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ABSTRACT
This work presents the first findings on the feasibility of using
botnets to automate stock market manipulation. Our analysis incor-
porates data gathered from SEC case files, security surveys of online
brokerages, and dark web marketplace data. We address several
technical challenges, including how to adapt existing techniques
for automation, the cost of hijacking brokerage accounts, avoiding
detection, and more. We consolidate our findings into a working
proof-of-concept, man-in-the-browser malware, Bot2Stock, capable
of controlling victim email and brokerage accounts to commit fraud.
We evaluate our bots and protocol using agent-based market simu-
lations, where we find that a 1.5% ratio of bots to benign traders
yields a 2.8% return on investment (ROI) per attack. Given the short
duration of each attack (< 1 minute), achieving this ratio is trivial,
requiring only 4 bots to target stocks like IBM. 1,000 bots, cumu-
latively gathered over 1 year, can turn $100,000 into $1,022,000,
placing Bot2Stock on par with existing botnet scams.

CCS CONCEPTS
• Security and privacy→ Economics of security and privacy;
Distributed systems security.
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1 INTRODUCTION
Open markets are susceptible to manipulation, generating thou-
sands of dollars of illicit profits per perpetrator per month [41].
Uncovered cases reveal manually executed scams performed by one
or two coordinating people, which makes it easier to distinguish
their activity from other benign traders. Most investigative break-
throughs come from uncovering links based on real life bonds (e.g.,
coworkers, family). This raises a serious security question:What
will happen when fraudsters start leveraging distributed au-
tomation (i.e., botnets) to conduct attacks?

To answer this, we consider the feasibility of carrying out a
market manipulation campaign using botnets. This is a radical
departure from the current mindset centered around using spam [6,
17, 22, 31, 36] and social media [18, 29, 37, 50] to misinform human
traders, and raises an orthogonal set of novel technical challenges,
such as determining which market manipulations a hypothetical
botnet would likely utilize, how bots would coordinate, whether
accounts can be hijacked at the necessary scale, how they would
evade detection, the impact of latency and size on effectiveness, and
ultimately, how profitable this would be for the cyber criminal. By
eliminating the human victim from the loop, the resulting attack
achieves interesting properties, such as completely eliminating the
human-readable trail left by spam and blog posts.

We present the first findings and analysis on this problem, start-
ing with real-world U.S. Securities and Exchange Commission (SEC)
case files and then gathering our own data to consider how these
schemes can be fully automated by a botnet.We are the first to study
the SEC’s public releases from this cyber-focused perspective. From
our survey of the security and default settings of online brokerages,
we make the startling discovery that strong protections like two-
factor authentication (2FA) are discretionary for users across the
industry, making phishing straightforward. Trade notifications are
by default delivered via email only, where malware with access can
silently delete them before the user receives notification on any
device. Dark web marketplaces sell stolen brokerage accounts con-
taining thousands in cash for mere tens of dollars, demonstrating a
low difficulty for the hackers.

From these findings, we design and implement the first proof-of-
concept trading malware, Bot2Stock, and evaluate it using agent-
based market simulations similar to those used to study human-
driven market fraud [51] and in industry [5, 34]. Bot2Stock acts
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as a man-in-the-browser, hijacking session cookies to gain access
to brokerage and email accounts. Once inside, market manipula-
tions are completed in minutes, achieving the adversary’s objective
before the victim can react.

From our simulations, we discover a novel and surprisingly effi-
cient manipulation, based on layering, that does not require bots to
keep each other informed about their current holdings. This dramat-
ically simplifies the command and control (C2) protocol, reducing
it to pointing the bots at a stock symbol and sending a global “go”
signal, followed eventually by a “stop.” In short, contrary to initial
expectations, manipulating stocks is not a delicate tightrope act if
the protocol is cleverly designed.

What we find most fascinating about Bot2Stock is unlike other
malware-driven scams, our modeled criminal profits indirectly by
provoking market movements predictable to the botmaster, but
unexpected and hardly noticeable by everyone else. Distributing
the orders across many accounts with no obvious correlation, in
an environment where 85% of trade volume is already generated
by benign bots [19], obscures the criminal’s activities, hiding the
paper trail that would otherwise be obvious — and subsequently
“frozen” by regulators — in a “smash and grab” approach.

The results of our simulator evaluation shows that Bot2Stock is
robust and profitable for the botmaster across varying botnet sizes
and network latency. A 1.5% ratio of bots to background traders
yields an average ROI of 2.8% for the botmaster over 2.5 seconds.
Given the attack’s short duration, satisfying this ratio is trivial,
requiring only 4 bots per attack to target stocks like IBM. A mod-
est network of 1,000 bots, cumulatively gathered over a 1-year
campaign, can achieve a non-compounding annual return on in-
vestment (ROI) of 1,022% if 1 attack is performed per day over 252
trading days without reusing a bot. In other words, a botmaster can
turn $100,000 into $1,022,000 in a year, which is consistent with
the uncovered human-driven campaigns described in SEC reports
and comparable to other botnet-based scams (e.g., click fraud). Our
dark web scraper observed 1,005 stolen Charles Schwab accounts
sold in 3 months on 1 marketplace, demonstrating the feasibility of
gathering 1,000 bots over a yearlong campaign.

To promote future work, we have made our PoC malware and
simulations publicly available.1 This work has been disclosed to
the SEC and Financial Services Information Sharing and Analysis
Center (FS-ISAC).

2 RELATEDWORK
Attacks & Measurements. Research on stock market manipu-

lation can be divided into two camps. The first studies how rumors
in spam [6, 17, 22, 31, 36] and social media [18, 29, 37, 50] lead to
unusual market returns and volatility. Our work distinguishes itself
from these by focusing entirely on trade-based manipulation, as
opposed to social engineering.

The other group investigates trade-based manipulation with-
out spreading rumors or spam [1, 2, 25, 35]. Khwaja et al. [24]
investigated situations where brokers colluded and discovered that
intermediaries can earn annual rates of return that are 50 to 90
percentage points higher than regular traders. This group of work
most closely relates to ours, but does not consider the potential

1https://github.com/carter-yagemann/Bot2Stock

to distribute and automate manipulations to obfuscate the crimi-
nal’s participation. There is recent work by Xu et al. [53] analyzing
pump-and-dump in the context of crypto-currency trading, but
these scams are also conducted manually by humans coordinat-
ing over services like Telegram and Discord and without layering.
While there is a past work on simulating spoofing (layering), also
using agent-based simulation [51], it was based on Nash equilib-
rium, unlike ours, and we are the first to incorporate a model for
computation delay and network latency in order to simulate a C2
protocol. Prior work did not consider colluding parties (bots).

Defenses. Automatically detecting manipulation has also been
explored using complex time series [20], hidden Markov chains [7,
10, 47], and other techniques [11, 20, 27, 47]. Unfortunately, ac-
curacy remains unsatisfactory. The most accurate system we are
aware of, proposed by Cao et al. [11] to detect wash trading, only
achieves 45% precision and 55% recall on a dataset from the NAS-
DAQ and London Stock Exchange.

3 BACKGROUND & OVERVIEW
3.1 Market Mechanics
Basic trading consists of creating asks (offers to sell a quantity of
shares in a stock at a particular price) and bids (offers to buy).2
A limit order will only match offers at a certain price (or better)
whereas market orders immediately match the best available offers.
These orders can be set to expire automatically after a certain time
(e.g., when the market closes at the end of the day) or remain active
until they are filled or explicitly canceled by the trader. Active
orders are considered open whereas completed or canceled ones
are closed. A trader’s positions in a stock is the aggregate of all the
shares they currently own [45].

