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Abstract

A general open problem in networking is: what are the fundamental limits
to the performance that is achievable with some given amount of resources?
More specifically, if each node in the network has information about only its
1-hop neighborhood, then what are the limits to performance? This problem is
considered for wireless networks where each communication link has a minimum
bandwidth quality-of-service (QoS) requirement. Links in the same vicinity
contend for the shared wireless medium. The conflict graph captures which
pairs of links interfere with each other and depends on the MAC protocol.
In IEEE 802.11 MAC protocol-based networks, when communication between
nodes i and j takes place, the neighbors of both i and j remain silent. This
model of interference is called the 2-hop interference model because the distance
in the network graph between any two links that can be simultaneously active
is at least 2. In the admission control problem studied in the present paper,
the objective is to determine, using only localized information, whether a given
set of flow rates is feasible.

In the present work, a distributed algorithm is proposed for this problem,
where each node has information only about its 1-hop neighborhood. The
worst-case performance of the distributed algorithm, i.e. the largest factor by
which the performance of this distributed algorithm is away from that of an
optimal, centralized algorithm, is analyzed. Lower and upper bounds on the
suboptimality of the distributed algorithm are obtained, and both bounds are
shown to be tight. The exact worst-case performance is obtained for some ring
topologies. While distance-d distributed algorithms have been analyzed for the
1-hop interference model, an open problem in the literature is to extend these
results to the K-hop interference model, and the present work initiates the
generalization to the K-hop interference model.

Index terms — graph theory, wireless ad hoc networks, quality-of-service (QoS),
media access (MAC) protocols, distributed algorithms, approximation algorithms,
admission control, 2-hop interference model, secondary interference model, imperfec-
tion ratio
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1. Introduction

Real-time applications such as voice over IP (VoIP) and video conferencing require
that the transmitted data be received without much delay in order for the data
to be useful. Such applications have fixed requirements independent of the network
performance, and so such applications are called inelastic. The present work considers
inelastic applications whose quality-of-service (QoS) requirements are specified in
terms of the minimum bandwidth required over single-hop wireless links. Links in
the same vicinity contend for the shared wireless medium, and this interference is
modeled by a conflict graph [26]. Given a conflict graph and the quality-of-service
requirements, the admission control problem is to determine whether a given set of
flow rates is feasible. If an application’s demand can be satisfied without disrupting
the service promised to previously admitted flows, then the new flow is admitted;
otherwise it is denied admission. For an introduction to the flow admission control
problem, the reader is referred to [15] [3].

Distributed algorithms which rely only on localized information scale with the
size of the network. Communicating information from all nodes in the network to
a centralized scheduler incurs communication cost, which reduces the battery life of
the nodes. Even if global information is available at a centralized node, solving the
problem optimally can be computationally expensive. In many practical situations,
communication overhead is considered to be much more expensive than local compu-
tation. In the admission control problem considered in the present work, the globally
optimal solution requires computing the fractional chromatic number of a weighted
graph. There is a polynomial time transformation based on the ellipsoid method be-
tween the maximum independent set problem and the fractional chromatic number
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problem, which implies that the problem of computing the fractional chromatic num-
ber of a graph is NP-hard [16]. Thus, in order to reduce communication overhead
and processing cost, it is desired that the admission control problem be solved using
only localized information and with low processing complexity.

More formally, consider a wireless network, modeled by a simple, undirected graph
G = (V, L), where V is a set of wireless devices (also known as nodes or vertices),
and L is a set of communication links (also known as edges or wireless links). Each
communication link is between a pair of nodes that are within communication radius
of each other. Nodes in the same vicinity contend for the shared wireless medium, and
this interference is modeled by a conflict graph Gc = (L, L′). The vertex set of Gc is
the set L of links of the network graph G, and two links ℓi, ℓj ∈ L are adjacent vertices
in Gc if and only if they interfere with each other and so cannot be simultaneously
active. The conflict graph Gc is determined by the MAC protocol or some other
assumption. An independent set in a graph is a subset of vertices in the graph that
are pairwise nonadjacent. Observe that a set of wireless links in the network can be
simultaneously active iff the corresponding subset of vertices is an independent set in
the conflict graph. In the sequel, G denotes the network graph and Gc denotes the
conflict graph.

Suppose the QoS requirement for link ℓ is a bandwidth of f(ℓ) b/s. If the total
bandwidth of the shared wireless medium is C b/s, then the demand of link ℓ ∈ L can
be equivalently expressed by τ(ℓ) := f(ℓ)/C, the fraction of each unit of time that
link ℓ demands to be active. The admission control problem is: given the conflict
graph Gc and link demand vector τ = (τ(ℓ) : ℓ ∈ L), determine whether τ is feasible.
Sufficient conditions for admission control which can be implemented in a distributed
manner include the row constraints [24] [25] [18], the degree condition [25], the mixed
condition [25], and the scaled clique constraints [18]. The worst-case performance
of various sufficient conditions has been analyzed in the literature [18] [6] [7] [8] [9]
[10]; these sufficient conditions and their performance guarantees are applicable for
arbitrary conflict graphs.

