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ABSTRACT
In this work, we provide a metric to calculate the most significant
software security weaknesses as defined by an aggregate metric of
the frequency, exploitability, and impact of related vulnerabilities.
The Common Weakness Enumeration (CWE) is a well-known and
used list of software security weaknesses. The CWE community
publishes such an aggregate metric to calculate the ‘Most Danger-
ous Software Errors’. However, we find that the published equation
highly biases frequency and almost ignores exploitability and im-
pact in generating top lists of varying sizes. This is due to the
differences in the distributions of the component metric values. To
mitigate this, we linearize the frequency distribution using a double
log function. We then propose a variety of other improvements,
provide top lists of the most significant CWEs for 2019, provide
an analysis of the identified software security weaknesses, and
compare them against previously published top lists.

CCS CONCEPTS
• Security and privacy → Vulnerability management; Soft-
ware and application security.
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1 INTRODUCTION
In 2019, there were over 17 000 documented software vulnerabilities
[22] that enable malicious activity. While many are discovered, they
map to a relatively small set of underlying weakness types. We
posit that if the most significant of these types can be identified,
developers of programming languages, software, and security tools
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can focus on preventing them and thus over time diminish the
quantity and severity of newly discovered vulnerabilities.

In this work, we provide a metric to calculate the most signifi-
cant security weaknesses (MSSW) in software systems. We define
a ‘significant’ weakness as one that is both frequently occurring
among the set of publicly published vulnerabilities and results in
high severity vulnerabilities (those that are easily exploitable and
have high impact). The set of security weakness types upon which
we calculate significance comes from the Common Weakness Enu-
meration (CWE) [15]. We also leverage the Common Vulnerabilities
and Exposures (CVE) [13] repository of publicly announced vulner-
abilities, the Common Vulnerability Scoring System (CVSS) [7] to
measure the severity of vulnerabilities, and the National Vulner-
ability Database (NVD) [22] to map the CVEs to both CWEs and
CVSS scores.

In the fall of 2019, the CWE community published an equation
to calculate the ‘Top 25 Most Dangerous Software Errors’ (MDSE)
among the set of CWEs [17]. It follows the form of the common
security risk matrix combining probability and severity (e.g., [5]).
The MDSE equation claims to combine ‘the frequency that a CWE
is the root cause of a vulnerability with the projected severity’; the
equation description implies that both factors are weighed equally
(making no mention of any bias). However, we empirically find that
the equation highly biases frequency and almost ignores severity in
generating top lists of varying sizes. This is due to the equation mul-
tiplying calculated frequency and severity values together though
each has has very different distributions. Frequency distributions
have a power law like curve, while severity distributions are more
uniform. Our mitigation is to create a revised equation, named
MSSW, that adjusts the frequency distribution using a double log
function to better match it to the severity distribution. We also fix
an error in how normalization is done in the MDSE equation.

We next improve upon the data collection approach used by the
MDSE equation by leveraging published literature [12]. Lastly, we
publish top lists of the most significant CWEs for 2019, provide
an analysis of those software security weaknesses, and compare
our top lists against previously published lists. It is our hope that
our data and methodology will be adopted to focus our collective
security resources in reducing themost significant software security
weaknesses.

The rest of this work is organized as follows. Section 2 provides
background on CVE, CVSS, CWE, NVD, and the MDSE equation.
Section 3 discusses the limitations of the MDSE equation. Section 4
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presents our MSSW equation that mitigates the previously identi-
fied limitations. Section 5 provides two lists of the most significant
CWEs at two different levels of software flaw type abstractions.
Section 6 provides a discussion and analysis of the most signifi-
cant CWEs identified. Section 7 presents related work, Section 8
discussed possible future research, and Section 9 concludes.

2 BACKGROUND
2.1 Common Vulnerabilities and Exposures
The CVEs are a large set of publicly disclosed vulnerabilities in
widely-used software. They are enumerated with a unique identifier,
described, and referenced with external advisories [13] [1].

2.2 Common Vulnerability Scoring System
CVSS ‘provides a way to capture the principal characteristics of a
vulnerability and produce a numerical score reflecting its severity’
[6]. The CVSS base score reflects the inherent risk of a vulnerability
apart from any specific environment. The base score is composed
from two sub-scores that calculate exploitability (how easy it is to
use the vulnerability in an attack) and impact (how much damage
the vulnerability can cause to an affected component).

The exploitability score is determined by the following:

• attack vector: ‘the context by which vulnerability exploita-
tion is possible’,

• attack complexity: ‘the conditions beyond the attacker’s con-
trol that must exist in order to exploit the vulnerability’,

• privileges required: ‘the level of privileges an attacker must
possess before successfully exploiting the vulnerability’, and

• user interaction: a human victim must participate for the
vulnerability to be exploited.

The impact score is determined by measuring the impact to the
confidentiality, integrity, and availability of the affected system.
Also included is a scope metric that ‘captures whether a vulnerabil-
ity in one vulnerable component impacts resources in components
beyond its security scope’. The specifics on these metrics and the
details for the three equations can be found in the CVSS version
3.1 specification at [7].

2.3 CommonWeakness Enumeration
The Common Weakness Enumeration (CWE) [10] is a ‘community-
developed list of common software security weaknesses’. ‘It serves
as a common language, a measuring stick for software security
tools, and as a baseline for weakness identification, mitigation, and
prevention efforts’ [15]. It contains an enumeration, descriptions,
and references for 839 software weaknesses that are referred to as
CWEs, where each is labelled CWE-X with X being an integer.

