from) the monitored infrastructure.

Impl. example: In the example in Table 8 traffic is recorded
and replayed into a SOC sensor as scheduled by executing the
parametrized traces (e.g., exploit_cve(cve,src_ip,dst_ip)) (i.e., 12pm).
The attack injection raises corresponding SOC alerts, then evaluated
by the analyst during incident identification and investigation.
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Table 2: Architectural requirements. Table 7 in the Appendix details the mapping to the architectural components.

R-ID Requirement Description

AC-1 AC-2 AC-3 AC-4

R-1  Independence
tion and monitored environment.
R-2  Versatility
SOC, regardless of their complexity.
R-3  Realism

The proposed solution should be independent of the specific SOC implementa- v v
The framework must work with all types of attack scenarios in scope of the v

The attack injection must be seamlessly integrated to the operative environment v v

of the analyst. This includes IP addresses, local software configurations, and

network setups.
R-4  Traceability

The framework must be able to link all SOC reactions (i.e., a report) to the v v
initial stimulus or attack that caused it.

3.24 Reporting (AC-4). The attack reports produced by SOC ana-
lysts in response to the attack simulation are matched against the
ground truth (obtained from AC-2) in AC-4. Because the exact details
of the simulated attacks are known in advance, report(s) that men-
tion specific details unique to the injected attack can be identified
automatically. Using simple string matching and the knowledge-
base of the SIEM, it is possible to check whether the final SOC
report details the incident events and sources correctly.

Impl. example: A SOC analyst investigated the generated SOC
alerts and reported the incident through a standardized template
(e.g., src_ip, cve, ...). Comparing the analyst report with the ground
truth may indicate that the current SOC configuration lacks detec-
tion capabilities (e.g., undetected exploitation), or that raised alerts
systematically misdirect the analyst (e.g., due to poorly defined
threats or use cases).

4 EXPERIMENTAL VALIDATION

Before presenting the SAIBERSOC tool implementing the described
architecture and solution, we validate the methodology behind it by
testing it experimentally. To do so, we devise an experiment involv-
ing n = 124 MSc students attending the *Security in Organizations’
course of a medium-sized European Technical University and an
operative SOC infrastructure deployed at the Department level.

Goal of the experiment: to evaluate whether the proposed solu-
tion is capable of detecting (small) differences in SOC performance.

Experimental subjects worked in groups of two and took the role
of Tier 1 security analysts to investigate (injected) attacks. Subjects
were randomly assigned to the experimental treatment (consisting
in a small tweak in the SOC configuration) and asked to report the
results of their analysis by filling in a report template.

4.1 Experimental infrastructure

The experiment is based on a real SOC used for research and ed-
ucation operating at the Mathematics and Computer Science de-
partment of the university. The SOC is operated over open-source
technology and based on Security Onion[28] and Elastic Stack[9]
for event correlation and analysis. During regular operation the
SOC monitors real incoming and outgoing network traffic in the de-
partment. The chosen network sensors (NIDS) are Suricata[22] for
security monitoring, and Bro/Zeek[23] for network flow logs. The
SOC is currently limited to the monitoring of network traffic and

is operated with the involvement and cooperation of the security
team of the university.

4.2 Experimental subjects

Subjects were recruited from a security in organization MSc course
held at the university operating the SOC. The course is mandatory
for all students graduating in the security track of the MSc program
in Computer Science and open to students from others tracks (se-
curity=14; computer science=56; other=64; tot=124). Students were
asked to form groups of two to participate in the experiment and
were randomly assigned to the respective treatment groups (next
subsection). The final size of the experiment pool is n=63; the term
‘experiment subject’ in the remainder of the paper will refer to the
student groups and not to the single students.

4.3 Experimental variables

Independent variable. To reproduce realistic SOC configurations
we setup two analysis environments, namely GOODSOC and BADSOC.
To test the effectiveness of the proposed solution, we introduce only
a small change between the two configurations. To maintain the
change realistic, we (1) define it around the university environment
in which the SOC operates, and (2) base it only on the (de-)activation
of a set of predefined rules that do not match the use-cases of the
university. ! Namely, as the university is an open environment,
default rulesets triggering alerts related to violation of generic
policies such as use of TOR or p2p are out of the scope of the SOC.
We therefore define the following two experimental conditions:

BADSOC: baseline SOC configuration consisting of the default set of
rules defined by the detection software (Suricata);

GOODSOC: baseline SOC configuration minus alerts related to policy
violation events.

In the BADSOC configuration 19731 out of 27125 present Suricata [22]
rules were active by default. By deactivating 2753 rules (14%), 16978
active rules remain). The disabled rules? inform about policy vio-
lations (including the use of chat/instant messaging software and
usage of the TOR network[35]).

!This setup has been checked against a set of use-cases provided by the university for
SOC operation.