In many applications, the conflict graphs that arise have additional structure
which can be exploited to give distributed algorithms that can be implemented ef-
ficiently and with close-to-optimal performance. For instance, under the 1-hop in-
terference model, two links in the network graph interfere with each other whenever
they are incident to a common node. The 1-hop interference model is also referred to
in the literature as the primary interference model or the node-exclusive interference
model. Applications where this interference model arises include Bluetooth networks,
where one channel in a piconet is shared by all the links between a master and its
slaves [19], and CDMA systems when each node is equipped with only one transceiver
[21] [20]. For the 1-hop interference model, the problem of finding a maximum in-
dependent set in the conflict graph is equivalent to finding a maximum matching in
the network graph, which is solvable in polynomial time [34]. It has also been shown
that the admission control and scheduling problems are solvable in polynomial time
[20]. For the 1-hop interference model, the performance of distance-d distributed al-
gorithms, where each node has information about only its d-hop neighborhood, has
been analyzed, and the tradeoffs between performance and complexity and between
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performance and level of decentralization have been characterized [13].
Given a network graph G = (V, L), the distance in G between links e and f is

defined to be the minimum distance between their endpoints. In other words, if link
e is between nodes u and v, and link f is between nodes x and y, then the distance
between links e and f is defined to be the minimum of the four values dG(u, x),
dG(u, y), dG(v, x) and dG(v, y), where dG(a, b) denotes the distance in G between
vertices a and b. For example, the distance between two links that share a common
endpoint is 0, and the distance between two links that are separated by a single edge
is 1.

Under the K-hop interference model, two links in G are said to interfere with each
other if and only if the distance in G between the two links is less than K. Thus,
under the K-hop interference model, the conflict graph Gc is defined as follows: two
links ℓi, ℓj ∈ L are adjacent vertices in Gc iff the distance in G between ℓi and ℓj is
less than K. The conflict graph constructed in this manner from G is denoted LK(G).
In the special case K = 1, the conflict graph L1(G) is sometimes also denoted L(G)
and is called the line graph of G. A subset F ⊆ L of edges in a graph G = (V, L)
is a δ-separated matching (δ ≥ 1) if the distance between any two (distinct) edges
in F is at least δ. A 1-separated matching is usually just called a matching, and a
2-separated matching is also called a strong matching (or induced matching). Under
the K-hop interference model, a set F of links of G can be simultaneously active
iff F is a K-separated matching. The focus of the present paper is on the 2-hop
interference model, and so in the rest of this paper it is assumed that K = 2 and
Gc = L2(G).

1.1. IEEE 802.11 MAC Protocol and the 2-hop Interference

Model

Consider a wireless network where two stations A and C transmit at the same to
station B. It is possible for the physical environment to be such that A and C do not
hear each other and yet they interfere at B. This can happen because of a physical
obstruction between A and B, resulting in the hidden terminal problem, or due to
signal fading. Due to the resulting collision at B, the channel is wasted during the
entire duration of A’s and C’s transmissions.

To reduce collisions, the IEEE 802.11 MAC protocol has the following optional
reservation scheme. Before A transmits data to B, A sends a special type of control
frame called a Request To Send (RTS) frame. Station B then replies to A with a
Clear To Send (CTS) control frame. Thereafter, A sends the DATA frame, which
contains the data that A originally intended to send to B, and B responds with a
link-layer acknowledgment (ACK) frame. If A does not receive an acknowledgment
within a certain time period, it retransmits after a random backoff time. After a
certain number of retransmissions, the station A gives up and discards the frame.
Because the neighbors of B hear the CTS frame, the neighbors of B also remain idle
for the duration of the transmission; the duration of this transmission is specified in
the control frames.

4



More specifically, the control frames contain duration fields which specify the
duration of the transmission. The duration specified in the RTS frame is calculated to
be the time required, in microseconds, for SIFS (i.e. a short interframe space, which is
the time spacing maintained between transmission of frames), the CTS frame, SIFS,
the DATA frame, SIFS, and the ACK frame. The time duration specified in the
CTS frame is just the duration for the remaining transmission, i.e. is the duration
specified in the RTS frame minus the duration for both SIFS and CTS [1, p. 670].
This is a virtual carrier-sense mechanism in the sense that the nodes learn of the
medium reservation from the duration field in the control frames. Based on this
duration information, the network allocation vector (NAV) maintains a counter that
counts down to zero at a uniform rate. While the counter is nonzero, the channel
is considered busy. Because these control frames are short and after the RTS/CTS
handshake the subsequent DATA and ACK frames do not experience collisions, the
RTS/CTS exchange is useful if the control frames are much shorter than the data
frames.

The interference in IEEE 802.11 MAC protocol-based networks can be modeled
by the 2-hop interference model (also called the secondary interference model), which
states that two links in the network graph can be simultaneously active if and only if
the distance in the network graph between these two links is at least 2. Equivalently,
two links interfere with each other whenever the distance between them is 0 or 1. One
measure of the capacity of a wireless network is the maximum number of simultaneous
transmissions that are possible (cf. [2]). Under the 2-hop interference model, this
quantity is the maximum size of a 2-separated matching in the network graph, or the
maximum size of an independent set in the conflict graph Gc = L2(G). The problem
of computing the maximum size of a 2-separated matching in a graph is NP-hard [42]
[5].

1.2. System Model and Problem Formulation

Consider a wireless network, modeled by a simple, undirected graph G = (V, L),
where V is a set of nodes and L is a set of wireless links. Each link ℓ ∈ L makes a
demand to be active for a fraction τ(ℓ) of each unit of time. Assume interference is
modeled by the 2-hop interference model. This means two links ℓi, ℓj interfere with
each other iff the distance in G between ℓi and ℓj is at most 1. Equivalently, the
set of links that can be simultaneously active is a 2-separated matching in G. The
admission control problem is the following: given the network graph G = (V, L) and
link demand vector τ = (τ(ℓ) : ℓ ∈ L), determine whether τ is feasible. That is,
determine whether each link can be assigned a subset of [0, 1] such that the total
duration (or measure) assigned to each link ℓ ∈ L is at least τ(ℓ) and such that links
which interfere with each other are assigned subsets that are disjoint (except possibly
at the endpoints of intervals). This problem can be equivalently formulated on the
conflict graph, as described next.

