
Haiku: Efficient Authenticated Key Agreement with Strong
Security Guarantees for IoT

Abdulrahman Bin Rabiah
Department of Computer Science and

Engineering, University of California, Riverside
abinr001@ucr.edu

K. K. Ramakrishnan
Department of Computer Science and

Engineering, University of California, Riverside
kk@cs.ucr.edu

Silas Richelson
Department of Computer Science and

Engineering, University of California, Riverside
silas@cs.ucr.edu

Ahmad Bin Rabiah
Department of Electrical Engineering, King

Saud University
ahbinrabiah@gmail.com

Elizabeth Liri
Department of Computer Science and

Engineering, University of California, Riverside
eliri001@ucr.edu

Koushik Kar
Department of Electrical, Computer and

Systems Engineering, Rensselaer Polytechnic
Institute

koushik@ecse.rpi.edu

ABSTRACT
IoT devices often gather critical information that needs to be com-
municated in a secure manner. Authentication and secure communi-
cation in an IoT environment can be difficult because of constraints,
in computing power, memory, energy and network connectivity.
For secure communication with the rest of the network, an IoT
device needs to trust the gateway through which it communicates,
often over a wireless link. An IoT device needs a way of authenticat-
ing the gateway and vice-versa, to set up that secure channel. The
protocol for authentication and key exchange needs to also work
in situations where one or both parties lose connectivity with the
outside of their network (e.g., infrastructure failure, intermittent
connectivity to the rest of the network, to save cost or power). We
propose a lightweight authentication and key exchange protocol for
IoT environments that is tailored to handle IoT-imposed constraints.

In our protocol, the gateway and IoT device communicate over
an encrypted channel that uses a shared symmetric session key
which changes periodically (every session) in order to ensure per-
fect forward secrecy (PFS). We combine both symmetric-key and
public-key cryptography based authentication and key exchange,
thus reducing the overhead of manual configuration. We leverage
on the digital certificate signed by the manufacturer that is typ-
ically provided to each device. We study our proposed protocol,
called Haiku, where keys are never exchanged over the network.
We show that Haiku is lightweight and provides authentication,
key exchange, confidentiality, and message integrity. Haiku does
not need to contact a trusted third party (TTP), works in discon-
nected IoT environments, provides PFS, and is efficient in compute,
memory and energy usage.

ACM Reference Format:
Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin
Rabiah, Elizabeth Liri, and Koushik Kar. 2021. Haiku: Efficient Authenticated
Key Agreement with Strong Security Guarantees for IoT. In International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN ’21, January 5–8, 2021, Nara, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8933-4/21/01. . . $15.00
https://doi.org/10.1145/3427796.3427817

Conference on Distributed Computing and Networking 2021 (ICDCN ’21),
January 5–8, 2021, Nara, Japan. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3427796.3427817

1 INTRODUCTION
Today, IoT devices such as healthmonitors and surveillance cameras
are widespread. As the industry matures, IoT systems are becoming
pervasive. This revolution necessitates further research in network
security, as IoT systems impose constraints on network design
due to the use of lightweight, computationally weak devices with
limited power being used for varying applications. Thus, specialized
secure protocols which can tolerate these constraints are needed.

In this work, we examine the problem of secure authentication
and key-exchange in an IoT setting. This problem is fundamental
and arises whenever an IoT device wishes to communicate privately
with other nodes in its network. Traditional solutions either involve
making heavy use of public-key cryptography (PKC), or relying on
a trusted third party (TTP), e.g., [18, 30, 32]. Unfortunately, neither
of these solutions is ideal for a number of IoT settings. PKC im-
poses a computational overhead because of the need for choosing
large random prime numbers and computing modular exponentia-
tions. When devices are resource constrained, this cost represents
a computational bottleneck and care must be taken during protocol
design to avoid incurring these costs too often. Table 1 demonstrates
the computational latency of standard cryptographic schemes on
a constrained IoT device. On the other hand, TTP-based solutions
are not ideal for IoT devices either, as use-case constraints might re-
quire IoT devices to operate while offline or with only intermittent
connectivity with the rest of the network, including the TTP. In
this work, we describe a protocol for secure key exchange and au-
thentication which makes minimal use of expensive PKC primitives
and achieves strong security without relying on TTP.

Table 1: Latency (in µs) on Arduino Uno running at 16 MHz.

Haiku: Efficient Authenticated Key Agreement with Strong
Security Guarantees for IoT

Abdulrahman Bin Rabiah
Department of Computer Science and

Engineering, University of California, Riverside
abinr001@ucr.edu

K. K. Ramakrishnan
Department of Computer Science and

Engineering, University of California, Riverside
kk@cs.ucr.edu

Silas Richelson
Department of Computer Science and

Engineering, University of California, Riverside
silas@cs.ucr.edu

Ahmad Bin Rabiah
Department of Electrical Engineering, King

Saud University
ahbinrabiah@gmail.com

Elizabeth Liri
Department of Computer Science and

Engineering, University of California, Riverside
eliri001@ucr.edu

Koushik Kar
Department of Electrical, Computer and

Systems Engineering, Rensselaer Polytechnic
Institute

koushik@ecse.rpi.edu

ABSTRACT
IoT devices often gather critical information that needs to be com-
municated in a secure manner. Authentication and secure communi-
cation in an IoT environment can be difficult because of constraints,
in computing power, memory, energy and network connectivity.
For secure communication with the rest of the network, an IoT
device needs to trust the gateway through which it communicates,
often over a wireless link. An IoT device needs a way of authenticat-
ing the gateway and vice-versa, to set up that secure channel. The
protocol for authentication and key exchange needs to also work
in situations where one or both parties lose connectivity with the
outside of their network (e.g., infrastructure failure, intermittent
connectivity to the rest of the network, to save cost or power). We
propose a lightweight authentication and key exchange protocol for
IoT environments that is tailored to handle IoT-imposed constraints.

In our protocol, the gateway and IoT device communicate over
an encrypted channel that uses a shared symmetric session key
which changes periodically (every session) in order to ensure per-
fect forward secrecy (PFS). We combine both symmetric-key and
public-key cryptography based authentication and key exchange,
thus reducing the overhead of manual configuration. We leverage
on the digital certificate signed by the manufacturer that is typ-
ically provided to each device. We study our proposed protocol,
called Haiku, where keys are never exchanged over the network.
We show that Haiku is lightweight and provides authentication,
key exchange, confidentiality, and message integrity. Haiku does
not need to contact a trusted third party (TTP), works in discon-
nected IoT environments, provides PFS, and is efficient in compute,
memory and energy usage.
ACM Reference Format:
Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin
Rabiah, Elizabeth Liri, and Koushik Kar. 2021. Haiku: Efficient Authenticated
Key Agreement with Strong Security Guarantees for IoT. In International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN ’21, January 5–8, 2021, Nara, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8933-4/21/01. . . $15.00
https://doi.org/10.1145/3427796.3427817

Conference on Distributed Computing and Networking 2021 (ICDCN ’21),
January 5–8, 2021, Nara, Japan. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3427796.3427817

1 INTRODUCTION
Today, IoT devices such as healthmonitors and surveillance cameras
are widespread. As the industry matures, IoT systems are becoming
pervasive. This revolution necessitates further research in network
security, as IoT systems impose constraints on network design
due to the use of lightweight, computationally weak devices with
limited power being used for varying applications. Thus, specialized
secure protocols which can tolerate these constraints are needed.

In this work, we examine the problem of secure authentication
and key-exchange in an IoT setting. This problem is fundamental
and arises whenever an IoT device wishes to communicate privately
with other nodes in its network. Traditional solutions either involve
making heavy use of public-key cryptography (PKC), or relying on
a trusted third party (TTP), e.g., [19, 32, 35]. Unfortunately, neither
of these solutions is ideal for a number of IoT settings. PKC im-
poses a computational overhead because of the need for choosing
large random prime numbers and computing modular exponentia-
tions. When devices are resource constrained, this cost represents
a computational bottleneck and care must be taken during protocol
design to avoid incurring these costs too often. Table 1 demonstrates
the computational latency of standard cryptographic schemes on
a constrained IoT device. On the other hand, TTP-based solutions
are not ideal for IoT devices either, as use-case constraints might re-
quire IoT devices to operate while offline or with only intermittent
connectivity with the rest of the network, including the TTP. In
this work, we describe a protocol for secure key exchange and au-
thentication which makes minimal use of expensive PKC primitives
and achieves strong security without relying on TTP.

Table 1: Latency (in µs) on Arduino Uno running at 16 MHz.