2All rules prefixed with either ‘ET POLICY’, ‘ET INFO’, ‘ET CHAT’, ‘GPL CHAT’, ‘ET
TOR’, or ‘SURICATA’ were disabled (see ‘better-soc.sh’ in the artifact repository).
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Outcome variables. In output of the experiment we evaluate the
accuracy of the assessments made by the experiment subjects. We
collect analyst output through a survey compiled by all subjects at
the end of the experiment. To evaluate the subject’s output under
different experimental conditions, we consider the following vari-
ables: (1) the total number of reports submitted by each group: these
may be related to the real injected attacks, or to other suspicious
events detected by the subjects; (2) the number of submitted reports
dealing with one of the simulated attacks; (3) the correctness of the
submitted reports when compared against the ground truth.

4.4 Expected outcome and evaluation criteria

If the proposed solution is effective in detecting changes in SOC
performance triggered by (small) changes in the SOC configuration,
we would expect that GOODSOC (i.e., the configuration producing
fewer alerts not related to the university’s use cases), lead to more
accurate reports when compared to BADSOC. Reflecting normal SOC
operation procedures [20], we split our evaluation over the analysis
phases of Attack identification and Attack investigation.

Outcome expectation. As the modification between BADSOC
and GOODSOC should only reduce the number of false alerts dis-
played to the analyst, leaving alerts relevant to an attack unaffected,
we expect the SAIBERSOC method to highlight that:

(1) GOODSOC outperforms BADSOC for the attack identification phase;

(2) no significant difference between GOODSOC and BADSOC emerges
for the attack investigation phase.

To evaluate the accuracy of the Attack identification, we evaluate
the number of correct entries reported by the subjects in relation to:
IP(s) of the attacker, IP(s) of the victims. To evaluate the accuracy
of Attack investigation, we evaluate reported information on the
reconnaissance, exploitation, and delivery and control activities
(ref. Table 1). As we are interested in testing the effectiveness of the
proposed solution, we are not concerned with quantifying whether
our GOODSOC configuration is significantly better than our BADSOC
configuration; differently, we are interested in evaluating whether
the (albeit small) change in the GOODSOC configuration can be spotted
by the proposed experimental procedure in terms of a difference in
performance. To evaluate these differences, we employ a mix of
non-parametric statistical tests including Fisher’s Exact Test (for
differences in counts across conditions), and Wilcoxon rank-sum
tests (for differences in outcome distributions). The significance
level is set at o = 0.05.

4.5 Experiment Preparation

This section details the experiment setup and preparation for the
scenario injection, and the attack reporting.

Attack traces. We use the previously identified attack phases in
Table 1 for our proof-of-concept implementation, namely Recon-
naissance, Exploitation, and Delivery and Control phases. For each of
these phases we collect or reconstruct the respective network traces
from public resources. For the Reconnaissance phase we collect data
using nmap[18] scans against selected targets; in the Exploitation
phase we rely on PoC exploits and brute-force attacks available on
public resources, such as ExploitDB[21] and Metasploit[25]. Deliv-
ery and Control include the download of malicious software from
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both ExploitDB and suspect IP addresses, and communication with
IPs known to be involved in botnet C2C infrastructures.

Attack generation. Using the previously identified attack traces,
we build two different attack scenarios; these attacks are built by
assembling the previous network captures created and provided
with consistency among individual actions by editing the IP ad-
dresses involved. Resulting attacks reproduce the modus operandi
implemented by two real-world attacks (namely, Mirai and Exim).

Scenario 1: Mirai. This scenario is inspired by the Mirai botnet[4].
The attacker gains access by successfully guessing SSH credentials.
In the end of the scenario, the victim scans the internal network. As
this scenario employs blacklisted IP addresses and domain names
related to the Mirai botnet, it raises multiple (high priority) alerts
in the SOC.

Scenario 2: Exim. The second scenario is based on a remote
code execution vulnerability in an Exim 4 SMTP mail server [7].
This scenario raises exactly one (high priority) alert in our SOC.

Table 3 provides a comparison of the two scenarios across the
attack phases defined by MITRE ATT&CK framework, and which
phases can be detected by our SOC configuration. Note that the sce-
narios are unaffected by the GOODSOC or BADSOC configurations, as
the GOODSOC configuration only removes ’policy violation’ rulesets
that are not triggered by either scenario. Due to the higher number
of alerts related to the Mirai attack than for Exim, we consider the
latter to be a more advanced scenario than the former.

Attack injection. The IP address of the attacker was rewritten
to match the IP address defined in the scenarios. The attacks were
injected in pre-recorded network traffic arriving at the SOC during
working hours. While we cannot guarantee the background traffic
to be attack-free, we analyzed the most significant alerts observed
in the traffic to ensure that generated alerts not related to the
injected attacks are not symptomatic of known attacks. We found
no evidence of ongoing attacks in the pre-recorded network traffic.

Attack report. Due to infrastructural limitations, we collect re-
ports using an online survey. > Each group could report up to five*
suspicious activities detected during the experiment. Table 4 pro-
vides an overview of the questions. The first two questions asked
for the attacker and victim IP addresses; as multiple entities can
be associated to a role for an attack, we allow to insert more than
a single IP address. Further, multiple-choice questions address re-
connaissance, vulnerability exploitation, the delivery and control
phase of the attack. For each of the selected answers it is required
to specify the IP address involved with the selected action. Lastly
subjects could report additional free-text comments. The full sur-
vey is available in the Appendix. To evaluate whether a report is
a response to one of the injected attack simulations, we compare
the reported IP addresses to the ground-truth from the scenario
definition. If the attacker and victim IP addresses of a scenario were
both mentioned in the respective field, we mark the report to be a
response to one of the corresponding scenarios.