The CWEweaknesses model has four layers of abstraction: pillar,
class, base, and variant. There is also the notion of a compound,
that associates two or more interacting or co-occurring CWEs [18].
These abstractions reflect to what extent issues are described in
terms of five dimensions: behavior, property, technology, language,
and resource. Variant weaknesses are at the most specific level of ab-
straction; they describe at least three dimensions. Base weaknesses
are more abstract than variants and more specific than classes; they

describe two to three dimensions. Class weaknesses are very ab-
stract; they describe one to two dimensions, typically not specific
about any language or technology. Pillar weaknesses are the highest
level of abstraction.

There are a set of taxonomies, called views, to help organize
the CWEs. Two prominent CWE taxonomies are the ‘Research
Concepts’ (view 1000) and ‘Development Concepts’ (view 699).
There is also a view 1003 that was made specifically to describe the
set of CVEs that contains 124 CWEs. It is called ‘CWE Weaknesses
for Simplified Mapping of Published Vulnerabilities View’.

2.4 National Vulnerability Database
The CWE effort uses the National Vulnerability Database (NVD)
[22] as a repository of data from which to calculate the MDSE
scores. The NVD contains all CVEs and for each CVE it provides
a CVSS score along with the applicable CWE(s) that describe the
weakness(es) enabling the vulnerability. For the empirical work in
this paper, we use the complete set of 17 308 CVEs published by
NVD for 2019, that were available as of 2020-03-19.

2.5 Most Dangerous Software Error Equation
The MDSE equation is designed to balance the frequency and sever-
ity in ranking the CWEs. The frequency is determined by the num-
ber of CVEs that map to a given CWE in the time period of study.
The severity is determined by the mean CVSS score for the CVEs
mapped to a given CWE. The MDSE score for a CWE is produced by
multiplying the normalized frequency by the normalized severity
and then multiplying by 100. We now describe this metric more
formally.

2.5.1 Metric for Normalized Frequency. Let 𝐼 designate the set of
all CWEs and let 𝐽 be the set of all CVEs.

For CWE 𝑖 ∈ 𝐼 , let𝑁𝑖 be the number of CVEsmapped to 𝑖 , defined
as follows:

𝑁𝑖 =
∑︁
𝑗 ∈𝐽

𝑒𝑖 𝑗 , (1)

where

𝑒𝑖 𝑗 =

{
1, if CVE 𝑗 is mapped to CWE 𝑖,

0, otherwise.
(2)

Now let 𝐹𝑖 be the normalized frequency for CWE 𝑖 , defined as
follows:

𝐹𝑖 =

𝑁𝑖 −min
𝑖′∈𝐼

(𝑁𝑖′)

max
𝑖′∈𝐼

(𝑁𝑖′) −min
𝑖′∈𝐼

(𝑁𝑖′)
. (3)

2.5.2 Metric for Normalized Severity. Let 𝐽 ,𝑁𝑖 , and 𝑒𝑖 𝑗 be as defined
above in Section 2.5.1. Let 𝑠 𝑗 be the CVSS base score for CVE 𝑗 . For
CWE 𝑖 ∈ 𝐼 , let 𝑆𝑖 be the mean CVSS score, defined as follows:

𝑆𝑖 =

∑
𝑗 ∈𝐽 𝑠 𝑗𝑒𝑖 𝑗
𝑁𝑖

. (4)

Now let 𝑆𝑖 be the normalized severity for CWE 𝑖 , defined as
follows:
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Figure 1: The Size of the Set Difference between Top Lists
from the MDSE Equation Compared to Frequency Top Lists
(red bottom line), Severity Top Lists (yellow middle line),
and the Theoretical Maximum (blue top line)

𝑆𝑖 =

𝑆𝑖 −min
𝑗 ∈𝐽

(𝑠 𝑗 )

max
𝑗 ∈𝐽

(𝑠 𝑗 ) −min
𝑗 ∈𝐽

(𝑠 𝑗 )
. (5)

2.5.3 Most Dangerous Software Error Metric. Let 𝑀𝐷𝑆𝐸𝑖 be the
MDSE score for CWE 𝑖 , defined as follows:

𝑀𝐷𝑆𝐸𝑖 = 𝐹𝑖 ∗ 𝑆𝑖 ∗ 100. (6)

3 LIMITATIONS OF THE EQUATION
The MDSE equation was designed to and appears to combine both
frequency and severity in determining the individual scores used
to rank the CWEs. The frequency component is calculated in equa-
tion 3 and the severity component is calculated in equation 5; both
are brought together in equal proportions in equation 6 to create
the MDSE score. And both the severity and frequency are normal-
ized in equations 3 and 5 to ensure that their scales match for the
multiplication in equation 6.

However, we empirically find that the MDSE equation strongly
biases frequency over severity. To demonstrate this, we calculate
MDSE top CWE lists for all possible list sizes. While there exist 839
CWEs, the CVE data used as MDSE input is mapped only to 124
view 1003 CWEs (see section 2.3)1. Thus the maximum top list size
is 124. We also calculate top CWE lists using just the frequency
equation 3 and then just the severity equation 5. For each CWE
top list size, we perform a set difference between the MDSE top
list and the frequency top list. We then also do this between the
MDSE top list and the severity top list. The size of the set difference
between theMDSE top list and the frequency top list (for all possible
top list sizes) has a maximum difference of 3. The size of the set
difference between the MDSE top list and the severity top list (for

1This is expected as view 1003 was designed to cover the types of vulnerabilities in
CVE.

Figure 2: CWEsChosen (Red Triangles) andNot Chosen (Yel-
low Circles) for a MDSE Top 20 List Relative to Frequency

all possible top list sizes) has a maximum difference of 23. This is
shown graphically in Figure 1. The bottom red line represents the set
difference using frequency and the yellowmiddle line represents the
set difference using severity. The top blue line shows the maximal
possible set difference that could be achieved using the 124 CWEs.