Operation
Public Key Cryptography

(PKC) Operation
Symmetric Key Cryptography

(SKC)
EdDSA ECDHE AES256 SHA256

Key generation 3,763,668 3,769,856 Key generation 206.27 -

Sign/Key exchange 6,111,812 3,763,952 Encryption/Hash (per byte) 49.66 167

Verify 9,717,781 - Decryption (per byte) 95.95 -

Perfect Forward Secrecy. PFS is a strong security notion for com-
munication protocols which persist over time. Roughly speaking, a
protocol with PFS segments time into sessions and guarantees that

Perfect Forward Secrecy. PFS is a strong security notion for com-
munication protocols which persist over time. Roughly speaking, a
protocol with PFS segments time into sessions and guarantees that

196

https://doi.org/10.1145/3427796.3427817
https://doi.org/10.1145/3427796.3427817
https://doi.org/10.1145/3427796.3427817
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3427796.3427817&domain=pdf&date_stamp=2021-01-05

ICDCN ’21, January 5–8, 2021, Nara, Japan Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin Rabiah, Elizabeth Liri, and Koushik Kar

even if a long-term secret key is compromised during a session,
previous sessions retain their security [7, 10].

Having a secure, authenticated communication framework be-
tween an IoT device and gateway that provides PFS is highly de-
sirable, since critical and private data (e.g., medical, or personal
identifying information) may be exchanged in the IoT environment.
It is important to ensure that the data is not compromised even if an
attacker records the data in the hope of subsequently performing
cryptanalysis to derive the secret key and decrypt past information
exchanges. PFS demands limiting the use of a fixed secret key to a
single session (i.e., a limited number of packet exchanges). Between
sessions, the secret keys are updated and old keys discarded.

Prior Work on PFS. PFS is defined and implemented according
to [12]. In this construction, two types of keys were maintained −

a master key and a session key. The master key was fixed once and
for all, while each session key was generated at the beginning of the
session using a key-agreement protocol. Session key generation was
independent of the communication across all prior sessions, and
independent of the master key. So if the adversary compromised
the master key, for example, all session keys maintained their secu-
rity (in the sense that an adversary, given the master key, cannot
distinguish the session key from a random string). A clear down-
side of [12] is that an expensive key agreement protocol must be
run in every session. More recently, [8] gave a construction which
requires only symmetric key operations. Roughly speaking, their
construction breaks time into blocks of multiple sessions. At the
beginning of each block, a master keyMK′ = H1(MK) is computed
by applying a hash function to the previous master key. Likewise,
at the beginning of each session, a session key K ′

s = H2(Ks) is
computed by applying a hash to the previous session key (or to the
master key for the first session in a block). The security guarantee
of [8] is that if a master key is compromised then all session keys
from previous blocks maintain their security. Note however that
when the master key is compromised, the previous master key does
not maintain its security (it becomes distinguishable from a random
value). Thus, this work does not attain the ideal PFS, where the loss
of a key does not compromise the security of any previous key.

Our Contribution. In this work, we construct a secure authenti-
cation and key-exchange protocol which achieves ideal PFS, and,
after an initial setup phase, requires only lightweight symmetric
key operations. Specifically, our scheme returns to the model where
the master key is fixed once and for all, and where each subsequent
session key is computed from the previous, using a hash function.
At the core of our new technique is we use the entropy inherent in
the messages exchanged during a session in the update procedure.
Each entity relies on the session key and an a priori agreed upon
set of random messages exchanged (using the previous session key)
during the session to update the session key Ks to K ′

s using SKC
and a cryptographic hash function. We make sure no secrets are
shared over the channel. As a result, the long-term master keys
play a minimal role in our protocol, which allows us to remove
the reliance on it. Our protocol guarantees that if the master key
or a session key is compromised then all previous session keys
retain their security in the sense that they remain indistinguishable
from random. Thus it achieves the ideal PFS achieved by [12] (but

not by [8]), while still being as lightweight as [8]. It additionally
prevents a passive adversary who somehow possesses the master
key or a session key from obtaining future session keys. We call our
protocol Haiku, to reflect simplicity and the lightweight nature of
the authentication and key-exchange protocol.

Haiku makes use of public-key cryptography only during an ini-
tialization phase, where it relies on Elliptic Curve Digital Signature
Algorithm (ECDSA) for authentication and the Elliptic Curve Diffie-
Hellman Ephemeral (ECDHE) algorithm for key exchange. For
normal operations, it uses lightweight symmetric-key mechanisms:
a symmetric key cryptosystem, cryptographic hash function and
Hashed Message Authentication Code (HMAC)-based Key Deriva-
tion Function (HKDF) for confidentiality, message integrity, and
authentication. Haiku minimizes the number of messages as well as
total bytes exchanged for authentication and key exchange to save
energy [5, 21, 26]. Additionally, it does not depend on a central,
trusted third party, thus allowing the IoT device and gateway to
securely exchange information in a disconnected environment. The
protocol minimizes human intervention by not requiring any input
from the user for initial setup. Finally, Haiku achieves performance
and memory improvements that are compelling, achieving around
5 and 4 times reduction in latency and memory usage, respectively,
for initial setup as well as session key updates compared with using
public-key cryptography and a TTP. Our experiments also show
that IoT devices can reduce energy and CPU cycle consumption by
26 and 20 times for authentication and key exchange, respectively,
and reduce the total bytes exchanged over the channel by 6 times.
This allows IoT devices to achieve significant energy savings, which
is critical since they often depend on limited battery power [33].

Haiku’s design is intuitive and straightforward to understand. De-
spite the fact that it combines elements of public-key and symmetric-
key cryptography, it is quite simple, since the composition is mod-
ular. This makes it easy to reason about the various parts of the
protocol in isolation which keeps our security analysis clean. We
also provide a formal proof of security for Haiku and show that it
is secure against a series of attacks. Moreover, although we have
implemented Haiku using an ECDHE-based authenticated key-
agreement (AKE) protocol, any secure AKE would suffice. Thus, if a
faster AKE protocol were developed, we could replace this module
in our scheme to improve performance.

2 IOT ENVIRONMENT CONSTRAINTS AND
REQUIREMENTS

As mentioned, IoT environments impose a number of constraints.
IoT devices are often limited in terms of energy, memory and/or
processing power [33]. Further, specialized use-cases might require
IoT devices to operate while off-line or disconnected from the rest of
the network, without access to a TTP. We next outline our network
model and specify the attack scenarios considered in this work.

2.1 Network Model and Assumptions
The network topology considered is shown in Fig. 1. The network
has multiple (potentially a large number of) IoT devices and a
gateway with an intermittent connectivity with the cloud. The IoT
devices communicate exclusively through the gateway. We assume
that communication may be over a wireless network, where other
parties may be able to sniff and capture the encrypted packets

197

Haiku: Efficient Authenticated Key Agreement with Strong Security Guarantees for IoT ICDCN ’21, January 5–8, 2021, Nara, Japan

Gateway

Intermittent
connectivity Trusted Third Party

(TTP)

Database

Internet

…

Figure 1: Network Topology.

exchanged between the IoT device and the gateway. We assume
the MAC layer protocol does not provide link-level reliability.

A new IoT device joins the network by performing a secure
handshake with the gateway. We assume the IoT device and the
gateway are equipped with a limited amount of non-volatile storage
(e.g., an EEPROM). We also assume IoT devices are equipped with
certificates (i.e., a private/signature key sk and a public/verification
key vk) and a hardware security extension technology, like ARM
TrustZone and Intel SGX, providing trusted execution environment
(TEE) to protect secret keys from intruders.

2.2 Attack Scenarios
We outline the possible attack scenarios that may be used by an
adversary 𝒜 to exploit vulnerabilities of an IoT protocol such as
Haiku. We aim to ensure that the protocol we design is robust
against these potential attacks.

• 𝒜 may seek to sniff on the channel to find the secret keys from
authentication and key exchange messages and also potentially
change the content of data messages.

• 𝒜may try to cause disruptions by altering, fabricating or replaying
authentication and key exchange messages.

• 𝒜 may try to provide false data by replaying old data messages.
• 𝒜who determines a session key may also seek to determine keys of
future or previous sessions to gain access to confidential messages
or alter data of future sessions.

• 𝒜 who determines the long-term secret (i.e., IoT/gateway signature
key, sk) and who has recorded all the encrypted messages may seek
to find previous session keys to decrypt those previous messages.

• A passive attacker who determines all the secret keys during a
session may also seek to determine the session keys for subsequent
sessions in order to continue to eavesdrop on the channel.
Haiku is designed to prevent all of these attacks, and a security
analysis of the protocol is provided in Section 4 to verify this.

3 HAIKU
3.1 Protocol Overview
Haiku consists of three algorithms:

(
Init,Update,Comm

)
. Roughly

speaking, Init is used once at the beginning to set the first session
key; Update is run at the end of each session to refresh the session
key; Comm is used for communication during a session. Impor-
tantly, the first procedure, Init, is the only one which makes use
of public key operations; Update is entirely symmetric key based.
PFS demands that after Update is run, to refresh a session key and
delete the old key. The communication of the old sessions are secure
even if the adversary learns the new session key and the long term
private key associated with the device. We begin with a high level
discussion of each algorithm. They are described formally later in
this section. We envision Haiku providing link layer security.

