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ABSTRACT
Historically, Elliptic Curve Cryptography (ECC) is an active field of
applied cryptography where recent focus is on high speed, constant
time, and formally verified implementations. While there are a
handful of outliers where all these concepts join and land in real-
world deployments, these are generally on a case-by-case basis: e.g.
a library may feature such X25519 or P-256 code, but not for all
curves. In this work, we propose and implement a methodology that
fully automates the implementation, testing, and integration of ECC
stacks with the above properties. We demonstrate the flexibility
and applicability of our methodology by seamlessly integrating
into three real-world projects: OpenSSL, Mozilla’s NSS, and the
GOST OpenSSL Engine, achieving roughly 9.5x, 4.5x, 13.3x, and
3.7x speedup on any given curve for key generation, key agreement,
signing, and verifying, respectively. Furthermore, we showcase
the efficacy of our testing methodology by uncovering flaws and
vulnerabilities in OpenSSL, and a specification-level vulnerability in
a Russian standard. Our work bridges the gap between significant
applied cryptography research results and deployed software, fully
automating the process.
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1 INTRODUCTION
In 1976, Whitfield Diffie and Martin Hellman published the first
key-exchange protocol [16] (based on Galois field arithmetic) that
provides the capability for two different users to agree upon a
shared secret between them. In 1985, Miller [35] and Koblitz [30]
proposed public-key cryptosystems based on the group structure
of an elliptic curve over Galois fields; from these works, an Elliptic
Curve Diffie-Hellman (ECDH) variant arose. In 1994, Scott Vanstone
proposed an Elliptic Curve Digital Signature Algorithm (ECDSA)
variant (for more details see [27]). However, the main advantage
of using Elliptic Curve Cryptography (ECC) is the smaller keys
compared to their Galois field DH and DSA initial proposals.

From the birth of ECC, which was focused on its mathematical
description, the study, analysis, and improvement of elliptic curve
arithmetic to achieve performant, constant time, exception-free, and
formally verified ECC implementations are clear research trends.
Nevertheless, practice sometimes misaligns with theory, and by

integrating theoretic works into real-world deployments, vulnera-
bilities arise and compromise the given ECC scheme security.

Motivation. On the practice side, there is no shortage of examples
of this misalignment. Brumley and Hakala [11] published the first
(microarchitecture) timing attack on OpenSSL’s ECC implementa-
tion in 2009, with countermeasures by Käsper [29] and later Gueron
and Krasnov [22]. But OpenSSL supports over 80 named curves,
and the scope of these countermeasures is only three: NIST curves
P-224, P-256, and P-521, even later augmented with formal verifi-
cation guarantees [38] after patching defects [34]. CVE-2018-5407
“PortSmash” [3] finally led to wider countermeasures [46] a decade
later, but small leakage persists in the recent “LadderLeak” attack
[4]. Still, even if current solutions hedge against timing attacks, the
question of functional correctness remains: CVE-2011-4354 from
[10] is the only real-world bug attack [9] we are aware of, deter-
ministically recovering P-256 keys remotely by exploiting a carry
propagation defect.

BoringSSL approaches the constant time and functional correct-
ness issues by narrowing features, only supporting P-224, P-256,
and X25519, leveraging formal verification guarantees for Galois
field arithmetic from Fiat [21]. Mozilla’s NSS approach is similar,
removing support for the vast majority of curves—two of which
(P-256, X25519) leverage the formal verification results fromHACL∗
[48], while others still use generic legacy code with no protections
or guarantees. Stripping support is not a viable option for fuller-
featured libraries, OpenSSL being one example but generally any
project with even a slightly larger scope. How can these projects
retain features yet provide constant time and functional correctness
confidence?

Contributions. Our main contribution focuses on fully automatic
implementation, testing, and integration of ECC stacks on real-
world projects like OpenSSL, Mozilla’s NSS, and GOST OpenSSL
Engine. Our full-stack ECC implementations achieve about 9.5x,
4.5x, 13.3x, and 3.7x speedup for key generation, key agreement,
signing, and verifying, respectively. Furthermore, our flexible and
applicable proposal can be easily adapted to any curve model. To
our knowledge, this is the first hybrid ECC implementation between
short Weierstrass and Twisted Edwards curves, which has been inte-
grated to OpenSSL. Additionally, our methodology allowed us to
find and fix very special vulnerabilities on development versions of
OpenSSL and official Russian standards for cryptography.
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Outline. Section 2 gives the elliptic curve background concepts re-
lated to curve models and cryptosystems; in particular, Section 2.1
describes GOST and the related OpenSSL GOST Engine. Section 3
introduces our library-agnostic unit and regression testing frame-
work for ECC implementations (ECCKAT); while Section 4 presents
our dynamic ECC layer generation (ECCKiila) and performance
results. Finally, Section 5 draws conclusions.

2 BACKGROUND
An elliptic curve 𝐸 defined over a Galois field 𝐺𝐹 (𝑝), is usually
described by an equation of the following form

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎 ∈ 𝐺𝐹 (𝑝), 𝑏 ∈ 𝐺𝐹 (𝑝); (1)

called a short Weierstrass curve. Furthermore, a point on the curve
𝐸 is a pair (𝑥,𝑦) satisfying (1), but there is also a point at infinity
denoted O, which plays the role of the neutral element on 𝐸. Ad-
ditionally, given a positive integer 𝑘 , point multiplication is the
computation of 𝑘 times a given point 𝑃 denoted by [𝑘]𝑃 . The order
of a point 𝑃 on 𝐸 corresponds with the smallest positive integer 𝑞
such that [𝑞]𝑃 gives O. In our work, we assume the cardinality of
𝐸 is equal to ℎ · 𝑞 where 𝑞 is a prime number with lg(𝑞) ≈ lg(𝑝),
and ℎ ∈ {1, 4, 8}.

When 4 divides ℎ, there is a Twisted Edwards curve

𝐸𝑡 : 𝑒𝑢
2 + 𝑣2 = 1 + 𝑑𝑢2𝑣2 (2)

having the same cardinality, and each point on 𝐸𝑤 (1) maps into
𝐸𝑡 , and vice versa, using the mappings

(𝑥,𝑦) ↦→ (𝑢, 𝑣) B
(
𝑥 − 𝑡
𝑦

,
𝑥 − 𝑡 − 𝑠
𝑥 − 𝑡 + 𝑠

)
, and (3)

(𝑢, 𝑣) ↦→ (𝑥,𝑦) B
(
𝑠 (1 + 𝑣)
1 − 𝑣 + 𝑡, 𝑠 (1 + 𝑣)

(1 − 𝑣)𝑢

)
, (4)

where 𝑠 = (𝑒 − 𝑑)/4 mod 𝑝 , 𝑡 = (𝑒 + 𝑑)/6 mod 𝑝 , 𝑎 = (𝑠2 −
3𝑡2) mod 𝑝 , and 𝑏 = (2𝑡3 − 𝑡 · 𝑠2) mod 𝑝 .

Projective points on the short Weierstrass curve. We choose to work
with projective points (𝑋 : 𝑌 : 𝑍 ) satisfying𝑍𝑌2 = 𝑋3+𝑎𝑋𝑍2+𝑏𝑍3

where the affine point (𝑋/𝑍,𝑌/𝑍 ) belongs to 𝐸𝑤 . Moreover, the
projective representation of O is (0 : 1 : 0), which does not satisfy
the affine curve equation of 𝐸𝑤 .

Because of the nature of the short Weierstrass curves, one needs
to handle some exceptions when: (i) adding or doubling points with
O; (ii) adding points 𝑃 +𝑄 when 𝑃 = ±𝑄 . In particular, any mixed
point addition takes as inputs a projective point and an affine point,
which implies no exception-free implementation will be possible
for this mixed point addition—O has no affine representation!

Failure to use exception-free formulas could lead to successful
exceptional procedure attacks [26], implying a possible break of ECC
security. Still, apart from theoretical attacks there is the question
of functional correctness. For example, CVE-2017-7781 affected
Mozilla’s NSS, failing to account for the 𝑃 = ±𝑄 exceptions in
textbook mixed Jacobian-affine point addition—a bug present in
their codebase for over a decade.