More qualitatively, the red line hovers close to a y-axis value
of 0 which means that for all list sizes the top list generated using
just frequency is almost identical to the top list generated using the
MDSE equation. The middle yellow line being far from the y-axis
value of 0 means that for all list sizes the top list generated using
just severity is very different from the top list generated using the
MDSE equation. Note that the yellow line shows an almost maximal
difference for top list sizes of up to 15.

3.1 Limitation 1: Distribution Differences
The MDSE equation in practice biases frequency over severity, even
though its equations treat them equally, because frequency and
severity have very different distributions. The frequency distribu-
tion has the majority of CWEs at a very low frequency and a few at
a very high frequency (somewhat resembling a power law curve).
This can be seen in Figure 2 by looking at how each CWE maps
to the x-axis (note that most of the yellow dots overlap, there are
102 yellow dots and 20 red triangles). The figure shows the MDSE
scores for each CWE and shows how (for a top list of size 20) the
top scoring chosen CWEs are exactly the most frequent CWEs. This
is not unique and occurs for many top lists (e.g., for sizes 11, 13, 15,
16, 20, 21, 32, and 38) as shown when the bottom red line is at 0 in
Figure 1. The other sizes of top lists produce graphs that are almost
identical to that in Figure 2, with at most 3 yellow circles just to the
right of the leftmost red triangles representing the chosen CWEs.

The severity distribution is more uniform within a limited range.
It can be seen in Figure 3 by looking at how the CWEs map to the
x-axis. This figure shows how the top MDSE scoring chosen CWEs
do not necessarily map to the CWEs with the highest severity. In
fact, only 1 of the top 10 most severe CWEs made the MDSE top 20
list (note that many of the yellow circles lay on top of each other).
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Figure 3: CWEsChosen (Red Triangles) andNot Chosen (Yel-
low Circles) for a MDSE Top 20 List Relative to Severity

3.2 Limitation 2: Normalization Error
Equation 5 normalizes 𝑆𝑖 based on the maximum and minimum
CVSS score found in the set of inputted CVEs. However, this does
not lead to the expected and desired normalized distribution from
0 to 1. For our data the range is from .28 to .97, as can be seen
from the mappings of the points onto the x-axis in Figure 3. The
reason for this is that 𝑆𝑖 has a smaller range than the maximum
and minimum CVSS score because each 𝑆𝑖 represents the mean of
the CVSS score for the CVEs that map to CWE 𝑖 . This limitation,
while of less consequence than the previous, constrains the range
of 𝑆𝑖 values thus further lessening the influence that severity has
in determining a MDSE score.

4 MITIGATED EQUATION
We mitigate the limitations of the MDSE equation by replacing
equations 3, 5, and 6 with the five equations that follow:

𝑘 =
1

log𝑒 log𝑒 max
𝑖∈𝐼

(𝑁𝑖 )
, (7)

𝐹 ′𝑖 =

{
log𝑒 𝑁𝑖 , if 𝑁𝑖 >= 1,
0, otherwise,

(8)

𝐹 ′′𝑖 =

{
𝑘 log𝑒 𝐹

′
𝑖
, if 𝐹 ′

𝑖
>= 1,

0, otherwise,
(9)

𝑆 ′𝑖 =
𝑆𝑖 −min

𝑖′∈𝐼
(𝑆𝑖′)

max
𝑖′∈𝐼

(𝑆𝑖′) −min
𝑖′∈𝐼

(𝑆𝑖′)
, (10)

𝑀𝑆𝑆𝑊𝑖 = 𝐹 ′′𝑖 ∗ 𝑆 ′𝑖 ∗ 100. (11)

4.1 Explanation of Mitigated Equation
Equation 8 takes the log of the frequency using the natural log as
the base. Equation 9 then takes the log of equation 8, again using the
natural log as a base and multiplies the result by 𝑘 (from equation
7). The 𝑘 coefficient serves the purpose of normalizing the resulting

Figure 4: Normalized Distributions of Frequency (bottom
blue line), Log of Frequency (middle yellow line), and Dou-
ble Log of Frequency (top red line).

values between 0 and 1 (to match the severity range in equation
10).

These three equations modify the power law like frequency
distribution to make it more linear, thus addressing limitation 1
(from Section 3.1). This can be seen in Figure 4. Each value on the
x-axis represents a particular CWE, ordered from least frequent
to most frequent. The lower blue line represents the normalized
frequency (i.e., number of CVEs mapped to a particular CWE). Note
the slow increase in frequency up to the 100th CWE, followed by
a rapid increase terminating in an almost vertical line (i.e. large
derivative). This behavior creates large differences between the
most frequent CWEs and almost no difference between the lowest
CWEs. If 𝑔(𝑥) = log 𝑓 (𝑥) its derivative is

𝑑𝑔(𝑥)
𝑑𝑥

=
1

𝑓 (𝑥)
𝑑 𝑓 (𝑥)
𝑑𝑥

, (12)

thus applying a log function over the frequency should minimize
differences between the most frequent CWEs.

The middle yellow line represents taking the log of the frequency
(equations not shown), which helps linearize but still results in
an upwards curve on the right side. Thus, we apply a double log
for further linearization (see the top red line). We note that this
approach is not pseudo-linear for the most infrequent of CWEs.
However, this does not cause problems as our goal is to identify the
most significant and any such CWE must have at least a moderate
frequency.

Our modified MDSE equation 11 then multiplies frequency and
severity as in the original MDSE equation, but it multiplies from two
distributions that have a similar shape for the part of the functions
that are of interest. This enables the MSSW equation to more fairly
balance evaluating frequency and severity in scoring and ranking
a CWE.

To address limitation 2 from Section 3.2, equation 10 normalizes
the severity using themaximum andminimummean severity values.
This gives the distribution a full 0 to 1 range which is not achieved
in the MDSE equation 5.
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Figure 5: MDSE Equation Risk Map

Figure 6: MSSW Equation Risk Map

Equation 11 is our final modifiedMDSE equation.We recommend
its use in place of the published MDSE equation.

