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ABSTRACT

Auditing is an increasingly essential tool for the defense of computing systems, but the

unwieldy nature of log data imposes tremendous burdens on administrators and analysts.

To address this issue, a variety of techniques have been proposed for approximating the

contents of raw audit logs, facilitating e�cient storage and analysis. However, the security

value of these approximated logs is di�cult to measure � relative to the original log, it

is unclear if these techniques retain the forensic evidence needed to e�ectively investigate

threats. Unfortunately, prior work has only been able to investigate this issue anecdotally,

demonstrating su�cient evidence is retained for speci�c attack scenarios.

In this work, we address this gap in the literature through formalizing metrics for quan-

tifying the forensic validity of an approximated audit log under di�ering threat models. In

addition to providing quanti�able security arguments for prior work, we also identify a novel

point in the approximation design space � that log events describing benign system activ-

ity can be aggressively approximated, while events that encode anomalous behavior should

be preserved with lossless �delity. We instantiate this notion of Attack-Preserving foren-

sic validity in Approx a new approximation technique that eliminates the redundancy of

voluminous �le I/O associated with benign process acitivities. We systematically evaluate

Approx alongside a corpus of exemplar approximation techniques from prior work. We

demonstrate that, while Approx enjoys comparable log reduction rates, it is able to retain

100% of attack-associated log events; in contrast, we make the surprising discovery that

prior approaches for log approximation retain as little as 7.3% of forensic evidence under

the Attack-Preserving metric. This work thus establishes trustworthy foundations for the

design of the next generation of e�cient auditing frameworks.
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CHAPTER 1: INTRODUCTION

Now more than ever, auditing is vital to the defense of computing systems. With alarming

regularity [1, 2, 3, 4, 5], sophisticated threat actors are able to breach perimeter defenses and

subsequently wreak havoc on organizational networks. Given our struggles keeping intruders

out of systems, the onus shifts to quickly detecting and responding to threats in order to

minimize their impact. Audit logs have proven invaluable to these tasks; today, 75% of

cyber analysts report that logs are the most important resource when investigating threats

[6]. Moreover, the importance of audit logs will only grow as state-of-the-art causal analysis

techniques for detection [7, 8, 9, 10, 11], alert triage [12, 13], and investigation [14, 15, 16, 17]

become widely available.

Unfortunately, the capabilities provided by system auditing come at a cost. Commodity

audit frameworks are known to generate tremendous volumes of log data, upwards of a

terabyte per machine in a single month [18]. Not only is storing and managing this data a

burden, but the unwieldy nature of these logs also slows down time-sensitive investigation

tasks during in-progress attacks. For example, Liu et al. observed that even a simple

backtrace query to determine the root cause of an event may take days to return [19]. At

present, the ine�ciencies of system auditing seriously undermine its use in more e�ectively

combatting combatting real-world threats.

In response to this issue, researchers have called for optimizing the contents of audit

logs, based largely on the observation that most events described by the log are not strictly

necessary when investigating threats. A variety of methods have been proposed for achieving

this goal, ranging from the �ltering of events that describe deleted system entities [20], do

not connote a new information �ow [21] or do not e�ect the conclusions reached by standard

forensic queries [22], among many others [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 18, 33, 34].

We refer to these methods as approximation techniques in this work. With many of these

techniques reporting orders of magnitude reduction in log size, the goal of holistic auditing

of large organizational networks seems within reach.

While these results are encouraging for the perspective of performance, it is much more

di�cult to quantify the loss in utility that arises from approximating the original log. Is an

approximated log equally useful when investigating threats, and if not under what circum-

stances can we expect the approximation routine to introduce error? For example, Lee et

al.'s pioneering LogGC system deletes �deadend� events describing entities that no longer

exist on the system [20], but given the ephemeral nature of network sockets it is likely that

LogGC may destroy log events describing data ex�ltration tactics. Unfortunately, prior
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work has o�ered only anecdotal arguments for the utility of approximated logs for threat

investigation.

In this work, we conduct the �rst independent analysis of the utility of audit logs that

have been subjected to approximation techniques. We argue that utility is a measure of the

�forensic validity� of a log for investigating di�erent kinds of threats. To enable measurement

of forensic validity, we introduce and formalize three metrics for characterizing approximated

logs: Lossless, Causality-Preserving, and Attack-Preserving. While the �rst two metrics are

distilled from prior work, attack-preserving forensics is based on the novel observation that

only events that exclusively describe attack behaviors are essential to retain, while events

describing typical process activity can be aggressively approximated. We use these metrics to

conduct a rigorous utility analysis of a set of exemplar approximation techniques, discovering

in the process that prior work often �lters attack-related events when approximating logs.