Given the network graph G = (V, L), the conflict graph Gc = (L, L′) is defined
to be the graph with vertex set L, and with ℓi, ℓj ∈ L being adjacent vertices in
Gc iff the distance in G between ℓi and ℓj is at most 1. Thus, Gc = L2(G), where
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LK(G) is as defined above. An independent set in a graph is a set of vertices that are
pairwise nonadjacent. Let I(Gc) denote the set of all independent sets of the graph
Gc. A schedule is a map t : I(Gc) → R≥0 that assigns to each independent set in Gc

a duration of time when all links in the independent set can be active. A schedule
t satisfies demand τ if

∑

I∈I(Gc):ℓ∈I
t(I) ≥ τ(ℓ), for all ℓ ∈ L. The duration of the

schedule t is
∑

I∈I(Gc)
t(I). Let T ∗(τ) denote the minimum duration of a schedule

satisfying τ . A link demand vector τ is said to be feasible if there exists a schedule of
duration at most 1 that satisfies τ , i.e. if T ∗(τ) ≤ 1. The admission control problem
is to determine, given a conflict graph Gc and link demand vector τ , whether τ is
feasible. The independent set polytope PI is defined to be the convex hull of the
characteristic vectors of the independent sets in Gc. Then, PI is exactly the set of
all link demand vectors that are feasible within 1 unit of time, and a necessary and
sufficient condition for τ to be feasible is that τ ∈ PI . Another equivalent formulation
in terms of the fractional chromatic number is given next.

Let Gc = (L, L′) be a conflict graph, where L = {ℓ1, ℓ2, . . . , ℓN}, and let I(Gc) =
{I1, . . . , IK} be the set of all maximal independent sets of the conflict graph. Define
the N×K vertex-independent set incidence matrix B = [bij ] by bij = 1 if ℓi ∈ Ij , and
bij = 0 otherwise. The fractional chromatic number of the weighted graph (Gc, τ),
denoted by χf(Gc, τ), is the optimal value of the linear program:

min 1tt subject to Bt ≥ τ, t ≥ 0.

Then, χf(Gc, τ) is the minimum duration of a schedule satisfying τ , and the admission
control problem is equivalent to determining whether χf(Gc, τ) ≤ 1.

Some terminology from graph theory that will be used in the sequel is the fol-
lowing. Let G be a graph with vertex set V (G). The subgraph of G induced by
W ⊆ V (G), denoted G[W ], is the graph with vertex set W , and with uv being an
edge in G[W ] whenever uv is an edge in G and both endpoints u, v belong to W .
A clique in a graph is a subset of vertices that are pairwise adjacent. An induced
cycle in G is a cycle that is an induced subgraph. A graph is said to be chordal (or
triangulated) if it does not contain an induced cycle of length at least 4. It may be
assumed in the analysis that follows that the conflict graph Gc is a connected graph,
because otherwise the same analysis can be carried out separately on each connected
component of the conflict graph. For any terminology on graph theory not explicitly
recalled here, the reader is referred to [4] [38].

1.3. Summary of Results

The main contributions of this paper are as follows.

1. A distributed algorithm. A fundamental open problem in networking is: what
are the limits to the performance that is achievable with some given amount of
resources? More specifically, what is the theoretical best performance that is
achievable if each node has information about only its d-hop neighborhood. In
[13], this problem was addressed for the 1-hop interference model, and an open
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problem in the literature mentioned in [13, p. 194] is to generalize these results
from the 1-hop interference model to theK-hop interference model. The present
work initiates this study for the 2-hop interference model, which arises in IEEE
802.11 MAC protocol-based networks. A distance-1 distributed algorithm is
proposed for wireless networks under the 2-hop interference model. A sufficient
condition for admission control is given (Theorem 15).

2. Worst-case performance analysis. The worst-case performance of the distance-1
distributed algorithm is analyzed. This quantity is the largest factor by which
the network overestimates the resource requirements, and hence is an important
parameter to investigate. Lower bounds and upper bounds are obtained - see
Corollary 9 and Theorem 15, respectively. Both bounds are shown to be tight.
The upper bound on the suboptimality of the distributed algorithm gives a
worst-case performance guarantee for the distributed algorithm. The exact
worst-case performance is obtained for a class of ring topologies.

3. New graph invariants. Three new graph invariants are introduced in this paper
because they arise in the performance analysis. Besides the main parameter
β(G) which characterizes the worst-case performance of the distributed algo-
rithm, two other graph invariants defined in this paper are ν(G), the maximum
size of an exactly-1-separated matching, and λ(G), the minimum number of
1-hop neighborhoods in G needed to cover a clique in L2(G). These graph in-
variants were shown to arise in this practical context, and a further study of
their properties, complexity, and approximation algorithms for computing them
would also be of independent interest.

The rest of this paper is organized as follows. In Section 2, the literature rel-
evant to the present work is mentioned. Section 3 gives a distance-1 distributed
algorithm for admission control for wireless networks under 2-hop interference model.
In Section 4, a worst-case performance analysis of the distributed algorithm is car-
ried out; lower and upper bounds are obtained for the worst-case performance, and
both bounds are shown to be tight. In particular, the upper bound in Section 4.3
gives a sufficient condition for admission control and a performance guarantee for the
distributed algorithm. The exact worst-case performance is obtained for certain ring
networks 4.4. Finally, Section 5 contains concluding remarks.