Technical setup. We deployed two instances of the SOC envi-
ronment and setup each accordingly to the GOODSOC and BADSOC

3 A SOC would normally rely on an integrated case management system for incident
reporting; this was not available in the employed SOC setup.

4The limit of five activities was chosen after piloting. A discussion of implications on
result validity is provided in section 4.8.
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Table 3: Comparison between the injected attack scenarios Mirai and Exim

Scenario phase

Mirai

Exim

Phase description

Alert Phase description Alert

Reconnaissance Comprehensive port scan; Multiple hosts, ports
(port scan) & services scanned with aggressive techniques.
Exploitation Successful SSH password guessing and local
(Initial access) file inclusion/upload through SSH.

Delivery Victim requests web page with suspicious data
(2nd stage) via HTTP. Bogus user agent triggers a red alert.
Control Victim tries to resolve Mirai-related hostnames.
(CnC DNS query) Multiple red alerts are triggered.

Control Victim sends suspicious UDP packets to an IP

(CnC comm.)

Control
(Pivot port scan)

address known to be involved in CnC activities;
triggers a red alert.

Comprehensive port scan; Multiple hosts, ports
& services scanned with aggressive techniques.

Probing multiple hosts using a targeted port
scan on port TCP/25.
Attacker runs a known exploit against an vV
SMTP server, triggering a red alert.

v/ Visited a web page offering public exploits via
HTTPS; Encrypted content not readable

V' Nothing - no DNS resolution.

v/ Victim sends suspicious UDP packet to a non-
blacklisted IP address.

Nothing - no further port scan.

Table 4: Summary of information expected in a report

Analysis param Info provided for result evaluation

Attacker IP Framing of the reported scenario
Victim IP Framing of the reported scenario
Reconnaissance Detection of reconnaissance actions
Exploitation Detection of exploitation actions
Delivery & C&C Detection of delivery & C&C
Comments Space for further information

configurations (ref. subsection 4.3). Each VM is powered by a ma-
chine with Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz with
12 cores and 64GB of RAM. During the experiment the two SOC
servers’ sensors were isolated from the University’s network. Stu-
dents accessed their respective analysis environments from the
classroom on their own PCs.

4.6 Experiment Pilot

Prior to execution we ran a set of pilots to refine the infrastructure
and test the devised experimental procedures. A pilot phase was
conducted to evaluate the survey procedure (incl. question phrasing)
employed for the reporting phase. Further, the pilots were used
to assess whether the difficulty of the assignment and the pre-
experiment training sessions were a good match with students’
skills. To this aim, we piloted the whole experiment four times,
pooling for volunteers from students with a similar background to
our subjects (e.g., enrolled in other security courses at the time, or
PhD students in Computer Science).

4.7 Experimental Execution

Student autonomously created groups of two and each group was
assigned randomly to the BADSOC (n=31) or GOODSOC (n=32) experi-
mental conditions. Students were given half a bonus point valid for
the final exam for attending the experiment and if they managed
to correctly identify (at least one) attacker in the injected attacks.

Start of class

25 mins

Questionnaire
Crash course on
incident
investigation
+ walkthrough

Warm-up
exercise

Exercise 15 mins

50 mins

10 mins

Figure 2: Experiment phases and duration

The experiment session started with an introduction and training
session lasting approximately 30 minutes. After introducing the
assignment, we ran a 15 minutes warm-up exercise where students
had to identify a simple scenario with small network traffic to
familiarize with the interface. The warm-up exercise was run on
the BADSOC configuration for all groups.® The experiment was run
after the warm-up phase and lasted 50 minutes. Subjects were
told that at least one attack would be injected but were unaware
of attack type and timing. At the end of the experiment, traffic
injection was terminated, and the survey used for report collection
was made available. Students were asked to submit their reports
within 15 minutes but retained access to SOC and questionnaire
until all submissions were collected. Figure 2 provides a visual
representation of the experiment timeline.

4.8 Ethical and experimental considerations

The background noise traffic was captured from the SOC operating
at the M&CS department of the host university under the ethical
and organizational approval of the university. The traffic raw data
was not accessible to the students during the experiment (i.e., they
could only see the alerts generated based on the original traffic). The
experiment was integrated in the practical educational activities

5The warm-up exercise, albeit simpler and shorter than the actual exercise, follows
the same structure as the subsequently injected attacks.
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Table 5: Expected findings/ground-truth for both scenarios

Analysis param  Mirai Exim

Attacker IP 199.19.215.23 31.220.56.38
Victim IP 131.155.68.116 131.155.71.27
Reconnaissance  port scan port scan
Exploit/Vuln. weak credentials remote code exec.
Delivery/C&C data exfiltration data exfiltration

HTTP requests HTTP requests

Aggregation of groups by number of submitted reports

13 m BADSOC
1 = GOODSOC

o e
[STN NI
L L L

Number of groups
=]

Number of reports submitted

Figure 3: Aggregation of groups by # submitted reports

run by the university and performed following guidelines approved
by the university for exercises in classroom settings.