While optimizing logs for attack-preserving forensics is preferable for the e�ciency of au-

dit logs, it requires a method of delineating typical process activity from unexpected system

events. To address this gap, we present Approx 1, a regular expression (regex) learning

approach to log approximation. Approx targets the most space-intensive events found in

audit logs, namely the �le I/O activity which can account for up to 90% of log contents.2

Once a regex for a given process has been learned, Approx then matches and eliminates new

log events that match the regex. Through the design of a carefully-constructed learning algo-

rithm, we demonstrate that it is possible to generate a set of regexes that faithfully describe

typical process activity while simultaneously avoiding the �ltering of any attack-speci�c be-

haviors. We show that Approx retains 100% utility under the attack-preserving model

while exhibiting comparable performance to state-of-the-art audit reduction techniques.

The contributions of this work are as follows:

� Forensic Validity Measurement. To facilitate reasoning about the utility of approximated

logs, we present a set of novel metrics that can be used to quantify the value of logs

under di�erent threat models. We conduct an independent analysis of an exemplar set of

approximation techniques, discovering in the process that destruction of attack-relevant

events is common. For instance, we discover that source dependence preservation [35]

retains just 7.3% of attack information.

� Attack-Preserving Approximation Techniques. We present Approx a log approximation

method that is optimized for attack-preserving forensics. Approx performs a bounded

1Attack-Preserving Provenance Reduction Over regeXes
2We observe in our evaluation datasets that 88.97% of events describe system calls associated with �le

I/O.
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regex-learning routine over process executions to learn their �le I/O behaviors. While

aggressively �ltering events related to known �le behaviors, Approx retains a complete

record of process-to-process and process-to-network dependencies, thus facilitating the

causal analysis techniques.

� Evaluation and Attack Engagements. We evaluate the performance of Approx and sub-

ject it to a series of attack scenarios through which we measure forensic validity. These

engagements con�rm that Approx fully satis�es the attack-preserving forensic metrics,

in spite of o�ering comparable reduction rates to prior work. We plan to open source

Approx following publication.
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CHAPTER 2: BACKGROUND

Logging is critical to defending sysyems, facilitating intrusion detection and post-mortem

forensics of attacks. Audit logs can be generated at di�erent software layers; for example,

Windows Event Logs is an application-level logging framework for Active Directory envi-

ronments [36], while Event Tracing for Windows [37] and Linux Audit [38] are kernel-level

logging frameworks that primarily trace system call information. While all logs can be of

potential use during threat investigations, low-level audit frameworks are especially useful in

threat hunting because they can be used to reliable trace dependencies between applications.

The contents of an audit log can be thought of as a sequence of temporally-ordered event

tuples (i.e., < subject, object, access, timestamp >), which can be further parsed into a

causal dependency (i.e., provenance) graph by incrementally linking entities associated with

each event tuple according to the access type (see, e.g., [39, 40, 41, 42]). Speci�cally, a

provenance graph can be de�ned as G = (V,E). Each vertex v ∈ V corresponds to a system

object such as processes, �les, and �le-like objects (network sockets, virtual �le system

objects, etc.), while each e ∈ E encodes a dependence relationship between those objects

and roughly orresponds to a single log event. Typically, these edges direct in the opposite

direction of information-�ow, denoting a provenance (historical) relation on the events that

occurred. Thus, a traversing the graph backwards or forwards respectively allows analysts

to peer into the history or future of a given event.

De�nition 2.1. Backward Trace: A backward trace of edge e is the subgraph of G reachable

from e (or equivalently, the destination vertex of e).

De�nition 2.2. Forward Trace: A forward trace of edge e is the subgraph of G reachable

from e in the reverse graph of G (or equivalently, the souce vertex of e).

A backward trace enables an analyst to identify the root cause(s) of a particular event,

e.g., the point of entry of an intruder into the system. Conversely, a forward trace identi�es

the impact of a particular event, with a forward trace from the root cause reporting all

actions taken by the attacker.

2.1 AUDIT LOG APPROXIMATION

Although audit frameworks are extremely useful to threat investigation, the main limita-

tion of is the sheer volume of logs generated. Log overheads vary depending upon on the

load of the machine, but have been reported to be anywhere between 3 GB [20] and 33 GB
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[18] per day for web servers and around 1 GB per day for workstations [20]. As a result

storing and anlyzing these logs is often infeasible in practice � log data is often purged just

a few days after its creation [43], and when it is retained for longer periods simple trace

queries may take days to return [19].

To combat the limitations of pervasive system auditing, many techniques for log approx-

imation have been proposed. These approximation methods analyze the structure and se-

mantics of the provenance graph to identify components (i.e., log events) that are unlikely

to be of use to an analyst and can therefore be removed. While a variety of approaches

to log approximation have been proposed based on �ltering policies [27, 30], taint analysis

[28, 34], templatization [23, 32, 33], or simple compression [24, 25], we describe at length

three in�uential exemplar approaches below:

� Garbage Collection (GC). First proposed by Lee et al. in their LogGC system [44],

garbage collection is based on the observation that subgraphs that exclusively describe dead

system entities do not a�ect the present state of the system and can therefore be removed.