4.2 Analysis of Mitigated Equation
We now conduct three experiments to evaluate the effect of the
MSSW equation in making the frequency and severity distributions
more similar and in producing top lists with more equal inclusion
of both frequency and severity. A fourth experiment involving
correlation calculations is provided in Section 5 (because it includes
some variants introduced in that section).

4.2.1 Risk Map Experiment. Figure 5 shows an MDSE risk map for
the evaluated CWEs. Each red dot represents a CWE positioned
according to its 𝑆𝑖 severity and 𝐹𝑖 frequency. In general, CWEs
towards the upper right are more significant and those towards the
lower left are less significant. Note how the majority of the CWEs
are squished very close to the x-axis as many have a very small
frequency. Also, the range of x-values is constrained from .37 to .97
(when the normalization should make it from 0 to 1).

Figure 7: The Size of the Set Difference between Top Lists
from the MSSW Equation Compared to Frequency Top Lists
(red lower line), Severity Top Lists (yellow middle line), and
the Theoretical Maximum (blue top line)

Figure 6 shows the same risk map using our double log frequency
𝐹 ′′
𝑖
and our modified severity 𝑆 ′

𝑖
. Note how the CWEs are nowmore

uniformly spread over the y-axis. Also, the range of x-axis values is
now from 0 to 1. The MSSW equation that combines frequency and
severity using the values shown in Figure 6 will now more equally
combine them than with the MDSE values shown in Figure 5.

4.2.2 Set Difference Experiment. In Figure 7 we show the size of
the set difference between the MSSW top list and the severity top
list (the mostly lower red line). We also calculate the set difference
between the MSSW top list and the frequency top list (the middle
yellow line). Note how the red and yellow lines are much closer
together than in Figure 1 and how the red line does not hover close
to 0 like it does in Figure 1. This demonstrates that the MSSW
equation is more evenly balancing inclusion of the top frequency
and top severity CWEs.

Note that the goal is not to have the red and yellow lines match.
The top list should not necessarily evenly include an equal number
of both top frequency and top severity CWEs. Our point with this
analysis is to show how the MDSE equation almost exclusively
chooses the top frequency CWEs and how our MSSW equation
factors in CWEs from both sets. The next subsection will evaluate
this more equal inclusion in more detail, focusing on top lists of
size 20.

4.2.3 Chosen CWE Experiment. Figure 8 shows the MSSW scores
plotted against the double log frequency 𝐹 ′′

𝑖
scores. Each point

represents a CWE. The red triangles indicate the CWEs that were
chosen for the MSSW top 20 list. Note how unlike in the analogous
Figure 2 for MDSE, there are many higher frequency CWEs that
are not chosen for the top 20 list due to their severity not being
high enough.

Likewise, Figure 9 shows the MSSW scores plotted against the
𝑆 ′
𝑖
normalized mean CVSS score for each CWE. Note how the range

spreads from 0 to 1, unlike the analogous Figure 3 for the MDSE
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Figure 8: CWEsChosen (Red Triangles) andNot Chosen (Yel-
low Circles) for a MSSW Top 20 List Relative to Frequency

Figure 9: CWEsChosen (Red Triangles) andNot Chosen (Yel-
low Circles) for a MSSW Top 20 List Relative to Severity

equation. Also note how the MSSW equation chooses CWEs for the
top 20 list from CWEs with generally higher CVSS scores. However,
it excludes many high severity CWEs because their frequencies
were too low.

5 2019 TOP 20 LISTS OF THE MOST
SIGNIFICANTWEAKNESSES

We now use our MSSW equation to generate lists of the most
significant software security weaknesses. We choose a list size of
20, somewhat arbitrarily, to enable the lists to conveniently fit on a
page.We performed the experiments on a variety of list sizes and did
not discover any appreciable differences. We did not choose a size
of 25 to match the CWE top list because we needed to produce two
top lists of differing levels of abstraction to get the most accurate
results (explained below) and thus were unable to produce a single
list of 25 CWEs for an ideal comparison with the CWE top 25 list.

We follow the approach in [12] of separately providing a top
list for CWEs of higher levels of abstraction (pillars and classes)
apart from a list covering CWEs of lower levels of abstraction
(bases, variants, and compounds). This was done in [12] to avoid
errors in frequency calculations that exist in CWE’s top 25 list.
The paper argues that CWEs mapped to lower level abstractions
(e.g., bases) also should count towards their parent abstractions
(e.g., classes); this is not done with MDSE calculations. For example,
class CWE-20 (Improper Input Validation) is a parent of base CWE-
1289 (Improper Validation of Unsafe Equivalence in Input). If a
vulnerability exists with CWE-1289, then CWE-20 also needs to
be taken into account with the CWE frequency counts. However
when this frequency propagation is performed, combining together
the two abstractions results in a single top list with a bias towards
parents with many children (especially popular children). Thus the
2 levels of abstraction need to be presented in separate top lists.

We will refer to the higher level abstraction list as the class list
and the lower level abstraction list as the base list for convenience
and because both lists are primarily composed of either classes or
bases. We also follow [12] in using published CWE taxonomy views
1000 and 1008 (discussed in Section 2.3) to propagate CVE data
from child CWEs to their parents (discussed above). This provides
a more accurate mapping of CVEs onto the CWEs, providing a
more accurate data foundation upon which to apply our MSSW
equation.2

These modifications also alter the frequency and severity dis-
tributions which could potentially render our double log function
invalid. However, Table 1 shows correlation results for using and
not using all combinations of the modifications adopted from [12].
It shows that the MDSE equation is highly correlated to frequency
(.97 or higher) with very little correlation to severity (.25 or lower)
regardless of the modifications used or not used. It also shows that
the MSSW equation is strongly correlated to both frequency (.81 or
higher with one exception) and severity (.66 or higher) regardless
of the modifications used. Our one exception is for the class list
using propagation with MSSW; even here the frequency correlation
was .55 (still strong but much less than the others).