Projective points on the Twisted Edwards curve. To achieve efficient
curve arithmetic, we choose to work with extended projective points
(𝑋 : 𝑌 : 𝑇 : 𝑍 ) satisfying 𝑒𝑋2𝑍2 + 𝑌2𝑍2 = 𝑍4 + 𝑑𝑋2𝑌2, where
the affine point (𝑋/𝑍,𝑌/𝑍 ) belongs to 𝐸𝑡 and 𝑇 = 𝑋𝑌/𝑍 . The

main advantage of using Twisted Edwards curves is the “cheap”
exception-free formula for point addition; in particular, (0 : 1 : 0 :
1) represents O and corresponds with the affine point (0, 1) on 𝐸𝑡 .

The main blocks of ECC cryptosystem implementations consist
of (i) key generation, (ii) key agreement procedure, and (iii) digital
signature algorithm.

Key generation. Given an order-𝑞 point 𝑔 the user randomly and
uniformly chooses a secret key 𝛼 from {1, . . . , 𝑞−1}, and computes
the public key 𝑃 = [𝛼]𝑔.

Key agreement with cofactor clearing (ECC CDH). Assume the users
Alice and Bob need to agree a secret shared key; thus, Alice generates
her private key 𝛼𝑎 ∈ {1, . . . , 𝑞 − 1} and a public key 𝑃𝑎 = [𝛼𝑎]𝑔
by using the key generation block; similarly, Bob generates 𝛼𝑏 and
𝑃𝑏 = [𝛼𝑏 ]𝑔. Next, Alice and Bob compute 𝑠𝑎𝑏 = [ℎ · 𝛼𝑎]𝑃𝑏 and
𝑠𝑏𝑎 = [ℎ · 𝛼𝑏 ]𝑃𝑎 , respectively. Consequently,
𝑠𝑎𝑏 = [ℎ · 𝛼𝑎]𝑃𝑏 = [ℎ · 𝛼𝑎 · 𝛼𝑏 ]𝑔 = [ℎ · 𝛼𝑏 · 𝛼𝑎]𝑔 = [ℎ · 𝛼𝑏 ]𝑃𝑎 = 𝑠𝑏𝑎

is the secret shared key. The multiplication by ℎ is called cofactor
clearing and ensures the protocol fails if 𝑃𝑎 or 𝑃𝑏 are adversarially
in the order-ℎ subgroup. When ℎ = 1, ECC CDH [1] and classical
ECDH variants are equivalent.

Digital signature algorithm (ECDSA). The user generates a private
key 𝛼 ∈ {1, . . . , 𝑞 − 1} and a public key 𝑃 = [𝛼]𝑔 by using the
key generation block; using an approved hash function Hash(), the
signature (𝑟, 𝑠) on message𝑚 is computed by

𝑟 = ( [𝑘]𝑔)𝑥 mod 𝑞, 𝑠 = 𝑘−1 (�̂� + 𝛼𝑟 ) mod 𝑞 (5)

where 𝑘 is a nonce chosen uniformly from {1, . . . , 𝑞 − 1}, and �̂�
denotes the representation of Hash(𝑚) in 𝐺𝐹 (𝑞). The ECDSA sig-
nature successfully verifies if 𝑢1 = �̂� · 𝑠−1 mod 𝑞 and 𝑢2 = 𝑟 · 𝑠−1
mod 𝑞 satisfy

( [𝑢1]𝑔 + [𝑢2]𝑃)𝑥 = 𝑟 mod 𝑞. (6)

ECDSA is the ECC-equivalent of DSA that instead operates with
the multiplicative group of a Galois field and pre-dates the ECDSA
variant by at least a decade.

Security. Mathematically speaking, the security of ECC relies on the
hardness of computing an integer 𝑘 given [𝑘]𝑃 called the Elliptic
Curve Discrete Logarithm Problem (ECDLP). In certain instances,
ECDLP solves by using the small-subgroup [33] when the curve
cardinality is smooth, and invalid-curve [8] attacks when the input
point 𝑃 does not satisfies the curve equation.

As a consequence, ECC implementations often seek to be se-
cure against combined attacks that use small-subgroup attacks with
invalid-curve attacks using the twist curve 𝐸 ′ determined by the
equation 𝑦2 = 𝑥3 + 𝑎𝑥 − 𝑏. The twist curve 𝐸 ′ has cardinality
ℎ′ · 𝑞′ = 𝑝 + 1 + 𝑡𝐸 where ℎ · 𝑞 = 𝑝 + 1 − 𝑡𝐸 is the cardinality of 𝐸
and 𝑡𝐸 is a curve constant (the Frobenius trace). However, a curve
𝐸 is twist secure if ℎ′ is a small integer and 𝑞′ ≈ 𝑝 is a large prime
number. For example, the following two GOST curves are twist
secure:

• the curve id_tc26_gost_3410_2012_256_paramSetA has
q = 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF027322037

8499CA3EEA50AA93C9F265,
q'= 0x400000000000000000000000000000000FD8CDDFC8

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781
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7B6635C115AF556C360C67,

and both ℎ and ℎ′ equal 4;
• the curve id_tc26_gost_3410_2012_512_paramSetC has

q = 0x400000000000000000000000000000000000000000
00000000000000000000003673245B9AF954FFB3CC
5600AEB8AFD33712561858965ED96B9DC310B80FDA
F7,

q'= 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFC98CDBA46506AB004C33
A9FF5147502CC8EDA9E7A769A12694623CEF47F023
ED,

and also both ℎ and ℎ′ equal 4.

2.1 GOST
The system of Russian cryptographic standards (usually called
GOST algorithms) started to develop in the 1980s after decades of top
secret cryptography. The first Russian (or, rather, Soviet) relatively
open cryptographic standard was published in 1989, describing
symmetric cipher and MAC algorithms.

The first Russian standard for digital signatures was developed
simultaneously with DSA and these two standards were published
in 1994 with an interval of only four days. Like DSA, the Russian
GOST R 34.10-94 was the ElGamal-style algorithm in Galois field
of prime modulo, but the formula was slightly different: 𝑠 = 𝑘�̂� +
𝛼𝑟 mod 𝑞. The hash function to be used for calculating �̂� was
strictly defined and described in a separate standard, based on the
GOST symmetric cipher.

In 2001 the new digital signature standard was adopted—the
adaptation of the previous standard to elliptic curves over 𝐺𝐹 (𝑝),
allowing only lg(𝑝) = 256. The hash function was not changed.

In 2012 the third Russian digital signature standard was adopted,
almost word-to-word copy of the previous standard. The only
changes were (i) the length of 𝑝 can now be either 256 or 512;
(ii) the standard prescribes to use a new (completely different) hash
function. The official name of the current Russian digital signature
standard is GOST R 34.10-2012, and GOST R 34.11-2012 describes
the hash function. The translation of these standards in English
were published as RFC 7091 [18] and RFC 6986 [19] respectively.

GOST is utilized in Russia neither everywhere nor only by gov-
ernment agencies, but in between—including both closed networks
and GOST-protected channels over public networks. For example,
businesses use GOST when legally required to protect transferred
data, such as financial sector, medical organizations and so on.

The FIPS-like Russian certification policy divides GOST-imple-
menting software into two parts. (i) Various commercial closed-
source implementations used mostly in places where prescribed by
Russian regulations. Any certified solution should have a registry
of every instance of their product. (ii) Open-source implementa-
tions (e.g. Section 2.2) are widely used—when certification is not
enforced—for communication with commercial ones, as well as
various proof-of-concept and standardization efforts. They can be
developed and fixed faster than commercial ones.

Similar to domestic information security policies in many other
countries, it is common practice in Russia to specify GOST usage in
various ubiquitous protocols. These are usually just adaptations of

pre-existing Russian internal standards to IETF requirements. Ex-
amples of these GOST flavors include RFC 4491 [43] for X.509, RFC
4490 [32] for Cryptographic Message Syntax (CMS), RFC 5933 [20]
and a draft1 for DNSSec, a draft2 for IPSec’s Internet Key Exchange
(IKEv2), and drafts for TLS 1.23 and TLS 1.34 cipher suites.