Consider a process that generates a temporary �le then deletes it. If no other process

accesses that temporary �le, all log events associated with that �le can be removed from

the graph. A visualization of garbage collection is given in Figure ??. Garbage collection

has since been incorporated into a number of log analysis systems, e.g., [26, 28, 18].

� Causality-Preserving Reduction (CPR). Originally introduced by Xu et al. [45],

CPR observes that many log events are redundant because they do not denote a new

information �ow in the provenance graph. Consider a process that writes to a �le twice.

If the process did not read from any other object between the two writes, we can remove

the log event describing the second write because the process state did not change between

writes. Note that, in actuality, the data bu�er may have been completely di�erent in each

write event; however, because audit logs do not include data bu�ers, when interpreting

provenance graphs we must always conservatively assume that all process state is trans-

ferred during each information �ow event. Thus, the second write is completely redundent

in this example. A visualization of CPR is given in Figure ??. CPR has been adopted or

extended by subsequent log analysis systems, including [32, 19, 12, 22].

� Dependence-Preserving Reduction (DPR) Building on the CPR concept, Hossain

et al. go a step further by proposing that preserving causality is unnecessary so long as

the provenance graph returns the correct system entities to forward and backward trace

queries [35]. Consider a vertex for which their are two causal paths back to its root cause;

this represents a potential redundancy and one of the two edges may be deleted, provided
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that the edge is not necessary to preserve dependency for some other node. Hossain et

al. introduce two variants of DPR, Source Dependency-Preserving Reduction (S-DPR)

in which only backward trace reachablity is preserved, and Full Dependency-Preserving

Reduction (F-DPR) in which both backward and forward trace reachability are preserved.

A visualization of S-DPR is given in Figure ??. As a more recent proposal, we are not

aware of subsequent work that has incorporated DPR, although DPR is signi�cant in that

it boasts among the highest reduction rates in the literature.

Limitations of Prior Work. While the performance characteristics of these approaches

were e�ectively evaluated in prior work (i.e., storage overheads), the security characteristics

of logs that were approximated using these techniques has proven more di�cult to quantify.

When approximating the log, problems of graph reachability and interpretability may arise.

Further, if events are merged or deleted, then interpreting the graph becomes more di�cult.

Worse yet, key details of the attack behaviors may be lost in ways that were unanticipated

by the designers of the approximation technique.

Unfortunately, without exception [44, 45, 35, 46, 47], prior work was evaluated exclusively

through attack scenario case studies in which a forensic analyst needs to answer a speci�c

query during investigation. The issue with this approach is that it is anecdotal; it may be

that analysts need to answer a broader range of queries that were not considered in the

case study, or that the semantics of the speci�c attack scenario did not adequately explore

the forensic utility of the approximated log. Worse yet, under this evaluation technique the

e�cacy of approximation methods is reduced to a binary 'yes' or 'no' depending on whether

or not the analyst is able to achieve a hand-selected forensic goal. In the following section,

we present a set of nuanced and descriptive methods for characterizing the security of an

approximation technique. These metrics provide a continuous (i.e., non-binary) value for

characterizing forensic validity, and further describe the value of an approximated log even

for unanticipated queries.
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CHAPTER 3: APPROXIMATION METRICS

To better characterize the security utility of log approximation techniques, we propose

a set of three complementary forensic validity metrics that can be used to evaluate an

approximated log. Each metric encodes utility under a di�erent threat model that an analyst

may encounter during the course of an investigation. The key insight behind these metrics

is that, rather than anecdotally demonstrating value in a speci�c attack behavior, utility

should be measured as a property of the approximated graph or log. We propose three such

metrics: Lossless, Causality-Preserving, and Attack-Preserving.

3.1 LOSSLESS FORENSICS

It is important to recognize that any log approximation necessarily results in a loss of

utility. We begin by proposing a strawman validity metric that allows us to measure this

baseline loss by comparing an approximated log to the ideal notion of preserving all log

entries associated with an attack. Lossless forensics retains su�cient information for any

threat model, but its value becomes most clear when considering system-layer side channels.

Consider a malicious process attempting to ex�ltrate data over a timing side channel that is

being observed by a colluding process (e.g., [48, 49]). Such an attack will only be identi�able

if the timing and frequency of system calls is retained in the logs; however, this information

is typically seen as redundandt and thus discarded.

De�nition 3.1. Lossless Forensics: Given G = (V,E) and approximation G′ = (V ′, E ′) in

which V ′ ⊆ V and E ′ ⊆ E, a lossless log it must be true that E ′ = E. Distance from

losslessness can be measured as a continuous variable using the formula 1− |E′∩E|
|E| .

In other words, losslessness can be measured by te fraction of edges in E that are missing

from E ′. Note that it is not necessary to directly test the completeness of V , as in practice

each edge is a log event and the associated system entities in V are extracted from these

tuples.