Note that our objective is not for the correlations to necessarily
be equal, but that there exists a strong correlation for both frequency
and severity. Depending upon the data, the higher frequency CVEs
may or may not also be the highest severity CVEs. If so, then the
correlations to frequency and severity would both be very high and
almost equal. If not, both should still be high but one may be higher
than the other. What we do not want in these results is for one of
frequency or severity to have a high correlation and the other to
have a very low correlation (which can be seen with the MDSE
equation).

We also checked to see that the double log still linearized the
frequency distribution when using both variants from [12]. While
propagating CVEs over the CWEs using the CWE taxonomies and
using all applicable CWEs (i.e., pillars, classes, bases, variants, and

2This propagation especially helps the formulation of the class list since most classes
have children. It has a lesser effect on the base list. Note that it is impossible to inverse
the propagation of data. CWEs are labelled as specifically as possible by NVD analysts
so CVEs described by pillar or class CWEs do not get reflected in the base list. It is
even possible that they shouldn’t because there may be unidentified bases missing
from view 1003 that are still covered by the view 1003 classes.
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Table 1: Measurements Showing the Pearson Correlation of
MDSE and MSSW to Frequency and Severity

Correlation
Equation Abstraction Propagation Frequency Severity
MDSE All Yes .99 .08
MDSE All No .98 .18
MDSE High Yes .99 .10
MDSE High No .98 .25
MDSE Low Yes .97 .20
MDSE Low No .97 .18
MSSW All Yes .81 .70
MSSW All No .86 .66
MSSW High Yes .55 .96
MSSW High No .84 .68
MSSW Low Yes .84 .67
MSSW Low No .83 .68

Figure 10: Normalized Distributions of Frequency (bottom
blue line), Log of Frequency (middle yellow line), and Dou-
ble Log of Frequency (top red line).

compounds), the results show that the double log does still linearize
the frequency (see Figure 10). The same results were obtained while
also performing the experiment using just the pillars/classes and
then just the bases, variants, and compounds (graphs not shown).

Using our MSSW equation to aggregate the frequency and sever-
ity of CWEs, the top 20 class list for 2019 is shown in Table 2.
The top 20 base list is shown in Table 3. These two lists use the
modification from [12] where the CVEs are propagated up through
the CWE taxonomies. We claim that these two lists represent the
most accurate measurement yet produced for determining the most
significant software security weaknesses. Given that there is no
ground truth for how to best combine frequency and severity and
no ground truth upon which to establish the correctness of the
CVSS metric, it is likely impossible to prove any such metric as
maximally effective. We make our ‘most accurate measurement
yet’ claim based on the demonstrated limitations in the published
MDSE equation and a lack of competing published alternatives.

6 DISCUSSION AND ANALYSIS OF THE MOST
SIGNIFICANTWEAKNESSES

In this section, we evaluate our 2019 MSSW class and base lists
(see Tables 2 & 3) and compare them against the 2019 CWE Top 25
MDSE List [17] (reproduced in Table 4).

As stated previously, we expect the MDSE list to vary from the
MSSW class and base lists because:

(1) the MDSE list is biased towards the frequency of a CWE
occurring in CVEs,

(2) we use the taxonomy propagation approach from [12], and
(3) the class and base lists contain a total of 40 CWEs while the

MDSE list contains 25 CWEs.

6.1 High Level Summaries
View 1003 contains two pillars (CWE-682 and CWE-697) and 36
classes, as well as 81 bases, three variants (CWE-415, CWE-416, and
CWE-401), and two compounds (CWE-352 and CWE-384).

The MDSE Top 25 [17] ranks CWE items across all the layers
of abstraction from view CWE-1003. The list has seven classes, 16
bases, one variant, and one compound. Interestingly, some of these
top CWEs have child-parent relationships among themselves.

A simple inspection of the list shows how parent CWEs do not
receive CVE counts from their children. For example, the count for
the top class CWE-119 (rank 1, count 1048) does not include the
counts of its children CWE-125 (rank 5, count 678) and CWE-787
(rank 12, count 473). Analogously, the count for the class CWE-287
(rank 13, count 299) does not include the counts of its children base
CWE-798 (rank 19, count 91) and base CWE-295 (rank 25, count
77).

Our MSSW class list is comprised of 19 class CWEs and the
pillar CWE-682 (rank 9) – see Table 2. Only three CVEs are directly
described with the pillar, but it appears in the list because there is a
set of severe CVEs described with its children (see subsection 6.5).
Our MSSW base list is comprised of 17 bases, the variants CWE-416
(rank 7) and CWE-415 (rank 14), and the compound CWE-352 (rank
10) – see Table 3. Each of the two lists properly compare items of the
same kind. Interestingly but not surprisingly, each CWE from the
base list is a child of a CWE from class list. However, the ordering
of these parent-child pairs are not necessarily preserved between
the two lists.

6.2 Set Differences
There are differences in the set of CWEs covered by our top 20
MSSW class and base lists and the MDSE list. The pillars/classes
in the MDSE list that do not appear in the class list are: CWE-200
and CWE-732. The bases/variants/compounds in the MDSE list that
do not appear in the base list are: CWE-79, CWE-476, CWE-772,
CWE-426, and CWE-295. The base list contains base CWE-120 (a
child of CWE-119), which does not appear in the MDSE list.

