
Self-stabilizing indulgent zero-degrading binary consensus

Downloaded from: https://research.chalmers.se, 2024-04-26 15:34 UTC

Citation for the original published paper (version of record):
Lundström, O., Raynal, M., Schiller, E. (2024). Self-stabilizing indulgent zero-degrading binary
consensus. Theoretical Computer Science, 989. http://dx.doi.org/10.1016/j.tcs.2024.114387

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Theoretical Computer Science 989 (2024) 114387

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Self-stabilizing indulgent zero-degrading binary consensus ✩

Oskar Lundström a, Michel Raynal b,c, Elad M. Schiller a,∗

a Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
b University Rennes IRISA, CNRS, Inria, 35042 Rennes, France
c Department of Computing, Polytechnic University, Hong Kong

A R T I C L E I N F O A B S T R A C T

Keywords:

Replication systems

Fault-tolerance

Self-stabilization

Guerraoui proposed an indulgent solution for the binary consensus problem. Namely, he showed
that an arbitrary behavior of the failure detector never violates safety requirements even if it
compromises liveness. Consensus implementations are often used in a repeated manner. Dutta
and Guerraoui proposed a zero-degrading solution, i.e., during system runs in which the failure
detector behaves perfectly, a node failure during one consensus instance has no impact on the
performance of future instances.

Our study, which focuses on indulgent zero-degrading binary consensus, aims at the design of an
even more robust communication abstraction. We do so through the lenses of self-stabilization—a
very strong notion of fault-tolerance. In addition to node and communication failures, self-

stabilizing algorithms can recover after the occurrence of arbitrary transient faults; these faults
represent any violation of the assumptions according to which the system was designed to operate
(as long as the algorithm code stays intact).

This work proposes the first, to the best of our knowledge, self-stabilizing algorithm for indulgent
zero-degrading binary consensus for time-free message-passing systems prone to detectable
process failures. The proposed algorithm recovers within a finite time after the occurrence of
the last arbitrary transient fault. Since the proposed solution uses an Ω failure detector, we also
present the first, to the best of our knowledge, self-stabilizing asynchronous Ω failure detector,
which is a variation on the one by Mostéfaoui, Mourgaya, and Raynal.

1. Introduction

We propose a self-stabilizing implementation of binary consensus objects for time-free (aka asynchronous) message-passing systems
whose nodes may fail-stop. We also show a self-stabilizing asynchronous construction of eventual leader failure detector, Ω.

1.1. Background and motivation

With the information revolution, everything became connected, e.g., banking services, online reservations, e-commerce, IoTs,
automated driving systems, to name a few. All of these applications are distributed, use message-passing systems, and require fault-

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.
Available online 11 January 2024
0304-3975/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: osklunds@student.chalmers.se (O. Lundström), michel.raynal@irisa.fr (M. Raynal), elad@chalmers.se (E.M. Schiller).

https://doi.org/10.1016/j.tcs.2024.114387

Received 30 July 2021; Received in revised form 17 November 2023; Accepted 2 January 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:osklunds@student.chalmers.se
mailto:michel.raynal@irisa.fr
mailto:elad@chalmers.se
https://doi.org/10.1016/j.tcs.2024.114387
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114387&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114387
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Fig. 1. The studied problem of Binary consensus (in bold) in the context of a relevant protocol suite. The layers include references for the self-stabilizing algorithms
needed for implementing the system components.

tolerant implementations. Designing and verifying these systems is notoriously difficult since the system designers have to cope with
their asynchronous nature and the presence of failures. The combined presence of failures and asynchrony creates uncertainties
(from the perspective of individual processes) with respect to the application state. Indeed, Fischer, Lynch, and Paterson [1] showed
that, in the presence of at least one (undetectable) process crash, there is no deterministic algorithm for determining the state of an
asynchronous message-passing system in a way that can be validly agreed on by all non-faulty processes.

This work is motivated by applications whose state is replicated over several processes in a way that emulates a finite-state
machine. In order to maintain consistent replicas, each process has to apply the same sequence of state transitions according to
different sources of (user) input. To this end, one can divide the problem into two: (i) propagate the user input to all replicas, and
(ii) let each replica perform the same sequence of state transitions. The former challenge can be rather simply addressed via uniform
reliable broadcast [2,3], whereas the latter one is often considered to be at the problem core since it requires all processes to agree
on a common value, i.e., the order in which all replicas apply their state transitions. In other words, the input must be totally ordered
before delivering it to the emulated automaton.