Experimental limitations. (a) Construct validity. We implicitly
assume that students who report the correct IP addresses for both
attacker and victim detected the attack and started analyzing it. Us-
ing automated checking it is impossible for us to determine whether
a group actually understood what happened. (b) External valid-
ity. Students do not have the same experience and training that
SOC analysts do and the training during the introduction section
cannot make up for that. In real settings, the experiment should be
replicated against multiple analysts and using a portfolio of attacks,
as opposed to only one or two attack scenarios, to obtain ample
validity across experimental conditions. (c) Internal validity. Stu-
dents were told in advance that there would be at least one attack,
creating an expectation to find something. Further, by allowing
students to submit up to five incidents and not penalizing ‘false pos-
itive’ reporting, our experiment may inflate the number of reports
per group. As this limit is the same across all groups and treatments,
we do not expect any effect on the likelihood that groups report
the ‘real’ injected incidents (i.e. our main experimental outcome).

5 EXPERIMENTAL RESULTS

Whereas students could submit up to five reports, we expected
exactly two reports detecting the injected attack scenarios Mirai
and Exim respectively. Table 5 reports the correct answers related
to the Mirai and Exim scenarios.

5.1 Attack identification

We received 63 submissions (one per group) reporting a total of 162
incidents. Figure 3 reports overall submission rates for all groups in
the BADSOC (m = 2.28, sd = 0.99) and GOODSOC (m = 2.9, sd = 1.3)

M. Rosso, M. Campobasso, G. Gankhuyag, and L. Allodi

Group reports aggregated by reported scenario
32 31

N BADSOC
281 W GOODSOC

Group count
=
[=4]
!

Mirai Exim both none
Reported scenarios

total

Column ‘both’ represents the number of groups that reported both scenarios
(Mirai and Exim), while ‘none’ represents the number of groups that did not
report any of the scenarios.

Figure 4: Attack identification by reported scenario.

configurations. Overall, the 32 groups working on BADSOC submit-
ted 73 reports, the 31 groups on GOODSOC submitted 89 reports in
total. A Wilcoxon Rank-Sum test results in BADSOC producing sig-
nificantly less reports than GOODSOC (p = 0.02, W = 353.5). This
suggests that groups assigned to the GOODSOC condition were able
to reconstruct more ‘suspicious’ activities than groups assigned to
BADSOQC, despite the events related to these activities being available
to both treatment groups.

Overall, 26% of BADSOC reports (19/73) and 33% of GOODSOC re-
ports (29/89) detailed the injected attack scenarios (i.e., the majority
of reports were not about the injected attacks). As groups could re-
port up to five incidents, this is unsurprising. To evaluate reporting
in more detail, Figure 4 shows the distribution of reports on the in-
jected scenarios. Overall, 57% of groups in BADSOC and 71% of groups
in GOODSOC reported at least one of the injected attacks. Whereas no
noticeable difference against Mirai reporting rates can be observed
(p = 0.36, OR = 1.38), GOODSOC groups were approximately three
times more likely to report the Exim attack (p = 0.03, OR = 3.04)
than the BADSOC groups, and approximately eight times more likely
to report both attacks (p = 0.02, OR = 8.49) overall. However, if
one considers only groups that reported at least one of the attacks,
the difference between GOODSOC and BADSOC decreases and becomes
borderline significant (p = 0.09, OR = 5.56); this may suggest that,
under our treatment conditions, groups that perform well and de-
tect at least one attack are more likely to find both irrespective of
the SOC configuration. Similarly, BADSOC groups seem overall more
likely (OR = 1.88) than GOODSOC to not report either of the attack
scenarios, albeit the difference is not significant (p = 0.17).

These findings provide an initial indication that the proposed
solution can be effectively employed to evaluate (relative) SOC
performance across SOC configurations (e.g., before and after a
major configuration change in a deployed SOC).

5.2 Attack investigation

We now provide a breakdown over the reconnaissance, exploitation,
and delivery & control attack phases across the two injected attack
scenarios. Results are reported in Table 6.

Reconnaissance. For both injected attacks, ‘port scan’ was the
correct answer, when asked for the observed reconnaissance ac-
tivity in the questionnaire (see Table 5). For the Mirai attack,
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Table 6: Report results of attack investigation.

Number and fraction of correct answers for each correctly identified scenario. Fractions are calculated against the total number of reports for that scenario. *: two
answers are correct; groups were allowed and expected to select two answers. ®: one group selected two answers, one right and one wrong — we (only) counted the

submission as correct. : one group did not make any selection in response to this question, and we count it as wrong. ¢: three groups selected two answers — we
counted them as correct if at least one of the given answers was right and wrong when both answers were wrong.