3.2 CAUSALITY-PRESERVING FORENSICS

As information �ow (IF) is a well-studied subject in computer security, we believe it to

be an excellent standard benchmark for log validity and thus encode Xu et al.'s Causality-

Preserving Reduction technique as one of our metrics. Note that this metric describes explicit
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information �ows in the system, hence, implicit information �ows like the one considered by

the lossless metric are not captured in the approximated log. In a log that satis�es causality-

preserving forensics, all events that encode new causal relationships are retained, whereas

edges that are causally redundant are discarded. We de�ne the metric as follows.

De�nition 3.2. Causality-Preserving Forensics: Information �ows from G are preserved

in the approximated graph G′. An information �ow is de�ned by the existence of a path

between two edges in G. The following describes two situations where two edges describe

the same information �ow.

� Two read edges e1, e2 describe the same information �ow if they have the same end-

points process p and �le f , and no write to f or read from p to a �le f ′ 6= f occurred

between e1 and e2.

� Two write edges e1, e2 describe the same information �ow if they have the same end-

points process p and �le f , read from p to a �le occurred between e1 and e2.

G′ maintains causality-preserving forensics if for all u, v ∈ E ′, there is a causal relationship

between u and v if there is a causal relationship between u and v in G. The distance from

causality preservation can be measured by the formula 1− |E′∩E|
|E| .

As a concrete example, consider a provenance graph consisting of a �le node and two

process nodes (A and B). Process A reads the �le twice and process B writes to the �le. If

both reads sequentially occur before the write, then both reads return the same data, and

thus the same information from the �le. Therefore, the causal relationship between the �le

and process A can be encoded by only preserving one of the two read events. However, if

the write were to occur between the two reads, then the information returned by the two

reads may be di�erent. Therefore, the information �ow between process B, the �le, and

process A may possibly di�er from the information �ow of the �rst read. Therefore, we must

preserve both read events. More precisely, we reduce a read event when there are no writes

to the corresponding �le since the last read. Similarly, we are able to reduce a stream of

consecutive write events to a single write event if no read is interspliced between them. This

reduction is expressed in Algorithm 3.

This model assumes that all interesting attack behavior is present in an log that preserves

information �ows. Our threat model may then be attacks which require all information

transmitted is clearly present along an information �ow. As mentioned in the previous

section, in using a side-channel to transmit information, a causal path not present in the

provenance graph and thus, would not be identi�ed under this threat model. Fortunately,
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most attack behavior that is present in the log follows some causal path from the initial

intrusion to further actions on the host.

3.3 ATTACK-PRESERVING FORENSICS

Our �nal reduction metric will speci�cally consider attack events, similar to lossless foren-

sics. The goal of this reduction metric is to preserve logs that uniquely corresponding to

the attack, insofar as we preserve information �ows. In other words, it is identical to the

causality-preserving metric, with the additional relaxation that we must only preserve events

associated with the attack that are not present in the benign graph. In terms of the prove-

nance graph, this will be the intersection of the causality-preserving graph and the events

of the attack graph that are unique to the attack.

De�nition 3.3. Attack-Preserving Forensics: Given provenance graph G and the approx-

imated graph G′, attack-preserving forensics is satis�ed if causality-preserving forensics is

satis�ed and E ′ is a subset of the di�erence between E and the set of all possible benign

events B. Formally, for all u, v ∈ E ′, there is a causal relationship between u and v if there

is a causal relationship between u and v in G, and E ′ ⊆ E \B. The set of all possible benign
events B can be thought of as complete coverage over all behaviors present in an application.

The distance from causality preservation can be measured by the formula 1− |E′∩E|
|E| .

The goal of this metric is to ensure that forensic analysts have enough information to

triage an attack. This is useful for reduction techniques because to perform well against this

metric, they no longer have to distinguish whether seemingly identical behavior in the log is

malicious or benign.

This metric makes an assumption that all interesting attack behavior is outside the realm

of benign program behavior. Therefore, our threat model covers attacks that gain access to

a system, such as remote code execution vulnerabilities. It considers attacks that conduct

behavior outside of normal program behavior, which is necessary to gain access to a system.

Once access, in particular root access, is gained, this assumption breaks down, because if

programs are fundamentally modi�ed, their malicious behavior may be disguised as benign

behavior. The following attack exempli�es this limitation of attack semantics-preserving

reduction. Consider a program that loads multiple shared libraries at startup. If a host is

already completely compromised, one of these shared libraries can be replaced by a mali-

cious library (superuser permissions are necessary to overwrite a system library). Once this

program runs, then libraries will seem to load as usual, even though these libraries contain
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malicious behavior. When executed, however, so long as that behavior di�ers from benign

program behavior, it will be preserved within Attack-Preserving reduction.
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CHAPTER 4: DESIGN

4.1 MOTIVATION

Our goal is to present a reduction strategy that performs well against the attack-semantics

preserving approximation metric. We want to reduce benign behavior, even if it is part of

higher-level malicious behavior, but faithfully preserve uniquely malicious behavior. Note

that reducing benign behavior will not severely impact a forensic analyst's forward and

backward traces in a provenance graph, because the causal links for the benign behavior

are still there, but they are reduce across all instances thereof. An example of such a

system is Winnower, which reduces common events across multiple executions of a program

[46]. Our reduction algorithm �rst reduces events that preserve causal dependencies in the

provenance graph. It then generalizes the processes behavior by learning patterns common

in its behavior, and reducing further.