It was observed that the agreement problem of item (ii) can be generalized. Namely, the consensus problem requires each process
to propose a value, and all non-faulty processes to agree on a single decision, which must be one of the proposed values. The problem
of fault-tolerant consensus was studied extensively in the context of time-free message-passing systems. The goal of our work is to
broaden the set of failures that such solutions can tolerate.

1.2. Problem definition and scope

Definition 1.1 states the consensus problem. When the set, 𝑉 , of values that can be proposed, includes just two values, the
problem is called binary consensus. Otherwise, it is called multivalued consensus. Existing solutions for multivalued consensus often
use binary consensus algorithms. Fig. 1 depicts the relation to other problems in the area, which were mentioned earlier and require
self-stabilizing solutions.

Definition 1.1 (The consensus problem). Every process 𝑝𝑖 has to propose a value 𝑣𝑖 ∈ 𝑉 via an invocation of the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑣𝑖) operation,
where 𝑉 is a finite set of values. Let Alg be an algorithm that solves consensus. Alg has to satisfy safety (i.e., validity, integrity, and
agreement) and liveness (i.e., termination) requirements.

• Validity. Suppose that 𝑣 is decided. Then, 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) was invoked by some process.

• Integrity. Suppose a process decides. It does so at most once.

• Agreement. No two processes decide different values.

• Termination. All non-faulty processes decide.

As mentioned earlier, consensus cannot be solved in asynchronous message-passing systems that are prone to failures, as weak
as even the crash of a single process [1]. Unreliable failure detectors [4] are often used to circumvent such impossibilities. For a
given failure detector class, Guerraoui [5] proposed an indulgent solution, namely, he showed that an arbitrary behavior of the
failure detector never violates safety requirements even if it compromises liveness. Consensus implementations are often used in a
repeated manner. Dutta and Guerraoui [6] proposed a zero-degrading solution, i.e., during system runs in which the failure detector
behaves perfectly, a failure during one consensus instance has no impact on the performance of future instances. We study solutions
for indulgent zero-degrading binary consensus.

1.3. Fault model

We study a time-free message-passing system that has no guarantees on the communication delay and the algorithm cannot
explicitly access the local clock. Our fault model includes (𝑖) detectable fail-stop failures of processes, and (𝑖𝑖) communication
failures, such as packet omission, duplication, and reordering.

In addition to the failures captured in our model, we also aim to recover from arbitrary transient faults, i.e., any temporary violation
2

of assumptions according to which the system and network were designed to operate, e.g., the corruption of control variables, such

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

as the program counter, packet payload, and indices, e.g., sequence numbers, which are responsible for the correct operation of
the studied system, as well as operational assumptions, such as that at least a majority of nodes never fail. Since the occurrence of
these failures can be arbitrarily combined, we assume that these transient faults can alter the system state in unpredictable ways.
In particular, when modeling the system, we assume that these violations bring the system to an arbitrary state from which a
self-stabilizing algorithm should recover the system.

1.4. Repeated consensus in the context of self-stabilizing systems

We consider the case of repeated invocation of the Binary consensus task. The proposed solution is suitable for the (rather
common) case in which the (𝑘 + 1)-th invocation can only start after the completion of the 𝑘-th instance, as in the case of total
order broadcast [7]. Since the studied environment is time-free (asynchronous), there is a need to guarantee the completion of
the 𝑘-th instance even in the presence of transient faults. We clarify that, due to transient faults, the safety guarantees might be
violated with respect to the first instance (that is running after the last transient fault). However, liveness must hold even during the
period in which the system recovers from the last transient fault since otherwise, the system might block indefinitely. Moreover, all
requirements in Definition 1.1 must hold starting from the second invocation.

1.5. Related work

The celebrated Paxos algorithm [8] circumvents the impossibility by Fischer, Lynch, and Paterson [1]. Paxos assumes that failed
processes can be detected by unreliable failure detectors [4]. These detectors can eventually notify the algorithm about the set of
computers that were recently up and connected. However, there is no bound on the time that it takes the algorithm to receive a
correct version of this notification. It is worth mentioning that Paxos has inspired many veins of research, e.g., see [9] and references
therein. We, however, follow the family of abstractions by Raynal [2] due to its clear presentation that is easy to grasp.

1.5.1. Non-self-stabilizing solutions

The Ω class includes eventual leader failure detectors. Chandra, Hadzilacos, and Toueg [10] defined this class and showed that it
is the weakest for solving consensus in asynchronous message-passing systems while assuming that at most a minority of the nodes
may fail. In this work, we study the Ω failure detector by Mostéfaoui, Mourgaya, and Raynal [11]. They proposed a solution that
does not rely on synchrony assumptions. For example, they allow communication delays to always increase. Their algorithm is based
on a query-response mechanism. Their correctness proof assumes that the exchanged of query/response messages obey a defined
pattern, which we borrow (and specify Assumption 3.1). We note the existence of a computationally equivalent Ω failure detector
by Aguilera et al. [12,13], which explicitly accesses timers. Our study focuses on [11] since it is asynchronous.