Parameters and Subroutines. Haiku is parameterized by a secu-
rity parameter n and integer N which controls the length of each

Time

Data Exchange

Session j+1

Session Key Update

Session j

Initial Setup

Session j+2

Session Key Update

Session j+3

Session Key Update

Both devices have certificates

Figure 2: Overview of Haiku operation.
session. The communication subroutine Comm uses a symmetric-
key encryption scheme and a secure MAC. We denote these encryp-
tion, decryption and signing procedures by E,D,MAC, respectively.
Also, Update uses a hash function H.
• Init(1n): Two parties, Alice and Bob, use ECDHE to agree on a
session key Ks and a set of frames Tframes ⊂ {1, . . . ,N } to be
used during Update. Additionally, Init initializes F.Data = ∅ and
i = 0; F.Data will be populated and i incremented throughout the
session; once i = N , Update is run.

• Comm(Ks ,Tframes, F.Data,msg, i): This is used for one party to
securely send msg to the other party as long as i < N .

– if i ≥ N , both parties do nothing;
– Alice sets Fi = (msg,σ) where σ is a MAC of msg and
computes the ciphertext ct = EKs (Fi) and sends ct to Bob;
Fi is the payload of the i−th frame.

– if i ∈ Tframes, both parties set F.Data = F.Data ∪ {(i, Fi)};
both parties increment i (Bob learns Fi by decrypting ct).

• Update(Ks , F.Data): computes a new key and frame set as
(K ′

s ,T
′
frames) = H(Ks , F.Data). Re-initializes F.Data = ∅ and

i = 0.
Intuition. Fig. 2 shows an overview of Haiku’s operation. In each
session, a number of messages are exchanged (Fi ’s), the red en-
velopes correspond to the randomly selected subset Tframes whose
contents are used during Update to generate the next session key.

Implementation Details. Often IoT devices possess unique cre-
dentials signed by the manufacturer, and devices use these cre-
dentials to authenticate one another before any interaction takes
place [24]. Our implementation includes this handshake as part of
the Init subroutine. In our implementation, we utilize Authenticated
Encryption with Associated Data (AEAD), namely the Counter with
CBC-MAC (CCM) block cipher mode, across all Haiku phases. CCM
mode uses CBC-MAC to calculate a Message Authentication Code
(MAC) for the whole frame (header, nonce and payload) using a
secret key (i.e., Ks), and it uses the Counter mode to encrypt the
payload and the MAC using a nonce and Ks whereas the header
fields (e.g., MAC addresses) are left unencrypted to allow the re-
ceiver to process the frame properly. Using one key with CCM
for confidentiality and integrity is provably secure [17] and saves
memory. We choose CCM because it is provably secure, patent-
free (unlike other modes like OCB), requires small memory [31]
and is faster than other modes like EAX and GCM when no pre-
computed memory is used [23]. When the number of data mes-
sages exchanged during a session reaches an a priori agreed upon
threshold (N), Update is called, obtaining a new session key; the
old key is deleted and a new session starts. The session keys are
never sent over the network, even in encrypted form. As an opti-
mization, our implementation computes the next session key data:

198

ICDCN ’21, January 5–8, 2021, Nara, Japan Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin Rabiah, Elizabeth Liri, and Koushik Kar

(K ′
s ,T

′
frames) incrementally during the current session by initializing

(K ′
s ,T

′
frames) = (Ks ,Tframes) and then each time i ∈ Tframes updat-

ing (K ′
s ,T

′
frames) = H(Ks | |K ′

s | |Fi). In this way, the parties (who are
limited in terms of space) are not responsible for holding a large
fraction of all data sent during the session.

3.2 Setup/Reset Phase (Init)
A new IoT device added to the network completes an initial setup
to authenticate the gateway and vice-versa, and establish a symmet-
ric session key. Both nodes depend on both verification of certifi-
cates that have already been provisioned by the manufacturer and
the other node’s signature for authentication, and ECDHE key ex-
change for negotiating a random Ks , which will be used to encrypt
and hash subsequent session data messages. We choose ECDHE
because it helps achieve PFS and requires neither communicating
secrets over the network nor using complicated commit protocols.
ECDHE key exchange allows two entities to exchange some public
parameters, including random temporary public keys (each entity
generates and sends one), over the network, which allows each
entity to use its own temporary ECDHE private key along with
the other entity’s temporary ECDHE public key to derive the same
symmetric secret (i.e., Ks). This phase allows the gateway to make
sure it is communicating with the legitimate IoT device and vice
versa, and thus they can accept messages received from each other.
We build this phase (Fig. 3) based on the authentication and key
exchange process used in Transport Layer Security (TLS 1.3). This
phase can also be used to securely reset a new Ks when either one’s
Ks is inconsistent with the other node for any reason (malicious or
otherwise) or when either node suspects a potential attacker.
Message 1. The IoT device uses Message 1 to initiate secure com-
munication with the gateway and provide the gateway with the
IoT’s certificate to learn and verify its verification key, vk that will
then be used to verify data signed by the IoT device. The IoT device
selects a random pair of ECDHE public-private keys, denoted by
K IoT
pub and K IoT

pr i , that will be used by ECDHE in order to negoti-
ate a symmetric secret, namely Ks ′ . As part of Message 1, the IoT
device also communicates K IoT

pub to allow the gateway to securely
derive the symmetric secret, Ks ′ , and to challenge the gateway with
this random value to verify its identity and verify it is not a spoof-
ing or replay attack. The IoT device sends an ‘init’, its IDI , its IoT
certificate and its K IoT

pub to the gateway.

Message 2. When Message 1 is received, the gateway verifies the
IoT certificate using vk of the signer (e.g., manufacturer). The gate-
way also generates another random pair of ECDHE keys, denoted by
K
Gateway
pub and KGateway

pr i , to complete the ECDHE key exchange
process and derive the symmetric secret, Ks ′ . The gateway extracts
a shared secret from its KGateway

pr i and the received K IoT
pub using

ECDHE key exchange algorithm. Because directly using the just
extracted shared secret as the symmetric secret key might lead to
subtle vulnerabilities [20], gateway uses HKDF to derive a new pro-
posed value for the session key, Ks ′ , using the just extracted shared
secret, used as a HKDF key, and K IoT

pub and KGateway
pub , used as a salt

input. Because adversaries might be willing to cause disruptions
at the gateway by spoofing or replaying Message 1 to cause the

Both nodes now start
exchanging data

IoT authenticates Gateway

‘init’, IDI, IoT Cert., 𝐾!"#$%&

IDG, 𝐾!"#
'()*+(,, 𝐸-!"

(Gateway
Cert. ,𝑇./(0*1

234 ,
𝞼(h(dataExchangedSoFar))),
	𝐸-!"

(𝑀𝐴𝐶-!"
(Message 2))

IDI,
𝐸-!"

(𝞼(h(dataExchangedSoFa
r))), 	𝐸-!"

(𝑀𝐴𝐶-!"
(Message 3))

Message 1

Message 2

Message 3
Gateway authenticates IoT.

Calculate sharedSecret using
ECDHE key exchange.

Ks = Ks’

Calculate sharedSecret using
ECDHE key exchange.
Ks’ =
HKDF𝐾sharedSecret(𝐾!"#

$%& ||𝐾!"#
'()*+(,)

Remove ECDHE Gateway key pair
Remove ECDHE IoT key pair

Ks’ =
HKDF𝐾sharedSecret(𝐾!"#

$%& ||𝐾!"#
'()*+(,)

Ks = Ks’

GatewayIoT device

Figure 3: Setup/Reset (Init).
gateway to change its Ks and end up having a different key as com-
pared to the IoT device, Ks is not changed with the new proposed
value, Ks ′ , until the gateway receives Message 3 and ensures it is
not a spoofing or replay attack.

The gateway sends Message 2 to respond to the initialization
request, provide the IoT device with the gateway certificate to learn
and verify its vk and provide its ECDHE key share so that the
IoT device can derive the same Ks ′ . The gateway also proposes
a random set of sequence numbers of future frames, T j+1

f rames , to
be considered when updating the session key next time. The size
of the set is also chosen randomly within the size of the session. It
also hashes all data exchanged between the two entities so far,
including Message 2 parameters. The hash is then signed by the
gateway, σ , to confirm all the data exchanged up to this point.
The gateway σ confirms to the IoT device that the gateway has
received Message 1 correctly and verifies Message 2 integrity and
data authenticity. Because the gateway σ includes the gateway
signing the IoT’s challenge, K IoT

pub , this proves to the IoT device the
gateway has the correct sk associated with vk contained in the
gateway certificate, and proves this is not a replay attack. Gateway
σ also includes a signature on ECDHE keys, K IoT

pub and KGateway
pub ,

so that their integrity is preserved and man-in-the-middle attacks
are prevented. For example, if ECDHE keys exchanged over the
network are not signed, a man-in-the-middle attack can use each
node to authenticate itself to the other node while exchanging two
different symmetric keys, one with the IoT device, Ks ′_1, and the
other with the gateway, Ks ′_2. Then, when the authentication is
over, confidential data will be forwarded by such an attacker for/to
both sides. Gateway σ also includes a signature on the correct
T
j+1
f rames so that the IoT device is sure it has received the right set
of frames that both ends will use in deriving the next Ks . This
prevents malicious changes to this set of frames that could cause
disruptions in generating the next Ks . The IoT device can thus
authenticate the gateway. T j+1

f rames , the gateway’s certificate, and
σ are confidentially communicated to the IoT device using Ks ′ , in
order to provide adversaries with as little information as possible.
In order to verify Message 2 integrity and data authenticity, the
gateway calculates theMAC of the whole message, including the
gateway σ using Ks ′ as a key. Encrypting and hashing data in
Message 2 using Ks ′ allows the gateway to prove its knowledge of
the key to the IoT device. The gateway sends its IDG , K

Gateway
pub

and EKs′ (gateway certificate, T j+1
f rames , σ ,MACKs′ (Message 2)).