2. Related Work

The problem of estimating global parameters from local information is a general
research area [33]. For the problem of the design and analysis of distributed al-
gorithms for admission control for wireless networks under the K-hop interference
model, the results go back to at least the work of Shannon [39], whose upper bound
on the chromatic index of multigraphs was used in [29] [28] [10, p. 1331] to obtain a
distance-0 distributed algorithm for the 1-hop interference model. These results were
extended in [7] [8] [10, Theorem 14] to give a distance-1 distributed algorithm for
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the 1-hop interference model, using the theory of graph imperfection. These results
were further generalized in [13] [12] to distance-d distributed algorithms for the 1-hop
interference model, for arbitrary d. In a distance-d distributed algorithm, each node
has information only about its d-hop neighborhood; the tradeoffs between the level
of decentralization and performance and between complexity and performance were
quantified in [13] for the 1-hop interference model.

The capacity of a wireless network is related to the maximum number of simulta-
neous transmissions that can take place. Under the K-hop interference model, this
problem is equivalent to computing the maximize size of a K-separated matching in
the network graph, which can be solved in polynomial time if K = 1 [34], but is NP-
hard if K ≥ 2, even for bipartite graphs [42] [5]. For the 2-hop interference model, it
was shown in [2] that for certain networks that arise in practice, the problem can be
approximated efficiently. Greedy algorithms for approximating a maximum weight
2-separated matching are given in [32].

Greedy, distributed scheduling algorithms, often referred to in the literature as
maximal scheduling, and their worst-case performance, have been investigated by
many researchers [25] [41] [40] [43] [18] [10] [30]. The worst-case performance of these
distributed algorithms is characterized by the induced star number (or interference
degree) σ(Gc) of the conflict graph [6] [7] [8] [9]. The induced star number of a graph
is the maximum number of leaf vertices in the largest induced star subgraph of the
graph [9]. Under the 1-hop interference model, the conflict graph is a line graph, and
the induced star number of a line graph is at most 2. This implies that there exist
distributed algorithms for admission control (and also for scheduling) for the 1-hop
interference model which are a factor of at most 2 away from optimal. However, for
the K-hop interference model (K ≥ 2), the induced star number of the conflict graph
is not bounded from above by a constant, and so it is possible for the performance of
distributed algorithms to be arbitrarily far away from optimal. An open problem is
to design efficient distributed algorithms with performance guarantees for the K-hop
interference model.

Under additional assumptions, the conflict graph has an induced star number
which is bounded from above by a constant that is independent of the size of the
network graph. For example, for a certain geometric, unit disk graph model called
the bidirectional equal power model, the induced star number of the conflict graph
is at most 8 and this bound is tight [6]. In [27], it is shown that if Gc is the conflict
graph under the geometric K-hop interference model, then σ(Gc) is at most 49. The
“geometric” K-hop interference model is different from the graph-theoretic model
studied in the present paper; in the “geometric” model, two nodes in the network
are joined by an edge iff the Euclidean distance between them is at most 1, and two
links are adjacent vertices in the conflict graph iff the Euclidean distance between the
links is at most K. The conflict graphs arising under these geometric assumptions
generally have different properties than the conflict graphs constructed using the
graph-theoretic K-hop interference model studied in the present paper. Recently, it
was shown that the induced star number of the conflict graph of line networks under
the protocol interference model is at most 3 and that this bound is tight [13].
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3. A Distributed Algorithm

In this section, a distributed algorithm for the flow admission control problem in wire-
less networks under the 2-hop interference model is given. This distributed algorithm
is a distance-1 distributed algorithm in the sense that each node uses information
about only its 1-hop neighborhood to make its decisions. Distance-d distributed al-
gorithms for the 1-hop interference model were investigated in [13]; the present work
initiates the generalization to K-hop interference models.

Recall that given a network graph G = (V, L) and a link demand vector τ = (τ(ℓ) :
ℓ ∈ L), the objective is to determine, using only localized information, whether τ is
feasible, assuming the 2-hop interference model. Given G = (V, L), let Gv denote
the subgraph of G induced by {v}∪̇Γ(v), where Γ(v) denotes the set of neighbors
in G of node v. Thus, Gv is the ball of radius 1 centered at v, and is referred to
in the sequel as the 1-hop neighborhood in G of node v. Let T ∗(Gv, τ) denote the
minimum duration of a schedule satisfying the demands of all links in the subgraph
Gv. A distributed algorithm for admission control is the following: if T ∗(Gv, τ) is at
most some threshold value (to be defined below), then node v would conclude that
the demand τ is feasible. More specifically, let T ∗

1 (τ) := maxv∈V T ∗(Gv, τ). Then,
a sufficient condition for τ to be feasible is that T ∗

1 (τ) be at most some threshold
(see Theorem 15 below for details). Note that the minimum durations T ∗(Gv, τ) and
T ∗
1 (τ) are computed assuming the 2-hop interference model. In the present paper,

the results are presented in the form of sufficient conditions for admission control (cf.
Theorem 15), as is commonly done in the literature. These results can be converted
to distributed algorithms that are presented in pseudocode form; for example, see [36]
[13, Algorithm 9].

This distance-1 distributed algorithm is not optimal in the sense that it is conser-
vative and can overestimate the resource requirements, thereby sometimes rejecting
flows that are feasible. The worst-case performance of this distributed algorithm is an
important metric because it is the largest factor by which the distributed algorithm
overestimates the resource requirements, when compared to an optimal, centralized
algorithm. A formal definition and analysis of this worst-case performance is given
in the next section.

4. Performance Analysis

In this section, the performance of the distributed algorithm given in the previous
section is analyzed.