Mirai Exim
Count % of reports Count % of reports
BADSOC GOODSOC BADSOC GOODSOC BADSOC GOODSOC BADSOC GOODSOC
no. reports 10 12 31.3% 38.7% 9 17 28.1% 54.8%
g correct 7 9 70.0% 75.0% 1 4 11.1% 23.5%
S wrong b 3 3 300%  25.0% 8 b13  88.9% b 76.5%
'EL correct 5 5  50.0% 41.7% 8 €14 88.9% €82.4%
M wrong a5 7 250.0% 58.3% 1 €3 11.1% €17.6%
= one correct answer selected * 6 8  60.0% 66.6% 2 3 222% 17.6%
5 data exfil 3 0 300% 0% 1 11.1% 5.9%
°§ http requests 3 8 30.0% 66.6% 1 2 11.1% 11.8%
= two correct answers selected * 0 0 0% 0% 0 0% 0%
A wrong 4 4 40.0% 33.3% 7 14 77.8% 82.4%

the correct answer was given by 70% (7/10) groups operating on
BADSOC and 75% (9/12) groups operating on GOODSOC configura-
tion (p = 0.58, OR = 1.27). The ratio of reports mentioning the
portscan for the Exim attack is, overall, lower than for Mirai, albeit
no significant difference emerges (p = 0.42, OR = 2.39): In BADSOC
11.1% (1/9) correct answers, in GOODSOC 23.5% (4/17). In conclusion,
GOODSOC did not perform significantly better than BADSOC with in
the detection of the portscan in none of the scenarios.

Exploitation. For exploitation activity, Table 6 shows that barely
half of the groups selected the correct answer ‘weak credentials’
when asked to report the exploitation vector abused by the at-
tacker in the Mirai attack, i.e. 50% (5/10) in BADSOC and 41.7%
(5/12) in GOODSOC. For the Exim attack, Table 6 shows that 88.9%
(8/9) of the groups in BADSOC that reported the Exim attack also
reported the correct vulnerability ‘remote code execution’ abused
by the attacker to gain foothold on the victim. In GOODSOC, 82.4%
(14/17) answered correctly. On neither of the two injected attacks
GOODSOC performed better than groups working with the BADSOC
(Mirai: p =0.79, OR = 0.73, Exim: p = 0.84, OR = 0.59). In fact,
BADSOC performed slightly better than GOODSOC in identifying the
correct exploitation vector (Mirai: p = 0.52, OR = 1.38, Exim:
p = 0.57, OR = 1.68). Putting the differences between BADSOC
and GOODSOC aside, all groups were more likely to identify the cor-
rect exploitation actions in Exim (85%, or 22/26) than in the Mirai
scenario (45%, or 10/22).

Delivery & Control. We expected groups to select two correct
answers in a multiple-choice question about the delivery and con-
trol activities observed in context of an attack. The answers ‘data
exfiltration’ and ‘HTTP requests’ are considered correct for both
simulated attacks (see Table 5). Of the groups who reported on
the Mirai attack, 66.6% (8/12) using GOODSOC and 60% (6/10) of
the groups using BADSOC reported at least one of the two activ-
ities (p = 0.55, OR = 1.32). Looking at the Exim attack, 22%
(2/9) of the groups reporting the attack on BADSOC and 18% (3/17)

on GOODSOC also mentioned one correct delivery/control activity
(p =0.79, OR = 0.76). No group submitted both correct answers,
regardless of their condition or reported attack. Again, there are
no significant differences in performance between BADSOC and
GOODSOC.

In the Mirai scenario option ‘HTTP requests’ was likely to be
selected roughly four times more often (p = 0.099, OR = 4.32) by
groups operating GOODSOC. In the BADSOC configuration 30% (3/10)
selected it, in GOODSOC 67% (8/12). Only three groups, all using
BADSOC, chose the correct answer ‘data exfiltration” when reporting
the Mirai attack. For the Exim attack, most groups, 56% (5/9) in
BADSOC and 71% (12/17) in GOODSOC wrongly chose ‘none of them’.

6 DISCUSSION OF RESULTS AND
PRESENTATION OF THE SAIBERSOC TOOL

The presented results indicate that the SAIBERSOC methodology
is capable of highlighting the modifications introduced between
SOC configurations. In our experiment, the GOODSOC configuration
significantly increases the chances of a correct attack identification;
however, the BADSOC vs GOODSOC conditions do not significantly
affect the chances of correctly investigating the attack across its
phases, indicating that the change in configuration leaves attack
investigation capabilities unaffected.

Overall, in our example application the SAIBERSOC method in-
dicates that the GOODSOC configuration is preferable to the BADSOC
configuration as it significantly increases (up to threefold) the like-
lihood of identification of incidents. In particular, if GOODSOC and
BADSOC were alternative environments tested in a SOC environ-
ment, using the SAIBERSOC solution the SOC manager of that infras-
tructure could conclude that analysts working with the GOODSOC
configuration were more likely to find one or both of the attacks: an-
alysts on GOODSOC were three times more likely to find the (slightly
harder to identify) Exim attack (p = 0.03, OR = 3.04) than analysts
on BADSOC. The method results indicate that analysts in the BADSOC