Message 3.When the IoT device receives Message 2, it extracts the
same shared secret from its K IoT

pr i and the received KGateway
pub using

199

Haiku: Efficient Authenticated Key Agreement with Strong Security Guarantees for IoT ICDCN ’21, January 5–8, 2021, Nara, Japan

	𝐸!!
(Data),

	𝐸!!
(𝑀𝐴𝐶!!

(Message i+1))
..

	𝐸!!
(Data),

	𝐸!!
(𝑀𝐴𝐶!!

(Message i))

	𝐸!!
(Data),

	𝐸!!
(𝑀𝐴𝐶!!

(Message N−1))

IoT device sends session data
messages

Message i

Message N-1

Message i+1

If 𝑇"#$%&'
()* has Message i

à 𝐾'’= HKDF𝐾!(Message i)

If 𝑇"#$%&'
()* has Message i+1

à 𝐾'’= HKDF𝐾!(𝐾'’||Message i+1)

If 𝑇"#$%&'
()* has Message N-1

à 𝐾'’= HKDF𝐾!(𝐾'’||Message N-1)

If 𝑇"#$%&'
()* has Message i

à 𝐾'’= HKDF𝐾!(Message i)

If 𝑇"#$%&'
()* has Message i+1

à 𝐾'’= HKDF𝐾!(𝐾'’||Message i+1)

If 𝑇"#$%&'
()* has Message N-1

à 𝐾'’= HKDF𝐾!(𝐾'’||Message N-1)
Session ends and both
nodes move to session
key update phase

GatewayIoT device

Figure 4: Normal Communication (Comm).

ECDHE. The IoT device also derives the corresponding random
Ks ′ by using the just extracted shared secret, as a HKDF key, and
K IoT
pub and K

Gateway
pub , as a salt input. Additionally it verifies the

MACKs′ (Message 2) and if valid, it knows Message 2 integrity is
maintained and the gateway has the correct Ks ′ . The IoT device
verifies the gateway σ with the hash of all dataExchangedSoFar,
excluding the gateway σ , that it calculates. This is used along with
verifying the gateway certificate to mark the gateway as authenti-
cated. The IoT device uses Message 3 to prove to the gateway it is
able to sign the received challenge, KGateway

pub , with sk associated
withvk that it sent in Message 1 as part of its certificate, proving its
identity and that it is not a replay attack. The IoT device also signs
the ECDHE keys exchanged over the network indicating that it is
deriving the new symmetric secret,Ks ′ , using these specific ECDHE
keys, which prevents man-in-the-middle attacks. Message 3 also
confirms arrival of the correct T j+1

f rames from Message 2. Moreover,
the IoT device signs a hash of all Message 1-3 parameters, IoT σ ,
to confirm all data exchanged up to this point. By sending the IoT
σ , the IoT device confirms to the gateway Message 1’s content,
correct receipt of Message 2 and the integrity and data authenticity
of Message 3. The IoT device sends its IDI , an encryption of its IoT
σ andMACKs′ (Message 3) using Ks ′ . It now sets its Ks to Ks ′ and
removes ECDHE keys. If the gateway successfully verifies Message
3MAC, it knows that Message 3’s integrity has been maintained
and the IoT device has the correct Ks ′ . The gateway also verifies
IoT σ with the hash of all dataExchangedSoFar, excluding the IoT σ ,
that it calculates. If verified, the gateway can mark the IoT device as
authenticated, set its Ks to Ks ′ and remove its ECDHE keys. Even
if the attacker finds the long-term signature key of either node
later (after this session), this initial Ks cannot be recovered because
ECDHE keys are deleted.

3.3 Normal Communication Phase (Comm)
Both devices use the derived Ks , which is never exchanged on
the wire, to send (encrypt) and receive (decrypt) data messages se-
curely. For each packet, they also include a hash of the whole packet
(including a nonce) calculated and encrypted using Ks in order to
prevent malicious packet alterations and replay attacks. Fig. 4 shows
session interaction. While exchanging data messages, both entities
incrementally calculate the next session key, Ks ′ , using the selected
messages based on the sequence number set T j+1

f rames . Incremental
computation of the next session key allows both devices to avoid
storing the content of the agreed upon data messages in memory till
the end of the session. After exchange of the first session message
Fi , i ∈ T

j+1
f rames both nodes derive a Ks ′ using the current Ks , used

as a HKDF key, and Fi , used as an information input. For each of the

Message 1

Message 2

Message 3

’update’, IDI, 𝐸!!
(Nonce1),

	𝐸!! (𝑀𝐴𝐶!! (Message 1))
IDG, 𝐸!!

(Nonce2,
ReceivedRandFrmj_Flag, 𝑇"#$%&'

()*

,𝐻𝑀𝐴𝐶!!(dataExchangedSoFar))
	𝐸!! (𝑀𝐴𝐶!! (Message 2))
IDI,
𝐸!! (𝐻𝑀𝐴𝐶!!(dataExchangedSo
Far)),	𝐸!! (𝑀𝐴𝐶!!(Message 3))

Gateway authenticates IoT device.
If ReceivedRandFrmj_Flag=1
à𝐾'= 𝐾'’ , counter = 1
Else if ReceivedRandFrmj_Flag=0
& counter < 2
àKeep Ks , counter = counter+1
Else à Do a ‘reset’

Both nodes now start
exchanging data

GatewayIoT device

IoT device authenticates
Gateway

If ReceivedRandFrmj_Flag=1
à𝐾'= 𝐾'’ , counter = 1
Else if
ReceivedRandFrmj_Flag=0 &
counter < 2
àKeep Ks , counter = counter+1
Else à Do a ‘reset’

Figure 5: Session Key Update (Update).

other messages Fi′ , i ′ > i and i ′ ∈ T j+1
f rames , both nodes continue to

update the new Ks ′ using the current Ks , used as a HKDF key, and
Fi′ along with so-far-calculated Ks ′ , used as an information input
(context and application specific information).

An attacker has no knowledge of the confidentially negotiated
T
j+1
f rames , and might also not receive all data messages. Haiku can
also be integrated with link layer protocols (e.g., IEEE 802.15.4,
WiFi or Bluetooth) providing security capabilities. It can provide
the link layer with Ks to protect confidentiality and integrity of
exchanged data. Both nodes exchange messages till reaching the
session threshold, N , after which they transition to Ks update.

3.4 Session Key Update using SKC (Update)
In order to limit possible cryptanalysis to derive the secret key,
provide PFS, and limit exposure of confidential data if that secret
key is discovered by an attacker for any reason, both nodes need to
use frequently updated session keys. This phase allows both nodes
to achieve this goal and switch from their previous Ks to the new
proposed value, Ks ′ , that has been calculated during the session
in the Comm phase as in Section 3.3. They also negotiate a new
random set of T j+1

f rames (with a new random size) to construct the

next Ks for the subsequent session.T
j+1
f rames helps produce random

session keys at each update since it makes use of the randomness
existing in the data frames and depends on such randomness to
generate next Ks . For IoT applications where data frames might
have repetition or low entropy, random data can be periodically
injected during sessions to ensure data considered for key update
has high entropy. We also enhance the approach proposed in [34]
by letting both nodes confidentially agree on that random set of
T
j+1
f rames for each update of Ks , which prevents an attacker with
a perfect channel from knowing the frames that will be used to
construct nextKs . BecauseT

j+1
f rames is negotiated at the beginning of

session j in an encrypted form using Ks of session j − 1, this prevents
an attacker who finds Ks of session j and decrypts the session data
messages from deriving Ks of session j + 1 since he/she cannot
decryptT j+1

f rames and learn the subset of session j frames that needs
to be used to construct Ks of session j + 1. Ks update is based on
TLS 1.3 and shown in Fig. 5. During this phase, nodes exchange
messages encrypted and hashed via Ks .
Message 1. The IoT device sends Message 1 to let the gateway
know it wants both sides to have a new Ks for this new session.
This message helps the IoT device make sure it is communicating
with the right gateway so that it can accept the new random set
of T j+1

f rames and avoid possible disruptions if a fake T j+1
f rames were

200

ICDCN ’21, January 5–8, 2021, Nara, Japan Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin Rabiah, Elizabeth Liri, and Koushik Kar

received; the IoT device challenges the gateway with a fresh nonce
to authenticate it and prevent replay attacks. Nonce1 is encrypted
to limit the amount of information adversaries can see. The IoT
device uses Ks to calculate the message MAC to verify its integrity
and authenticity. The IoT device then sends the ‘update’ command,
IDI and Nonce1, along with MACKs (Message 1) encrypted with
Ks to the gateway.
Message 2. The gateway verifies Message 1 MAC using Ks . It also
uses Message 2 to challenge the IoT device with Nonce2 to verify
its identity and prevent potential replay attacks, communicate a
new random set of T j+1

f rames , with the set size also being random,
for updating the next Ks . In order to enable Haiku to function with
lossy links (i.e., without link layer reliability or at least one having
some residual loss), and allow incremental update of Ks ′ at both
nodes as shown in Section 3.3, the gateway communicates a flag,
ReceivedRandFrmj_Flaд, used to inform the IoT device whether
the gateway has received all agreed upon frames based onT j

f rames
to help them decide on this new Ks . One solution to solve the
problem of enabling the protocol to work under lossy links is to
make the IoT device share a hash of the content of the frames based
on T j

f rames in this phase; however, we make sure that such a hash

is never exchanged over the network and T j
f rames is confidentially

exchanged exactly once over the network. This prevents passive
attackers who have recorded all encrypted messages, and who find
Ks in the middle of a session somehow, from being able to update
the Ks . This is because they do not know the agreed upon frames
based on T j

f rames exchanged at the beginning of previous session
using a previous Ks which is no longer active or stored anywhere.