Note that the two classes from the MDSE list with children in the
same list are also in the class list (emphasizing their importance):
class CWE-119 with children base CWE-125 and base CWE-787, and
class CWE-287 with children base CWE-798 and base CWE-295.
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Table 2: 2019 MSSW Top 20 Pillars/Classes, Propagating CVSS Data over CWE Taxonomies

Rank Identifier CWE Description MSSW Score Frequency Mean CVSS
1 CWE-913 Improper Control of Dynamically-Managed Code Resources 78.31 188 8.81
2 CWE-119 Improper Restriction of Operations within Bounds of a Memory Buffer 71.14 2745 8.00
3 CWE-669 Incorrect Resource Transfer Between Spheres 64.86 181 8.31
4 CWE-672 Operation on a Resource after Expiration or Release 64.56 876 7.96
5 CWE-330 Use of Insufficiently Random Values 63.74 111 8.43
6 CWE-704 Incorrect Type Conversion or Cast 62.55 54 8.68
7 CWE-287 Improper Authentication 59.75 627 7.86
8 CWE-345 Insufficient Verification of Data Authenticity 54.60 483 7.73
9 CWE-682 Incorrect Calculation 51.94 215 7.78
10 CWE-269 Improper Privilege Management 50.57 258 7.70
11 CWE-610 Externally Controlled Reference to a Resource in Another Sphere 48.38 725 7.46
12 CWE-706 Use of Incorrectly-Resolved Name or Reference 39.04 358 7.23
13 CWE-20 Improper Input Validation 38.56 3960 6.99
14 CWE-116 Improper Encoding or Escaping of Output 32.13 2461 6.82
15 CWE-400 Uncontrolled Resource Consumption 32.07 272 7.01
16 CWE-74 Improper Neutralization of Special Elements in Output ... (’Injection’) 32.06 2455 6.82
17 CWE-754 Improper Check for Unusual or Exceptional Conditions 32.05 264 7.01
18 CWE-326 Inadequate Encryption Strength 28.21 35 7.24
19 CWE-668 Exposure of Resource to Wrong Sphere 26.59 2292 6.66
20 CWE-436 Interpretation Conflict 22.40 17 7.19

Table 3: 2019 MSSW Top 20 Bases/Variants/Compounds, Propagating CVSS Data over CWE Taxonomies

Rank Identifier CWE Description MSSW Score Frequency Mean CVSS
1 CWE-89 Improper Neutralization of Special Elements used ... (’SQL Injection’) 71.70 384 8.89
2 CWE-502 Deserialization of Untrusted Data 61.73 83 9.01
3 CWE-787 Out-of-bounds Write 61.57 423 8.34
4 CWE-78 Improper Neutralization of Special ... (’OS Command Injection’) 61.22 194 8.58
5 CWE-120 Buffer Copy without Checking Size of ... (’Classic Buffer Overflow’) 59.35 162 8.55
6 CWE-94 Improper Control of Generation of Code (’Code Injection’) 58.62 100 8.72
7 CWE-798 Use of Hard-coded Credentials 58.07 89 8.75
8 CWE-434 Unrestricted Upload of File with Dangerous Type 57.95 167 8.46
9 CWE-416 Use After Free 56.69 426 8.09
10 CWE-352 Cross-Site Request Forgery (CSRF) 51.60 386 7.86
11 CWE-346 Origin Validation Error 51.51 430 7.82
12 CWE-613 Insufficient Session Expiration 51.08 402 7.82
13 CWE-190 Integer Overflow or Wraparound 48.79 164 7.95
14 CWE-415 Double Free 43.17 46 8.15
15 CWE-125 Out-of-bounds Read 42.34 658 7.28
16 CWE-129 Improper Validation of Array Index 41.97 25 8.50
17 CWE-611 Improper Restriction of XML External Entity Reference 41.47 100 7.69
18 CWE-918 Server-Side Request Forgery (SSRF) 41.05 74 7.78
19 CWE-22 Improper Limitation of a Pathname to a Restricted ... (’Path Traversal’) 39.40 309 7.27
20 CWE-191 Integer Underflow (Wrap or Wraparound) 37.76 18 8.47

6.3 Reordered Rankings
The relative orderings in the MDSE list often do not match the
orderings in the MSSW class and base lists. There are some notable
reorderings. CWE-89 (Structured Query Language (SQL) Injection)
and CWE-502 (Deserialization of Untrusted Data) climb up in the
base list due to their highest severities of 8.89 and 9.01. CWE-913
(Improper Control of Dynamically-Managed Code Resources) does
not even appear in the MDSE Top 25 list, as it has only three direct

occurrences in the CVEs. However, it climbs up to first position in
the class list due to its highest severity of 8.81 and its 188 propa-
gated occurrences. Its main child contributor is base CWE-502 with
frequency of 83 and severity of 9.01. CWE-119 (Improper Restric-
tion of Operations within the Bounds of a Memory Buffer) in the
MDSE list, while widely used with 2745 propagated occurrences in
the CVEs, is quite less severe than CWE-913 and drops to rank 2 in
the MSSW class list.
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Table 4: Reproduction of the 2019 CWE Top 25 Most Dangerous Software Errors List[17]

Rank Identifier CWE Description MDSE Score
1 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56
2 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 45.69
3 CWE-20 Improper Input Validation 43.61
4 CWE-200 Information Exposure 32.12
5 CWE-125 Out-of-bounds Read 26.53
6 CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 24.54
7 CWE-416 Use After Free 17.94
8 CWE-190 Integer Overflow or Wraparound 17.35
9 CWE-352 Cross-Site Request Forgery (CSRF) 15.54
10 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 14.1
11 CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 11.47
12 CWE-787 Out-of-bounds Write 11.08
13 CWE-287 Improper Authentication 10.78
14 CWE-476 NULL Pointer Dereference 9.74
15 CWE-732 Incorrect Permission Assignment for Critical Resource 6.33
16 CWE-434 Unrestricted Upload of File with Dangerous Type 5.5
17 CWE-611 Improper Restriction of XML External Entity Reference 5.48
18 CWE-94 Improper Control of Generation of Code (’Code Injection’) 5.36
19 CWE-798 Use of Hard-coded Credentials 5.12
20 CWE-400 Uncontrolled Resource Consumption 5.04
21 CWE-772 Missing Release of Resource after Effective Lifetime 5.04
22 CWE-426 Untrusted Search Path 4.4
23 CWE-502 Deserialization of Untrusted Data 4.3
24 CWE-269 Improper Privilege Management 4.23
25 CWE-295 Improper Certificate Validation 4.06