ACSAC 2020, December 7-11, 2020, Austin, USA

M. Rosso, M. Campobasso, G. Gankhuyag, and L. Allodi

¥ saibersoc Demo x s - X
<« C ® © & httpsy/saibersoc-demo.local Search N @» =
W File v  Edit v Demo Experiment savingm? P 11 m )
(— Search. N\ Q )
+ 0:00 OD:OILAO UO‘O‘B:ZO OO‘O‘S‘OO OO:Q6:40 UO‘O‘S‘ZO 00:1
Recon . [ [o0:00:00] exploit FTP 000411 |
Add random &
slow portscan nmap -F -T2 Add [ ]
aggressive port scan nmap -F -T5 -A Add
aggressive net scan nmap -F -T5 net/16 Add
1|
Weaponize , J
name startT endT speed Base IP Mapped to 1P |)
Deliver " 00:07:00 00:09:09 0.0077845854( 127.0.01 10.0.09

| ‘ W Delete contact C&C
°rvn|nir » e

The attack trace library (AC-1) is depicted in (A). Attacks are generated (AC-2) by adding attack traces to the timeline (B), optionally changing playback speed and IP address
rewriting (C). The attack injection (AC-3) is controlled using simple buttons. A red marker indicates the progress on the timeline (B).

Figure 5: Screenshot of the SAIBERSOC web interface and relation to the relevant architectural components.

configuration are either overwhelmed by the number of alerts to
investigate or require more time analyzing individual events and
therefore had no time to analyze the second scenario. However, an-
alysts working with GOODSOC produced more false-positive reports,
i.e., reports not in response to one of the injected attacks. This may
indicate that analysts working on GOODSOC either spent less time
per analysis and thus could write more reports in the same time, or
that they are generally more likely to report false-positives. ® By
contrast, no significant differences between BADSOC and GOODSOC
can be observed in the attack investigation phase. This provides
additional information on the SOC performance related to which
aspects of an incident investigations are (positively or negatively)
affected by the different configurations under test. The ability to
quantify these effects experimentally allows both researchers and
practitioners in making informed decisions on technological and
process-level solutions for security monitoring application.

Implications for research. The SAIBERSOC method can be used
to evaluate the effect on security analysis of virtually any live
analysis setting (such as a SOC or other security monitoring or
analysis environments), either technical, procedural, or human.
For example, SAIBERSOC can be employed to evaluate the impact
of factors such as the analysts’ experience, skill composition, and
training, or the effect of analysis and visualization tools by com-
paring the performance of two SOC configurations with a known
set of selected differences. Similarly, the proposed method can be
employed to evaluate multiple performance variables, including
timing (e.g., total time for alert investigation) and throughput mea-
sures [29]), and how these vary across different phases of the attack.
The extensibility of the proposed method further opens the door
to the investigation of more complex effects, such as the relation
between attack types and analyst skills/expertise [3], which are
still under-researched in the scientific literature. The SAIBERSOC

©This effect may be caused by our experiment design; students had the expectation
to find at least one attack and were rewarded on finding at least one of the injected
attacks, which may lead to over-reporting.

implementation presented further down in this section provides a
practical tool to deploy experiments based on the propose method
in live or laboratory environments.

Implications for practice. The SAIBERSOC methodology (and tool)
is fully flexible in terms of attack procedure, traces, and outcome
variables, and can be implemented in operational SOCs to evaluate
the relative performance of their configuration over the desired
metrics. This includes both technical (e.g., rulesets, use-cases, alert
correlation rules) and human-level (e.g., analysis processes, ana-
lyst expertise, flat vs. hierarchical reporting structures) aspects of
SOC operation, both of central importance for effective incident
detection and reporting [16, 20]. Examples of concrete use-cases
are comparison of SOC performance before and after changes in
SOC configuration, or continuous monitoring of SOC performance.
Further, the proposed solution can be integrated in analyst train-
ing procedures, or as part of a selection procedure for security
professional roles.

6.1 SAIBERSOC tool implementation

To operationalize the SAIBERSOC methodology, after its validation,
we developed the SAIBERSOC tool as an open source software so-
lution. SAIBERSOC implements all four architectural components
outlined in subsection 3.2. It is deployed with a web-based front-end
(depicted in Figure 5) interacting with a backend. A comprehensive
API enables scripted access to all backend functionalities.
Functionalities and User Interface. Figure 5 shows the deployed
web interface and how architectural components (see subsection 3.2)
AC-1...AC-3 are implemented in the web interface; report evalua-
tion (AC-4) is not yet accessible through the frontend. On the left
side of the screen, UX element e provides access to the attack
trace library (AC-1) showing previously uploaded network traffic
recordings. A user can manually add traces onto a timeline @ in
the center of the screen. Convenience features allow to search a
specific attack trace in the library or select a random one. From
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the timeline @ the offset and playback speed can be adjusted for
each attack trace individually. In the lower section of the screen,
@ provides additional configuration options for the selected at-
tack trace. Here, IP addresses and whole IP address ranges can be
rewritten to create a realistic attack scenario for the monitoring
environment. Buttons @, in the upper right area, provide func-
tionalities to load and save experiments/attacks and to start, stop,
or schedule their injections (AC-3). During attack injection (AC-3),
state and progress is visualized on the timeline @ using a vertical
red line as progress indicator. The tool is capable of automatically
extracting a ground-truth based on the metadata from the attack
trace library (AC-1) and the optional IP address rewrites in AC-2. A
SOC report, allegorized by a csv file, can be checked against the
ground-truth derived from the attack traces (AC-4).

