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ABSTRACT 

According to recent studies by the BBC and the Scottish Fire and 

Rescue Service, malfunctioning appliances, especially white 

goods, were responsible for almost 12,000 fires in Great Britain in 

just over 3 years, and almost everyday in 2019. The top three 

“offenders” are washing machines, tumble dryers and dishwashers, 

hence we will focus on these, generally challenging to 

disaggregate, appliances in this paper.  The first step towards 

remotely assessing safety in the house, e.g., due to appliances not 

being switched off or appliance malfunction, is by detecting 

appliance state and consumption from the NILM result generated 

from smart meter data. While supervised NILM methods are 

expected to perform best on the house they were trained on, this is 

not necessarily the case with transfer learning on unseen houses; 

unsupervised NILM may be a better option. However, 

unsupervised methods in general tend to be affected by the noise in 

the form of unknown appliances, varying power levels and 

signatures. We evaluate the robustness of three well-performing 

(based on prior studies) low-complexity NILM algorithms in order 

to determine appliance state and consumption: Decision Tree and 

KNN (supervised) and DBSCAN (unsupervised), as well as 

different algorithms for preprocessing to mitigate the effect of 

noisy data. These are tested on two datasets with different levels of 

noise, namely REFIT and REDD datasets, resampled to 1 min 

resolution. 
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1  INTRODUCTION 

Load disaggregation via non-intrusive load monitoring (NILM) 

offers a non-intrusive, purely computational, software-based 

approach to separate aggregate load obtained from a single 

electricity meter into individual appliance loads and provides a 

timely opportunity to leverage on investment worldwide on smart 

metering [1],[2]. Besides the obvious NILM application of 

meaningful energy feedback, timely detection of malfunctioning 

appliances without resorting to submetering and leveraging on 

NILM is promising [3], [4]. Indeed, the BBC has reported that 

malfunctioning appliances, especially white goods, were 

responsible for almost 12,000 fires in Great Britain in just over 3 

years [5], and the Scottish Fire and Rescue Service reported 340 

fires in 2019 alone, caused by tumble dryers, washing machine, 

fridge/freezers and dishwashers [6]. As shown in [3], malfunction 

in appliances is reflected when the NILM signature deviates 

significantly from the actual energy consumption and the deviation 

matches an anomaly signature. Furthermore, [3] indicates that 

appliance-level anomaly detection performs best for best 

performing NILM algorithms, but this was only verified for 

relatively complex supervised Combinatorial Optimization (CO) 

[7] and Factorial Hidden Markov Model (FHMM) [8] based NILM 

from the NILMTK [9], Latent Bayesian Melding [10], Super-state 

HMM (SSHMM) [11] and unsupervised Graph Signal Processing 

(GSP) [12] NILM algorithms and anomalies in electrical heater and 

freezer operation in the REFIT dataset [13]. 

Motivated by the potential of NILM to identify malfunctioning 

appliances, as demonstrated in [3] and [4], we propose the 

following requirements for suitable NILM algorithms: (i) near real-

time disaggregation to quickly identify an appliance (at fault), (ii) 

low complexity so it could potentially be run on a smaller device 

within the building where the appliance is located instead of in-the-

cloud, (iii) for scalability purposes, they should be able to work on 

a range of buildings, where labelled information is not available for 

training. Leveraging on NILM algorithms that have shown good 
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disaggregation performance, we select one method in each of the 

following categories: supervised (which works best on the house 

they are trained on but are not always transferable to unseen houses 

[14]) and unsupervised (suboptimal performance compared to 

supervised methods but robust to a wide range of datasets where no 

training information is available). Furthermore, NILM algorithms 

have been shown to have better performance with some pre- and/or 

post-processing of the meter data and NILM output, respectively 

[15]. This paper is organized as follows. Section 2 briefly reviews 

the NILM algorithms we evaluate here, including the proposed 2-

step DT algorithm. Section 3 describes the experimental setup 

followed by our classification and disaggregation results and 

conclude in Section 4.  

2 NILM ALGORITHMS – BRIEF OVERVIEW 

As motivated in Section 1, in this paper we focus on low-

complexity algorithms which can be used widely, i.e., with smart 

meter readings that store only active power measurements, sampled 

at 1-60 seconds. To this effect, we have narrowed our selection of 

algorithms that have been shown to work well under the above 

constraints. These are Decision Trees (DT) and K-Nearest 

Neighbor (K-NN) for supervised NILM and Density-Based Spatial 

Clustering of applications with noise (DBSCAN) for unsupervised 

NILM. We also evaluate the effect of pre-processing and post-

processing to improve NILM performance. 