Canceling is important to this work because it allows traders to
create orders purely with the intent of canceling them later. These
are referred to as non-bona fide orders and they form the corner-
stone for some of the fraud we consider in Subsection 3.2. Making
non-bona fide orders is illegal in the U.S., but since canceling is
not inherently illegal, the distinction from bona fide orders is a
matter of determining the trader’s intent. As evident by the activi-
ties of day traders (professionals that watch the markets and make
multiple trades daily) and high-frequency trading, even canceling
high volumes of orders is not inherently illegal, which creates an
opportunity for abuse.

Another important mechanism is margin trading, which consists
of margin buying and short selling (shorting). These are analogous
to loans a trader can use to borrow stock shares or cash. In short, if
a trader believes a stock’s price will decline, but does not currently
own any shares to sell, he can borrow shares from a lender with the
promise of returning them (with interest) later. This lets him sell,
and then if the price does decline, he can buy back the shares he
owes at the lower price, yielding a net profit. Margin buying is the
same concept, except with cash. The trader borrows money from a
lender, enabling him to buy more shares to reap greater gains.

2Readers may already be familiar with bidding for items on eBay or seeing an asking
price on Craigslist.
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Table 1: Cases of Market Manipulation Selected for Further Analysis

Case Title Fraud Start Date Duration Instances Revenue Annual Rev.

SEC v.s. Joseph P. Willner PnD Sep 2014 2 Ys 110 $700,000 $350,000
SEC v.s. Unknown traders and JSC PAREX Bank PnD Dec 2005 1 Y 16 $732,941 $732,941

SEC v.s. Taub et al. Layering Jan 2014 1 Y, 11 Ms 23,000 $26,000,000 $13,565,217
SEC v.s. Milrud Layering Jan 2013 2 Ys ≥1 $24,000,000 $12,000,000

SEC v.s. Briargate Trading, LLC Layering Oct 2011 1 Y 242 $525,000 $525,000
SEC v.s. Visionary Trading LLC et al. Layering May 2008 2 Ys, 6 Ms ≥1 $984,398 $393,759

SEC v.s. Hold Brothers On-Line Investment Services LLC et al. Layering Jan 2009 1 Y, 9 Ms 325,000 $1,800,000 $1,028,571

3.2 Case Studies
From our initial study of the SEC case files dating from 2005 to
2018, Table 1 lists several exemplar instances of pump-and-dump
(PnD) and layering frauds, including when they occurred and how
long the campaigns ran before being caught. We summarize these
cases here to establish a preliminary understanding of the current
state of market fraud. The attacks are generalized and automated
in Section 4.

Pump-and-Dump. Willner (Row 1, Table 1) prepared his scam
by placing asks to short shares of the target stock at prices sig-
nificantly higher than the current market value. He then used a
hijacked victim account to place a matching bid at the same high
price, causing his ask to execute. The victim now owns the over-
priced shares. Willner then forced the hijacked account to sell the
shares back to him at below market value, resulting in a significant
profit for Willner and loss for the victim.

In the Unknown Traders case (Row 2, Table 1), the criminals
prepared by purchasing shares in the target stock using their own
accounts. Meanwhile, they liquidated existing stock shares in hi-
jacked victim accounts into cash. They then used the resulting cash
to purchase large volumes of shares in the target stock, causing a
surge in the market and pumping up the price. The culprits could
then sell their shares at the peak of the price surge, yielding a profit.

Layering. All the listed cases (rows 3 through 7) start with open-
ing multiple asks to sell the target stock at progressively lower
prices. A few of these orders are allowed to fill, deflating the price
and applying downward pressure (i.e., expectation among back-
ground traders that the price will continue to decline). Some back-
ground traders sell their shares to avoid the anticipated decline,
further deflating the price. The criminals respond by executing bona
fide buys at the deflated price and then cancel all their remaining
sell orders. With the pressure suddenly gone, the price reverts back
to its original value, allowing the criminals to cash out for a profit.

The scam is then repeated in the opposite direction, starting
with a series of non-bona fide buy orders at increasing prices to
artificially inflate the price, followed by bona fide sells and cancels.
In summary, by creating the illusion of pressure, these criminals
deceive background traders into moving the stock price in their
favor.

3.3 Technical Challenges
Going from manual market manipulation to automated botnet cam-
paigns is not a one-to-one translation. There are several technical

challenges an adversary has to overcome to successfully adapt the
current techniques. The ones addressed in this work are:

(1) Which types of manipulation are suitable for botnet automa-
tion? (Section 4)

(2) How can a botnet bootstrap these attacks (e.g., acquire the
necessary shares to begin the manipulation), and evade de-
tection by brokerages? (Subsections 4.1, 4.2)

(3) How much trading leverage, vital for conducting fraud, does
a hijacked account offer verses the difficulty of compromising
it? (Subsection 4.3)

(4) How would a botnet optimize profitability (e.g., avoiding
accumulating commission fees)? (Subsections 4.4–4.6)

(5) How will the botmaster compromise enough accounts, with-
out depleting them of cash, to conduct the campaign while
remaining undetected? (Subsection 5.1)

(6) How will the botmaster holistically combine these adapted
techniques into a functional malware, including the hiding
of notifications and transaction histories? (Subsection 5.2)

(7) How efficient can the botmaster make the C2 infrastructure
while maintaining robustness and effectiveness? What ROI
can he expect and how many bots does he need? (Section 6)

(8) How profitable is botnet-based stock market manipulation
compared to other scams? (Subsection 7.2)

(9) What are the possible paths towards defending against a
market manipulating botnet? (Subsection 7.3)

We identify these challenges as being unique to automating
market manipulation and find that their solutions have a signifi-
cant effect on the design of Bot2Stock’s malware and C2 protocol.
General challenges to operating botnets, like acquiring C2 infras-
tructure and infecting victim machines with malware, are already
studied in prior and ongoing research [4, 39].

3.4 Threat Model
In this work, we assume a botmaster has assembled a botnet by in-
fecting devices with malware and has discovered that some portion
of these devices are regularly used to access brokerage accounts —
presenting an opportunity to commit market fraud.We focus on U.S.
exchanges and brokerages, but believe our findings are applicable
to other countries as well. Users conduct trading either via their
browser, using a brokerage website, or with a native program (i.e.,
trading platform). Accounts are protected using current industry
practices, meaning 2FA is available, but not required, and notifica-
tions are delivered via email. We confirm this to be the case for the
top U.S. online brokerages in Subsection 5.1.
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We assume each compromised account has at least $5,000 in cash
(measured in Subsection 4.3) and does not have a line of credit with
the brokerage, meaning shorting and margin buying is unavailable
(Subsection 3.1). The brokerages are expected to be running anom-
aly detection systems designed to monitor individual accounts for
irregular or questionable trading patterns. For example, one com-
plaint filed by the SEC describes Q6, a proprietary program capable
of detecting indicators of layering [43]. Exchanges are also assumed
to be using anomaly detection software, however due to how or-
ders are routed from trader to brokerage to broker to exchange, the
relationship between orders and traders is opaque — as evident by
ongoing efforts to design and implement a consolidated audit trail
for U.S. markets [13, 15]. In short, for the botnet to be successful,
it must shape and distribute its trading patterns to evade several
layers of anomaly detection while still maintaining profitability.

