History-Based Specification and Verification
of Java Collections in KeY
(Keynote)

Frank S. de Boer
CWI
Netherlands
F.S.de.Boer@cwi.nl

Abstract

Software libraries, such as the Java Collection Framework,
are used by many applications: thus their correctness is of
utmost importance. The state-of-the-art KeY system can be
used to formally reason about program correctness of Java
programs. Recently, KeY has been used to show major flaws
in the Java Collection Framework. However, some meth-
ods are challenging for verification, namely those involving
parameters of interface type. This lecture discussed a new
history-based specification method for reasoning about the
correctness of clients and arbitrary implementations of in-
terfaces, and the Collection interface in particular.

CCS Concepts: « Software and its engineering — For-
mal software verification.

Keywords: Formal verification; Interface specification; His-
tory abstractions

ACM Reference Format:

Frank S. de Boer and Hans-Dieter A. Hiep. 2020. History-Based
Specification and Verification of Java Collections in KeY (Keynote).
In Proceedings of the 22th ACM SIGPLAN International Workshop on
Formal Techniques for Java-Like Programs (FTfJP °20), July 23, 2020,
Virtual, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3427761.3432349

1 Introduction

Software libraries are the building blocks of many programs
that run on the devices of many users every day. The func-
tioning of a system relies for a large part on its used software
libraries. A small error present in a heavily-used software
library could lead to serious unwanted outcomes, such as
system outages and other failures. To prevent failures from
happening, program correctness is of the utmost importance.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

FIfJP 20, July 23, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8186-4/20/07.
https://doi.org/10.1145/3427761.3432349

Hans-Dieter A. Hiep
CWI
Netherlands
Hans-Dieter.Hiep@cwi.nl

We take a formal approach to both specification and rea-
soning about Java programs, allowing us to increase the
reliability of our reached conclusions to near certainty. In
particular, the specifications we write are expressed in the
Java Modeling Language (JML), and our reasoning is tool-
supported and partially automated by KeY [1]. To the best of
the presenters’ knowledge, KeY is the only tool that supports
enough features of the Java programming language for rea-
soning about real programs, of which its run-time behavior
crucially depends on the presence of features such as: dy-
namic object creation, exception handling, integer arithmetic
with overflow, nested classes, erased generics, etc.

In a recent paper [2], the discovery of a major flaw in
the LinkedList —erratic behavior caused by an integer
overflow—is described: a high-level overview on the speci-
fication and verification effort of the corrected LinkedList
class as a whole is given for a more general audience. In
another article [3], more technical details are given on how
we use KeY to produce correctness proofs. However, some
of the methods of the linked list implementation contain an
interface type as parameter and were out of scope of these
works. Thus arises the need for an approach to specify inter-
faces which allows us to verify its implementations and its
clients.

The main takeaway of this lecture is a new specification
method [4] which advocates the use of histories that record
invocations of the methods provided by an interface, in-
cluding their parameters and return value, to describe and
reason about the correctness of interfaces, abstracting and
independent from any implementation. This use of histories
is motivated and semantically justified by the basic obser-
vation that any encapsulated state-based implementation of
an interface is completely determined by the invocations
of its methods and thus can be derived from the history.
Application-specific, user-defined abstractions of histories
further allow for high-level interface specifications which
also support reasoning about both the correctness of client
code and implementations.

We further discussed some of the challenges of proving
client code correct with respect to arbitrary implementations,
and a practical specification and verification effort of part of
the Collection interface using KeY.


https://doi.org/10.1145/3427761.3432349
https://doi.org/10.1145/3427761.3432349
https://doi.org/10.1145/3427761.3432349

FTfJP 20, July 23, 2020, Virtual, USA

2 Biography

Frank S. de Boer is professor Program Correctness at Leiden
University, and senior researcher at Centrum Wiskunde &
Informatica (CWI), the national research institute for mathe-
matics and computer science in the Netherlands. His research
interests are semantics and proof theory of object-oriented
programming languages featuring mechanisms like object
creation, aliasing, method calls, multi-threading, inheritance
and subtyping.

Hans-Dieter A. Hiep is a Ph.D. researcher at Leiden Uni-
versity and CWI under the supervision of Frank S. de Boer.
His research interests are higher-order logic and type theory
and their application to the proof theory of object-oriented
programming languages.

Frank S. de Boer and Hans-Dieter A. Hiep

References

[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hihnle,
Peter H. Schmitt, and Mattias Ulbrich, editors. Deductive Software
Verification — The KeY Book, volume 10001 of LNCS. Springer, 2016.

[2] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer,

Marko van Eekelen, and Stijn de Gouw. Verifying OpenJDK’s LinkedList

using KeY. In Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), volume 12079 of LNCS, pages 217-234. Springer,

2020.

Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw.

A tutorial on verifying LinkedList using KeY. In Wolfgang Ahrendt,

Richard Bubel, Bernhard Beckert, Reiner Hihnle, and Matthias Ulbrich,

editors, Deductive Verification: The State of the Future, volume 12345 of

LNCS. Springer, 2020. (To appear).

[4] Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw.
History-based specification and verification of Java collections in KeY.
In 16th International Conference on integrated Formal Methods (iFM2020),
volume 12546 of LNCS. Springer, 2020. (To appear).

[3

[t



	Abstract
	1 Introduction
	2 Biography
	References