4.1. Preliminaries

Given a network graph G = (V, L) and link demand vector τ = (τ(ℓ) : ℓ ∈ L), the
distance-1 distributed algorithm described above computes T ∗

1 (τ) = maxv∈V T ∗(Gv, τ),
where Gv is the 1-hop neighborhood of G centered at v, and T ∗(Gv, τ) denotes the
minimum duration of a schedule satisfying the demands of all links in the induced
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subgraph Gv. The actual resource requirements for satisfying τ , as determined by
an optimal, centralized scheduler, is T ∗(τ) := T ∗(G, τ), and takes into account the
demands of all links in the entire network graph G. Clearly, T ∗

1 (τ) ≤ T ∗(τ). The
worst-case performance (approximation ratio) of this distributed algorithm is the
largest factor by which the estimate T ∗

1 (τ) can be away from the actual value T ∗(τ),

and is defined by supτ
T ∗(τ)
T ∗

1
(τ)

. This graph invariant is defined formally next.

Definition 1. Let G = (V, L) be a network graph. For a given link demand vector τ =
(τ(ℓ) : ℓ ∈ L), let T ∗(τ) denote the minimum duration of a schedule satisfying τ under
the 2-hop interference model, as determined by an optimal, centralized algorithm. Let
T ∗
1 (τ) = maxv∈V T ∗(Gv, τ) denote the estimate computing by the distributed algorithm,

again under the 2-hop interference model. Then, the worst-case performance β(G) is
defined by

β(G) := sup
τ

T ∗(τ)

T ∗
1 (τ)

,

where the supremum is taken over all nonzero link demand vectors τ .

Example 2. Let G = (V, L) be the 6-cycle network graph consisting of the links
ℓ1, ℓ2, . . . , ℓ6 ∈ L, in that cyclic order. Suppose τ = (τ(ℓ1), . . . , τ(ℓ6)) = (1, 0, 1, 0, 1, 0).
Then, the 1-hop neighborhood subgraph Gv centered at any node v ∈ V will contain
exactly two neighboring links of G. Hence, Gv is isomorphic to K1,2. The demands
of the two links in this subgraph are 0 and 1, respectively. The minimum duration
of a schedule satisfying τ in a 1-hop neighborhood is T ∗(Gv, τ) = 1. The three links
{ℓ1, ℓ3, ℓ5} interfere with each other, and so the minimum duration T ∗(τ) of a schedule

satisfying the demands of all the links is 3. Hence, T ∗(τ)
T ∗

1
(τ)

= 3 and β(G) ≥ 3. This

means that for the 6-cycle network graph, the distance-1 distributed algorithm is a
factor of at least 3 away from optimal.

A necessary and sufficient condition for τ to be feasible is that T ∗(τ) ≤ 1; how-
ever, T ∗(τ) is generally NP-hard to compute and requires that global information be
communicated to a single, centralized node. A centralized solution does not scale for
reasons of both computational complexity and communication overhead. The local
estimate T ∗

1 (τ) is a lower bound on the actual resources requirements T ∗(τ), and can
be computed both efficiently and using only localized information. A necessary con-
dition for τ to be feasible is that T ∗

1 (τ) ≤ 1. By scaling this necessary condition, one
obtains a sufficient condition:

Lemma 3. Let G = (V, L) be a network graph and let τ be a link demand vector. A
sufficient condition for τ to be feasible is that T ∗

1 (τ) ≤
1

β(G)
.

Proof: Let τ be any link demand vector and suppose T ∗
1 (τ) ≤

1
β(G)

. It follows from

the definition of β(G) that T ∗(τ) ≤ β(G)T ∗
1 (τ). Hence, T

∗(τ) ≤ β(G) 1
β(G)

= 1 and τ
is feasible.

The next result shows that the worst-case performance β(G) can be arbitrarily
large.
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x

ℓ1 ℓ2 · · · ℓr

Kr
G =

x

ℓ1

· · · Kr
Gx =

Figure 1: (a) A network graph G consisting of a clique Kr and r independent edges.
(b) The 1-hop neighborhood of G centered at node x.

Lemma 4. The performance of the distributed algorithm given above can be arbitrarily
far away from optimal.

Proof: In order to show that β(G) can be arbitrarily large, it suffices to show that
given any positive integer r, there exists a network graph G and a link demand vector
τ such that T ∗(τ)/T ∗

1 (τ) ≥ r. Fix r ≥ 1. Let G be the network graph shown in
Figure 1, consisting of a clique Kr and a set F of r independent edges ℓ1, . . . , ℓr
incident to the vertices of this clique. Take τ(ℓ) = 1 if ℓ ∈ F , and τ(ℓ) = 0 otherwise.
The maximum value maxv∈V T ∗(Gx, τ) is achieved for some vertex x in the clique.
Let x be any vertex in this clique. Then, the 1-hop neighborhood Gx (see Figure 1(b))
contains exactly one edge from F , and so T ∗(Gx, τ) = 1. Hence, T ∗

1 (τ) = 1. Under
the 2-hop interference model, the links in F are pairwise interfering and must be
scheduled at disjoint time slots. Hence, T ∗(τ) = r.

4.2. Lower Bounds

Definition 5. An exactly-1-separated matching in G = (V, L) is a subset F ⊆ L of
edges such that the distance in G between any two (distinct) edges of F is exactly 1.
Let ν(G) denote the maximum size of an exactly-1-separated matching in G.

Example 6. The set {ℓ1, . . . , ℓr} of links in Figure 1 is an exactly-1-separated match-
ing. Let Kn denote the complete graph on n vertices. Then, ν(Kn) = ⌊n/2⌋ because
every matching in the complete graph is also an exactly-1-separated matching and
the maximum size of a matching in Kn is ⌊n/2⌋. Let G be the 6-cycle graph C6.
Then the alternating set of links {ℓ1, ℓ3, ℓ5} is an exactly-1-separated matching in the
graph, and ν(C6) = 3. Also, it can be verified that ν(Cn) = 2 for all n ≥ 7.