4 GENERALIZING MARKET FRAUD
The SEC publicly releases all the case files for formally investigated
complaints. As a starting point for our study, we manually examine
all the summaries for cases filed between 2015 and 2018 (about 700
cases in total). We decide to focus on two types of cases, PnD and
layering, because these offenses are purely based on trading behavior,
making them feasible to automate.We do not consider crimes like
insider trading and Ponzi schemes, which have a significant social
engineering component that a botnet alone cannot conduct.

With our categories chosen, we further expand our dataset by
searching the SEC site for documents containing relevant keywords
and by consulting the “Recent Trade Surveillance Enforcement
Actions” list maintained by Trillium [49].

In order to identify the exemplar SEC cases for detailed analysis,
we apply the following search criteria:

(1) We only consider pure trading manipulation and eliminate
cases with non-trading behavior. For example, even if a case
involved PnD, if it also relied on sending spam to promote
the stock, we exclude it.

(2) We only consider cases where at least one detailed exam-
ple of the alleged manipulation is provided. It must include
sufficient information to derive the exact orders made and
the criminal’s net gain. In most cases, the culprit repeats the
manipulation several times, so their total gain is significantly
higher than the net gain of the lone recorded example.

(3) We only consider cases where market manipulation directly
benefits the culprit. In several instances, fraudwas performed
to keep the stock eligible for trading on the NASDAQ, which
is a motive outside the scope of this work.

A summary of all the cases we pick for further analysis is con-
tained in Table 1. The format “x v.s.y” indicates that x is the plaintiff
and y is the defendant in the case. Interestingly, among the SEC
cases we consider, the majority were instances of PnD that involved
non-trade behavior (mainly to promote the target). The two cases
listed in Table 1 utilized hijacked accounts to manually carry out il-
legitimate trades, suggesting that this direction is ripe for malicious
automation.

4.1 Automating Layering
Layering can be utilized to raise or lower the price of a target stock.
For simplicity, we will explain how it is used to lower the price. The
perpetrator begins by placing asks at prices slightly worse than the
current best offer to create pressure. As orders from other traders
execute in response to the pressure, the perpetrator cancels and
replaces his own, always staying slightly worse than the best offer.
Once the price is sufficiently lowered, the perpetrator bids at the
manipulated price, allowing him to obtain shares at an artificially
low price. He then cancels all his remaining open orders, waits for
the price to revert back to its original value, and then sells his shares
for a profit. Readers can refer to the Appendix for more detailed
examples with real-world data.

Automation. The main challenge we notice with automating
layering is a bootstrapping hurdle where in order to make any sell
orders (even non-bona fide ones), the seller must first own the shares
to be sold. It is possible to use short selling to sidestep this issue, but
as previously mentioned, we do not assume the hijacked accounts
have the credit necessary for margin trading. Having the bots buy
shares in advance is difficult because buying too quickly will impact
the price negatively for the criminal and buying too slowly will
prolong the attack duration, reducing profits and raising the risk of
premature detection.

Instead, the easiest solution is to start with layering bids, whereas
the real-world cases in Table 1 all started with asks. The criminal’s
profit remains unchanged, but now he only needs to prepare his
own account to sell as opposed to having to prepare all the bots.

Evasiveness. There are two patterns that are typically used by
anomaly detectors to spot layering. The first is a trader opening
orders on both sides of the order book (asks and bids), with one
side being disproportionately larger than the other. In one case the
SEC investigated, this kind of trading behavior tripped the anom-
aly detector used by Lek Securities Corporation — a proprietary
system called Q6 [43]. Bot2Stock avoids creating this pattern by
having each bot only place a single order, on one side of the market,
to setup the layering. The other signal is placing orders on one
side of a stock’s order book at progressively increasing prices and
then canceling them in bulk (e.g., Taub et al. [44]). Bot2Stock also
avoids creating this pattern because again, each bot only places a
single order. Cumulatively, an imbalance is created in the book, but
individually the bots are only placing one order per account at a
time.

This highlights the advantage of performing market manipula-
tion with a botnet. Namely, the large number of bot participants
obscures the manipulative intent of the botmaster by making the
orders appear as the independent acts of unrelated parties.

4.2 Automating Pump-and-Dump
A PnD perpetrator starts by buying or selling shares in a stock to
drive the price in the corresponding direction. Other traders see this
momentum and start placing orders based on the wrong assumption
that there is a legitimate reason behind the price movement. The
perpetrator then stops pumping and reverses the direction of his
orders to profit from the momentum. For example, if he was buying
to pump up the price, he would follow up with asks at an even
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Table 2: Stolen Charles Schwab Accounts (9/16/16–12/12/16)

Selling Price Min Account Cash Max Account Cash

$50 $5,000 $20,000
$75 $20,000 $100,000
$100 ≥ $100,000 -

Accounts Sold (1,005)

higher price, yielding a profit when the momentum perpetuated by
the fooled traders reaches that price.

More aggressive perpetrators can also double their profit using
margin orders. Continuing the current example, when the perpetra-
tor places his asks to dump the shares he acquired while pumping,
he can also short the stock. In other words, the perpetrator borrows
shares, sells them at the pumped up price and then after the price
crashes back to its starting value, the perpetrator can buy at the
original value to pay back the owed shares.

The primary shortcomings with PnD, from the criminal’s per-
spective, is that acquiring enough shares or cash to bootstrap the
scam is difficult and executing many trades accumulates commis-
sion fees that eat into the criminal’s leverage. This leads us to
conclude that layering is better suited to automation.

Automation. Table 1 contains additional details about the PnD
cases, including the number of times the fraud was successfully
performed and the illicit revenue according to the SEC. Applying
PnD to a malware requires the botmaster to coordinate the use of
the hijacked accounts. Specifically, performing the setup too slowly
prolongs the attack and raises the risk of premature detection, but
moving too quickly will result in a “smash and grab” with a higher
risk of tripping anomaly detectors. Due to how orders are matched
best-offer-first, the bots will need to keep pumping the price until
it is sufficiently inflated (via buying) or deflated (via selling) for the
botmaster to make a profit.

Evasiveness. In theWillner case, it took 4 days for the brokerage
to start an investigation into his trading patterns. The FS-ISAC also
started questioning his trades in roughly the same amount of time.
The key anomaly implicating him was the placement of sell orders
at prices significantly higher than the market price. The hijacked
accounts were not discovered until a later investigation. Therefore,
the botmaster should be careful not to place his orders prior to the
bots pumping the stock’s price.

Conversely, in the Unknown Traders case, the account compro-
mises were detected first and then correlated with trades made by
the culprits across 15 stock symbols. In short, reusing the exact
same accounts across sessions led to their detection. They only
evaded prosecution because they were able to act anonymously
through the domestic brokerage accounts of Latvian-based relief
defendant JSC Parex Bank. The bank was fined for negligence.

Both cases demonstrate a limitation in automating PnD. Namely,
because the profiting account has to make trades that so blatantly
contradict the background market movements, the botmaster is
likely to be detected, regardless of the botnet’s activity. This makes
layering the more likely technique to be used in a successful crimi-
nal botnet campaign.

Table 3: Automating Taub et al. Layering Instances

Layering Orders Cash Lost Cash Needed Time (s) Profit

Table 9 & 8 $728 $401, 102 141 $3, 285
Table 10 & 11 $1, 345 $303, 460 120 $4, 927
Table 12 & 13 $3, 065 $219, 449 218 $24, 501

4.3 Approximating Leverage & Availability of
Hijacked Accounts

Once the criminal has gained control of the victim’s brokerage
account, any owned assets can be used to manipulate the market.
Our modeled criminal does not touch any of the securities already
held in the account, because rapidly liquidating an account’s assets
is a red flag for brokerage anomaly detectors [42]. However, he can
use the cash in the account that is readily available for trading. We
refer to the combined cash across all the accounts controlled by the
adversary as the trading leverage.