The gateway, similar to Section 3.2, calculates the HMAC
of all data exchanged between both nodes so far using Ks ,
HMACKs (dataExchangedSoFar), to confirm all data exchanged in
Message 1 and 2. The gatewayHMACKs (dataExchangedSoFar) con-
firms correct receipt of Message 1 and verifies Message 2 integrity
and data authenticity. The gatewayHMACKs (dataExchangedSoFar)
also includes the IoT challenge, Nonce1, to prove the gate-
way identity and prevent replay attacks. The gateway also
verifies integrity and authenticity of Message 2, including
the gateway HMACKs (dataExchangedSoFar), by calculat-
ing the MAC using Ks . It then sends IDG and encryption
of Nonce2, ReceivedRandFrmj_Flaд, random T

j+1
f rames , its

HMACKs (dataExchangedSoFar) andMACKs (Message 2) using Ks
to the IoT device.
Message 3. The IoT device decrypts Message 2 and computes the
MAC using Ks so that it can be verified with the received MAC. If
verified, the IoT device knows Message 2 integrity is maintained. It
also computes theHMAC of all data exchanged so far, excluding the
gateway HMACKs (dataExchangedSoFar), and checks if it matches
the gateway HMACKs (dataExchangedSoFar). If verified, the IoT
device is confident that the just received T j+1

f rames is correct. It also
knows the gateway is aware of the previously sent Nonce1 from
Message 1 and rightKs , so it is not a replay attack. Therefore, the IoT
devicemarks the gateway as authenticated. The IoT device usesMes-
sage 3 to prove its identity through Nonce2 fromMessage 2 and that
it is not a replay attack. Message 3 also confirms that the IoT device

received correct T j+1
f rames . It also includes an HMAC of all Message

1-3 parameters usingKs , IoTHMACKs (dataExchangedSoFar), in or-
der to confirm to the gateway the content of Message 1, the correct
receipt of Message 2, including the gateway challenge Nonce2, and
the data authenticity and integrity of Message 3. Message 3 helps
the IoT device tell gateway it now knows whether all agreed upon
frames from previous session were received, and thus the IoT device
is able to decide on new Ks for this new session too. The IoT device
sends IDI and encryption of its HMACKs (dataExchangedSoFar)
andMACKs (Message 3) using Ks .

The gateway marks the IoT device as authenticated af-
ter successfully verifying Message 3 MAC as well as IoT
HMACKs (dataExchangedSoFar). If the ReceivedRandFrmj_Flaд is
set, both devices set Ks to the new session key, Ks ′ , that has already
been calculated from the Comm phase. On the other hand, frames
might get lost due to multiple reasons, and some of those lost ones
might belong to the agreed upon random frames from last session
based on T j

f rames that are needed for this session key update. We
accommodate this situation in two ways. First, if the current Ks has
been used for only one session, both devices use it also for only one
more session in order to lower the probability of occurrence of such
a situation and avoid frequent resets. Otherwise, if the current Ks
has already been used for two consecutive sessions, both devices
limit its use by initiating a reset and exchanging a new random
Ks , which helps achieve PFS and limit amount of exposure in the
worst case. To avoid resets, only the randomly selected frames cor-
responding toT j

f rames have to be correctly identified and captured
rather than all frames in the entire session; the probability of losing
a frame inT j

f rames can be decreased by keeping the size ofT
j
f rames

relatively small to all frames exchanged in a single session.

4 SECURITY
4.1 Our Model
We model security as a game between a challenger C and
an adversary 𝒜. Recall the three algorithms of the protocol
(Init,Update,Comm). Also recall that each session consists of N
communication messages, at which point Update is called and a
new session begins. The game takes place in three stages:

(1) Initialize phase: C runs Init(1n) between two parties A and B
and sends the public transcript to𝒜.C keeps secret the session
key Ks and a set of frames Tframes. The game now moves to
the query phase.

(2) Query phase: 𝒜 sends C a query; C returns a response. We
expand below on the types of queries 𝒜 can send. The game
remains in the query phase until 𝒜 decides to move on. At
this point, 𝒜 will have sent a query which makes C choose a
random bit b ∈ {0, 1} to generate its response.

(3) Challenge phase: 𝒜 sends C a challenge b ′ and wins if b ′ = b.

Queries. During the initialization phase, C sets a session counter
count = 0, initializes a set of old session keys to ∅, and initializes the
current session info to (Ks ,Tframes, 0, ∅). During the query phase
𝒜 is allowed the following queries:

•
(
communicate,msg, dir

)
; dir ∈ {A−to−B,B−to−A}. When

C receives this query it does the following:

201

Haiku: Efficient Authenticated Key Agreement with Strong Security Guarantees for IoT ICDCN ’21, January 5–8, 2021, Nara, Japan

– C obtains (Ks ,Tframes, i, F.Data) from the current session
info set; if i = N , C does nothing;

– C executes Comm(Ks ,Tframes, F.Data,msg, i) in the direc-
tion specified by 𝒜’s query and sends the resulting tran-
script to 𝒜; note this process includes C updating F.Data
and incrementing i .

• (update). When C receives this query it does the following:
– C retrieves (Ks ,Tframes, i, F.Data) from the current session
info set; if i , N , C does nothing;

– C executes Update(Ks , F.Data) and sends the resulting
transcript to 𝒜;

– C adds (count,Ks) to the set of old session keys, re-
initializes the current session info to (K ′

s ,T
′
frames, 0, ∅); C

also increments count.
• (update−and−reveal). This and the next query are challenge
queries;𝒜 can ask at most one such query during the entirety
of the query phase. When C receives this query it does the
following:
– C retrieves (Ks ,Tframes, i, F.Data) from the current session
info set; if i , N , C does nothing;

– C executes Update(Ks , F.Data) and sends the resulting
transcript to 𝒜;

– C re-initializes the current session info to (K ′
s ,T

′
frames, 0, ∅)

and sends Ks to 𝒜;
– C chooses a bit b ∈ {0, 1} at random and sends K∗

s to 𝒜
where K∗

s = K ′
s if b = 0 and K∗

s is a random string if b = 1.
• (reveal−and−guess, count∗). This is also a challenge query.
When C receives this query it does the following.
– C collects all elements of the set of old session keys
(count,Ks) such that count > count∗ and sends them
to 𝒜. C also sends the current session key Ks to 𝒜;

– C chooses a bit b ∈ {0, 1} at random and sends K∗
s to 𝒜

where (count∗,K∗
s) is in the set of old session keys if b = 0,

and K∗
s is a random string if b = 1.