Under the 2-hop interference model, the links in an exactly-1-separated matching
are pairwise interfering and hence must be scheduled at disjoint time slots. It is
possible for an exactly-1-separated matching, which induces a clique in the conflict
graph, to be not entirely contained in any of the 1-hop neighborhood subgraphs Gv

(v ∈ V ), and so the quality of the resource estimate computed by the distributed
algorithm can be affected by these types of restricted matchings. A lower bound for
the worst-case performance β(G) is given next.

Proposition 7. Let G = (V, L) be a network graph. Then, a lower bound for the
worst-case performance β(G) is given by

ν(G)

maxv∈V ν(Gv)
≤ β(G).
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Proof: Given a network graph G = (V, L), let F ⊆ L be a maximum exactly-1-
separated matching of G; thus, F is an exactly-1-separated matching of maximal
cardinality: |F | = ν(G). Take the link demand vector τ to be the characteristic
vector of F ; that is, define τ(ℓ) = 1 if ℓ ∈ F and τ(ℓ) = 0 otherwise. Under the 2-hop
interference model, the links in F are pairwise interfering. Hence, T ∗(τ) = |F | =
ν(G). The local estimate T ∗(Gv, τ) computed at node v is equal to the number of
links of F that lie in the induced subgraph Gv and is at most ν(Gv), the maximal
size of an exactly-1-separated matching in the induced subgraph Gv. It follows that

ν(G)

maxv∈V ν(Gv)
≤

T ∗(τ)

T ∗
1 (τ)

≤ β(G).

Proposition 8. Given a network graph G = (V, L), let k denote the smallest integer
of size at least 2 such that there exists a cycle of length 4k + 2 in G that is not
contained in the 1-hop neighborhood of any node of G. If no such cycle exists, take
k = ∞. Then, 2k+1

2k
≤ β(G).

Proof: Let C be a cycle of length 4k + 2 in the network graph G such that C is
not contained entirely in any of the 1-hop neighborhood subgraphs Gv (v ∈ V ).
Let ℓ1, ℓ2, . . . , ℓ4k+2 (k ≥ 2) be the edges (in that order) of the cycle C. Let M =
{ℓ1, ℓ3, . . . , ℓ4k+1} consist of every other edge of the cycle. Define the link demand
vector τ to be: τ(ℓ) = 1 if ℓ ∈ M and τ(ℓ) = 0 for the remaining links in the network

graph. It suffices to show that 2k+1
2k

≤ T ∗(τ)
T ∗

1
(τ)

.

Because the link demand is nonzero only for links in M , when computing T ∗(τ) it
suffices to consider the subgraph of the conflict graph Gc induced by M ; this subgraph
is isomorphic to the odd cycle C2k+1. Hence, T

∗(τ) is the fractional chromatic number
of the odd cycle C2k+1 (k ≥ 2), which is equal to 2k+1

k
[38].

Let v ∈ V (G). It will be shown that the local estimate T ∗(Gv, τ) computed
by node v, using only information in its 1-hop neighborhood Gv, is at most 2. By
hypothesis, Gv does not contain some vertex, say x, of the cycle C; see Figure 2.
Exactly two links from C are incident to x, and exactly one of these two links belongs
toM . This link, call it ℓj , is not contained inGv because node x does not belong toGv.
It follows that the subgraph of the conflict graph Gc induced by those links which are
contained in both Gv and M is bipartite. More simply, the induced subgraph Gc[M ]
is an odd cycle and the induced subgraph Gc[M − ℓj] is bipartite. The fractional
chromatic number of a vertex-weighted bipartite graph is the maximum degree of a
vertex (cf. [17]). Hence, T ∗

1 (τ) ≤ 2.
The two lower bounds for β(G) given in Proposition 7 and in Proposition 8 can

be combined to produce a stronger lower bound:

Corollary 9. Let G = (V, L) be a network graph. Then,

max

{

ν(G)

maxv∈V ν(Gv)
,
2k + 1

2k

}

≤ β(G),

where ν(G) is the maximum size of an exactly-1-separated matching of G, and k is
as defined in Proposition 8.
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Figure 2: The case where the 1-hop neighborhood Gv does not contain some vertex
x of the cycle C4k+2.

Lemma 10. The lower bound for β(G) given in Corollary 9 is tight.

Proof: Take the network graph G to be the complete graph Kn. Then, for each node
v, the 1-hop neighborhood Gv is the entire graph. Hence, the exact value of β(G) is
1. To see that the lower bound also evaluates to 1, observe that as per the definition
of k given above, k = ∞. Because Gv = G, ν(Gv) = ν(G) for each node v. Hence,

ν(G)
maxv∈V ν(Gv)

= 1.

4.3. Upper Bounds

A tight upper bound for the worst-case performance β(G) will be obtained next. This
gives a bound on the suboptimality of the distributed algorithm, and is used to obtain
a sufficient condition for admission control.

A graph Gc is said to be perfect if the chromatic number χ(H) and clique number
ω(H) are equal for each induced subgraph H of Gc. The imperfection ratio of a

graph Gc, denoted imp(Gc), is defined to be supτ 6=0
χf (Gc,τ)

ω(Gc,τ)
, where χf (Gc, τ) and

ω(Gc, τ) denote the fractional chromatic number and clique number of the vertex-
weighted graph (Gc, τ). The imperfection ratio of a graph was studied in [14]. The
imperfection ratio of a graph is at least 1, and imp(Gc) = 1 iff Gc is perfect. If H is
an induced subgraph of Gc, then imp(H) ≤ imp(Gc). The odd cycles Cn (n ≥ 5) are
minimally imperfect graphs, and imp(Cn) =

n
n−1

.
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A necessary condition for τ to be feasible is that τ(K) ≤ 1 for each clique K in
the conflict graph. This necessary condition is called the clique constraints. Cliques
are local structures, and similar to how the clique number of a graph is a lower bound
on the chromatic number, the weighted clique number ω(Gc, τ) is a lower bound on
the actual resource requirement χf(Gc, τ). Their ratio is the factor by which the
clique constraints are away from optimal. This ratio, maximized over all τ , is then
the worst-case performance of this distributed algorithm. Hence, the imperfection
ratio of a graph characterizes the worst case performance of the clique constraints.