Methodology. To estimate how much leverage an adversary
can expect to gain per compromised account, we turn to dark web
marketplaces for data. Our data was collected over several months
in 2016 from the now dismantled AlphaBay marketplace, which
was accessible via the Tor network. We focus on accounts belonging
to Charles Schwab, which is a major U.S. brokerage.

We collected and parsed listings using a website scraper to per-
form periodic keyword searches [26]. Listings on AlphaBay dis-
played the price and number of units (i.e., accounts) sold. Criminals
priced accounts based on the amount of cash they contained. How-
ever, only the approximate cash values were displayed. We use this
data as a proxy for how much effort the hacker exerted to hijack
accounts. Specifically, we divide the price of the stolen account by
the amount of cash it contained to approximate how much cash
leverage is gained per dollar spent.

Results. Our data is summarized in Table 2. Between September
and December of 2016, we found 1,005 sold accounts, priced from
$50 to $100 per account. They were advertised as having at least
$5,000 in cash and some claimed to contain over $100,000, although
the upper bound was not provided.

Based on the data, the average leverage is $660 per every $1 spent
with a minimum of $100 per $1 spent. To keep our calculations
throughout this work conservative, we use the minimum observed
leverage for an account that was actually sold. This stolen account
went for $50 and contained $5,000 in cash.

4.4 Profitability of Automated Layering
Table 1 shows the alleged illicit gains for our layering case studies.
For the rest of our analysis, we focus on the the complaint “SEC v.s.
Taub et. al.” because it has the most detailed transaction logs. To
approximate the profitability of automated layering, we consider
the revenue and costs associated with a botnet performing the same
actions as reported in this case.

The full transaction tables for Taub et al. are in Appendix A. The
case does not state which stocks were manipulated, but mentions
that each instance was for a different company traded on the NYSE.
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Table 4: Automating Pump-and-Dump Instances

Instance Stock Cash Lost Cash Needed Time (s) Profit

Willner #1 FCCO $2,942 $7,991 N/A $2,942
Willner #2 HIHO $3,600 $25,722 600 $3,000
Willner #3 EARS $6,660 $35,460 60 $6,201
Unknown
Traders #1 REDI $49,000 $251,964 9000 $75,720

Unknown
Traders #2 DEPO $133,107 $1,435,400 3600 $51,078

Unknown
Traders #3 ORCH $77,285 $765,310 4560 $55,783

To be conservative, we assume a $5 commission fee per executed
order3 and that each hijacked account starts with at least $5,000 in
cash (Subsection 4.3). To approximate the total commission fees, we
take the cash value of the executed order and divide by the per-bot
cash to determine the number of distinct orders bots would have
to place collectively to achieve the desired result. For example, if
$8,000 worth of shares were bought in the original manipulation
and each bot has $5,000 in cash, 2 bots would collectively need to
make 2 orders ($4,000 each), resulting in $10 of commission.

Results. Our results are summarized in Table 3. If we consider
a scenario where each account costs $50 to hijack and has $5,000 in
cash (Subsection 4.3), repeating the reported instances will require
up to 80 bots and yield $24,501 in profit. Subtracting fees and com-
missions, each bot will yield $41 to $557 in profit. If we assume each
bot is only used once, our lower bound profit estimate for 1,000
bots is $41,000.

Compared to PnD (calculated in Subsection 4.5), this seems like
a low profit margin, especially considering that both techniques
require roughly the same amount of cash to bootstrap. However,
layering takes significantly less time to perform (under 4 minutes
compared to hours for PnD) and inflicts almost no cash loss on
the bots. Specifically, only $3 in cash is lost per bot, on average,
because most non-bona fide orders cancel successfully. This makes
it highly feasible to perform layering multiple times in the same
span of time as a single PnD manipulation.

For example, given the cash needed to launch an instance of
layering, 1,000 bots ($5 million starting cash) can conduct 12 to 22
layering manipulations in parallel. This allows 44 to 80 instances to
complete in 10 minutes, generating $158,000 to $1,078,000 in profit.

4.5 Profitability of Automated
Pump-and-Dump

To determine the cost and number of hijacked accounts rendered
unusable after manipulation, we extract the target stock and log of
fraudulent orders (identified by the SEC) from the two case files. We
compute the net cost of these orders along with the total leverage
needed to execute them and report the yielded profit and duration
of each manipulation session.

We only focus on the orders made to manipulate the market and
not the ones made by the culprit in advance to reap the benefits
3$5 per order is an upper bound for commission fees. In recent years, brokerages have
been eliminating them entirely [16].

of the manipulation since these orders do not affect the botnet’s
operation.

Results. Our results are summarized in Table 4. Based on the as-
sumption that an account holding $5,000 in cash costs $50 to hijack
(Subsection 4.3), the method from Willner’s case would require 2
to 8 accounts and generate at least $3,000 in profit (first three rows
of Table 4).

If we consider a modest botnet of 1,000 bots (i.e., 1,000 hijacked
accounts) and assume accounts are not reused across rounds, even
under the worst case scenario, it could generate $750,000 in profit.
These profits easily offset an upper-bound commission fee of $5
per order.

In comparison, the manipulation technique used in the Unknown
Traders case yields less profits for the botmaster, but also better
preserves the cash in the hijacked accounts. In the worst case, 50 to
300 hijacked accounts are needed, yielding at least $51,000 in profit
(last three rows in Table 4). A botnet of 1,000 hijacked accounts
would yield a lower bound of $228,000.

4.6 Botnet Self-Sustainability
Based on the numbers in Table 3, the profit for the criminal is greater
than the collective cost to the bots. In other words, the criminal can
feasibly use layering or PnD to achieve self-sustainability for the
botnet. To achieve this, the botmaster can take turns with the bots
in a round-robin fashion. When it is the botmaster’s turn, he will
buy stock at the deflated price and sell at the inflated price, earning
a profit. When it is the bots’ turn, they will collectively use their
own capital to buy stock at the deflated price and sell at the peak,
yielding their own profits.

To analyze the feasibility of this sustainable design, we extract
from the transaction logs the capital needed for the winner for
each provided example, which is at least $336,000. The results of
our analysis is summarized in Table 5. As the table shows, the
profit made by the bots in their round covers the loss from both the
botmaster and bot rounds. Thus, under the sustainable design, not
only will the bots (i.e., the hijacked accounts) never run out of cash,
they will slightly gain. This surprising result distinguishes stock
market manipulation from other forms of botnet scamming.

5 IMPLEMENTATION
Using our findings from Section 4, we create a fully functional proof-
of-concept malware, Bot2Stock, focusing on the scenario where
a criminal wants to manipulate a stock market using a botnet of
infected victims. We consider a malware that behaves similarly to
banking trojans (e.g., Zeus, GameOver) by infecting a victim’s web
browser. The way these infections occur (e.g., phishing or software
exploitation) is already studied in prior work.