6.4 The Two Most Dangerous CWEs: Injection
vs. Memory Errors

The two most distinctive groups of weaknesses both in the MDSE
Top 25 list and the twoMSSW Top 20 lists are injection and memory
errors. However, the use of the MSSW equation and the split into
class and base lists considerably reorders these two groups, as well
as brings in new CWEs and drops some CWEs.

6.4.1 Injection Weaknesses. Injection is the most dangerous type
of weakness, represented by bases) CWE-89 (SQL Injection), CWE-
502 (Deserialization of Untrusted Data), CWE-78 (OS Command
Injection), CWE-94 (Code Injection), and CWE-611 (Improper Re-
striction of Extensible Markup Language (XML) External Entity
Reference), with ranks 1, 2, 4, 6, and 17 respectively in the base list
(see Table 3). The MDSE list also contains these five CWEs, however
the rankings of the first three are 6, 16, and 11 due to their lower
frequencies of 397, 85, and 217. The MSSW inclusion of their high
severity scores of 8.89, 9.01, and 8.58 moved them several positions
up in the base list. Note that CWE-502 covers Object Injection.

Also of importance is that the second ranked in the MDSE list
CWE-79 (Cross-site Scripting), is not in our MSSW base list. Al-
though it has the highest frequency of 1571, its severity score of
5.83 is relatively low.

The MSSW class list includes CWE-913 (Improper Control of
Dynamically-Managed Code Resources), CWE-116 (Improper En-
coding or Escaping of Output), and CWE-74 (Injection), ranked 1,
14, and 16 (see Table 2). The reason for that is CWE-913 is the parent

of CWE-502, CWE-116 is a typical cause of injection and CWE-74
is the parent of CWE-78, CWE-89, and CWE-94. Interestingly, the
class CWE-74 has rank 16 among classes, while its children bases
CWE-89, CWE-78, and CWE-94 are ranked 1, 4, 6 among bases. The
frequencies of 2455 for CWE-74, 384 for CWE-89, 194 for CWE-78,
and 100 for CWE-94, leave 1777 injection CVEs that are described
with CWEs that are either very infrequent or not severe. These are
bases CWE-79 (Cross-site Scripting) with the low severity of 5.83,
CWE-88 (Argument Injection) with the low frequency of 6, and
CWE-91 (XML Injection) with the low frequency of 16. Being not
too dangerous they bring the class CWE-74 down to rank 16. That
same base CWE-79, not included in the MSSW base list, is ranked
2nd in the MDSE list due to the frequency biasing.

6.4.2 Memory Weaknesses. The most dangerous memory weak-
nesses are CWE-787 (Out-of-bounds Write) and CWE-120 (Classic
Buffer Overflow) with ranks 3 and 5 – see Table 3. Both of them are
included in the base list but not the MDSE list, due to the correction
of the frequency bias towards proper inclusion of their severity
scores of 8.34 and 8.55.

The other memory weaknesses in the MSSW class and base lists
are as follows:

• bases CWE-125 and CWE-787 are buffer overflow (out of
bounds read or write)

• variant CWE-416 is use after free (use of deallocated memory
through a dangling pointer)
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• variant CWE-415 is double free (deallocate of already deallo-
cated memory)

• class CWE-119 is a general memory corruption weakness,
which includes buffer overflow, use after free and double
free.

• class CWE-400 is memory overflow (stack/heap exhaustion)
[21]

6.4.3 Injection/MemoryWeakness Comparison. Compared toMDSE,
the MSSW equation brings up several injection weaknesses with
much higher severity than that of any memory weaknesses. The
related CVE analysis confirms that the injection CVE are easier
to exploit and with higher impact. An injection directly leads to
arbitrary command, code, or script execution. Once a SQL injection
is in place, there is no need of additional sophisticated attack craft-
ing or use of glitches in the system. However, it takes considerable
extra effort for an attacker to turn a buffer overflow into an arbi-
trary code execution. He or she would need to have exceptional
skills, such as to apply spraying memory techniques. The possible
damage from an Object injection or from an SQL injection or from
is very high. Object injection could lead to remote code execution.
An SQL injection may expose huge amounts of structured data,
which is proven to be more valuable than raw data. Well formed
structured data is easy to read, sort, search, and make sense of it.
Via an SQL injection, an attacker could modify a database – insert,
update, delete data, execute admin operations, recover file content,
and even issue OS commands [25].

6.5 Next Most Dangerous CWEs
The next most dangerous groups of weaknesses in the MSSW class
and base lists relate to file input and upload, authentication, ran-
domization, cryptography, arithmetics and conversion, and input
validation:

• randomization – class CWE-330 (Use of Insufficiently Ran-
dom Values) with rank 5 is the class mostly directly assigned
to CVEs.

• authentication – base CWE-798 (Use of Hard-coded Creden-
tials) has rank 7; it is one of the contributors to the class
CWE-287 (Improper Authentication) with the same rank 7
in the class list.

• file upload – base CWE-434 (Unrestricted Upload of File with
Dangerous Type) has rank 8. It is the main contributors to
class CWE-669 with rank 3.