2.1  Pre-Processing 

Median filtering is common step in pre-processing the raw 

aggregate power measurements to remove outliers. Length of the 

median filter windows must be carefully chosen according to the 

signal attributes, such as granularity, to ensure that relevant events 

are not lost. For example, in our case, we found heuristically that 

window sizes of 5 and 3 minutes provided the best results for 

REFIT [13] and REDD [16] dataset houses, respectively.  Then, 

bilateral graph filtering (GBF) [15] is applied to ensure piecewise 

smoothness of the power signal. At the end, edge sharpening is used 

to merge unclear consecutive edges. Edge sharpening is used to 

merge the consecutive rising edges or the consecutive falling edges 

caused by state changes lasting more than one sample in the time-

series power signal. 

2.2  Post-Processing 

The multi-state appliances under consideration in this paper have 

similar operating power levels, but differ in their duty cycles. Using 

expert knowledge of duty cycle, we therefore group rising and 

closing ΔP that fit within the duration of the maximum duty cycle.  

2.3  Decision Tree (DT) 

DT-based NILM is a low-complexity supervised approach, that can 

be trained using a very small labelled data set. In [15][17], only the 

difference in two consecutive active power measurements, ΔP, is 

used as a feature for training. To improve performance, in this 

paper, we also use active power (P) as an additional training feature. 

2.4  Density-Based Spatial Clustering (DBSCAN) 

DBSCAN requires only two parameters: ε and the minimum 

number of points required to form a dense region (minPts). [18] 

shows that DBSCAN is a viable approach for disaggregating two 

fridges, where about 81% classification accuracy was obtained with 

the Eco dataset, downsampled to 1 minute. We only consider ΔP as 

a feature for DBSCAN. 

2.5  K-Nearest Neighbor (KNN) 

KNN is a supervised method that requires a labelled trained dataset. 

K is set based on the validation set, comprising 60% of labelled 

data. The input consists of the K closest training examples in the 

feature space. KNN’s potential for disaggregating dishwasher and 

clothes dryer on the AMPds2 dataset were demonstrated in [19], 

where it was shown that KNN has better overall classification 

accuracy if we consider both active and reactive power (95%) than 

only active power (73%). In the absence of reactive power, which 

is rarely available using commercial smart meters, we use P and ΔP 

instead as features. 

2.6  Disaggregation in two stages 

One of the obstacles to detect each appliance is the fact that many 

appliances have similar consumption power, that is, the features are 

not discriminative enough. To mitigate this issue, we grouped 

appliances with the similar ΔP as one category (in this paper, 

dishwasher and washing machine) to be disaggregated by the 

algorithms, and then we perform an additional disaggregation step 

on this subgroup down to individual appliances and then do post-

processing as described in Section 2.2.  

3  RESULTS AND DISCUSSION 

We evaluate the algorithms discussed in Section 2 using active 

power readings from two open-access datasets, downsampled to 

1min resolution: (1) House 1 of the REDD dataset [16] (2) Houses 

2 and 3 of the REFIT dataset [14], focusing on dishwasher (DW: 

Tables 1-6), washer-dryer (WD: Tables 7-9), washing machine 

(Tables 10-12) and tumble dryer (TD: Tables 13-15). 

Table 1: DW performance for REDD House 1 with DT 

 PR RE F-Score Acc 

No pre-processing 0.65 0.84 0.73 0.63 

Median filtering 0.59 0.83 0.69 0.61 

Edge sharpening  0.67 0.72 0.69 0.63 

Median filtering + edge 

sharpening 

0.67 0.63 0.65 0.61 

Median filtering + GBF + 

Edge sharpening  

0.64 0.66 0.64 0.60 

Benchmark of pre-

processing with DT [15] 

  0.57 0.58 

Benchmark of pre-

processing [15] with SGSP 

  0.63 0.72 
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For all results presented, testing was carried out over a full month 

for both REDD (18/04/2011 - 30/05/2011) and REFIT (01/10/2014 

-31/10/2014) houses. The classification and disaggregation 

evaluation metrics used are F-Score, including Precision (PR) and 

Recall (RE) and Accuracy (Acc), respectively, as [12]. In each table, 

we highlight (in bold) the best results. We tested various pre-

processing methods applied prior to NILM. All NILM algorithms 

use post-processing as explained in Section 2.2. 