5.1 Hijacking Brokerage Accounts at Scale
We focus on brokerage defenses that prevent or create awareness of
account intrusions. We collect our data from 3 of the 6 most popular
online brokerages in the United States. Our analysis includes the
availability of 2FA and default settings for event alerts. Namely,
when they are triggered and where they are delivered. Our findings
are summarized in Table 6.
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Table 5: Cost/Benefit Analysis (Bot Perspective) for the Sustainable Design

Round Capital from Bots Profit/Loss
Per Instance

Instances in Parallel
(1,000 bots) Accumulated Bot Loss Bot Net Profit

Taub #1
Botmaster Round $401, 000 $3, 285/$728 12 $8, 736 $0

Taub #1
Bot Round $901, 000 $3, 285/$728 5 $12, 376 $4, 049

Taub #2
Botmaster Round $303, 000 $4, 927/$1, 345 14 $18, 830 $0

Taub #2
Bot Round $792, 000 $4, 927/$1, 345 6 $26, 900 $2, 662

Taub #3
Botmaster Round $219, 000 $24, 501/$3, 065 22 $67, 430 $0

Taub #3
Bot Round $555, 000 $24, 501/$3, 065 9 $95, 015 $12, 5494

Table 6: Comparison of Brokerage Security Features

TOTP 2FA Alerts
Brokerage Software Hardware SMS Email Mobile

Brokerage A G# G#  G#
Brokerage B  G#  G#
Brokerage C    G#

TOTP G# = Setup requires call Alert G# = Disabled by default

Two-Factor Authentication. By default, the three online bro-
kerages do not require 2FA, which is consistent across the industry.
Other work has shown that users are unlikely to take the initiative
to setup 2FA if it is not mandatory [38], lowering the bar for attacks
like phishing.

At the time of writing, all three brokerages support software
TOTP via the Symantec VIP Access application, as shown in the
left-most column of Table 6. Brokerages A and B also support TOTP
via a dedicated hardware token (second column), whereas C uses
SMS or phone calls (third column).

While hardware TOTP is regarded as more secure than its soft-
ware alternative, SMS and phone calls are weaker due to threats
like SIM swapping [40], which can allow an adversary to intercept
codes. All of these 2FA schemes can be phished or intercepted,
which works in the botmaster’s favor.

Alert Triggers & Delivery. By default, all three online broker-
ages generate alerts when security settings are modified and when
orders are created or their status changes (e.g., filled or canceled).
A summary is also generated at the end of each day where orders
occurred. Users can disable the per-order notifications to avoid
being bombarded during frequent trading.

By default, all three brokerages deliver their alerts via email only,
as shown in the fourth column of Table 6. Users can also receive
notifications on their mobile devices (fifth column), but they must
enable this feature.

Email notifications can be silently deleted by the malware us-
ing filter rules (Subsection 5.2). Mobile notifications can only be
deleted at scale if the malware infects the mobile device, presenting
a higher risk of discover. However, this is not the default behavior
for brokerage accounts.

5.2 Architecture
We base the design of Bot2Stock after the man-in-the-browser
architectures typically utilized by banking trojans. Specifically, our
proof-of-concept malware is able to: 1) read and modify any web
page visited by the user, 2) record all HTTP(S) header information,
including cookies, 3) spawn additional browser sessions to perform
arbitrary web requests, 4) add and remove filter rules from popular
email services (i.e., Google, Yahoo, Microsoft), and 5) create trade
orders in popular brokerage services and simulators.4 We have
open sourced our proof-of-concept and recorded a demonstration
video of the attack.5

Figure 1 shows the steps in performing the attack. First, the
malware adds itself as a certificate authority to the victim’s browser.
It then spawns a local proxy server and configures the browser to
route all traffic through it. SSL bumping is used so the malware can
decipher encrypted data.

The malware’s core logic is implemented inside an internet con-
tent adaptation protocol (ICAP) server. It is able to arbitrarily read
and modify requests and spawn and control additional browser
sessions.

The malware silently captures credentials and session cookies
as the user navigates sites. Once it has the necessary materials to
access the user’s email and brokerage accounts, a new browser
session is spawned with this data. For demonstration purposes, we
make this browser visible so researchers can observe the actions
being performed by the malware.

Before performing any manipulations, the malware adds filter
rules to the victim’s email account so trade notifications will be
silently deleted. These rules are very flexible, allowing the malware
4For ethical reasons, we only open source the simulator automation.
5https://github.com/carter-yagemann/Bot2Stock/blob/master/demo.mp4
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Figure 1: Bot2Stock architecture. Using a proxy and ICAP server, Bot2Stock is able to read, modify, and spoof web traffic.

to delete the brokerage notifications its actions generate while
allowing any made by the victim to pass through [21, 32, 33].

The malware then contacts the botmaster and makes its mali-
cious trades while keeping a transaction log. If the victim accesses
their history in the brokerage site, the malware will intercept the
response and remove the malicious orders to hide them, presenting
the user with a falsified transaction history.

6 SIMULATION
The analysis from Section 4 demonstrates that layering is profitable
for real-world criminals and may even be self-sustainable for a
botnet under the right settings. However, all the studied cases
were performed manually by one or two perpetrators. It is unclear
whether layering can be used by a botnet to the same result. To
address this question, we turn to agent-based simulation to consider
the performance of Bot2Stock under various conditions.

6.1 Simulator Design
Stock markets are extremely difficult to model and simulations
are hard (if not impossible) to validate for realism. To simulate
Bot2Stock, we leverage an agent-based discrete event simulator [9],
which is the most advance type of simulation accepted for modeling
stock markets [28, 46, 52]. It is also used in industry to evaluate
multi-agent interactions [5, 34].

Our simulation consists of a collection of background agents that
trade a stock based on a mixture of trading strategies (elaborated
on in Subsection 6.2). Orders are placed by sending messages to an
exchange agent that maintains an order book for the stock. Mes-
sages follow the same protocol used by NASDAQ, which includes
allowing agents to query for the latest order stream and current or-
der book spread. Thus, agents can adjust their strategies in reaction
to the current state of the open orders at the exchange.

The simulation models time at a nanosecond granularity. Agents
are “woken up” by the simulator’s kernel when it is their turn to
perform computations and send messages. When an agent finishes
performing its actions for that time step, it is put back to sleep. The
kernel awakens agents as they receive messages and at specific
times requested by the agent.

To account for the time it would take a real-world agent to
perform its computations, we apply a constant computational delay
factor whenever an agent wakes up along with a latency delay,
which is calculated as the sum of a constant minimum latency and
a non-negative random noise factor:

a + b(i, j) + P(i, j) (1)

Here, a is the computational delay constant, b(i, j) is the minimum
latency from agent i to agent j and P(i, j) is a random noise factor
for that connection.

6.2 Background Agents
Similar to related work on simulating stock markets, we use a com-
bination of Zero Intelligence (ZI) and Heuristic Belief Learning (HBL)
agents to represent the benign traders. Both agents rely on a fun-
damental belief value for the worth of the stock, which they derive
from noisy observations provided by an oracle. At the start of the
simulation, these agents enter the market with a Poisson distribu-
tion and place their orders based on their trading strategies, which
we elaborate on in the following paragraphs. Readers interested in
the exact formulas should refer to the spoofing work by Wang and
Wellman [51].

Zero Intelligence (ZI). These agents randomly buy and sell
shares based on the current price of the stock and their funda-
mental belief, which they regularly observe from the oracle. More
specifically, the decision to buy or sell is picked randomly and the
limit price is a bounded uniformly random offset from the funda-
mental belief value. There is also a strategic threshold, which allows
the ZI agent to place an order at the current price if it is within a
certain threshold of the fundamental belief.

Heuristic Belief Learning (HBL). These agents start with the
same strategy as the ZI agents, but also track the stream of recent
orders up to a configured memory length. Once enough orders exist
to fill the memory, the HBL agents start adjusting the limit prices
of their orders based on the transacted and rejected bids and asks.
In other words, unlike the ZI agents, these agents are influenced
by order book pressure, which is necessary to model the impact of
layering.