GOST: digital signatures. Informally speaking and aligning with
our previous notation, the Russian signature algorithm formula is

𝑟 = ( [𝑘]𝑔)𝑥 mod 𝑞, 𝑠 = 𝑘�̂� + 𝑟𝛼 mod 𝑞 (7)

where 𝛼 is the signer’s secret key, 𝑘 is a nonce chosen randomly
and uniformly from {1, . . . , 𝑞 − 1}, 𝑔 is the base point of an elliptic
curve, and 𝑞 is the order of 𝑔. The GOST signature successfully
verifies if 𝑧1 = 𝑠 · �̂�−1 mod 𝑞 and 𝑧2 = −𝑟 · �̂�−1 mod 𝑞 satisfy

( [𝑧1]𝑔 + [𝑧2]𝑃)𝑥 = 𝑟 mod 𝑞. (8)

In connection with these standards a number of sub-ordinary
standards were adopted (the Russian standardization system has
different levels of standards, but the difference is rather bureaucratic
than practical). In parallel the corresponding RFCs were published,
including several curves for use in GOST digital signature algo-
rithms. The first three curves with lg(𝑝) = 256 were described in
RFC 4357 [39] (peculiar that for many years it was the only nor-
mative reference to these curves—their first appearance in Russian
standards was in 2019). All these curves have only the trivial co-
factor ℎ = 1, i.e. they are cyclic groups and all curve points can be
a legal public key. After the adoption of the new digital signature
standard, two curves with lg(𝑝) = 512 and ℎ = 1 were standard-
ized as well as two Twisted Edwards curves with ℎ = 4: one with
lg(𝑝) = 256 and the other with lg(𝑝) = 512, all described in RFC
7836 [44]. One important aspect is—at the standardization level—
the Twisted Edwards curves are still specified as short curves for
compatibility reasons.

GOST: key generation. Russian standards say nothing about the
generation of secret keys: any random number 𝛼 between 1 and
𝑞 − 1 can be used as a secret key. Surprisingly despite the Russian
regulation authority paying great attention to random number
generation, there is no standard for this procedure, only some
classified requirements. The public key for a given secret one is
calculated as the result of multiplication of the curve base point by
the secret key. In that sense, it does not differ from other standard
definitions of ECC key generation.

GOST: key agreement (VKO). The VKO algorithm is defined in one
of the sub-ordinary standards and described in RFC 7836 [44]. It
consists of 2 steps: (i) a curve point 𝐾 is calculated by the formula

𝐾 = [ℎ · (UKM · 𝑥 mod 𝑞)]𝑌
where 𝑥 is the secret key of one side, 𝑌 is the public key of the
other side, UKM is an optional non-secret parameter (User Key
Material) known by both sides, 𝑞 is the order of the base point and
ℎ is the cofactor of the used elliptic curve; (ii) the shared key is
the hash of the affine coordinates of 𝐾 . In this light, VKO shares
similarities to ECC CDH [1], also featuring cofactor clearing but
1https://tools.ietf.org/html/draft-ietf-dnsop-rfc5933-bis-00
2https://tools.ietf.org/html/draft-smyslov-ike2-gost-03
3https://tools.ietf.org/html/draft-smyshlyaev-tls12-gost-suites
4https://tools.ietf.org/html/draft-smyshlyaev-tls13-gost-suites

https://tools.ietf.org/html/rfc7091
https://tools.ietf.org/html/rfc6986
https://tools.ietf.org/html/rfc4491
https://tools.ietf.org/html/rfc4490
https://tools.ietf.org/html/rfc4490
https://tools.ietf.org/html/rfc5933
https://tools.ietf.org/html/rfc4357
https://tools.ietf.org/html/rfc7836
https://tools.ietf.org/html/rfc7836
https://tools.ietf.org/html/rfc7836
https://tools.ietf.org/html/draft-ietf-dnsop-rfc5933-bis-00
https://tools.ietf.org/html/draft-smyslov-ike2-gost-03
https://tools.ietf.org/html/draft-smyshlyaev-tls12-gost-suites
https://tools.ietf.org/html/draft-smyshlyaev-tls13-gost-suites
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additionally utilizing UKM . But in contrast to NIST SP 800-108
[13] that accounts for (the equivalent of) UKM in the subsequent
key derivation hash function, VKO encorporates UKM directly at
the ECC level.

GOST: public key encryption. Incorrect phrase encryption according
to GOST R 34.10 is often used, but actually the asymmetric key
encryption has never been used. Instead VKO calculates a shared
key, then a symmetric encryption algorithm uses the key for data
encryption. In this light, it is hybrid encryption.

2.2 The GOST OpenSSL Engine
The GOST Engine project was started during OpenSSL 1.0 develop-
ment. Before OpenSSL 1.0 (released 2010) the engine mechanism
allowed to provide own digests, ciphers, random number genera-
tors, RSA, DSA, and EC. Since OpenSSL 1.0 it became possible to use
OpenSSL’s engine mechanism [45] to provide custom asymmetric
algorithms.

In short, gost-engine was created as a reference implementa-
tion of the Russian GOST cryptographic algorithms: symmetric
cipher GOST 28147-89, hash algorithm GOST R 34.11-94, and asym-
metric algorithms GOST R 34.10-94 (DSA-like, now deprecated and
removed) and GOST R 34.10-2001 (ECDSA-like). In 2012, the sup-
port of new Russian hash algorithm GOST R 34.11-2012 Streebog
(RFC 6986 [19]) and GOST R 34.10-2012 asymmetric algorithms
(256 and 512 bits) was provided. After publishing RFC 7836 [44] and
providing non-trivial cofactor support in OpenSSL, the support of
the new parameters based on Twisted Edwards curves was added,
though the implementation itself does not use Edwards representa-
tion and relies on OpenSSL’s EC module for the curve arithmetic.
It is worth mentioning that all the parameter sets (curves) specific
for GOST R 34.10-2001 are allowed for use in GOST R 34.10-2012,
though the hash algorithms are different.

BeingOpenSSL-dependent software, gost-engine has been used
many times as regression testing. Not only for general engine func-
tionality, but also for lower level OpenSSL internals such as the EC
module as discussed later in Section 3.

Deployments. Until OpenSSL 1.1.0 (released 2016), gost-engine
was a part of OpenSSL and was distributed together. During 1.1.0
development, the engine code was moved to a separate GitHub
repository5. Currently, the engine is available as separate package in
RedHat-based Linux distributions, Debian-based distributions, and
popular in the Russian ALT Linux distribution. It is also widely used
as an FOSS solution when there is no necessity to use the officially
certified solutions. In these cases, gost-engine is often built from
source instead of using the distribution-provided packages.

Asymmetric algorithms: architecture. Asymmetric algorithm archi-
tecture in OpenSSL requires providing two opaque callback struc-
tures per algorithm: (i) EVP_PKEY_ASN1_METHOD is a structurewhich
holds a set of ASN.1 conversion, printing and information meth-
ods for a specific public key algorithm; (ii) EVP_PKEY_METHOD is a
structure which holds a set of methods for a specific public key
cryptographic algorithm—those methods are usually used to per-
form different jobs, such as generating a key, signing or verifying,

5https://github.com/gost-engine/engine

encrypting or decrypting, etc. Unfortunately, because of 15-year
history of the engine, the naming of the callbacks is not extremely
consistent.

Asymmetric algorithms: operations. GOST asymmetric algorithms
support the following operations: (i) key generation; (ii) digital
signature and verification; (iii) key derivation; (iv) symmetric 32-
bytes cipher key wrap/unwrap (named encrypting/decrypting).

The best starting point is the register_pmeth_gost function
in the gost_pmeth.c file. This function provides the setting of all
the necessary callbacks for various asymmetric algorithms. Most
functions are very similar and just call a shared wrapper around
OpenSSL’s ECmodule for the elliptic curve arithmetic with different
parameters such as hash function identifier or key length.