The overarching goal of our approximation technique is to learn regular expressions on

benign program behavior, allowing aggressive reduction thereof. We show that these pat-

terns do not generalize to uniquely malicious program behavior, and therefore satisfy the

requirements for attack-semantics preserving approximation.

4.2 REDUCTION ALGORITHM

Our reduction algorithm begins by identifying, for each process, which �les it has inter-

acted with. Our provenance graph encodes this information by edges to (read event) and

from (write event) a process node. From this list of �les, we will generate groups of �les with

similar �lenames. Replacing each group of �les with a single placeholder in the provenance

graph allows us to reduce the graph complexity and hence �lter redundant log entries.

4.2.1 Regular Expression Learning

Our goal is to distribute a list of �lenames associated with a process into groups of similar

�les. For a particular �lename (eg. /usr/bin/ls) we distinguish the path (eg. /usr/bin/) and

the name itself (eg. ls).

We de�ne the distance between two names as the Levenshtein edit distance. Corresponding

to this edit distance is an optimal alignment, which will be useful later in constructing a

regular expression. For the distance between two paths, we treat each directory name as a
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Algorithm 4.1: Generate Groups
Data: List of �lenames f1, . . . , fn
Result: Groups of �lenames G

1 Empty list G;
2 while not added �le fi do
3 Set Gi ← {fi};
4 for �lenames fj not added to a group do
5 if Similarity(Path(fi),Path(fj)) ≤ path_threshold and

Similarity(Name(fi),Name(fj)) ≤ name_threshold then
6 Add fj to Gi;
7 Append Gi to G;
8 Return G;

Algorithm 4.2: Generate Regular Expressions
Data: Groups of �lenames G = [G1, . . . , Gn]
Result: Regular Expressions R = [r1, . . . , rn]

1 Empty list R;
2 for every Gi ∈ S do
3 Set ri ← Gi[1];
4 for �lenames f ∈ Gi[2, . . . ,m] do
5 Find alignment a between ri and f ;
6 Replace modi�cations in a with wildcards;
7 Set ri to a;
8 Append ri to R;
9 Return R;

token. We only consider the distance when both paths are of equal depth, because di�erences

in depth contain semantically relevant information. In other words, the path distance is the

number of di�ering directory names. The similarity between two names or paths x1, x2,

where max_len =Max(Len(x1),Len(x2)), is then (max_len−Dist(x1, x2))/max_len.

We compute the path and name similarity between all pairs of �lenames. We group them

by those with a similarity below a certain threshold. We compute these thresholds empiri-

cally, by taking a subset of logs and �nding the threshold at which the sum of similarities

reaches 70% of the total sum.

The algorithm above groups the �les into sets, where each �le is at most a certain distance

from another �le in its set. We return a list of such groups, each of which corresponds to a

regex.

To compute the regex corresponding to a group of �les, we compute the path regex and

name regex individually. To compute a regex from two strings, we �nd the edit distance
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Algorithm 4.3: Log Reduction
Data: Log and Provenance Graph
Result: Reduced Log

1 for every process p do
2 Compute list of groups G;
3 Compute list of regexes R;
4 for every group Gi ∈ G do
5 for all reads e to �le f ∈ Gi (in order) do
6 if since the last read, there was a write to f or a read from p to a �le 6= f

then
7 Keep e and overwrite f with ri;
8 else
9 Delete e;

10 for all writes e to �le f ∈ Gi (in order) do
11 if since the last read, there was a read from p to a �le 6= f then
12 Keep e and overwrite f with ri;
13 else
14 Delete e;
15 Return log;

alignment, and for every location where the tokens do not match, we replace it with a

placeholder. We reduce this binary operation across the list of �lenames. We coalesce

placeholders and replace each with a token matching zero or more occurrences of a wildcard.

We then concatenate the path and name regexes to generate a regex matching all �les in the

group. If there is only one element in the group, we return that �lename as the corresponding

regex.

This algorithm uses a binary regex generation function, taking as input the current

progress and the next �lename. It reduces this function across all �lenames in a group.

If the current regex matches the next �lename, it will remain unchanged.

4.2.2 Log Reduction

For every process, we generate a list of �lenames corresponding to �le accesses initiated

by the process. These �lenames are grouped and their corresponding regular expressions

are generated. For every group of �lenames, we reduce the log entries between the process

and these �les preserving information �ow. We do not reduce �lenames corresponding to

regular expressions with a length below a certain threshold, in our case, 10 characters, since

they can overgeneralize. In e�ect, we are treating this group of �lenames as one large �le.

For the log entries that have not been removed, we overwrite the �lename with the regular

13



expression corresponding to the group.