Fundamental Belief Oracle (FBO). In order for the agents to
create reasonable trades, they each need a fundamental belief of
what the stock is worth. To control these fundamental belief values,
we use a special agent to act as an oracle. This agent has no com-
putational delay or network latency and when agents query it to
update their beliefs, they receive a noisy reading of the fundamen-
tal value of the stock at that particular time step. Prior work has
shown that such an oracle can be used to guide the simulation in
following the trading patterns of real historical data [9], which to
our knowledge is the best evidence to date presented for defending
the simulation validity of a stock market simulator.

To avoid adding unnecessary complexity to our results, we use
a mean reverting FBO, which maintains a constant fundamental
belief value prior to adding noise for particular observations by the
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background agents. With this oracle, the background agents will
tend to drive the stock price towards a mean value in the absence
of manipulation.

6.3 Bot2Stock Agents & C2 Protocol
Our botmaster’s strategy is as follows: 1) buy shares when the
market opens at the best available price, 2) wait for a predetermined
attack time, 3) signal the layering bots (i.e., hijacked accounts) to
begin their manipulation, 4) wait a predetermined duration, 5) sell
the previously acquired shares, and then 6) signal the bots to cease
manipulation. Note that in a real-world setting, the botmaster would
more likely buy shares slowly over an extended period of time to
reduce the risk of being detected, but for simplicity we reduce the
pre-attack setup to a single bulk buy.

For the layering bots, our agents periodically poll the botmaster
and wait quietly for the attack signal. When it is raised, the bots
follow the layering strategy described in Subsection 4.1. They pe-
riodically poll the exchange to track the order book spread while
placing and canceling orders accordingly to maintain open bids that
are always slightly worse than the current best bid. For simplicity,
we only simulate the bots placing bids to drive the price up, but it
is feasible for them to also place asks to drop the price. When they
receive the signal to stop, they cancel all remaining open orders.

In the ideal scenario, the bot orders would never execute because
they are always slightlyworse than the best available offer. However
in practice, due to delays and latency, some orders will execute
by accident, which negatively impacts the botmaster’s profits by
causing the price to move in the undesired direction. Thus, one of
the key factors in determining the botnet’s success is in maintaining
open orders close enough to the best offer to influence the HBL
agents while avoiding executing too many by accident.

6.4 Evaluation Methodology
The purpose of our experiments is to evaluate the robustness of
Bot2Stock under different settings. Each experiment consists of
several hundred trial pairs for each tested value of the independent
variable. Pairs consist of a “control” simulation with no bot agents
and a “treatment” simulation with bots. The same random seed
is used within each pair so the background agents will make the
same decisions, thus isolating the impact caused by the bots. The
dependent variable we measure is the difference in the botmaster’s
profits with and without the bots.

Each trial simulates 2.5 seconds, which we find is enough time
for the layering to have an impact on the stock price. We use a
conservative computational delay of 10 milliseconds and a Poisson
distribution function for P in Equation 1. The background agents
consist of 49 ZI and 16 HBL agents with parameters that match a
related work on modeling spoofing [51].

For the evaluation, we perform two different experiments. In the
first, we vary the ratio of bot to background agents and measure the
impact on the botmaster’s profits. In the second, we steadily increase
the latency between the bots, the exchange, and the botmaster,
starting with the same latency as the background agents.

Figure 2: The ROI of Bot2Stock relative to the ratio of bots
to background trading agents. The ROI increases slightly as
the number of bots increase with a minimum ROI of 2.8% at
a 1.5% “bot to background agent” ratio.

Figure 3: ROI of Bot2Stock relative to network latency of
bots. Latency is shown relative to background agents for one
direction, with 0% being identical latency. Even at 200% ad-
ditional latency, the attack remains stable.

6.5 Experimental Results
Our simulations show that the minimum ROI for the botmaster is
2.8% over 2.5 seconds, assuming a 1.5% ratio of bots to background
traders. The ROI remains stable even when bots have 200% more
network latency than background traders.

Annual Return on Investment. To calculate a conservative
annual ROI for the botmaster, we assume 1 attack is carried out
per trading day to give the botmaster ample time to perform the
pre-attack setup. Assuming 252 trading days in a year (365 days
minus 104 weekend days and 9 U.S. public holidays), the botmas-
ter’s non-compounding ROI is 252r where r is the ROI for a single
attack. We use non-compounding ROI to be conservative, although
realistically a criminal is likely to reinvest their earnings, resulting
in higher profits. Given our minimum estimated ROI of 2.8%, the
botmaster would achieve a 1,022% annual non-compounding ROI.
In other words, if the botmaster started with $100,000, he would
have $1,022,000 after a year. This matches the order of magnitude of
the real layering fraud prosecuted by the SEC, which we presented
in Section 4.1.

Required Number of Bots. How does a 1.5% ratio of bots trans-
late into real-world market environments? In March 2020, IBM (a
“large cap” stock [12]) had an average minutely trade volume of
9,120 shares6, worth $1,241,141 at its highest price that month of
$136.10 per share [14]. To sustain 1.5% of this volume for 1 minute,

63,556,538 shares per day, 22 trading days in March 2020, the NYSE is open from 9:30
AM EST to 4 PM (6.5 hours).
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Table 7: Comparison of Monetization Schemes

Crime Type Annual Revenue # Bots Source

DDoS-for-hire $312,000 N/A [8]
Spam $3,500,000 52,000 [23]

Pharmaceutical $42,500,000 N/A [30]
Bank Trojan $302,000,000 180,000 [48]
Ad Fraud $1,000,000,000 2,000 [3]

Bot2Stock $1,022,000 ~1,000

the botmaster would only need $18,617. Assuming each victim has
$5,000 in cash (Subsection 4.3), 4 bots are required per attack. To
run a yearlong campaign, conducting 1 attack per trading day (252
days) without ever reusing a bot, about 1,000 bots are required,
cumulatively. Since each attack takes less than a minute, no bot
would need to be controlled for more than a day. This is less than
the number of accounts our dark web scraper observed being sold
in a 3 month window for 1 brokerage on 1 marketplace.

Impact of Bot Ratio. Figure 2 shows the impact to the botmas-
ter’s ROI of changing the ratio of bots to background agents. As the
number of bots increase, the ROI also increases. In the worst case,
with a 1.5% ratio of bots to background agents, the ROI is 2.8% over
2.5 seconds. The bots lost no more than 0.18% of their cash from
accidental executions, which is consistent with the loss estimated
in Section 4.

Impact of Network Latency. Figure 3 shows the impact of net-
work latency on the stability of Bot2Stock. Latency (x-axis) is shown
relative to the latency of the background agents for one direction,
with 0% denoting identical latency. Note that querying the exchange
requires a full round-trip, so total additional latency for round-trip
time (RTT) is doubled. Surprisingly, even with 200% additional la-
tency, the layering remains effective. On closer examination, we
discover that because background agents wait for an order confir-
mation from the exchange before issuing another order and some
orders never end up executing, the rate at which orders execute
at the exchange remains slow enough to render the additional bot
latency moot. For example, when background agents have 10 ms
network latency, trades execute every 30 ms, on average. Thus,
even if the bots have 30 ms latency (200% added), they can still keep
up with the price movement.

7 DISCUSSION
7.1 Limitations
We resort to using a simulator to evaluate Bot2Stock because con-
ducting experiments in a real-world marketplace would be highly
unethical (and illegal). Consequently, the validity of our results
relies on the realism of the simulation. Agent-based discrete event
simulations are currently the most realistic technique for modeling
stock markets [5, 34, 51], however it is impossible to formally prove
that any models accurately reflect real-world markets.