Table 2: DW performance for REDD House 1 with KNN 

 PR RE F-Score Acc 

No pre-processing 0.65 0.83 0.73 0.63 

Median filtering 0.65 0.81 0.72 0.63 

Edge sharpening  0.70 0.61 0.66 0.62 

Median filtering + edge 

sharpening 

0.67 0.65 0.66 0.62 

Median filtering + GBF + 

Edge sharpening  

0.48 0.72 0.57 0.50 

Table 3: DW performance for REDD House 1 with DBSCAN 

 PR RE F-Score Acc 

No pre-processing 0.46 0.65 0.54 0.52 

Median filtering 0.47 0.11 0.18 0.51 

Edge sharpening  0.59 0.14 0.23 0.52 

Median filtering + edge 

sharpening 

0.58 0.23 0.33 0.54 

Median filtering + GBF 

+ Edge sharpening  

0.47 0.65 0.34 0.51 

Table 4: DW performance for REFIT House 2 with DT 

 PR RE F-Score Acc 

No pre-processing 0.63 0.90 0.74 0.67 

Median filtering 0.73 0.79 0.76 0.73 

Edge sharpening  0.53 0.58 0.56 0.53 

Median filtering + edge 

sharpening 

0.63 0.65 0.64 0.62 

Median filtering + GBF + 

Edge sharpening 

0.53 0.72 0.61 0.54 

Median filtering + 2-step 

DT 

0.71 0.82 0.77 0.88 

Benchmark of pre-

processing with DT [15] 

  0.73 0.61 

Benchmark of pre-

processing with SGSP [15] 

  0.73 0.67 

Tables 1 and 4 show both classification and disaggregation 

performance improvement over [15] due to inclusion of P as a 

feature over DT for dishwasher and washing machine. Additional 

performance gain for both classification and disaggregation 

accuracy is obtained via the proposed 2-step DT. Furthermore, 

Tables 1, 2 and 4 show improvement in classification performance 

over the best performing supervised GSP algorithm with pre-

processing in [15] for DW. 

Table 5: DW performance for REFIT House 2 with KNN 

 PR RE F-Score Acc 

No pre-processing 0.62 0.87 0.72 0.65 

Median filtering 0.62 0.83 0.70 0.64 

Edge sharpening  0.44 0.72 0.55 0.42 

Median filtering + edge 

sharpening 

0.48 0.77 0.59 0.46 

Median filtering + GBF + 

Edge sharpening 

0.62 0.72 0.67 0.63 

Table 6: DW performance for REFIT House 2 with DBSCAN 

 PR RE F-Score Acc 

No pre-processing 0.44 0.63 0.52 0.42 

Median filtering 0.48 0.92 0.63 0.45 

Edge sharpening  0.34 0.29 0.31 0.37 

Median filtering + edge 

sharpening 

0.51 0.47 0.49 0.51 

Median filtering + GBF + 

Edge sharpening 

0.47 0.39 0.43 0.48 

Table 7: WD performance for REDD House 1 with DT 

 PR RE F-Score Acc 

No pre-processing 0.94 0.98 0.96 0.96 

Median filtering 0.81 0.84 0.83 0.82 

Edge sharpening  0.72 0.67 0.69 0.70 

Median filtering + edge 

sharpening 

0.80 0.88 0.84 0.83 

Median filtering + GBF + 

Edge sharpening 

0.68 0.94 0.79 0.74 

Benchmark of DT [2] (no 

pre-processing) 

  0.88  

Table 8: WD performance for REDD House 1 with KNN 

 PR RE F-Score Acc 

No pre-processing 0.91 0.98 0.94 0.94 

Median filtering 0.23 0.61 0.33 0.22 

Edge sharpening  0.23 0.61 0.33 0.22 

Median filtering + edge 

sharpening 

0.20 0.51 0.29 0.25 

Median filtering + GBF + 

Edge sharpening 

0.47 0.49 0.48 0.47 
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Table 9: WD performance for REDD House 1 with DBSCAN 

 PR RE F-Score Acc 

No pre-processing 0.63 0.71 0.67 0.64 

Median filtering 0.06 0.02 0.03 0.32 

Edge sharpening  0.54 0.22 0.31 0.51 

Median filtering + edge 

sharpening 

0.44 0.08 0.14 0.49 

Median filtering + GBF + 

Edge sharpening 

0.54 0.10 0.16 0.51 

Table 10: WM performance for REFIT House 2 with DT 

 PR RE F-Score Acc 

No pre-processing 0.18 0.44 0.26 0.18 

Median filtering 0.27 0.54 0.36 0.07 

Edge sharpening  0.08 0.11 0.09 0.02 

Median filtering + edge 

sharpening 

0.32 0.39 0.35 0.31 

Median filtering + GBF + 

Edge sharpening 

0.29 0.30 0.29 0.18 

Median filtering+2-step DT 0.48 0.56 0.52 0.52 

Benchmark of DT [2] (no 

pre-processing) 