Tool implementation and APIL. The SAIBERSOC web application
is implemented in Python. The (HTTP) API is based on Flask[27]
and the Flask-RESTX framework[10]. The web-frontend is built on
top of the API using vue. js[37].

Attack Traces (AC-1): The attack trace library consists of attack
traces in form of pcap network traffic recordings linked to metadata
stored in an internal database.

Attack Generation (AC-2): Internally, SAIBERSOC uses a list of
blocks to specify an attack. Each block consists of an attack trace
(taken from the attack trace library) and additional information
specifying time offset, playback speed, and IP address rewriting.
Once an attack is fully sketched out, scapy[5] is used to assemble
a single intermediate attack pcap.

Attack Injection (AC-3): SAIBERSOC invokes tcpreplay[33] to
inject the ‘intermediate attack pcap’ on a network interface. Op-
tionally, background noise can be replayed together with the attack.
Reporting (AC-4): The reporting module extracts and combines
the IP address rewriting from AC-2 and attack trace metadata from
AC-1 as ground-truth. It then compares selected columns from an
uploaded csv file against the extracted ground truth.

Publication, Development, and Licensing The development of
SAIBERSOC was supported by a team of BSc students as part of
their final graduation project. The SAIBERSOC tool is released under
Mozilla Public License (MPL 2.0). Source code, extensive documen-
tation, and supplementary materials are available from the artifact
repository at https://gitlab.tue.nl/saibersoc/acsac2020-artifacts.

7 CONCLUSION

In this paper, we proposed a methodology based on attack injection
to systematically measure SOC performance across SOC configura-
tions, analyst expertise, and for any output metric (e.g., accuracy,
time-to-report, ...). We verified the proposed methodology by con-
ducting an experiment in which 124 students assumed the role of a
SOC analysts. Our results show that the proposed methodology is
capable of systematically measuring SOC performance and attribut-
ing it to differences in configuration, where some is to be expected.
Our solution is general and can be implemented in any SOC. In
addition, we developed the SAIBERSOC tool to help replicate the
experiments and facilitate SOC exercises.
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APPENDIX

Data Collection and Analysis

Evaluation for possible typos. In an exploratory data analysis,
we observed that some groups reported IP addresses that are very
similar to the ones we expected to see as attacker or victim IP
address in one of the two scenarios. Based on the difference between
the IP addresses in the report and the ground-truth, we conclude
that it is very likely that those are typos or copy-paste errors.

In other cases, groups did not make the right selections in the
multiple-choice part of the questionnaire, but later mentioned cor-
rect details in the additional comment section of the report. For
example, group 78 did not indicate that they observed ‘http requests’
through the multiple-choice selection but wrote ‘[...] this malware
made a HTTP request [...]" in the additional comments.

To ensure automatic and reproducible processing of the results,
we decided to only consider IP addresses that are perfect matches
and solely rely on the multiple-choice selection.

Submissions violating the enforced format. Some groups managed

to submit reports that violate the constraints enforced through the
questionnaire. This mostly includes submissions that ticked more

M. Rosso, M. Campobasso, G. Gankhuyag, and L. Allodi

or less checkboxes than we allowed. Group 80 was able to select
three options where the questionnaire was supposed to allow no
more than two selections. We kept those submissions as they do
not interfere with our way of data analysis.

Double-submission. One group submitted twice, i.e. we collected
64 submissions for 63 groups. While both submissions are similar,
they are not identical. We decided to merge the submissions. The re-
ports in response to one of the injected attack scenarios are merged
by selecting the best parts of both submissions. We further decided
to keep the submission time and duration of their first submission.

(Not) Accepting ‘lateral movement’ inMirai. We initially did not
plan to accept ‘lateral movement’ as a correct answer in Mirai
scenario. In the Mirai scenario, the victim eventually mirrors the
attacker’s behavior and starts scanning the local network for vul-
nerable hosts. While the scenario ended before and therefore does
not cover lateral movement, the network scan can be interpreted as
a first step of lateral movement. We decided to not accept ‘lateral
movement’ as a correct answer for the Mirai scenario.

In total 40.0% groups (4/10) in BADSOC and 41.7% groups (5/12) in
GOODSOC selected ‘lateral movement’ (either alone or in combination
with ‘http requests’).

Questionnaire

Based on the choice on question 9, questions 3-8 can be repeated up
to four additional times (i.e., a total of five reports can be submitted).
The decision to limit the number of reports per submission was
induced by limitations of the survey tool used to collect the results.