Due to the proprietary and opaque nature of commercial anomaly
detection software, we are unable to directly evaluate Bot2Stock’s
ability to evade real-world detection. However, the SEC case files
reveal some clues as to the patterns these programs look for, which

we have shown are not produced by Bot2Stock (e.g., Q6 in Subsec-
tion 4.1). We also discuss academic systems in Section 2 and why
they are currently insufficient. The largest challenge, which works
in the criminal’s favor, is the high cost of false positives.

Lastly, since the Bot2Stock malware relies on its man-in-the-
browser position to hide injected orders from the transaction history
page, if the user uses multiple devices to access their brokerage
account, they may be able to spot the attack. However, as we show
in our evaluation, attacks are conducted so quickly that the user is
unlikely to spot the discrepancy in time to prevent it.

7.2 Profit Compared to Other Botnet Schemes
How does the profit of a Bot2Stock malware compare to existing
botnet schemes like spam and click fraud? Given the illicit nature of
these activities, estimates for current botnet profits are rough and
varied. Likewise, since no criminals have been caught automating
stock market fraud, our estimates are based on the outcome of dis-
covered manual manipulations and our simulations from Section 6.

Based on prior work, we conclude that the potential profits of a
Bot2Stockmalware are in the same order of magnitude. For example,
McCoy et al. analyzed a four-year pharmaceutical scam generating
$42.5 million per year [30]. On the high end of the spectrum, recent
analysis by Anderson et al. [3] suggests that an advertising fraud
campaign busted by the FBI may have been generating slightly over
$1 billion of revenue per year, but the authors acknowledge that
the lack of public data makes their estimation weak.

It is even harder to estimate the number of bots in a campaign
because unless authorities can gain access to the C2 infrastructure,
the only observable outcome is the damage caused to victims (e.g.
the number of stolen credit card numbers, spam emails sent, etc.).
Even when access is gained into the infrastructure, estimates are
difficult to make due to churn caused by new infections, old ones
being cleaned up, etc. Given the prior work, a safe estimate for the
size of real-world botnets is in the order of thousands.

In summary, real-world botnet operations are roughly estimated
to make millions per year using thousands of bots. By comparison,
our simulation results show that Bot2Stock can make $1,022,000
per year, which is in the same order of magnitude. Table 7 sum-
marizes our comparisons. The revenues are for single campaigns
and botnet sizes (where available) are at the time the network was
dismantled (i.e., not cumulative). Since cumulative size estimates
are unavailable, the reported revenues may be lower bounds. Re-
gardless, even with conservative size estimates, all the botnets in
the table are larger than the cumulative size we estimate for oper-
ating Bot2Stock for 1 year (Subsection 6.5). Bot2Stock also has the
additional advantage of only needing to control each bot for less
than a day, due to the speed of layering attacks. That said, we do not
know the the ratio of infected devices that access suitable brokerage
accounts, however our dark web data suggests enough accounts do
get hijacked to conduct a Bot2Stock attack (Subsection 4.3).

7.3 Towards Defending Against Bot2Stock
Increasing Transparency & Accountability. The finest level

of data available to traders is layers. Since they aggregate all open
orders at a given price, the trader does not know if a layer is made
up of many tiny orders or a few large ones or even how many
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traders are involved. This is one of the key reasons why it is possible
for criminals to manipulate the market.

As for the exchanges, they can see the orders, but they only
know the identity of the broker, not the brokerage or trader. This
poses a challenge for regulatory bodies like the SEC because if they
want to investigate a trading event, they have to ask the exchange
to identify the broker, then ask the broker for the brokerage, and
then finally ask the brokerage for the customer’s identity.

In the coming years, companies will be required to participate in
the Consolidated Audit Trail program [15], which aims to optimize
the deanonymization process. Initial deployment is still ongoing as
of 2020 and the program raises its own security concerns because
it creates a centralized treasure trove of highly sensitive financial
data (names, SSNs, etc.) [13].

Improving Notifications. Although layering attacks may be
too quick to stop individually, since they take less than a minute to
perform, providing customers with better notifications can reduce
the risk that an intrusion goes undetected for an extended period.
First, Bot2Stock exploits that notifications default to email-only,
which can be filtered server-side. Also sending notifications to a
mobile device via SMS or an application would remove this choke-
point. Second, sending alerts for new logins would make it harder
for adversaries to scope out victim accounts prior to committing
the fraud. However, this will only be effective if the first point is
addressed, otherwise these alerts will also be filtered by the criminal.

Securing Accounts. Bot2Stock relies on bots being able to con-
trol accounts used for trading. It may be tempting to declare that
this can all be solved by mandating the use of 2FA, but unfortu-
nately that would be oversimplifying the problem. Mandating 2FA
is already easily within the current capabilities of brokerages and
yet they choose not to go down this route. One reason is because the
financial industry highly values availability, so they are concerned
about customers losing their second factor. As one industry expert
we interviewed simply stated, customers panic if they cannot access
their money. 2FA is also at odds with algorithmic trading, which
accounts for over 85% of market volume [19].

Anomaly Detection. There is also more work to be done in de-
tecting anomalous trading patterns. Unfortunately, as we point out
in Section 2, existing proposals struggle when the number of iden-
tities performing the manipulation is large. Many of the existing
products are still trying to address fraud perpetrated by one or two
identities, let alone a distributed scheme like Bot2Stock. It is also
unclear how the different network layers can benefit detection. For
example, brokerages are in a prime position to detect when a par-
ticular account’s activity abruptly changes (e.g. trading frequency),
but lack a complete context across brokerages to draw correlations.
Conversely, stock markets lack the per-account activity hidden be-
hind brokers. Thus, a solution will likely require more data sharing
between parties, such as the CAT program mentioned earlier.

8 CONCLUSION
This work presents the first study on the feasibility of automating
stock market manipulation using a botnet. Our design addresses
several key challenges based on data we collected. We determine
which techniques are likely to be used by a botmaster, how they

can be adapted to a distributed network of bots, how it will evade
detection, among other technical challenges.

We implement our design in a proof-of-concept, man-in-the-
browser malware, Bot2Stock, and evaluate it using agent-based
simulations. We discover that 1,000 bots, cumulatively collected
over a yearlong campaign, can yield an average ROI of 1,022% if
1 attack is performed daily, allowing a botmaster to turn $100,000
into $1,022,000. This is consistent with our collected real-world
data and comparable to alternative botnet schemes.
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A APPENDIX
Layering is tricky to grasp because of the indirect way pressure
from open orders drives stock prices. To help visualize it, we list the
non-bona fide trades made in one real-world instance in Table 8. As
shown, even though only half the orders actually executed (the rest
were cancelled by the criminals), the stock price moved 0.66% in a
matter of minutes. If, for example, the criminal bought $1,000 worth
of shares prior to this manipulation, he could sell them immediately
following the layering for $1006.60. While this gain may seem
small, with enough leverage (i.e., shares bought in advance) and
consistency, criminals can turn even this seemingly indiscernible
movement into a profitable scam.
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Table 8: One instance of non-bona fide orders reported in
SEC v.s. Taub et al. In a few minutes, the criminal increased
the stock’s price by 0.66%, despite most of the orders being
canceled. By following these orders with a bona fide ask, the
adversary can cash out any shares he purchased in advance
at the elevated price.