  0.36  

Table 11: WM performance for REFIT House 2 with KNN 

 PR RE F-Score Acc 

No pre-processing 0.15 0.16 0.16 0.20 

Median filtering 0.20 0.35 0.25 0.07 

Edge sharpening  0.09 0.17 0.12 0.11 

Median filtering + edge 

sharpening 

0.26 0.40 0.32 0.20 

Median filtering + GBF + 

Edge sharpening 

0.27 0.33 0.30 0.27 

Table 12: WM performance for REFIT House 2,  DBSCAN 

 PR RE F-Score Acc 

No pre-processing 0.12 0.76 0.21 0.04 

Median filtering 0.11 0.56 0.19 0.07 

Edge sharpening  0.07 0.42 0.13 0.04 

Median filtering + edge 

sharpening 

0.10 0.57 0.18 0.24 

Median filtering + GBF + 

Edge sharpening 

0.12 0.52 0.16 0.24 

 

Tables 4 and 10 show an improvement of 16% in classification 

performance of the washing machine and 15% improvement in 

disaggregation performance of the dishwasher with the proposed 

two-step DT disaggregation.  

Table 7 also shows improvement in classification accuracy of WD 

due to inclusion of P as additional feature compared to the 

benchmark [2], where DT was used without pre-processing.  

As expected, supervised DT and KNN perform better than 

DBSCAN for all considered appliances. The benefit of pre-

processing, especially for improving disaggregation accuracy, is 

observed clearly where performance is poor, as observed for the 

unsupervised DBSCAN algorithm (Tables 3, 6, 12) and for the 

challenging washing machine. 

Pre-processing is not beneficial for REDD DW (Tables 1-3) and 

WD (Tables 7-8) at 1-min sampling resolution since the dataset is 

relatively less noisy than the REFIT dataset. In fact, it is detrimental 

because it removes some important edges. However, for the noisier 

(due to additional unknown appliances) REFIT houses and 

challenging washing machine, median filtering only is sufficient to 

improve classification accuracy whilst edge sharpening in addition 

to median filtering, helps improve the disaggregation accuracy, as 

observed in Tables 10-12. 

Tumble dryer results from REFIT House 3 had good recall results 

with DT and KNN, comparable with other appliances, as we were 

able to pick out most instances of the appliance running but some 

post-processing may be needed to reduce false positives. There 

were no benchmarks for comparison, so we present results in 

Appendix A for reference. 

 

4  CONCLUSIONS 
In this paper we evaluate the performance of DT, K-NN and 

DBSCAN algorithms in conjunction with pre-processing (median 

filtering, Graph Bilateral filtering and edge sharpening) for 

classification and estimating energy consumption of the top three 

appliances responsible for fires. This helps us assess which of these 

simple NILM algorithms to consider for the next step of anomaly 

detection. Our results indicate that pre-processing can improve the 

disaggregation performance of unsupervised DBSCAN and for 

appliances which are challenging to disaggregate, e.g., washing 

machine. DT has the best classification and disaggregation 

performance for all appliances of interest, comparable to state-of-

the-art algorithms, and needing very little training data. 

Furthermore, we show that the additional inclusion of aggregate 

power as a feature in addition to the change in power improves the 

performance of DT compared to previous literature. We also show 

improvement over the state-of-the-art with the proposed 2-step DT 

for improving the performance of the washing machine and 

dishwasher. DT may not be the best choice for transferability on 

unseen houses and meeting our scalability criteria, and as such 

further work on transfer learning with DT is needed. 
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APPENDIX A 

Classification and disaggregation performance of tumble dryer in 

REFIT House 3. 

Table 13: TD performance for REFIT House 3 with DT 

 PR RE F-Score Acc 

No pre-processing 0.34 0.78 0.47 0.10 

Median filtering 0.32 0.52 0.40 0.21 

Edge sharpening  0.23 0.30 0.26 0.14 

Median filtering + edge 

sharpening 

0.23 0.43 0.30 0.01 

Median filtering + GBF 

+ Edge sharpening 

0.25 0.44 0.32 0.06 

Table 14: TD performance for REFIT House 3 with KNN 

 PR RE F-Score Acc 

No pre-processing 0.34 0.65 0.44 0.17 

Median filtering 0.30 0.60 0.40 0.10 

Edge sharpening  0.18 0.32 0.23 0.04 

Median filtering + edge 

sharpening 

0.29 0.49 0.36 0.13 

Median filtering + GBF 

+ Edge sharpening 

0.27 0.47 0.34 0.08 

Table 15: TD performance for REFIT House 3 with DBSCAN 

 PR RE F-Score Acc 

No pre-processing 0.16 0.36 0.22 0.25 

Median filtering 0.16 0.01 0.03 0.47 

Edge sharpening  0.05 0.01 0.01 0.48 

Median filtering + edge 

sharpening 

0.25 0.03 0.05 0.47 

Median filtering + GBF 

+ Edge sharpening 

0.12 0.01 0.02 0.47 
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