This reduction algorithm acts on every log entry corresponding to a �le access. It either

keeps or deletes a log entry based on the information-�ow preservation criteria outlined in

the background.
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CHAPTER 5: IMPLEMENTATION

We implemented a log analysis tool that parses Linux Audit (audit) logs and CDM

provenance graphs, the DARPA Engagement data format. Out tool generated a provenance

graph in memory using the SNAP graph library [50]. Our provenance graph representation

has nodes corresponding to processes, �les, and other �le-like objects (e.g. VFS, network

sockets). Edges correspond to individual log entries. Our entire tool is implemented in 4000

lines of C++ code (calculated with cloc [51]). Our reduction �lter Approx including the

regular expression generation, is implemented in 1000 lines of code. We also implemented

Causality-Preserving Reduction, introduced in Xu et. al [45], LogGC, introduced in Lee et.

al [44], and Full and Source Dependence Preserving Reduction, introduced by Hossein et. al

[35]. Our implementation of LogGC implements Basic GC, as de�ned in the original paper.

Our implementations of the other reduction techniques follow their respective de�nitions in

the original papers.

We partition execution into epochs of time, each of which is 5 minutes. This is necessary

because our technique constructs a provenance graph online, and then �lters depending on

the graph structure. Introducing epochs limits graph size and allows approximately real-

time telemetry for security monitoring services. Thus, anomalous behavior can be identi�ed

quickly and security analysts can respond appropriately. We acknowledge that redundancies

between epochs will not be identi�ed, however we observe that by using such epoch sizes,

we achieve reduction �gures similar to those in the original papers.
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CHAPTER 6: EVALUATION

6.1 DATASETS

We leverage the DARPA Transparent Computing Program dataset for out evaluation

[52]. This dataset was collected during an APT simulation exercise (Engagement #3) in

April 2018. It contains log data from a series of target hosts, along with ground truth

information about the attacks launched. Previous work has examined these logs in detail,

and it has proven to be a good source for authentic examples of adversarial behavior [53]

[54]. We select the traces corresponding to two hosts from the DARPA Engagement, Trace

and Theia, because they are both Linux hosts, compatible with out implementation.

We select 6 attack scenarios leveraged in prior work [citation] to evaluate the e�cacy

of log reduction systems. The unrealircd [55], vsftpd [56], and webmin [57] exploits

all leverage input vulnerabilities to achieve remote code execution (RCE). A payload is

then executed, which launches a reverse shell back to the attacker machine which executes

basic enumeration commands, such as ifconfig. The Wordpress vulnerability [58] and

Webshell are exploits that execute a payload through a web server that calls back to the

attacker machine as before. The Firefox vulnerability is an exploit on Firefox 54.0.1 that

gains execution through a malicious ad server. This vulnerability was exploited as part of

DARPA TC Engagement #3 [52]. We use the subset of logs associated with this particular

exploit during this evaluation.

We compared the reduction performance of our approximation technique re-implementations

against the �gures in the original papers. Log GC had the broadest range of reduction, from

full reduction to no reduction whatsoever. The �gures above correspond to the web server

benchmarks present in the paper. The reduction �gures for dependence preserving reduction

are quite staggering, and for certain log sources, such as Theia, it is unclear whether this

level of reduction is meaningful. For all the approaches, our re-implementations reduced the

logs within reasonable bounds.

6.2 PERFORMANCE EVALUATION

To evaluate the performance of our reduction technique at scale, we concatenate all logs

for a particular host and run our reduction algorithm. The end of an epoch corresponds to

either the end of a log �le or when 5 minutes elapses.

We observe a 2.87X reduction on the Theia dataset and a 1.72X reduction on the Trace
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Approximation
Technique

Originally Reported
Reduction

Observed
Reduction

CPR [45] 1.3-3.4X (30% - 79%) 1.3X (78%)
GC [44] 0-77.0X (1% - 100%) 1.6X (63%)

F-DPR [35] 4.5-91.5X (1% - 22%) 6.6X (15%)
S-DPR [35] 4.5-122.5X (1% - 22%) 11.2X (9%)

Table 6.1: Comparison of log reduction between �gures cited in the original papers and our
re-implementations. The re-implementation �gures were calculated on the Theia dataset.
Our re-implementations reduce logs within the ranges observed by the original implementa-
tions. The �gures are cited as the log reduction factor and as the percentage of the log that
was retained.
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Figure 6.1: Cumulative Log Size Stored after di�erent reduction techniques on the Trace
datasets. Approx outperforms all approaches besides Full and Source Dependence.
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datasets. Approx outperforms all approaches besides Full and Source Dependence.
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Figure 6.3: Log Processing speed relative to the generation of logs in the Theia dataset,
which we replayed in real-time.

dataset. The Theia logs are few and large, corresponding to longer duration captures on the

host. Thus, we see a more signi�cant reduction over time, because our reduction algorithm

is able to leverage a reasonably sized provenance graph to �nd patterns. The Trace dataset,

on the other hand, contains many small log traces. This renders reduction techniques less

e�ective, because they are unable to signi�cantly reduce a provenance graph that is already

small. They cannot �nd enough redundancy to collapse provenance graph structures.