Order Type # Shares # Executed Price Capital Needed

Buy 500 0 $69.48 $34, 740
Buy 100 100 $69.68 $6, 968
Buy 400 0 $69.65 $27, 860
Buy 100 100 $69.77 $6, 977
Buy 100 100 $69.80 $6, 980
Buy 100 0 $69.79 $6, 979
Buy 100 0 $69.79 $6, 979
Buy 100 100 $69.84 $6, 984
Buy 100 100 $69.85 $6, 985
Buy 100 0 $69.83 $6, 983
Buy 100 0 $69.85 $6, 985
Buy 100 100 $69.93 $6, 993
Buy 100 100 $69.93 $6, 993
Buy 100 100 $69.95 $6, 995
Buy 100 0 $69.88 $6, 988
Buy 100 0 $69.91 $6, 991
Buy 100 100 $69.94 $6, 994
Buy 100 100 $69.98 $6, 980
Buy 100 100 $69.94 $6, 994

Total 2,600 1,100 ∆0.66% $184, 066

To simplify the following tables, we use the notation (b, s,x) to
denote buying x shares at price b, sold at price s .

Table 9: Manipulative Orders made in Taub #1 example
(price defaltion part, including commission fees)

Order Executed? Cost Capital Needed

sell 100@$69.69 yes $9 $6, 973
sell 100@$69.77 yes $1 $6, 973
sell 1000@$69.69 yes $90 $69, 730

($69.69, $69.60, 100) yes $14 $6, 969
($69.77, $69.60, 100) no $0 $6, 977
($69.60, $69.57, 100) yes $8 $6, 960
($69.57, $69.53, 100) yes $9 $6, 957
($69.53, $69.50, 100) yes $8 $6, 953
sell 900@$69.50 no $0 $62, 757

($69.50, $69.42, 100) no $0 $6, 950
sell 100@$69.49 yes $29 $6, 973

($69.49, $69.46, 100) yes $8 $6, 949
($69.46, $69.44, 100) no $0 $6, 946
sell 100@$69.46 yes $42 $6, 973

total $218 $217, 036

Table 10: Manipulative Orders made in Taub #2 example
(price defaltion part, including commission fees)

Order Executed? Cost Capital Needed

sell 200@$79.59 yes $35 $15, 938
($79.59, $79.35, 200) yes $63 $15, 918
sell 100@$79.52 yes $27 $7, 969

($79.52, $79.47, 100) yes $15 $7, 952
($79.47, $79.37, 100) yes $20 $7, 947
($79.37, $79.27, 100) yes $20 $7, 937
sell 100@$79.41 yes $65 $7, 969
sell 100@$79.80 yes −$1 $7, 969

($79.80, $79.73, 100) yes $17 $7, 980
sell 100@$79.70 yes $9 $7, 969

total $270 $95, 548

Table 11: Manipulative Orders made in Taub #2 example
(price infaltion part, including commission fees)

Order Executed? Cost Capital Needed

buy 100@$79.73 yes $47 $7, 973
buy 100@$79.73 yes $47 $7, 973
buy 100@$79.73 yes $47 $7, 973
buy 100@$79.73 yes $47 $7, 973
buy 600@$79.66 no $0 $7, 966
buy 200@$79.77 no $0 $7, 977
buy 300@$79.90 yes $187 $23, 970
buy 100@$79.77 no $0 $7, 977
buy 100@$79.98 yes $72 $7, 998
buy 100@$80.00 yes $74 $8, 000
buy 100@$80.00 yes $74 $8, 000
buy 100@$79.84 no $0 $7, 984
buy 100@$79.84 no $0 $7, 984
buy 100@$79.98 yes $72 $7, 998
buy 100@$80.09 yes $83 $8, 009
buy 100@$79.88 no $0 $7, 988
buy 100@$79.88 no $0 $7, 988
buy 100@$80.05 no $0 $8, 005
buy 100@$80.42 yes $116 $8, 042
buy 100@$80.09 no $0 $8, 009
buy 100@$80.41 yes $115 $8, 041
buy 100@$80.20 yes $94 $8, 020
buy 100@$80.27 no $0 $8, 027
buy 100@$80.37 no $0 $8, 037

total $1, 075 $207, 912
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Table 12: Manipulative Orders made in Taub #3 example
(price deflation part, including commission fees)

Order Executed? Cost Capital Needed

sell 100@$20.03 yes $12 $2, 010
($20.03, $19.92, 100) yes $16 $2, 003
($19.92, $19.89, 100) yes $8 $1, 992
($19.89, $19.81, 100) yes $13 $1, 989
($19.81, $19.77, 100) yes $9 $1, 981
($19.77, $19.73, 100) yes $9 $1, 977
($19.73, $19.67, 100) yes $11 $1, 973
($19.67, $19.46, 100) yes $26 $1, 967
sell 100@$19.46 yes $69 $1, 946
sell 100@$19.64 yes $51 $2, 010

($19.64, $19.60, 100) yes $11 $1, 964
($19.60, $19.47, 100) yes $18 $1, 960
($19.47, $19.46, 100) yes $6 $1, 947
sell 100@$19.55 yes $60 $2, 010

($19.55, $19.46, 100) yes $14 $1, 955
sell 100@$19.51 yes $64 $2, 010
sell 100@$19.52 yes $63 $2, 010

($19.52, $19.46, 100) yes $11 $1, 952
sell 100@$19.49 yes $66 $2, 010

($19.49, $19.46, 100) yes $8 $1, 949
sell 100@$19.52 yes $63 $2, 010

total $608 $41, 625

Table 13: Manipulative Orders made in Taub #3 example
(price inflation part, including commission fees)

Order Executed? Cost Capital Needed

buy 1500@$20.10 no $0 $30, 150
buy 1500@$20.44 (200) $149 $4, 088
buy 100@$20.49 no $0 $2, 049
buy 100@$20.52 no $0 $2, 052
buy 1500@$20.57 no $0 $30, 855
buy 100@$20.60 no $0 $2, 060
buy 100@$20.63 no $0 $2, 063
buy 100@$20.66 no $0 $2, 066
buy 100@$20.81 no $0 $2, 081
buy 100@$20.84 (45) $56 $937
buy 100@$20.84 no $0 $2, 084
buy 100@$20.87 no $0 $2, 087
buy 100@$20.90 no $0 $2, 090
buy 100@$21.05 yes $138 $2, 105
buy 100@$21.05 yes $138 $2, 105
buy 100@$21.05 yes $138 $2, 105
buy 100@$20.93 no $0 $2, 093
buy 100@$20.96 no $0 $2, 096
buy 100@$20.99 no $0 $2, 099
buy 100@$21.02 no $0 $2, 102
buy 100@$21.12 no $0 $2, 112
buy 1000@$21.09 no $0 $21, 090
buy 100@$21.15 no $0 $2, 115
buy 100@$21.24 no $0 $2, 124
buy 100@$21.27 no $0 $2, 127
buy 100@$21.29 no $0 $2, 129
buy 100@$21.30 no $0 $2, 130
buy 100@$21.33 yes $166 $2, 133
buy 100@$21.36 yes $169 $2, 136
buy 100@$21.42 yes $175 $2, 142
buy 1000@$21.32 yes $165 $21, 320
buy 100@$21.36 yes $169 $2, 136
buy 100@$20.86 yes $119 $2, 086
buy 100@$21.01 yes $134 $2, 101
buy 100@$21.08 yes $141 $2, 108
buy 100@$21.14 yes $147 $2, 114
buy 100@$21.17 yes $150 $2, 117
buy 100@$21.29 yes $162 $2, 129
buy 100@$21.08 yes $141 $2, 108

total $2, 457 $177, 824
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