The following functions are especially worth studying. (i) gost_-
ec_keygen in gost_ec_sign.c is the common function for key
generation, generating a random BIGNUM in the range correspond-
ing to the order of the selected curve’s base point and calculating
the matching public key value. (ii) gost_ec_sign in gost_ec_-
sign.c is the common function for digital signature according
to RFC 7091 [18]. (iii) gost_ec_verify in gost_ec_sign.c is the
common function for digital signature verification according to
RFC 7091 [18]. (iv) pkey_gost_ec_derive in gost_ec_keyx.c is
the common function for shared key derivation. This function al-
lows two mechanisms for derivation. The one named VKO was
originally specified in RFC 4357 [39], deriving 32-bytes shared key,
is implemented in the VKO_compute_key function in the same file.
RFC 7836 [44] defines the other one deriving 64-bytes key using
VKO_compute_key as a step of key derivation. Currently, the choice
of the expected result is done by the length of a protocol-defined
UKM parameter. (v) pkey_gost_encrypt in gost_ec_keyx.c is
the common function for symmetric key wrap using the shared key
derived via pkey_gost_ec_derive. The key wrap for GOST 28147-
89 symmetric cipher is done according to RFC 4357 [39]. The key
wrap for GOST R 34.12-2015 ciphers (Kuznyechik, RFC 7801 [17]
and Magma6) is done according to RFC 7836 [44]. (vi) pkey_gost_-
decrypt in gost_ec_keyx.c is the common function for symmet-
ric key unwrap using the shared key derived via pkey_gost_ec_-
derive. It is a reverse function for the pkey_gost_encrypt func-
tion.

To summarize, regarding GOST-related ECC standards, gost-
engine utilizes OpenSSL’s engine framework to its fullest: sup-
porting key generation, key agreement (derive in OpenSSL ter-
minology), digital signatures and verification, and hybrid encryp-
tion/decryption. It supports all curves from the relevant RFCs—all
the way from the test curve, to the ℎ = 1 short curves, to the ℎ = 4
short curves with Twisted Edwards equivalence. In total, eight
distinct curves with several Object Identifier (OID) aliases at the
standardization level.

3 ECC UNIT TESTING: ECCKAT
In this section, we present ECCKAT: a library-agnostic unit and re-
gression testing framework for ECC implementations. The motiva-
tion for ECCKAT began with significant restructuring of OpenSSL’s
EC module introduced with major release 1.1.1 (released 2018).

6https://tools.ietf.org/html/draft-dolmatov-magma-06
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While the library featured simple positive testing of higher-level
cryptosystems such as ECDH and ECDSA, this provides very little
confidence in the underlying ECC implementation. To see why this
is so, consider a scalar multiplication implementation that returns
a constant: this will always pass ECDH functionality tests because
the shared secret will be that constant, but is clearly broken. Simi-
larly on the ECDSA side, consider a verification implementation
that always returns true: this will always pass positive tests, but is
clearly broken.

With that in mind, ECCKAT uses a data-driven testing (DDT)
approach heavily relying on Known Answer Tests (KATs). The high
level concept is as follows: (i) collect existing KATs from various
sources such as standards, RFCs, and validation efforts; (ii) augment
these with negative tests and potential corner cases, and extend to
arbitrary curves using an Implementation Under Test (IUT) inde-
pendent implementation; (iii) output these tests in a standardized
format, easily consumable downstream for integration into library-
specific test harnesses. Given the wide range of curves in scope,
this should be as automated as possible. In the following sections,
we expand on these aspects which make up our implementation of
ECCKAT.

3.1 Collecting Tests
The purpose of this first step is to build a corpus of KATs that are
already present in public documents. The goal is not only to utilize
these tests but also understand their nature, limitations, and how
they can be expanded.

Tests: ECC CDH. The NIST Cryptographic Algorithm Validation
Program (CAVP)7 provides test vectors for cofactor Diffie-Hellman
on the following curves: P-192, P-224, P-256, P-384, P-521, B-163,
B-233, B-283, B-409, B-571, as well as the Koblitz curve variant
of each binary curve. The test vectors include the following fields:
dIUT, the IUT’s ephemeral private key; QIUTx, QIUTy, the IUT’s
ephemeral public key; QCAVSx, QCAVSy, the peer public key; ZIUT,
the resulting shared key—in this case the 𝑥-coordinate of the ECC
CDH computation. We added functionality to ECCKAT that parses
these test vectors and makes them part of the unit test corpus.

Tests: ECDSA. CAVP also provides ECDSA test vectors for the afore-
mentioned curves, that in fact aggregate many types of tests. Public
key validation vectors give both negative and positive tests for (Qx,
Qy) point public keys. Negative tests include coordinates out of
range (i.e. must satisfy [0, 𝑝) for prime curves or sufficiently small
polynomial degree for binary curves) and invalid point (i.e. must
satisfy the curve equation), anything else being a positive test. The
negative tests are conceptually similar to the Project Wycheproof8
ECC-related KATs. Key generation vectors include a private key d
and the resulting (Qx, Qy) public key point, using the default gener-
ator point. Finally, on the ECDSA side the signing vectors include
the long term private key (d), corresponding public key (Qx, Qy), the
message to be signed (Msg), the ECDSA nonce (k), and the result-
ing signature (R, S). Each test is additionally parameterized by the
particular hash function to apply to Msg. The ECDSA verification
vectors are similar, but omit the private information d and k, also

7https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
8https://github.com/google/wycheproof

extending to both positive and negative tests (modifying one of
Msg, R, S, or the public key). We added functionality to ECCKAT
that parses these test vectors and makes them part of the unit test
corpus.

Tests: Deterministic ECDSA. The CAVP ECDSA signing tests must
parameterize by the nonce to counteract the non-determinism in
stock ECDSA. In contrast, RFC 6979 [40] proposes a deterministic
form of ECDSA that, at a high level, computes the nonce as a
function of the private key and message to be signed. The document
provides test vectors for the exact same set of curves used in the
NIST CAVP, spanning both deterministic ECDSA signing as well
as key generation. We added functionality to ECCKAT that parses
these test vectors and makes them part of the unit test corpus.
Deterministic ECDSA will likely feature in the upcoming renewed
FIPS 186-5 [2].

3.2 Augmenting Tests
Based on the previously collected tests and our analysis of them,
the next step is to expand these tests in several directions. First
and foremost, the scope of ECCKAT is much wider: the handful of
curves above is insufficient. We extended to general (legacy) curves
over both prime and binary fields by utilizing the SageMath com-
puter algebra system9. This gives us an IUT-independent ground
truth during test generation. We built a large database of standard-
ized curves with their specific curve parameters (semi-automated
with the OpenSSL ecparam tool, listing over 80 standardized named
curves), stored in JSON format that ECCKAT parses and uses the
SageMath EC module to instantiate these curves given their param-
eters.

In terms of methodology, we deemed the previously collected
ECDSA and deterministic ECDSA tests sufficient. In this case, EC-
CKAT simply extends coverage by allowing any legacy curve, com-
puting the expected ECDSA output with SageMath arithmetic. We
treat key generation tests similarly, again simply computing scalar
multiplications with SageMath.

Methodology-wise, themost significant deficiencywe discovered
was the lack of negative tests for ECC CDH. The reason ECC CDH
differs from classical Diffie-Hellman is to make sure the key agree-
ment protocol fails for points of small order in adversarial settings.
Yet surprisingly none of the existing tests actually check for this.
For curves of prime order, the check is implicit because ECC CDH
and classical ECDH are equivalent. But all binary curves (naturally
including those in the original tests) have non-trivial cofactors by
definition, as well as all legacy curve equivalents of Edwards curves,
Twisted Edwards curves, and Montgomery curves require ℎ ≥ 4
(not in scope of the original tests). It is a rather peculiar dichotomy
since binary curves have mostly fallen out of use, while current
ECC trends for prime curves are strongly towards these modern
forms (e.g. both X25519 [7] and X448 [23] are standardized in RFC
7748 [31] and widely deployed with e.g. codepoints in both TLS 1.2
RFC 8422 [37] and TLS 1.3 RFC 8446 [42]).

When applicable, i.e. curves with ℎ ≠ 1, ECCKAT generates
negative tests for ECC CDH as follows. First, with SageMath find

9https://www.sagemath.org/
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either a generator of the full elliptic curve group, i.e. an order-
ℎ𝑞 point if the group is cyclic, or with maximal order in the (in
practice, rare) non-cyclic case. Scalar multiplication by 𝑞 then yields
a malicious generator of the largest small subgroup. This is precisely
the peer point that should produce ECC CDH protocol failure, since
the cofactor clearing (i.e. integer multiplication between the scalar
and ℎ) will cause the resulting scalar multiplication to yield O: the
peer point has either order ℎ (cyclic case) or some divisor of ℎ
(non-cyclic case).