We see that Full Dependence Preservation and Source Dependence Preservation, intro-

duced by Hossein et. al [35], reduce much further than any other approaches discussed.

However, in the next section we will see that these approaches do not preserve informa-

tion critical to understanding attack behaviors, even if they preserve connectivity in the

provenance graph. In comparison to GC, our approach reduces logs more consistently and

without the need for execution partitioning. Relative to Causality-Preserving Reduction,

which achieves an average reduction rate of 2X, our approach is able to reduce further

without sacri�cing unique attack information, provided the log trace has su�cient duration.

In Figure 3, we compare the amount of logs that can be processed byApprox at maximum

load, versus the amount of logs generated from the Theia dataset over time. We see that

our system's ability to process logs far outpaces the amount of logs generated, and can thus

scale to much larger deployments.

18



 0

 20

 40

 60

 80

 100

Unrealircd

Vsftpd

W
ebmin

W
ordPress

W
ebshell

Firefox

Lo
g 

R
et

en
tio

n 
(%

)

Attacks

Approx
CPR
GC

F-DPR
S-DPR

Figure 6.4: Log Retention percentages for di�erent reduction techniques, relative to the
Lossless Forensics approximation metric.

6.3 ATTACK EVALUATION

We evaluate the performance of our reduction technique against a variety of real-world

program exploits. Our goal is to recover the causal information necessary to have a full

picture of the attack behavior. We will compare the performance of various log reduction

techniques against the approximation metrics described in Section 3.

To evaluate our attack scenarios, we collected Linux audit logs during the attack, and

processed them with our reduction system. Since the logs contain solely attack behavior, the

lossless forensics metric is with respect to the entire log, which we would ideally retain. The

causality-preserving metric compared a technique's log reduction relative to the performance

of the CPR �lter originally proposed by Xu et al. [45]. To evaluate the attack-preserving

reduction, we tagged events unique to the attack and evaluated how well they were preserved

relative to the causality-preserving metric.

In Figure 3, we see that Approx performs poorly against the lossless and causality-

preserving metrics, meaning that it reduces further than reduction techniques limited by

those metrics. However, it does preserve all attack-relevant events in an information-�ow

preserving manner. Thus, all causal relationships between system events during the attack

are preserved. This also demonstrates that Causality-Preserving Reduction, as de�ned in

Xu et al. [45], also preserves all attack-relevant events. This is at the expense of preserving

more of the log, as seen in the performance evaluation section. GC retains a large portion

of the log, but it does not entirely preserve all of the attack-relevant events. In particular,

causality chains in the graph that solely interact with the network, critical to understanding
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Figure 6.5: Log Retention percentages for di�erent reduction techniques, relative to the
Causality-Preserving Forensics approximation metric.
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Figure 6.6: Log Retention percentages for di�erent reduction techniques, relative to the
Attack-Preserving Forensics approximation metric. Ideally, a reduction approach preserves
semantics well, while retaining as few logs as possible.

the attack, are removed because GC treats sockets as a dead-end. GC reaps events that result

in a dead-end, resulting in undesired behavior. Full and Source Dependence Preservation

algorithms reduce logs considerably, reducing much of the attack-relevant behavior as well.

Even by maintaining connectivity in the graph, they remove events that are necessary to

understanding the behavior of the attacker on the system. Often times in an investigation,

it is not su�cient to know which system entities are causally related; one must know what

behavioral pattern the attack follows to understand how it occurred.
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Figure 6.7: Provenance Subgraph of the Webmin exploit. The subgraph before reduction
is above, and the subgraph after reduction is below. Numbered events are reduced through
Causality-Preserving Reduction, and the shared object �les are reduced through our novel
regular expression learning approach.

6.4 CASE STUDY

We will now examine the Webmin exploit above in more detail. Webmin is a web-based

con�guration tool for Unix systems, thus it is a prime target for attackers as it can be

leveraged for lateral movement on the network. The exploit allows for unauthenticated

remote code execution when the web server is con�gured for "users with an expired password

to enter a new one". With the appropriate payload, a reverse shell can be spawned and post-

exploitation tools (eg. LinEnum.sh [59]) can be downloaded and run on the server machine.

We chose to run commands manually, namely whoami and ifconfig, to demonstrate that

we have remote access.

The provenance graphs in Figure 5 correspond to the raw provenance graph on top, and

the reduced provenance graph on the bottom. They are subgraphs of the original provenance
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graphs, the raw one containing 13026 edges and the reduced one containing 11013 edges. The

numbers correspond to timestamps. Directory names are omitted due to space constraints.