(1) Insert your student ID
Multiple short text fields for multiple student IDs. Answers
are considered personal data.
(2) Which was your SOC name?
Binary choice between BADSOC and GOODSOC (names changed).
(3) Insert the IP address(es) of the attacker, one per line.
If no IP address is known, write ‘NA’.
Multi-line text field.
(4) Insert the IP address(es) of the attacker, one per line.
If no IP address is known, write ‘NA’.
Multi-line text field.
(5) Did you observe any of the following reconnaissance
activities?
Multiple choice single selection only: ‘Username enumera-
tion’, ‘Port scan’, ‘SIP scan’, ‘Web application vulnerability
scan’, ‘None of them’, ‘Other (small text field to specify)’.
Which vulnerability did the attacker exploit?
Multiple choice, multiple selections possible: ‘SQL injection’,
‘Weak credential’, ‘DNS remote command execution’, ‘Poor
web server configuration’, ‘Remote coded execution’, ‘None
of them’, ‘Other (small text field to specify)’.
Which of the following actions did you observe? (check
at most 2 boxes). For each option selected insert IP ad-
dress of the receiver of such activities (i.e. HTTP re-
quests -> web server’s IP; enumerating SMB shares ->
SMB server’s IP;.
Multiple choice, at least one, at most two answers can be
selected. Except of ‘No action observed’, all answers have a
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=

—
~
~


https://suricata-ids.org/
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/S1389-1286(99)00112-7
https://zeek.org
https://doi.org/10.1109/MSP.2010.60
https://www.metasploit.com/
https://atomicredteam.io/
https://atomicredteam.io/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://securityonion.net/
https://doi.org/10.1007/s10207-017-0365-1
https://doi.org/10.1007/s10207-017-0365-1
https://doi.org/10.1109/TIFS.2018.2871744
https://doi.org/10.1145/2663887.2663904
https://doi.org/10.1145/2663887.2663904
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/sundaramurthy
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/sundaramurthy
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://attack.mitre.org/
https://www.torproject.org/
https://www.torproject.org/
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
https://vuejs.org/

SAIBERSOC: Synthetic Attack Injection to Benchmark and Evaluate the Performance of Security Operation Centers ACSAC 2020, December 7-11, 2020, Austin, USA

Table 7: Mapping between requirements

and architectural components.

R-ID AC-1 AC-2

AC-3 AC-4

R-1  Attack traces are indepen- The attack generation allows
dent of the monitored envi- for the matching of the traces
ronment. to the environment.

R-2  The attack traces identify all The generated attack can suit
MITRE ATT&CK ‘building any final environment and at-
blocks’. tack scenario.

R-3 Attacks can be mapped to the
target environment using as-
set information always avail-
able at the SOC.

R-4 The tailoring of the attack
generation guarantees the ex-
istence of a ground-truth for
the examination.

The reporting and compari-
son relies on the ground truth
for the generated scenario.

The injection happens in the
real network flow monitored
by the SOC.

The analyst report can be au-
tomatically checked against
the attack parameters (AC-2).

Table 8: Implementation example across AC-1...AC-4.

Each AC is characterized by its parameters (par.), execution (exec.) and output. In AC-1 the attack traces are structured across the MITRE ATT&CK phases; in AC-2
these traces are parametrized for the specific environment, for example with IP ranges corresponding to the monitored infrastructure; AC-2 produces the traces that

will be injected based on the defined parameters and generates the attack by ordering the

traces following the ATT&CK framework phases. The parameters of AC-2

also characterize the ground truth of the attack. AC-3 injects the generated attack in the infrastructure, generating the corresponding alerts at the SOC level; finally,
AC-4 checks the analyst’s evaluations against the ground truth defined by the parametrization in AC-2.

AC-1 Trace AC-2 Attack Generation AC-3 Injection AC-4 Report
% Identification of the Attacker, victim, and CnC IP(s), URLs, Setting up pcap injec- 1. SOC report;
é needed attack phases #CVE, protocols, encryption, ... tion and schedule 2. Attack ground-truth
g Gathering or creation Recon: portscan(src_ip, dst_ip); Pcap is injected in the Comparison of SOC report
g of attack traces Expl: exploit_cve(cve, src_ip, dst_ip); sensor of the SOC ac- and attack ground-truth
§ Del: http_get(src_ip, url, tls); cording to schedule
[\

C&C: contact_cnc(src_ip, dst_ip, prot, enc)

(e.g, 12pm)

.. Del.: http_get(); 1. Pcap of the synthetic attack built from
é Expl.: exploit_cve();  the parametrized phases;
2 Recon.: portscan(); 2. Attack ground-truth (expectations)

C&C: contact_cnc()

(At 12pm) pcap on e.g., SOC found portscan and

wire is raising alertsin  CnC activity, but not ex-

the SOC ploitation and reported false
positive lateral movement.

small text field to further specify an IP address: ‘Data exfiltra-
tion’, ‘Enumerating SMB shares’, ‘HTTP requests’, ‘Denial
of Service attack’, “‘Web server path traversal’, ‘NTP amplifi-
cation’, ‘Network lateral movement’, ‘No action observed’.
(8) Anything else to report about this attack?
Multi-line text field.
(9) Do you want to report another attack?
Binary yes/no selector. Subjects could submit up to five re-
ports (questions 3 - 8), selecting ‘yes’ would allow them to
continue, selecting ‘no’ would allow them to submit their
results.

(10) Did you had fun?
Rating-scale 1 (really boring) - 5 (it was great)

(11) Do you think the introduction was enough to do the
exercise?

Rating-scale 1 (not at all) - 5 (definitely enough)
(12) Do you think we should do again this next year? Binary

yes/no selection.

(13) Did you find anything particularly challenging during
the investigation process?
Multi-line text field.

(14) Write here any other suggestions you might have in
mind.
Multi-line text field.
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