Lastly, we do note a slight deficiency in the original public key
validation negative tests. They are only partial public key validation
in that positive tests only ensure coordinates are in range and
satisfy the curve equation. For prime-order curves, this is enough
to guarantee order-𝑞 points and full public key validation is implicit.
But this is not true for curves with ℎ ≠ 1. We claim this is only a
minor issue because it is rare for real-world implementations to
carry out explicit full public key validation (i.e. checking that scalar
multiplication by 𝑞 yields O) at all, since it is costly and normally
handled in other more efficient ways at the protocol level (e.g. with
cofactor clearing).

We also added selective important corner cases for key genera-
tion. These include positive tests for extreme private keys (i.e. all
keys in [1, 2𝑏 ) and [𝑞 − 2𝑏 , 𝑞) for some reasonable bound 𝑏 > 1)
and negative tests for out of range keys (e.g. negative, zero, 𝑞 or
larger). These are important because underlying scalar multiplica-
tion implementations often make assumptions about scalar ranges
that may or may not be ensured higher in the call stack.

We feel that such augmentation is similar (in spirit) to the work
of Mouha and Celi [36], that extended NIST CAVP tests to larger
message lengths and led to CVE-2019-8741.

3.3 Integrating Tests
With the now expanded tests, the next step is applying these tests
to specific libraries. The end goal is not a one-off evaluation, but
rather the ability to apply these tests in a CI setting in an automated
way and ease the integration of these unit tests into downstream
projects. To that end, we now describe three backends ECCKAT
currently supports.

Test Anything Protocol (TAP). Our most generic solution drives
TAP10 test harnesses. With roots in Perl going back to the 80s, TAP
has evolved into a programming language-agnostic software test-
ing framework made up of test producers and consumers. For this
backend, ECCKAT generates shell-based tests using the Sharness11
portable shell library, originally developed for Git CI. The advantage
of this backend is its portability and flexibility. The disadvantage is,
while the TAP tests themselves are library-agnostic, the test har-
nesses are indeed library-specific. This means downstream projects
must either parse the TAP tests themselves and convert them to a
format their internal testing framework understands (worst case),
or write simple (again, library-specific) test harness applications
that conform to the input and output expectations of the sample
harnesses.

10http://testanything.org/
11https://github.com/chriscool/sharness

OpenSSL’s testing framework. Following CVE-2014-0160 “Heart-
Bleed”, OpenSSL’s testing framework was rapidly overhauled and
continues to evolve daily. In the scale of OpenSSL testing (which
is mostly TAP-based), the types of tests ECCKAT produces are
very low level for OpenSSL, which is much more than a cryptog-
raphy library. A significant change introduced in OpenSSL 1.1.0
(2016)—which, for the library, marked the switch from transparent
to opaque structures—expanded the evp_test harness to generi-
cally support public key operations through OpenSSL’s high level
EVP (“envelope”) interface. This is precisely the correct level to
integrate ECCKAT tests.

Our OpenSSL backend for ECCKAT first encodes both private
and public keys to the PEM standard format. It does this using the
asn1parse OpenSSL CLI utility that, at a high level, directly injects
ground truth ECCKAT values into an ASN1 structure, that can then
be coerced to one of several portable formats—PEM in this case,
but DER is equally feasible.

In terms of test types that evp_test understands, the format is a
fairly simple text file containing PEMs for keymaterial and then test
parameters, either positive or negative; in the context of ECCKAT
it supports testing key generation, key agreement (derivation in
OpenSSL terminology), and digitally signing and verifying.

Our deterministic ECDSA KATs integrate smoothly into evp_-
test yet classical ECDSA does not. This issue is not OpenSSL-
specific: it is normal for libraries to handle nonce selection internally
and not expose this to application developers. While it is possible
for a library to allow overriding the ephemeral key generation,
it broadens the attack surface and introduces a potential footgun
for application developers. We feel this is strong motivation for
libraries to migrate to deterministic ECDSA, where this KAT-style
testing is very natural.

The motivation for the OpenSSL backend to exist at all and not
simply use a generic TAP harness is the breadth of OpenSSL testing.
A strong point of evp_test is it requires only a single application
invocation, whereas ECCKAT’s generic TAP backend uses a single
test harness invocation per test. This would be prohibitively slow
in the context of OpenSSL, which undergoes rapid development
and already has a significant CI load, with frequent timeouts for
GitHub PRs. In summary, test efficiency can be a practical issue,
depending on the library.

GOST Engine’s testing framework. Part of the existing gost-engine
test framework is Perl TAP-driven, and this is a convenient place
to integrate our ECCKAT tests. The engine already supports key
generation through the OpenSSL CLI genpkey utility. As part of
our work, as an FOSS contribution we extended gost-engine to
support CLI key agreement through the OpenSSL pkeyutl utility.
At a high level, our gost-engine backend is quite similar to the
OpenSSL backend—similarly encoding ground truth key material
from ECCKAT with the asn1parse utility. The differences are the
test data being embedded directly into the Perl source as a hash
structure instead of a standalone text file to match the current test
framework, and the test logic calling the relevant OpenSSL CLI
utilities to form the test harness itself. Our ECCKAT gost-engine
backend does not support GOST digital signatures at this time. We
are currently discussing porting the deterministic ECDSA concept
to GOST-style signatures. In summary, our ECCKAT gost-engine
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backend provides positive and negative test coverage over all GOST
curves for both key generation and key agreement.

3.4 ECCKAT: Results
While we have applied and deployed ECCKAT to ECCKiila (dis-
cussed later in Section 4) in a CI environment, here we summarize
our results of applying ECCKAT to other libraries. This demon-
strates the flexibility and applicability of ECCKAT.

OpenSSL: ECC scalar multiplication failure. Applying ECCKAT to
gost-engine, we identified cryptosystem failures for the id_Gost-
R3410_2001_CryptoPro_C_ParamSet curve. Investigating the is-
sue, OpenSSL returned failure when attempting to serialize the
output point of scalar multiplication, which was incorrectly O.
Internal to the OpenSSL EC module, this was due to the chosen
ladder projective formulae [25, Eq. 8] being undefined for a zero
𝑥-coordinate divisor—a restriction noted by neither the authors nor
EFD12. This caused the entire scalar multiplication computation to
degenerate and eventually return failure at the software level.

Broader than GOST, the 𝑥 = 0 case can happen whenever prime
curve coefficient 𝑏 is a quadratic residue, and we integrated this
test logic into ECCKAT for all curves; but the discovery was rather
serendipitous. Most GOST curves choose the generator point as the
smallest non-negative 𝑥-coordinate that yields a valid point—in this
case, 𝑥 = 0. Luckily we identified this issue during the development
of OpenSSL 1.1.1, hence the issue did not affect any release version
of OpenSSL.We developed the fix for OpenSSL (PR #7000, switching
to [25, Eq. 9]) as well as integrated our relevant tests into their
testing framework.

OpenSSL: ECC CDH vulnerability. Applying ECCKAT to the devel-
opment branch of OpenSSL 1.1.1 identified negative test failures
in cofactor Diffie-Hellman. Investigating the issue revealed the
cause to be mathematically incorrect side channel mitigations at
the scalar multiplication level. As a timing attack countermeasure
(ported from CVE-2011-1945 by [12]), the ladder code first padded
the scalar by adding either 𝑞 or 2𝑞 to fix the bit length and starting
iteration of the ladder loop. But in key agreement scenarios, there is
no guarantee the peer point is an order-𝑞 point—only a point with
order dividing ℎ𝑞 if it satisfies the curve equation, i.e. is an element
of the elliptic curve group. This caused negative tests to fail for all
curves with a non-trivial cofactor—for named curves in OpenSSL,
this included all binary curves and the 112-bit secp112r2 Certicom
curve with ℎ = 4.

Luckily the issue did not affect any release version of OpenSSL.
We developed the fix for OpenSSL (PR #6535) as well as integrated
our relevant tests into their testing framework. In support of Open
Science, we released a demo for this vulnerability as a research
artifact [6].

GOST: VKO vulnerability. Applying ECCKAT to gost-engine iden-
tified negative test failures in VKO key agreement for the two
curves with non-trivial cofactors, similar (in spirit) to the cofac-
tor Diffie-Hellman failures above. Investigating the issue revealed
gost-engine multiplied by the cofactor before modular reduction.
Consulting the Russian standard and RFC 7836 [44], surprisingly

12https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3

this is in fact a valid interpretation of VKO at the standardization
level.