4.2 Discussion of Our Model
We now discuss the key features of our security model.
Perfect Forward Secrecy. This means that an adversary𝒜 cannot
recover past session keys (or even distinguish past session keys
from random) given the current session key. This is captured in
our model by the inability of the adversary to win the game via
the (reveal−and−guess) query. One difference between our security
definition and traditional PFS is that the long-term keys play a min-
imal role in our protocol, as they are only used during initialization
(and not at all during Update). Most prior PFS schemes maintain
a long-term key and a session key and require that past session
keys remain secure even if the long-term key is compromised (but
does not promise security in session i − 1 if the key of session i is
compromised) [8]. Our scheme also guarantees that past session
keys remain secure even if the long-term key is compromised.
Update Prediction Attacks. In these attacks, 𝒜 somehow learns
the current Ks and tries to predict the next Ks obtained after up-
dating. These attacks are ruled out even if𝒜 learns Ks as long as it
doesn’t learn the agreed-upon random frames to use duringUpdate.
This is captured in our model by the inability of𝒜 to win the game
via the (update−and−reveal) query. Although theoretically 𝒜 who

somehow finds two Ks ’s of two consecutive sessions and all agreed-
upon frames can update to next Ks , the probability that𝒜 captures
all previous update frames (including Tframes), and 𝒜 and gateway
together capture all agreed-upon frames is negligible, especially
in environments with imperfect eavesdropping and inevitable er-
rors like wireless communication [34]; thus, this prevents 𝒜 from
updating to next Ks .
Man-in-the-Middle Attacks and Session Hijacking. We ana-
lyze an idealized model where the adversary cannot compromise
the long-term private device keys. In our scheme these keys are
stored in a trusted execution environment (e.g., Intel SGX) and
never exchanged over the network.
Multiple Users. Our simplified model considers only a single in-
teraction between Alice and Bob. Security can be proved in a more
general model where the adversary is allowed to spawn and control
new users and engage in new protocol instances with the challenger.
We omit this for simplicity.
MAC Forgeries or Semantic Security Breaks. In order to sim-
plify matters, we assume Alice and Bob are connected by an ideal
point-to-point channel. Such a channel is securely implemented as-
suming the semantic security and unforgeability of the symmetric-
key encryption and authentication schemes used by our scheme.
This prevents an adversary from injecting or modifying messages.
Also, replay attacks are ruled out because each message has a MAC
on both content and a unique nonce.
Forced Reset Attacks. These are attacks where the adversary
injects bogus messages into one of the nodes in the system in order
to force the parties to reset the protocol and run the Init procedure
again to generate new session keys. This type of attack scenario only
serves to disrupt the parties in the system and does not compromise
data integrity or privacy.

4.3 Proof of Security
We show that for any polynomial time adversary𝒜, the probability
that𝒜wins the security game is at most 1/2+ϵ for some negligible
quantity ϵ . Our proof is by reduction to the security of the hash
functionH used duringUpdate. Specifically, we reduce to (a version
of) the following game for a hash function H, parameterized by an
integer N , and played between a challenger C and adversary 𝒜.

(1) C chooses a random string Ks and a random set T ⊂ [N];
(2) 𝒜 sends N messages x1, . . . ,xN to C;
(3) C computes H(Ks , {xi }i ∈T) = (K ′

s ,T
′), where K ′

s is another
string and T ′ ⊂ [N], another subset;

(4) 𝒜 sends either image or preimage to C;
(5) C draws a random bit b ∈ {0, 1};

• if 𝒜 sent image, C sets K∗
s = K ′

s if b = 0, K∗
s random if

b = 1 and returns (Ks ,K∗
s ,T

′) to 𝒜;
• if 𝒜 sent preimage, C sets K∗

s = Ks if b = 0, K∗
s random if

b = 1 and returns (K∗
s ,K

′
s ,T

′) to 𝒜;
(6) 𝒜 returns a bit b ′ and wins if b ′ = b.

Intuitively, this game captures the hardness of recovering Ks
such that H(Ks , {xi }i ∈T) = (K ′

s ,T
′) given (K ′

s ,T
′) and {xi }i ∈[N]

but not T . In fact, it says more: it is hard even to distinguish the
correct Ks from a random string. Note that Ks can be recovered in
2N time by trying all possible T ⊂ [N]. We assume this game is

202

ICDCN ’21, January 5–8, 2021, Nara, Japan Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin Rabiah, Elizabeth Liri, and Koushik Kar

GatewayIoT device Router Trusted Third Party (TTP)

GatewayIoT device Router
Setup 1

Setup 2

Figure 6: Experimental setups.

hard to win for an efficient adversary. This is the case when H is
modeled as a random oracle.

We reduce to a version of the above game where 𝒜 chooses
the N messages in step 2 adaptively, and each time he or she
sends an xi to C , C sends back an encryption of a related mes-
sage Fi using the secret key Ks . Then the Fi are used to compute
the hash in step 3, rather than the xi . Moreover, we require C to
generate (Ks ,T) using an ECDHE key exchange protocol, and C
begins by sending the public transcript of this protocol. For our
reduction, we assume an adversary 𝒜 plays against C in the above
game and acts as the challenger against another adversary 𝒜′

in the security game for Haiku. We show how 𝒜 can use an ad-
versary who wins the latter game to win the former. We handle
separately the cases when𝒜′ enters the challenge phase of Haiku’s
security game by sending the (update−and−reveal) query and the
(reveal−and−guess, count∗) query; we assume for simplicity that in
the former case, 𝒜′ does not invoke the (update) query at all, and
in the latter case that count∗ = 1. These assumptions are essentially
without loss of generality; the general case can be handled without
difficulty in much the same way. We now proceed formally with
our reduction.

Suppose 𝒜 plays in the above game against C as follows:
(1) 𝒜 invokes𝒜′ who plays against𝒜′ in the security game for

Haiku.
(2) Upon receiving the transcript of the key exchange protocol

used to generate (Ks ,T) from C , 𝒜 forwards the transcript
to 𝒜′;

(3) Each time 𝒜′ sends 𝒜 a query of the form
(communicate,msg, dir), 𝒜 sends msg to C and re-
ceives (y, ct), where ct is an encryption of y using Ks
and where y includes msg and an authentication MAC,
𝒜 forwards ct to 𝒜′; the i−th time this occurs, 𝒜 sets
xi = msg.

(4) In case of reveal−and−guess:
• The first time 𝒜′ sends 𝒜 the query (update), 𝒜 sends
preimage to C and receives (K∗

s ,K
′
s ,T

′) where (K ′
s ,T

′) is
the key information for the new session, and K∗

s is either
Ks or a random string; 𝒜 will have to guess which.

• All subsequent times 𝒜′ sends 𝒜 the (update) query, 𝒜
runs the Update procedure itself (now 𝒜 knows (K ′

s ,T
′))

and sends the resulting transcript to 𝒜′; it stores the old
session key.

• When𝒜′ sends (reveal−and−guess, 1) to𝒜,𝒜 returns all
session keys to 𝒜′ along with K∗

s ; when 𝒜′ returns b ′, 𝒜
forwards b ′ to C .

(5) In case of update−and−reveal:
• When 𝒜′ sends (update−and−reveal) to 𝒜, 𝒜 sends
image to C and receives (Ks ,K∗

s ,T
′) from C; 𝒜 forwards

Ks ,K
∗
s to 𝒜′; when 𝒜′ responds with b ′, 𝒜 forwards b ′

to C .
It is clear that 𝒜 wins the hash function game for H whenever

𝒜′ wins the security game for Haiku.

WiFi WiFi
Delay
10ms

WiFi
Delay
50ms

WiFi
Delay
100ms

WiFi
Loss 1%

WiFi
Loss 2%

WiFi
Loss 5%

0

200

400

600

800

Tim
e in

 m
illis

eco
nd

s

Setup(Haiku)
Setup(WPA3-Personal)
Setup(WPA2-EAP-TLS+CA)
Setup(TLS-RPK+TTP)
Update(Haiku)
Update(WPA3-Personal)
Update(WPA2-EAP-TLS)
Update(TLS-RPK)

Figure 7: Latency for setup & key update phases.

5 IMPLEMENTATION AND EVALUATION
We used Java to implement the following AKE protocols: 1) Haiku,
2) WPA3 personal, 3) a simplified version of WPA2 enterprise with
EAP-TLS and 4) TLS with raw public key (TLS-RPK). In WPA2
enterprise, all nodes communicate with a certificate authority (CA)
using the On-line Certificate Status Protocol (OCSP). In TLS-RPK,
both nodes contact a TTP to get the other node’s public keys and
avoid the overhead of exchanging and verifying certificates. TLS-
RPK is utilized to provide authentication and key establishment for
link layer security [13]. Across all protocols, we used AES (SKC) for
symmetric-key encryption with 256-bit keys, SHA-256 (SKC) for
hashing, ECDSA (PKC) for signatures and ECDHE (PKC) for key
exchange with 384-bit keys, CCMmode to encrypt and hash, MACs
of 128 bits, X.509 certificates and the NIST P-384 elliptic curve. For
experiments, nodes run a complete instance of each protocol.

5.1 Experimental Setup
We compare Haiku with IoT protocols that provide link-layer se-
curity and achieve PFS. Fig. 6 shows the two experimental setups:
Haiku and WPA3 use setup 1 whereas WPA2-EAP-TLS and TLS-
RPK use setup 2. Two laptops communicate over a wireless channel
through the wireless router. The two laptops, in setup 2, additionally
contact a CA/TTP during authentication to either make sure the
received certificates are not revoked or get the other node’s public
key. The third laptop is the CA/TTP, connected with the gateway
over Ethernet. We run a network emulator called NetEm [14], a
Linux built-in traffic controller (TC), at the NIC of the IoT device to
emulate delay and packet loss in the network. We collected 100 data
points for each experiment to get statistically reasonable results
and calculate the mean and 95% confidence interval for each metric.
For each message, we set a timeout value of 500ms. The maximum
number of times a packet is transmitted is set to 2, to show the
robustness of Haiku even with high residual loss.

5.2 Performance Analysis
We discuss the performance measurements for Haiku and the alter-
natives under various network conditions.