Definition 11. Let G = (V, L) be a network graph and let F ⊆ L be a set of links.
A collection of subgraphs of G is said to cover F if the union of the edge set of the
subgraphs contains F . The minimum number of 1-hop neighborhood subgraphs Gv

(v ∈ V ) needed to cover a set of links in G that are pairwise interfering (under the
2-hop interference model) is denoted λ(G).

Example 12. Consider the network graph G = C10 shown in Figure 3(a). A 1-hop
neighborhood in the network graph contains three vertices and exactly two links.
Under the 2-hop interference model, any set of (two or more) pairwise interfering
links in the graph is of the form {ℓi, ℓi+1}, {ℓi, ℓi+1, ℓi+2} or {ℓi, ℓi+2} for some i. In
the first case, the set of two links is contained in a single 1-hop neighborhood. In the
second and third cases, the set is contained in the union of two 1-hop neighborhoods;
for example, observe from Figure 3(a) that {ℓ1, ℓ2, ℓ3} is a set of pairwise interfering
links and is contained in Gx ∪Gy. Hence, λ(C10) = 2.

Theorem 13. Let G = (V, L) be a network graph. Then, the worst-case perfor-
mance β(G) of the distance-1 distributed algorithm for the 2-hop interference model
is bounded as

β(G) ≤ imp(L2(G))λ(G),

where imp(L2(G)) denotes the imperfection ratio of the conflict graph L2(G), and
λ(G) is as per Definition 11.

Proof: Let G = (V, L) be a network graph. Let Gc = (L, L′) denote the conflict
graph constructed using the 2-hop interference model. For a link demand vector τ ,
let ω(Gc, τ) denote the maximum weight of a clique in the weighted graph (Gc, τ).

A clique in the conflict graph corresponds to a set F of pairwise interfering links
in the network graph G. By definition, F can be covered by λ = λ(G) or fewer 1-hop
neighborhood subgraphs Gv1 , Gv2, . . . , Gvλ . Suppose that the demands of all links
in a subgraph Gvi can be satisfied by a schedule of duration at most 1, for each i =
1, 2, . . . , λ. Then, by concatenating these schedules one obtains a schedule of duration
at most λ satisfying the demands of all links in F . Hence, supτ :T ∗

1
(τ)=1 ω(Gc, τ) ≤

λ(G).
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Thus,

β(G) = sup
τ

T ∗(τ)

T ∗
1 (τ)

= sup
τ :T ∗

1
(τ)=1

T ∗(τ)

= sup
τ :T ∗

1
(τ)=1

(

T ∗(τ)

ω(Gc, τ)
ω(Gc, τ)

)

≤

(

sup
τ :T ∗

1
(τ)=1

T ∗(τ)

ω(Gc, τ)

)(

sup
τ :T ∗

1
(τ)=1

ω(Gc, τ)

)

≤

(

sup
τ

T ∗(τ)

ω(Gc, τ)

)

λ(G)

= imp(L2(G)) λ(G).

Lemma 14. The upper bound given in Theorem 13 is tight.

Proof: It suffices to show that there exist a network graph G for which the upper
bound given in Theorem 13 is exact. Take G = C10. It will be shown in Section 4.4
that the upper bound evaluates to 2.5 and that this value is the exact value of β(C10).

The upper bound given for β(G) can be used to obtain a sufficient condition and
a distance-1 distributed algorithm for admission control:

Theorem 15. Let G = (V, L) be a network graph, and let τ = (τ(ℓ) : ℓ ∈ L) be
a link demand vector. Let T ∗(Gv, τ) denote the minimum duration of a schedule
satisfying the demands of all links in the 1-hop neighborhood Gv of node v. Then,
under the 2-hop interference model, a sufficient condition for τ to be feasible is that
T ∗(Gv, τ) ≤

1
imp(L2(G))λ(G)

, for all v ∈ V . Here, imp(L2(G)) denotes the imperfection

ratio of the conflict graph L2(G), and λ(G) denotes the minimum number of 1-hop
neighborhood subgraphs in G needed to cover a set of pairwise interfering links of G.

Proof: The assertion follows from Lemma 3 and Theorem 13.

4.4. Ring Topologies

Recall that β(G) characterizes the worst-case performance of the distance-1 dis-
tributed algorithm under the 2-hop interference model. The exact value of β(G)
is now obtained for the special case when the network graph G is a cycle graph Cn.
The case where n is of the form 4k + 2 is considered here.

Theorem 16. Suppose the network graph G is the ring topology C4k+2 (k ≥ 2).
Then, the worst-case performance of the distance-1 distributed algorithm under the
2-hop interference model is given by β(G) = 2k+1

k
.
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Proof: It will be proved that supτ
T ∗(τ)
T ∗

1
(τ)

= 2k+1
k

. Let ℓ1, ℓ2, . . . , ℓ4k+2 be the links (in

that order) of the cycle graph G = C4k+2, and let M = {ℓ1, ℓ3, . . . , ℓ4k+1}. Figure 3
shows the network graph G and the conflict graph Gc = L2(G) for the k = 2 case;
the proof given below holds for arbitrary k ≥ 2.