Prior to the standard change and RFC errata resulting from our
work, both the Russian standard and RFC specified VKO computa-
tion13 as

(𝑚/𝑞 · UKM · 𝑥 mod 𝑞) · (𝑦 · 𝑃)

where, recalling from Section 2.1,𝑚 = ℎ𝑞 is the curve cardinality,
UKM is user key material, 𝑥 is the private key, 𝑞 is the order of the
generator, and 𝑦 ·𝑃 is the peer public key (point). With this formula-
tion, the cofactor clearing is ineffective: it is absorbed modulo 𝑞. For
the two curves satisfying ℎ = 4, in case of a malicious 𝑦 · 𝑃 such as
an order-ℎ point, the computation results in one of the four points
in the order-ℎ subgroup, i.e. a small subgroup confinement attack.
This can reveal the private key value modulo ℎ and, depending on
the protocol, force session key reuse.

Subsequent to our work, the Russian standard and RFC 7836 [44]
now specify the compatible (in the non-adversarial sense)

(𝑚/𝑞 · (UKM · 𝑥 mod 𝑞)) · (𝑦 · 𝑃)

where it is explicit the cofactor clearing is after the modular re-
duction. As part of our work, we implemented the gost-engine
fix (PR #265) and integrated all the relevant ECCKAT positive and
negative tests into the gost-engine testing framework. Luckily,
packaged versions of gost-engine for popular distributions such
as Debian, Ubuntu, and RedHat use older versions of the engine
that only feature the ℎ = 1 curves, not affected by this vulnerability.

4 GENERATING ECC LAYERS: ECCKIILA
This section focuses on the ECC layer generation and required
library-specific rigging. Figure 1 summarizes our proposed full stack
implementation named ECCKiila. The name comes from the Finnish
word kiila that means wedge, and it allows to dynamically create
the C-code (supporting both 64-bit and 32-bit architectures, no
alignment or endianness assumptions) regarding to the ECC layer
as well as the rigging for seamless integration into OpenSSL, NSS,
and gost-engine, all driven by Python Mako templating. Table 1
shows all the curves tested with ECCKiila. To establish scope, while
timing attacks are included in the ECCKiila threat model, physical
(e.g. power, electromagnetic emanations) or invasive (e.g. fault)
attack techniques are not.

Field arithmetic. In our proposal, we obtain the majority of the
𝐺𝐹 (𝑝) arithmetic by using the fiat-crypto project14, that pro-
vides generation of field-specific formally verified constant time
code [21]. Fiat-crypto has several strategies to generate the arith-
metic but we have chosen the best per curve base on the form of 𝑝 .
In other words, the remainder of the section is centered on the EC
layer that builds on top of the 𝐺𝐹 (𝑝) layer. It is important to note
this is the formal verification boundary for ECCKiila—all other code
on top of Fiat, while computer generated through templating and
automatic formula generation for ECC arithmetic, has no formal
verification guarantees. From now on, we assume all operations are
performed in 𝐺𝐹 (𝑝).

13Here the scalar multiplication notation is per the RFC to make the errata clear.
14https://github.com/mit-plv/fiat-crypto
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Public parameters: {p, a, b, g, q, h}
(and possibly also {e, d, u, v})

generate GF (p) arithmetic
using fiat-crypto library

h = 1?
Set Weierstrass

model
Set Twisted

Edwards model

a ∈ {0,−3}? e ∈ {1,−1}?

generate generic
curve arithmetic

generate curve
arithmetic

with a ∈ {0,−3}

generate curve
arithmetic

with e ∈ {1,−1}

generate fixed, variable, and double
point multiplication procedures

NSS C-codeOpenSSL C-code gost-engine C-code

yes no

yes no yes
no

Figure 1: General concept of ECCKiila. The public parame-
ters determine a Weierstrass curve 𝐸𝑤 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 such
that#𝐸𝑤 = ℎ ·𝑞 and 𝑔 is an order-𝑞 affine point. The optional
values determine the Twisted Edwards curve 𝐸𝑡 : 𝑒𝑢2 + 𝑣2 =

1 + 𝑑𝑢2𝑣2 and the image point (𝑢, 𝑣) of 𝑔 on 𝐸𝑡 .

Short Weierstrass curves. All the legacy curves we consider in this
work are prime order curves 𝐸𝑤 , i.e. #𝐸𝑤 = 𝑞 ≈ 𝑝 is a prime
number and ℎ = 1.

Twisted Edwards curves. Recall from Section 2.2 most of the legacy
curves from gost-engine work on curves 𝐸𝑤 of prime cardinality
𝑞 ≈ 𝑝 but two of them are centered on curves of cardinality 4𝑞 being
𝑞 ≈ 𝑝 a prime number. For those two special curves, gost-engine
curves are represented in short Weiestrass form at the specification
level (i.e. “on-the-wire” or when serialized) but internally we use
the Twisted Edwards curve representation. Additionally, we imple-
mented the mappings that connect 𝐸𝑤 and 𝐸𝑡 by writing (4) and
(3) in their projective form to delay the costly inversion in 𝐺𝐹 (𝑝).
We used the same strategy for MDCurve20160, the “Million Dollar
Curve” [5] as a research-oriented example.

Point arithmetic. The way of adding points depends on the curve
model being used, but we describe the three main point operations
as follows: (i) the mixed point addition that takes as inputs a projec-
tive point and an affine point, and it returns a projective point; (ii)
the projective point addition and (iii) the projective point doubling,
which their inputs and outputs are projective points.

We use the exception-free formulas proposed by Renes et al. [41,
Sec. 3] and Hisil et al. [24, Sec. 3.1, Sec. 3.3] for Weierstrass and
Twisted Edwards models, respectively. In particular, all ECC arith-
metic is machine generated, tied to the op3 files15 included in our
software implementation. Our tooling is configurable in that sense,
but also with high correctness confidence.

Now, recall in Weierstrass models O has no affine representation
and thus the mixed point addition needs to catch whether the affine
point describes O. We solve this by asking if its affine 𝑌 -coordinate
is zero and performing a conditional copy at the end of the mixed
point addition, all in constant time. That is, we set (0, 0) as the affine
representation ofO, which does not satisfy the affine curve equation
of 𝐸𝑤 (no order-2 point exists on curves with prime cardinality,
hence 𝑦 = 0 is a contradiction). However, this is not the case for
Twisted Edwards models, which allow fully exception-free formulas
for point addition procedures.

Point multiplication. The heart of our ECC layer is point multi-
plication—fixed point 𝑔, variable point 𝑃 , and also by the double
point multiplication [𝑘]𝑔 + [ℓ]𝑃 . We implemented the variable
point multiplication by representing scalars with the regular-NAF
method [28, Sec. 3.2] and lg(𝑞)/𝑤 digits with lg(𝑞) doublings. The
advantage of this method is we need only half the precomputed
values compared to e.g. the base 2𝑤 method. We support a vari-
able window length𝑤 , and by default𝑤 = 5. We implemented the
fixed point multiplication using the comb method (see [14, 9.3.3])
with interleaving and, similar to the variable point case, using the
regular-NAF scalar representation. Our approach seeks full gener-
ality and word size independence on each architecture (32 or 64
bit), hence we automatically calculate the number of comb-teeth 𝛽
and the distance between consecutive teeth ⌈lg(𝑞)/𝛽⌉, where the
latter should be a multiple of𝑤 , considering the size of the L1 cache
in this process. Therefore, the static LUTs span 𝛽 tables requiring
⌈lg(𝑞)/𝛽⌉ doublings. Both methods are constant time, performing
exactly lg(𝑞)/𝑤 point additions, and using linear passes to ensure
key-independent memory access not only to LUTs but also in con-
ditional point negations due to the signed scalar representation
and conditional trailing subtraction to handle even scalars; the
regular-NAF encoding itself is also constant time. We implemented
double point multiplication using textbook𝑤NAF [14, 9.1.4] com-
bined with Shamir’s trick [14, 9.1.5]. This shares the doublings, i.e.
maximum lg(𝑞) in number, but on average reduces the number
of additions per scalar. This is because it is variable-time—only
required in digital signature verification where all inputs are public.