To observe the latency for Haiku in an actual wireless network,
we performed our experiments over WiFi. The Haiku update and
setup/reset phases show ∼4-5 and 1.05-1.5 times latency reduc-
tion, respectively, over the alternatives as shown in Fig. 7. Fig. 7
also shows the latency of Haiku and its counterparts for networks
with higher delay - we use an emulated delay of 10, 50 and 100ms.
Protocols that require exchanging additional packets or contact-
ing a CA/TTP add a significant latency especially when there is
a large network delay (e.g., 100ms). Haiku has 1.5-2.5 times lower
latency than alternatives when the network delay is 100ms. Haiku
update also achieves ∼1.8-3 times lower latency compared to the

203

Haiku: Efficient Authenticated Key Agreement with Strong Security Guarantees for IoT ICDCN ’21, January 5–8, 2021, Nara, Japan

WiFi
Haiku

WiFi
WPA3

WiFi
WPA2
+CA

WiFi
TLS
-RPK
+TTP

WiFi
100ms
Haiku

WiFi
100ms
WPA3

WiFi
100ms
WPA2
+CA

WiFi
100ms
TLS
-RPK
+TTP

WiFi
5%
Haiku

WiFi
5%
WPA3

WiFi
5%
WPA2
+CA

WiFi
5%
TLS
-RPK
+TTP

0

200

400

600

800
Tim

e i
n m

illis
ec

on
ds

Certificate verification (a)
ECDHE key exchange (b)
Network (c)
Signature/Authentication (d)
TTP (e)
Encryption & Decryption (f)
Other (g)

Figure 8: Breakdown of setup/reset phase latency.
update based on PKC in all cases. Thus, Haiku demonstrates good
performance even under varying network delays.

IoT networks are likely to experience frequent and possibly
significant residual packet loss. Thus, we also test the performance
of Haiku in networks with 1%, 2% and %5 packet loss. Fig. 7 shows
as packet loss increases in the network, PKC key update and setup
when using extra protocol packets or a CA/TTP have worse latency,
by up to 4.5 and 1.7 times, respectively, compared to Haiku. Thus,
Haiku provides better performance in such networks.

In Fig. 8 we further breakdown the latency of the setup/reset
based on PKC with/without contacting a CA/TTP. The breakdown
is across 7 sub-tasks for the setup: (a) certificate verification using
ECDSA, (b) key exchange using ECDHE, (c) network time, (d) calcu-
lation of σ for authentication which includes signing and verifying
using ECDSA/MAC, (e) contacting a CA/TTP, (f) encryption and
decryption using AES, and (g) other processing which includes
generating nonces and Tframes. Fig. 8 shows that the use of PKC
constitutes around 33% in the WiFi experiments and around 37%
when also using the CA/TTP. Because WiFi results in extra latency,
this causes the network time to increase, and thus protocols using
extra messages incur a significant additional penalty.

For poor WiFi networks with a 100ms delay, the network time
dominates the total latency as expected, as shown in the case of
protocols using extra messages like WPA3 or others contacting
CA/TTP; however, the use of PKC still accounts for around 20% of
the latency. When contacting a CA/TTP under this network condi-
tion, it adds a significant burden, and this along with the use of PKC
constitutes almost 37% of the total latency. For WiFi with 5% packet
loss, setup is also impacted from the use of PKC and contacting a
CA/TTP, with almost 31% for the use of PKC and 37% when com-
bined with contacting a CA/TTP. WPA3’s network delays increase
(due to increased retransmissions) as it exchanges ∼3 times more
messages than Haiku. Fig. 8 indicates that infrequent use of PKC
and fewer message exchanges are better as these require significant
processing and network time (expensive in IoT environments).
5.3 Overhead Analysis
We evaluated the overhead associated with Haiku and alternatives.
Table 2 shows Haiku needs at most 3 messages in all phases. The
Haiku update and setup exchange up to∼6 and 1.5 times fewer bytes
over the network compared to alternatives. Byte exchange savings
at update are due to reducing the number of protocol messages and
eliminating usage of PKC (signatures and ECDHE key materials)
which require exchanging more bytes compared to SKC; at setup,
savings come from omitting exchange of extra messages. Fig. 9(a)
shows Haiku update and setup reduce CPU cycle consumption by
up to ∼20 and 1.5 times compared to alternatives, except for WPA3
setup; reducing CPU cycles at the update is more important since
it is the constantly recurring phase, as opposed to the setup which
occurs only once. Since energy can be scarce in IoT settings, we also

0

100

200

300

400

500

600

700

0

20

40

60

80

100

120

140

Set.
Haiku

Set.
WPA3

Set.
WPA2-
TLS

Set.
TLS-
RPK

Upd.
Haiku

Upd.
WPA3

Upd.
WPA2-
TLS

Upd.
TLS-
RPK

M
illiJoules

C
PU

 c
yc

le
s

in
 m

illi
on

s CPU Cycles
Energy Consumption

Set.
Haiku

Upd.
Haiku

(a)

Set.
Haiku

Set.
WPA3

Set.
WPA2-
TLS

Set.
TLS-
RPK

Upd.
Haiku

Upd.
WPA3

Upd.
WPA2-
TLS

Upd.
TLS-
RPK

0

10

20

30

40

50

60

M
em

or
y

U
sa

ge
 in

 K
B

Code size
Other

(b)
Figure 9: Computational costs and memory footprints.

use a power meter that logs power consumption with millisecond
precision to allow us to make an accurate comparison of energy
consumed across different phases. Each phase is run 100 times
across each device with power being logged each millisecond to get
statistically accurate results. Difference of device baseline power
(device power when idle) and logged power is calculated and then
averaged to finally calculate energy as follows: Enerдy (Joule) =
Power (Watt)·Duration(Second). Fig. 9(a) also shows Haiku update
and setup reduce energy consumption by up to ∼26 and 1.7 times
over alternatives. Reductions in Haiku’s CPU cycle and energy
consumption are because it mainly relies on lightweight SKC which
reduces the amount of processing significantly and it exchanges
fewer protocol messages (less effort and fewer bytes sent on the
link, which saves battery [5]).

Fig. 9(b) shows memory needed by Haiku and its alternatives.
The code size forms most of the memory used in each phase, which
can be reduced by code optimization ..etc. The other category in-
volves memory used for other components when protocol is run-
ning (e.g., global/local variables ..etc). We emphasize the other cate-
gory as it does not necessarily change if code size changes. Haiku
update and setup reduce memory needed when protocol is run-
ning by ∼4 and 1.5 times compared to alternatives. This is because
Haiku update removes space overhead imposed by PKC (e.g., longer
ECDHE key materials) as opposed to alternatives, and its setup
removes parameters needed for extra protocol messages. Our pro-
totype shows Haiku code size is ∼1.3 times less than alternatives.

6 RELATEDWORK
Traditional authentication and key exchange protocols might not
be suitable for IoT environments due to making heavy use of PKC,
which is heavy for environments with resource-constrained de-
vices; for example, Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). Some traditional solutions might
be infeasible in disconnected IoT environments since they rely on
a TTP, such as Public Key Infrastructure (PKI) and Kerberos. Other
solutions do not achieve the strong security property, PFS, like
Wi-Fi Protected Access 2-Pre Shared Key (WPA2-PSK).

Some IoT-specific protocols use PKC repeatedly for authentica-
tion and key establishment [18, 22, 27, 32, 35], which is expensive.
Other protocols rely mainly on a central trusted third party (e.g.,
CA) for authentication and key exchange [2, 15, 25, 28, 30], which
is infeasible in disconnected environments. Other solutions do not
achieve PFS, (e.g., [9, 16]). Some approaches [3, 6, 11, 19, 29] rely
on weaker security models (susceptible to dictionary attacks) than
ours, to achieve PFS. Haiku achieves PFS using a stronger security
model (via random salts) while using lightweight key updates. An-
other approach introduced relies mainly on the hardware capability
for introducing randomness for authentication and key exchange
using Physically Unclonable Function (PUF) [1]. The PUF approach

204

ICDCN ’21, January 5–8, 2021, Nara, Japan Abdulrahman Bin Rabiah, K. K. Ramakrishnan, Silas Richelson, Ahmad Bin Rabiah, Elizabeth Liri, and Koushik Kar

Table 2: Number of messages and overhead (in bytes).
Phase Number of Messages Message 1 Message 2 Message 3 Message 4 Message 5 Message 6 Message 7 Message 8 Total Bytes

Initial Setup/Reset (Haiku) 3 680 828 151 * * * * * 1659
Initial Setup/Reset (WPA3-Personal) 8 194 194 130 130 162 349 402 162 1723
Initial Setup/Reset (WPA2-EAP-TLS with CA) 5 729 885 152 103 665 * * * 2534
Initial Setup/Reset (TLS-RPK with TTP) 5 344 500 152 216 711 * * * 1923
Update (Haiku) 3 73 94 77 * * * * * 244
Update (WPA3-Personal) 6 194 194 162 349 402 162 * * 1463
Update (WPA2-EAP-TLS) 3 168 297 152 * * * * * 617
Update (TLS-RPK) 3 168 297 152 * * * * * 617

seems helpful, but it is still not widely deployed in devices. The
approach in [36] requires the authenticator (e.g., gateway) to move
towards the IoT back and forth or do some physical motions while
the IoT is sending random packets. The authenticating device then
matches the IoT Received Signal Strength (RSS)-trace with an a
priori RSS-variation. However, human presence is needed or the
authenticator needs to be able to do the motions by itself.