The �rst form of reduction we observe is through a regular expression (lib*.so.*) that

learns to reduce the shared object libraries shown above. Note that the labels in Figure 5 omit

directory information that is crucial in ensuring that our reduction technique does not reduce

shared object �les dropped by the attacker in another directory. The other reductions that

occur on sequential reads and writes are a consequence of a causality-preserving reduction

that takes place after regular expressions collapse nodes.
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CHAPTER 7: DISCUSSION

Optimality of Approx. We do not argue that Approx is the ideal instantiation of attack-

preserving forensics. In this work, we only target one major subsystem of system activity,

namely �le I/O. We elect to focus on �le I/O in this work not only because it commonly

accounts for a large percentage of log volume, but also because this activity can safely

be �ltered without disrupting the causality of more complex attack behaviors such as lat-

eral movement or data ex�ltration. Approximating other system entities, e.g., remote IP

addresses, is much more perilous, as even a common remote connection may describe an

important attack behavior during lateral movement. It is interesting to consider how the

notion of attack-preserving forensics could be extended in future work.

Limitations of Evaluation. We set out to de�ne metrics for evaluating the security of

approximated logs. We make signi�cant progress towards this goal in this work, but one

notable limitation that we share with prior work is that we are still limited in the corpus of

attack behaviors that we evaluate against. It would be useful to have a standardized battery

of attack behaviors that coincide with our metrics; maintenance of such an attack corpus

is extremely di�cult, due to ever changing adversary techniques and tactics, and hence we

leave it to future work [60]. However, using our techniques, authors can go from a binary

�works/doesn't work� case study to a more honest and nuanced gradient of e�cacy based

on our metrics.

23



CHAPTER 8: RELATED WORK

This work is the �rst to formalize and quantify the forensic validity of audit logs that have

been subjected to approximation techniques. We discuss past approximation techniques,

which are most closely related to our own work, in Section 2.

The auditing literature is also experiencing a renaissance beyond the challenge of log re-

duction. One important consideration is log security; if audit logs can be manipulated by the

attacker, they cannot be trusted in an investigation. A variety of cryptographic approaches

enable tamper-evident audits of log contents (e.g., [61, 62, 63, 64, 65, 66, 67, 68, 69]). Re-

search has also explored software-based solutions to securing log contents, demonstrating

that reference monitor guarantees [70] were su�cient to assure log integrity [71, 72, 73, 74].

Recently, Karande et al. [75] and Paccagnella et al. [76] explore how cryptographic ap-

proaches to log integrity can be integrated into operating system auditing through trusted

execution environments. Like all other work in the space, Approx depends on the presence

of mechanisms that can assure and attest to the integrity of audit logs.

Considerable attention has given to extracting high-level semantic insights from low-level

system logs and graphs. A central issue with system logs is dependency explosion, a semantic

gap problem in which long-lived processes (or data objects) appear to have a large number

dependencies when viewed from the system layer. A variety of execution partitioning tech-

niques have been proposed to partition opaque dependencies into small autonomous units of

work [17, 26, 77, 28, 78, 79, 18, 12, 14]. We believe these techniques are interoperable with

Approx although they may not be necessary because Approx will have removed a large

percentage of false dependencies related to benign execution units. Prior work has also con-

sidered related semantic gap problems, including the reconciliation of system-level logs with

application logs [15, 14] and the identi�cation of high-level tasks [16, 80, 81]. These tech-

niques should also be compatible with Approx provided that the analyst is only interested

in reconstructing attack-related sequences of events.

Increasingly, causal analysis techniques are being incorporated intrusion detection tasks.

Manzoor et al. [9], Han et al.'s Unicorn [7], and Wang et al. [8] present anomaly detection

algorithms based on the analysis of system dependency (i.e., provenance) graphs. Hassan

et al. address the false alert problem common in commercial threat detection software us-

ing provenance-based alert triage [12]. Milajerdi et al. present a rule-based approached

for detecting attacker tactics [10], similar to commercially-available Endpoint Detection &

Response (EDR) software, but based on provenance graph structures instead of �at audit

event sequences. Subsequently, Hassan et al. extend a commercial EDR tool with lightweight
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provenance-based alert correlation [13]. Their approach to making their technique practical

for large enterprise environments is to aggressively �lter provenance graphs such that only

queries about inter-alert dependency can be answered by the approximated log. In con-

trast to other approximation techniques discussed in this work, Hassan et al.'s approach is

not intended for use in generic threat investigation scenarios where many forms of causal

query must be supported. While we primarily consider threat investigation, the forensic

validity analysis presented in this work can also be interpreted as an indicator of how log

approximation techniques may assist or impair intrusion detection tasks.
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CHAPTER 9: CONCLUSION

In this work, we presentApprox a log approximation technique that performs well against

attack-preserving forensics, a metric we introduce that ensures preservation of events unique

to an attack. Approx leverages repetition in �le I/O behavior to learn regular expressions

that characterize common access patterns. This allows Approx to aggressively reduce the

number of �le I/O events, which make up the majority of audit logs. We evaluated the per-

formance of Approx against a variety of attack scenarios, including the DARPA dataset,

comparing its performance against the prior work. We observe that Approx achieves com-

parable reduction rates while being able to retain 100% of attack-associated log events, in

contrast to prior work which retains as little as 7.3%.
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