Rigging. At this point, the resulting C code yields functional arith-
metic for the ECC layer. But we observe a gap between such code
and real world projects. On one hand, researchers intimately fa-
miliar with ECC details lack the skill, motivation, and/or domain-
specific knowledge to integrate the ECC stack into downstream
large software projects. On the other hand, developers for those
downstream projects lack the intimate knowledge of the upstream
ECC layer to integrate properly—historical issues include assump-
tions on architecture, alignment, endianness, supported ranges to
name a few. For example, one obscure issue encountered during

15see e.g. https://www.hyperelliptic.org/EFD/g1p/auto-code/twisted/extended/
doubling/dbl-2008-hwcd.op3

https://www.hyperelliptic.org/EFD/g1p/auto-code/twisted/extended/doubling/dbl-2008-hwcd.op3
https://www.hyperelliptic.org/EFD/g1p/auto-code/twisted/extended/doubling/dbl-2008-hwcd.op3


Set It and Forget It! Turnkey ECC for Instant Integration

Curve Library External model Internal model
lg(𝑝)(Standard) (ECCKiila)

secp192r1 / P-192

OpenSSL

Weierstrass with 𝑎 = −3 192
secp256r1 / P-256 256
secp256k1 Weierstrass with 𝑎 = 0 256
secp384r1

Weierstrass with 𝑎 = −3

384
secp521r1 / P-521 521
brainpool192t1 192
brainpool256t1 256
brainpool320t1 320
brainpool384t1 384
brainpool512t1 512
SM2 (Chinese standard) 256
X25519 / ED25519 / Wei25519 Weierstrass with

𝑎 ≠ 0 and 𝑎 ≠ −3
Edwards with 𝑒 = −1 255

X448 / ED448 / Wei448 Edwards with 𝑒 = 1 448
P-384 NSS 384
P-521 521
id_GostR3410_2001_CryptoPro_A_ParamSet

GOST

256id_GostR3410_2001_CryptoPro_B_ParamSet
id_GostR3410_2001_CryptoPro_C_ParamSet
id_tc26_gost_3410_2012_512_paramSetA

512id_tc26_gost_3410_2012_512_paramSetB
id_tc26_gost_3410_2012_256_paramSetA Weierstrass with

𝑎 ≠ 0 and 𝑎 ≠ −3
Twisted Edwards

with 𝑒 = 1

256
id_tc26_gost_3410_2012_512_paramSetC 512
MDCurve20160 (Million Dollar Curve) — 256

Table 1: List of all the curves tested with ECCKiila

OpenSSL ECCKiila integration was lack of OpenSSL unit testing
for custom ECC group base points, which OpenSSL supports but
ECCKiila cannot fully accelerate since the generated LUTs are static,
but regardless must detect and handle the base point mismatch.
Our integrations passed all OpenSSL unit tests, which is clearly not
correct in this corner case.

To solve this issue, the last layer of ECCKiila is rigging that is
essentially plumbing for downstream projects. Rigging is library-
specific by nature, and ECCKiila currently supports three back-
ends: OpenSSL, NSS, and gost-engine. For OpenSSL, ECCKiila
generates an EC_GROUP structure, which is the OpenSSL internal
representation of a curve with function pointers for various oper-
ations. We designed simple wrappers for three relevant function
pointers, which are shallow and eventually (after sanity checking
arguments and transforming the inputs to the expected format) call
the corresponding scalar multiplication implementation in Figure 1.
NSS is similar with an ECGroup structure. The gost-engine rig-
ging (mostly) decouples it from OpenSSL’s EC module, since it only
needs to support GOST curves with explicit parameters.

Example: P-384 in OpenSSL and NSS. What follows is a walkthrough
of our integration of secp384r1 into OpenSSL and NSS. ECCKiila
has a large database (JSON) of standard curves, then generates
both 64-bit and 32-bit 𝐺𝐹 (𝑝) arithmetic using Fiat. It then takes
the ℎ = 1, 𝑎 = −3 path in Figure 1 and generates the three relevant
scalar multiplication functions that utilize exception-free formu-
las from [41] optimized for 𝑎 = −3. Finally, ECCKiila emits the
OpenSSL rigging for OpenSSL integration, and NSS rigging for NSS
integration. Adding the code to OpenSSL is the only current manual
step: one line to add the new code to the build system, one line
to add the prototype of the new EC_METHOD structure in a header,
and one line to point OpenSSL at this structure for the secp384r1
definition. The NSS integration is very similar.

Example: GOST twisted 256-bit curve. What follows is a walkthrough
of our integration of id_tc26_gost_3410_2012_256_paramSetA
into gost-engine. ECCKiila takes the ℎ = 4, 𝑒 = 1 path in Figure 1
and generates the three relevant scalar multiplication functions
that utilize exception-free formulas from [24] optimized for 𝑒 = 1,
and noting the 𝐸𝑤 to 𝐸𝑡 mappings (and back) are transparent to the

caller (gost-engine rigging, in this case). Finally, ECCKiila emits
the gost-engine rigging, and enabling this code in gost-engine
is currently the only manual step: one line to add the code to the
gost-engine build system, and three lines in a C switch statement
to enable each of the relevant scalar multiplication routines.

Example: million dollar curve in OpenSSL. Not to limit ECCKiila to
only formally standardized curves, here we showcase the research
value of ECCKiila by applying it to MDCurve20160 [5], which has
undergone no formal standardization process. As such, we took the
GOST approach that perhaps the 𝐸𝑤 curve might be standardized,
and the 𝐸𝑡 curve utilized internally. We applaud this approach in
GOST because, in practice, it eases downstream integration and
lowers the effort bar during standardization—on the downside, it
does reduce flexibility since it implies compliance with certain
existing (legacy) standards.

The process for ECCKiila is a logical mix of the previous two
examples: taking a path similar to the GOST example, but the gener-
ated rigging is OpenSSL. In this case, OpenSSL knows nothing about
MDCurve20160 so we obtained an unofficial OID for MDCurve20160
and the rigging additionally emits the explicit curve parameters so
OpenSSL knows how to construct its internal ECC group. The only
manual steps are similar to the previous examples, yet additionally
inserting these parameters.

Once OpenSSL knows about MDCurve20160 from the automated
rigging, it can drive operations with MDCurve20160 like any other
(legacy) curve: ECC key generation, ECDSA signing and verifying,
and ECC CDH key agreement. This highlights the research value of
ECCKiila, and gives a clear and simple path for researchers seeking
dissemination and exploitation: obtain an official OID for standard-
ization, provide curve parameters to ECCKiila, and submit a PR to
downstream projects. In the case that more modern signature and
key agreement schemes are desired, additional steps are needed at
both the standardization, implementation, and integration levels.

4.1 ECCKiila: Results
We now present the results of applying ECCKiila to the curves
listed in Table 1. First, it is important to note our measurements are
not on the ECCKiila code directly, rather on the application-level
view of how developers and users of the corresponding libraries
will transparently see the resulting performance difference. That
is, we are measuring the full integration, not the ECCKiila code
in isolation. So it includes e.g. all overheads from the rigging, any
checks and serialization/deserialization the libraries perform, any
memory allocation/deallocation and structure initialization, as well
as any other required arithmetic not part of ECCKiila (e.g. 𝐺𝐹 (𝑞)
arithmetic for ECDSA and GOST signatures).

To compare the performance of our approach, we measure the
timing of unmodified OpenSSL 3.0 alpha, gost-engine, and NSS
3.53 (called baseline), and the same versions then modified with the
ECCKiila output (integration). For each one of them, we measured
the timings from the operations described in Section 2 such as key
generation, key agreement (derivation), signing, and verification.
For the sake of simplicity, we refer to them as keygen, derive, sign,
and verify, respectively.

The hardware and software setup used to get the timings re-
ported in this section are the following: Intel Xeon Silver 4116
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2.10GHz, Ubuntu 16.04 LTS “Xenial”, GNU11 C, and clang-10.
We used 64-bit builds, although the ECCKiila generated code se-
lects the correct implementation using the compiler’s preproces-
sor at build time. For the clock cycle measurements, we used the
newspeed16 utility, unifying the OpenSSL and gost-engine mea-
surements since it works through OpenSSL’s EVP interface and
optionally supports engines. For the three NSS results, we modified
their ecperf benchmarking utility17 to report median clock cycles
instead of wall clock time.