Let τ be the link demand vector defined by τ(ℓ) = 1 if ℓ ∈ M and τ(ℓ) = 0
otherwise. Under the 2-hop interference model, the subgraph of the conflict graph
induced by M is the odd cycle of length 2k + 1. Hence, T ∗(τ) is the fractional
chromatic number of C2k+1 and equals 2k+1

k
. A 1-hop neighborhood in G contains

exactly two consecutive links of the cycle G, and so contains exactly one link of M .
Hence, T ∗

1 (τ) = 1, and T ∗(τ)
T ∗

1
(τ)

= 2k+1
k

. It follows that β(G) ≥ 2k+1
k

.

To prove the opposite inequality, consider the upper bound β(G) ≤ imp(L2(G))λ(G)
given in Theorem 13, where imp(L2(G)) denotes the imperfection ratio of the conflict
graph and λ(G) denotes the minimum number of 1-hop neighborhood subgraphs of
G needed to cover a (maximal) set of pairwise interfering links. It suffices to show
that imp(L2(G)) = 2k+1

2k
and λ(G) ≤ 2.

A maximal set of pairwise interfering links of G is exactly a set of 3 consecutive
links in the network graph G and hence can be covered by two 1-hop neighborhood
subgraphs of G. For example, observe from Figure 3 that {ℓ1, ℓ2, ℓ3} is a maximal set
of pairwise interfering links of G and is contained in the union of the neighborhood
subgraphs Gx and Gy. Thus, λ(G) ≤ 2.

It will now be proved that imp(Gc) := supτ

χf (Gc,τ)

ω(Gc,τ)
= 2k+1

2k
, where Gc denotes the

conflict graph L2(G). Under the 2-hop interference model, ℓi (i = 1, 2, . . . , 4k + 2) is
adjacent in the conflict graph to ℓi−2, ℓi−1, ℓi+1, ℓi+2. Here, the subscripts are to be
interpreted as belonging to one of the congruence classes 1, 2, . . . , 4k+2. This conflict
graph is isomorphic to the Cayley graph (Z4k+2, {±1,±2}) of the cyclic group Z4k+2

with respect to generator set {±1,±2}. The generators {±2} induce an odd cycle
of length 2k + 1 on the vertex set {0, 2, 4, . . . , 4k} in the Cayley graph. Because the
conflict graph Gc contains C2k+1 as an induced subgraph, imp(Gc) ≥ imp(C2k+1) =
2k+1
2k

.
It remains to be shown that imp(Gc) ≤

2k+1
2k

. Let τ be any link demand vector.
The subgraph Gc−ℓ4k+1−ℓ4k+2 is chordal (see Figure 3(c) for the k = 2 case) because
it does not contain any induced cycles of length at least 4. Because a chordal graph
is perfect [17], the fractional chromatic number and clique number of the vertex-
weighted graph (Gc − ℓ4k+1 − ℓ4k+2, τ) are equal. More generally, the weighted graph
(Gc − ℓi − ℓi+1, τ) can be fractionally colored using ω(Gc − ℓi − ℓi+1, τ) colors, for
each i = 1, 3, . . . , 4k + 1. Also, ω(Gc − ℓi − ℓi+1) ≤ ω(Gc, τ). Putting these colorings
together, it is seen that the weighted graph (Gc, 2kτ) can be fractionally colored using
(2k+1)ω(Gc, τ) colors. In other words, 2kχf (Gc, τ) ≤ (2k+1)ω(Gc, τ), as was to be
shown.

16



ℓ1

x
ℓ2

y
ℓ3

ℓ4

ℓ5
ℓ6

ℓ7

ℓ8

ℓ9

ℓ10
ℓ1 ℓ2

ℓ3

ℓ4

ℓ5

ℓ6ℓ7

ℓ8

ℓ9

ℓ10

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

Figure 3: (a) The network graph G = C10. (b) Its conflict graph Gc under the 2-hop
interference model. (c) The subgraph Gc − ℓ9 − ℓ10, which is chordal.

5. Concluding Remarks

A fundamental problem in networking is to investigate the limits to the performance
that is achievable with some given amount of resources. If each node in a wireless
network has information about only its d-hop neighborhood, then what are the limits
to performance? Distance-d distributed algorithms for admission control have been
studied for wireless ad hoc networks under the 1-hop interference model, and an
open problem mentioned in the literature [13, p. 194] is to generalize these results
to K-hop interference models. The present work initiates this generalization to the
K-hop interference model. The 2-hop interference model arises in IEEE 802.11 MAC
protocol-based networks and is the focus of the present work.

In the present paper, a distance-1 distributed algorithm was proposed for this
problem and its worst case performance was analyzed. Upper and lower bounds were
obtained and both bounds were shown to be tight. In particular, the upper bound is
used to give a sufficient condition for admission control and also gives a performance
guarantee on the distributed algorithm. Besides the worst-case performance β(G),
two other new graph invariants were defined in this paper: ν(G), the maximum
size of an exactly-1-separated matching, and λ(G), the minimum number of 1-hop
neighborhood subgraphs of G needed to cover a clique in L2(G). The exact worst
case performance of the distance-1 distributed algorithm was obtained for certain ring
topologies.

These results can be extended in several directions. First, further properties of
the worst-case performance β(G) and the two other graph invariants ν(G) and λ(G)
defined in this paper can be investigated. Bounds, complexity analysis, and approxi-
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mation algorithms for computing them, would also be of independent theoretical in-
terest. Second, a general research direction is to design and analyze the performance
of distance-d distributed algorithms for the K-hop interference model, for arbitrary
d ≥ 1, K ≥ 2, and in particular to analyze the tradeoff between performance and
the level of decentralization, and the tradeoff between performance and complexity.
A third direction is to investigate distributed algorithms for wireless networks for
more general combinatorial interference models such as weighted conflict graphs or
hypergraphs. Hypergraph interference models were studied in [35] [37], and continue
to be of current interest [31] [23] [22] [11].
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