The authors in [34] take advantage of the randomness in wireless
channels to update the session key. This approach relies mainly on
the assumption that the wireless channel is not perfect (loss free).
One downside of their protocol is that if the adversary has access to
a perfect channel, the protocol becomes vulnerable to both passive
(e.g., eavesdropping) and active attacks (e.g., hijacking). Another
downside is that their protocol does not provide authentication.
Since each pair of nodes starts the first session with a publicly fixed
session key, their protocol is susceptible to impersonation attacks.

The protocol in [4] improves the work in [34] by providing
lightweight authentication and not requiring adversaries to have
an imperfect wireless channel. Haiku improves on thework in [4] by
making changes to the protocol, thus making it support lossy links,
more scalabel, efficient and secure. Particularly, [4] achieves PFS
as long as an attacker, who has captured all encrypted messages of
all sessions, is able to find only one secret key, either the long term
key or session key, during a session. Haiku improves security and
achieves PFS even if the attacker is able to find all secret keys during
a session. We prevent such an attacker from updating the session
key given that he/she acquires all secret keys during a session along
with all encryptedmessages of all sessions.We also provide a formal
proof of security for Haiku and implementation results: latency
under various network conditions, number of bytes exchanged over
the network, memory footprints and energy consumption.

7 CONCLUSIONS
Haiku is a lightweight authentication and key exchange protocol
securing communication in IoT environments. Devices are provi-
sioned with certificates signed by manufacturers used for authenti-
cation. Haiku does not need to contact a CA/TTP, and can thus work
in disconnected IoT environments. Both nodes derive a session key
to encrypt and hash data exchanged, and frequently update that
key based on a random (but previously agreed upon) number of
frames of a session. As communication proceeds, session keys are
further strengthened as they are derived from the random data in a
random set of session frames (the size of the set is also randomized).
Secret keys are never exchanged over the network. Haiku achieves
PFS and is designed to work in lossy networks. It is lightweight as
it mainly relies on lightweight mechanisms, namely SKC and hash
functions. It is 5 times faster, spends 26/20 times less energy/CPU
cycles, requires 4 times less memory and exchanges 6 times fewer
bytes over network. Thus, Haiku provides a secure, fast, scalable,
energy and space efficient AKE protocol for IoT.

REFERENCES
[1] M.N. Aman, K.C. Chua, and B. Sikdar. 2017. Secure Data Provenance for the

Internet of Things. In IoTPTS. ACM.
[2] G. Avoine, S. Canard, and L. Ferreira. 2019. IoT-friendly AKE: forward secrecy and

session resumption meet symmetric-key cryptography. In ESORICS. Springer.
[3] G. Avoine, S. Canard, and L. Ferreira. 2020. Symmetric-Key Authenticated Key

Exchange (SAKE) with Perfect Forward Secrecy. In CT-RSA. Springer.
[4] A. Bin Rabiah, K.K. Ramakrishnan, E. Liri, and K. Kar. 2018. A Lightweight

Authentication and Key Exchange Protocol for IoT. In NDSS DISS. USENIX.
[5] L. Casado and P. Tsigas. 2009. ContikiSec: A Secure Network Layer for Wireless

Sensor Networks under the Contiki Operating System. In NordSec. Springer.
[6] C.M. Chen et al. 2018. An anonymous mutual authenticated key agreement

scheme for wearable sensors in wireless body area networks. In Appl. Sci.MDPI.
[7] W. Diffie, P.C. Van Oorschot, and M.J. Wiener. 1992. Authentication and authen-

ticated key exchanges. In Des Codes Crypt.
[8] M. Dousti and R. Jalili. 2015. Forsakes: a forward-secure authenticated key

exchange protocol based on symmetric key-evolving schemes. In AMC. AIMS.
[9] O. Garcia-Morchon et al. 2013. Securing the IP-based Internet of Things with

HIP and DTLS. In WiSec. ACM.
[10] C.G. Günther. 1989. An identity-based key-exchange protocol. In EUROCRYPT.
[11] A. Gupta et al. 2019. A lightweight anonymous user authentication and key

establishment scheme for wearable devices. In Computer Networks. Elsevier.
[12] D. Harkins and D. Carrel. 1998. The Internet Key Exchange (IKE). RFC 2409.
[13] T. Heer et al. 2011. Security Challenges in the IP-based Internet of Things. In

Wirel. Pers. Commun. Springer.
[14] S. Hemminger. 2005. Network emulation with NetEm. In Linux conf au.
[15] J. Hernandez-Ramos et al. 2015. Toward a lightweight authentication and autho-

rization framework for smart objects. In J-SAC. IEEE.
[16] H. Hussen, G. Tizazu, M. Ting, T. Lee, Y. Choi, and K. Kim. 2013. SAKES: Secure

authentication and key establishment scheme for M2M communication in the
IP-based wireless sensor network (6L0WPAN). In ICUFN. IEEE.

[17] J. Jonsson. 2002. On the security of CTR+ CBC-MAC. In SAC. Springer.
[18] T. Kivinen. 2016. Minimal Internet Key Exchange Version 2 (IKEv2) Initiator

Implementation. RFC 7815.
[19] P. Kumar, A. Braeken, A. Gurtov, J. Iinatti, and P. Ha. 2017. Anonymous secure

framework in connected smart home environments. In TIFS. IEEE.
[20] A. Langley et al. 2016. Elliptic Curves for Security. RFC 7748.
[21] P. Mahajan and A. Sachdeva. 2013. A Study of Encryption Algorithms AES, DES

and RSA for security. Global Journal of Computer Science and Technology (2013).
[22] M.. Mansour et al. 2018. A Secure Mutual Authentication Scheme with Perfect

Forward-Secrecy for Wireless Sensor Networks. In AISI. Springer.
[23] D. McGrew and J. Viega. 2004. The Galois/counter mode of operation (GCM).

Submission to NIST Modes of Operation Process (2004).
[24] NCIPHER. 2019. Global PKI and IoT trends study. https://bit.ly/3hTBJrT. (2019).
[25] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila. 2014. PAuthKey:

A pervasive authentication protocol and key establishment scheme for wireless
sensor networks in distributed IoT applications. In IJDSN. SAGE.

[26] N.R. Potlapally, S. Ravi, A. Raghunathan, and N.K. Jha. 2003. Analyzing the
Energy Consumption of Security Protocols. In ISLPED. ACM.

[27] Y. Qiu and M. Ma. 2016. In A Mutual Authentication and Key Establishment
Scheme for M2M Communication in 6LoWPAN Networks. Trans Industr Inform.

[28] S. Raza et al. 2016. S3K: Scalable security with symmetric keys − DTLS key
establishment for the Internet of Things. In T-ASE. IEEE.

[29] M. Shuai et al. 2019. Lightweight and Secure Three-Factor Authentication Scheme
for Remote Patient Monitoring Using On-Body Wireless Networks. In Security
and Communication Networks. Hindawi.

[30] D. Simon et al. 2008. The EAP-TLS Authentication Protocol. RFC 5216.
[31] P. Švenda. 2016. Basic comparison of Modes for Authenticated-Encryption (IAPM,

XCBC, OCB, CCM, EAX, CWC, GCM, PCFB, CS). (2016).
[32] H. Tschofenig and T. Fossati. 2016. Transport Layer Security (TLS) / Datagram

Transport Layer Security (DTLS) Profiles for the Internet of Things. RFC 7925.
[33] A. Wang, A. Mohaisen, and S. Chen. 2019. XLF: A Cross-layer Framework to

Secure the Internet of Things (IoT). In ICDCS. IEEE.
[34] S. Xiao, W. Gong, and D. Towsley. 2010. Secure Wireless Communication with

Dynamic Secrets. In INFOCOM. IEEE.
[35] N. Ye et al. 2014. An efficient authentication and access control scheme for

perception layer of internet of things. In Appl. Math. Inf. Sci. Natural Sciences.
[36] J. Zhang et al. 2017. Proximity based IoT device authentication. In INFOCOM.

205

https://bit.ly/3hTBJrT

	Abstract
	1 Introduction
	2 IoT Environment Constraints and Requirements
	2.1 Network Model and Assumptions
	2.2 Attack Scenarios

	3 Haiku
	3.1 Protocol Overview
	3.2 Setup/Reset Phase (Init)
	3.3 Normal Communication Phase (Comm)
	3.4 Session Key Update using SKC (Update)

	4 Security
	4.1 Our Model
	4.2 Discussion of Our Model
	4.3 Proof of Security

	5 Implementation and Evaluation
	5.1 Experimental Setup
	5.2 Performance Analysis
	5.3 Overhead Analysis

	6 Related Work
	7 Conclusions
	References