• cryptography – base CWE-352 (Cross-Site Request Forgery)
has rank 10, which relates to bugs in data verification. The
class list also has class CWE-326 (Inadequate Encryption
Strength) with rank 18, which is directly assigned to 35 CVEs
with severity 7.24.

• arithmetics and conversion – base CWE-190 (Integer Over-
flow or Wraparound) and base CWE-191 (Integer Underflow)
have ranks 13 and 20. They are the primary contributors to
pillar CWE-682 (Incorrect Calculation) with rank 9. Others
in this group on the top lists are bases CWE-131 (Incorrect
Calculation of Buffer Size), CWE-190 (Integer Overflow or
Wraparound), and CWE-191 (Integer Underflow – Wrap or
Wraparound).

• input validation - base CWE-129 (Improper Validation of
Array Index) has rank 16.

6.6 Mapping Dependencies
Both the MDSE and MSSW rankings heavily depend on how NVD
assigns CWEs to particular CVEs. The CWE selection is restricted to
view CWE-1003. Insufficient information about a CVE or an insuf-
ficiently specific CWE may lead to the use of the closest matching
CWE class or pillar to describe the CVE. For example, it makes
sense for class CWE-119 to be used for the memory corruption
CVE-2019-7098, as there is not much information (no code and
no details) – it could be any memory use error or a double free.
However, there does exist enough information about the use after
free CVE-2019-15554, but it is still mapped to class CWE-119 be-
cause there exists no appropriate base CWE. A close base CWE is
CWE-416 (Use After Free), but it does not really reflect memory
safe languages like Rust. It is also possible for a class CWE to be
assigned to a CVE even when a specific base CWE is available.
For example, the stack buffer overflow write CVE-2019-14363 is
assigned class CWE-119, although there is plenty of information to
map it more specifically to bases CWE-121 and CWE-120.

7 RELATEDWORK
The constant need to improve information security has motivated
a widespread interest in metrics (both qualitative [8] and quanti-
tative [23]). As stated by Lord Kelvin, you cannot improve if you
cannot measure. However, many members of the software security
community doubt our ability to quantify security. Bellovin was
among the first [2] to argue about the infeasibility of software secu-
rity metrics. [4] discusses the limitations of the celebrated “Risk =
Threat × Vulnerability × Consequence” model that is widely used.
In [30] Verendel presents a critical survey of results and assump-
tions made in the community to quantify security. After reviewing
over 100 articles, he concludes that the validity of most methods is
still strikingly unclear. Many reasons explain this invalidity: lack of
validation, lack of comparison against empirical data, and the fact
that many assumptions in formal treatments are not empirically
well-supported in operational security.

Although we agree, we posit that acceptable but possibly im-
perfect metrics must be developed in order to facilitate security
decisions and to evaluate changes in security posture. To this end,
there have been substantial efforts to produce security metrics;
[30] surveys the literature of security metrics published between
1981 and 2008. More efforts can be found in [28], [26], and [20].
Security metrics that produce lists of the top security issues are also
very prevalent [29], [11]. Specific to software security, there is the
OWASP Top 10 [24] for web applications. Also, the CWE project
has the Common Weaknesses Scoring System (CWSS) [14] and
the Common Weakness Risk Analysis Framework (CWRAF) [16],
which are used together to provide the most important weaknesses
tailored to a particular organization.

There is also work to critique and improve the foundational
data structures used by the MDSE and MSSW metrics. CWEs have
been discussed in [31]. An entirely new approach to classifying
software bugs (weaknesses) is proposed by [3] and is currently
under development. The evolution of CWE is documented in [19]
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(e.g., the addition of classification trees and content for mobile
applications and hardware). A critique of CVSS is available in [9].
In [12] a novel CWE data collection method is proposed along with
simple atomic software security metrics. Our approach in contrast
is an aggregate metric designed to be a direct replacement for the
MDSE equation.

Along with much other work, our research should be considered
as an important step in the process to improve CWE. We believe
that our contribution is major as it points out a serious bias in the
CWE MDSE equation that is preventing accurate measurements of
the most significant software security weaknesses.

8 FUTUREWORK
This goal of this work is to identify and fix the unintended bias
in the MDSE equation towards frequency. Thus we design the
MSSW equation to, as evenly as possible, factor together frequency
and severity. And this is rational as it models typical security risk
matrices that equally combine probability and impact (e.g., [5]).
However, it is possible that intentionally biasing towards either
frequency or severity is more useful in this domain. Also, the CVSS
severity equation is itself an aggregate of exploitability and impact.
Future work should evaluate whether or not any intentional bias
should be added between these 3 factors.

Also, future work should evaluate additional metrics that might
be useful for determining themost significant CWEs. In particular, it
would be useful to identify CWEs whose associated vulnerabilities
are frequently used in actual and impactful breaches. We note that
the CVSS temporal equations provide some of this, but these results
are not commonly calculated and no public repository of this data
exists. That said, some data does exist to support such mappings
(e.g., [27]).

9 CONCLUSION
The field of security metrics is a difficult area of scientific research
because there is often no ground truth, unlike disciplines such as
physics and chemistry. This may lead one to focus on just taking
simple low level measurements that are inherently defensible; that
was the approach taken in [12]. However, creating aggregate met-
rics that compose multiple simple measurements is of practical
importance for the field of security. In this work we did just that,
aggregating frequency and severity (i.e., exploitability and impact)
into a single metric. Our objective is not for the correlations to nec-
essarily be equal, but that there exists a strong correlation for both
factors which more evenly balances the inclusion of the top fre-
quency and top severity CWEs. This seemingly simple task proved
challenging because of the differing distributions of both simpler
metrics. Indeed, the officially published CWE metric neglected this
property and did not achieve its stated objective (almost exclusively
choosing the most frequent CWEs). With our work, we claim to
have addressed the limitations and to have produced the most ac-
curate equation yet for measuring the most significant software
security weakness.
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