Table 2 reports timings for both approaches, showing the re-
sult of our proposal has good performance regarding the original
versions. There are several nuances to clarify in the data. In par-
ticular, in the signature of our proposal where id_GostR3410_-
2001_CryptoPro_A_ParamSet is quite faster than secp256k1: the
reason is GOST signatures do not invert modulo 𝑞 while ECDSA
signatures do, and this is a costly operation. Also, we can see
that secp256r1 has excellent performance due to manual AVX
assembler optimizations, while ECCKiila is portable C. Despite this,
id_tc26_gost_3410_2012_256_paramSetA gives us similar per-
formance, yet completely automated with limited formal verifica-
tion guarantees and architecture independence. Last, there are some
curve with extra slowdown in some operations such as secp256r1,
brainpoolP512t1, and secp521r1. The reason for this varies. In
the secp256r1 and secp521r1 cases, this is due to competition
with curve-specific optimizations in libraries. For Brainpool curves,
this is a combination of limited𝐺𝐹 (𝑝) optimizations available both
at the fiat-crypto and ECCKiila layers.

5 CONCLUSION
In this work, we presented two methodologies. ECCKAT allows
carrying out a set of tests over an arbitrary ECC implementation,
including (but not limited to) all standard curves from OpenSSL,
NSS, and gost-engine where it gave us excellent results because
we uncovered several novel defects in OpenSSL such as a scalar
multiplication failure and an ECC CDH vulnerability. Meanwhile,
for GOST we detected a VKO vulnerability that can reveal sensitive
information from the private key. Our second proposal ECCKiila
is partially motivated by these vulnerabilities. With the use of EC-
CKiila, we can generate code dynamically for any curve, including
all standard curves from OpenSSL, NSS, and GOST. This code is
highly competitive in comparison with the original versions from
OpenSSL, NSS, and gost-engine since we have a speedup factor
up to 9.5x for key generation, 4.5x for key agreement, 13.3x for sign-
ing, and 3.7x for verifying as Table 2 shows. Furthermore, ECCKiila
is flexible and robust since we can easily add new curves without
increasing the development complexity—upstream or downstream.
Hence, we believe our methodologies are of interest for future work,
both in research and application.

Quoting Davis [15]: programmers need “turnkey” cryptography,
not only cryptographic toolkits and that is precisely what ECCKi-
ila provides. The ease of integrating these stacks in downstream
projects, coupled with formal verification guarantees on the Galois
field arithmetic and simplicity of upper layers, and automated code

16https://github.com/romen/newspeed
17https://github.com/nss-dev/nss/tree/master/cmd/ecperf

generation, provides drop-in, zero-maintenance solutions for real-
world, security-critical libraries. We release ECCKiila18 as FOSS,
furthermore in support of Open Science.

Impact. ACSAC 2020’s Hard Topic Theme is “Deployable and Im-
pactful Security” and our work meets that challenge. All of the
defects uncovered by ECCKAT in Section 3 are fixed and merged
into the related projects. ECCKiila stacks are already merged in
two downstream projects. ECCKiila now provides all ECC in gost-
engine, and NSS merged our ECCKiila stacks for P-38419 and P-
52120 as a result of CVE-2020-6829 by ul Hassan et al. [47].

Future work. ECCKiila itself has no formal verification guarantees,
and only inherits those provided by Fiat for the vast majority of the
𝐺𝐹 (𝑝) layer. One potential research direction would be investigat-
ing the possibility of extending proofs to cover more of ECCKiila,
particularly at the ECC layer.
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Curve/Parameter

bit KeyGen Derive Sign Verify
Baseline Integration Baseline Integration Baseline Integration Baseline Integration

secp192r1 192 587 77 (▲ 7.6x) 549 181 (▲ 3.0x) 574 75 (▲ 7.6x) 543 212 (▲ 2.6x)
brainpoolP192t1 574 92 (▲ 6.2x) 533 255 (▲ 2.1x) 560 90 (▲ 6.2x) 543 291 (▲ 1.9x)
X25519 / ED25519 / Wei25519

255 105 91 (▲ 1.2x) 104 173 (▽ 1.7x) 106 112 (▽ 1.1x) 284 211 (▲ 1.3x)
secp256r1

256

90 141 (▽ 1.6x) 139 465 (▽ 3.3x) 63 156 (▽ 2.5x) 183 524 (▽ 2.9x)
P-256 (NSS) 310 116 (▲ 2.7x) 1628 916 (▲ 1.8x) 351 157 (▲ 2.2x) 1077 512 (▲ 2.1x)
secp256k1 1027 151 (▲ 6.8x) 989 400 (▲ 2.5x) 1037 165 (▲ 6.3x) 932 471 (▲ 2.0x)
brainpoolP256t1 939 175 (▲ 5.3x) 897 597 (▲ 1.5x) 953 187 (▲ 5.1x) 877 665 (▲ 1.3x)
id_GostR3410_2001_CryptoPro_A_ParamSet 1026 123 (▲ 8.3x) 1022 385 (▲ 2.7x) 993 91 (▲ 10.8x) 867 404 (▲ 2.1x)
id_GostR3410_2001_CryptoPro_B_ParamSet 982 129 (▲ 7.6x) 1007 449 (▲ 2.2x) 955 101 (▲ 9.4x) 845 461 (▲ 1.8x)
id_GostR3410_2001_CryptoPro_C_ParamSet 977 180 (▲ 5.4x) 986 639 (▲ 1.5x) 945 145 (▲ 6.5x) 848 662 (▲ 1.3x)
id_tc26_gost_3410_2012_256_paramSetA 960 101 (▲ 9.5x) 929 204 (▲ 4.5x) 926 69 (▲ 13.3x) 893 240 (▲ 3.7x)
MDCurve201601 — 155 — 360 — 171 — 420
SM2 1039 252 (▲ 4.1x) 889 549 (▲ 1.6x) 935 174 (▲ 5.4x) 874 612 (▲ 1.4x)
brainpoolP320t1

320 1470 314 (▲ 4.7x) 1430 1161 (▲ 1.2x) 1502 351 (▲ 4.3x) 1277 1271 (▲ 1.0x)
secp384r1 384

2156 417 (▲ 5.2x) 2117 1598 (▲ 1.3x) 2221 488 (▲ 4.5x) 1818 1823 (▽ 1.0x)
P-384 (NSS) 2257 391 (▲ 5.8x) 4266 3225 (▲ 1.3x) 2310 454 (▲ 5.1x) 4013 1755 (▲ 2.3x)
brainpoolP384t1 2157 527 (▲ 4.1x) 2098 1978 (▲ 1.1x) 2206 599 (▲ 3.7x) 1828 2181 (▽ 1.2x)
X448 / ED448 / Wei448

448 309 306 (▲ 1.0x) 1046 760 (▲ 1.4x) 322 406 (▽ 1.3x) 1195 903 (▲ 1.3x)
brainpoolP512t1

512

3632 1325 (▲ 2.7x) 3590 4767 (▽ 1.3x) 3774 1451 (▲ 2.6x) 2959 5099 (▽ 1.7x)
id_tc26_gost_3410_2012_512_paramSetA 3716 664 (▲ 5.6x) 3634 2197 (▲ 1.7x) 3671 625 (▲ 5.9x) 2878 2405 (▲ 1.2x)
id_tc26_gost_3410_2012_512_paramSetB 3754 652 (▲ 5.8x) 3720 2359 (▲ 1.6x) 3715 619 (▲ 6.0x) 2798 2550 (▲ 1.1x)
id_tc26_gost_3410_2012_512_paramSetC 3663 515 (▲ 7.1x) 3653 1262 (▲ 2.9x) 3645 478 (▲ 7.6x) 3070 1387 (▲ 2.2x)
secp521r1 521 574 513 (▲ 1.1x) 941 1731 (▽ 1.8x) 753 742 (▲ 1.0x) 1492 2096 (▽ 1.4x)
P-521 (NSS) 3239 480 (▲ 6.7x) 6063 3444 (▲ 1.8x) 3339 578 (▲ 5.8x) 5217 1840 (▲ 2.8x)

Table 2: Comparison of timings between the baseline and the integration from OpenSSL, gost-engine, and NSS. All timings
are reported in clock cycles (thousands).
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