Guerraoui [5] presented the design criterion of indulgence. Guerraoui and Lynch [14] studied this criterion formally. In the
context of this work, we consider consensus algorithms that are indulgence towards their failure detectors. By [6], it is required that
even if this failure detector is totally unreliable and does never provide useful information (say, since no synchrony requirements were
ever satisfied), the safety properties of consensus (validity and agreement) are preserved. Raynal [15,16] generalized the indulgence
criterion and designed indulgent Ω-based consensus algorithms.

Dutta and Guerraoui [6] introduced the zero-degradation criterion. They define the criterion for consensus algorithms. They say
that the algorithm is zero degrading if, and only if, the number of communication rounds needed to achieve a decision is the same in
every stable run (irrespective of the identity or the number of the initially crashed processes). They define a stable run as such that
if all failures occurred before the start of the run, then the output of the failure detector does not change during the run. We refine
their definition in the context of the studied problem, fault model, and design criteria, see Section 3.1.3.

The studied algorithm is by Guerraoui and Raynal [15] who presented an indulgent zero-degrading consensus algorithm for
message-passing systems in which the majority of the nodes never fail, and Ω-failure detectors are available. We have selected this
algorithm due to its clear presentation and the fact that it matches the “two rounds” lower bound by Keidar and Rajsbaum [17].

Hurfin et al. [18] showed that zero-degradation can be combined with the versatile use of a family of failure detectors for
improving the efficiency of round-based consensus algorithms. Wu et al. [19] presented the notion “look-ahead”, which is a technique
for addressing challenges related to the fact that, due to asynchrony, at any given time, different processes can be at different stages
of the computation. Thus, some processes might receive information related to prospective communication rounds while waiting for
the completion of their current communication round. This can lead to the processing of an unbounded amount of stale information.
The “look-ahead” technique by Wu et al. offer a significant latency reduction since it avoids waiting for the completion of (some
parts of) communication rounds in the presence of stale information (but still, due to safety requirements, has to go through all
communication rounds). The “look-ahead” technique used in this paper resembles the one by Wu et al. Unlike the one by Wu et al.,
the proposed solution does not use dedicated messages when invoking the “look-ahead” technique. As a bibliographical note, we
would like to mention that the earlier version of this work [20] did not consider a “look-ahead” technique that can offer the benefits
that Wu et al. have.

1.5.2. Self-stabilizing solutions

We follow the design criteria of self-stabilization, which Dijkstra [21] proposed. A detailed pretension of self-stabilization was
3

provided by Dolev [22] and Altisen et al. [23].

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Blanchard et al. [24] have a self-stabilizing failure detector for partially synchronous systems. They mention the class 𝑃 of perfect
failure detectors. Indeed, there is a self-stabilizing asynchronous failure detector for class 𝑃 by Beauquier and Kekkonen-Moneta [25]

and a self-stabilizing synchronous Ω failure detector by Delporte-Gallet, Devismes, and Fauconnier [26]. We present the first, to the
best of our knowledge, asynchronous Ω failure detector. Hutle and Widder [27] present an impossibility result that connects fault
detection, self-stabilization, and time-freedom as well as link capacity and local memory bounds. They explain how randomization can
circumvent this impossibility for an eventually perfect failure detector [28]. Biely et al. [29] connect between classes of deterministic
failure detectors, self-stabilization, and synchrony assumptions. We follow the assumption made by Mostéfaoui, Mourgaya, and
Raynal [11] regarding communication patterns, which is another way to circumvent such impossibilities.

The consensus problem was not extensively studied in the context of self-stabilization. The notable exceptions are by Dolev et
al. [30] and Blanchard et al. [24], which presented the first practically-self-stabilizing solutions for share-memory and message-

passing systems, respectively. We note that practically-self-stabilizing systems, as defined by Alon et al. [31] and clarified by Salem
and Schiller [32], do not satisfy Dijkstra’s requirements, i.e., practically-self-stabilizing systems do not guarantee recovery within
a finite time after the occurrence of transient faults. Moreover, the message size of Blanchard et al. is polynomial in the number
of processes, whereas ours is a constant (that depends on the number of bits it takes to represent a process identifier). The origin
of the design criteria of practically-self-stabilizing systems can be traced back to Dolev et al. [30], who provided a practically-self-

stabilizing solution for the consensus problem in shared memory systems, whereas we study message-passing systems. It is worth
mentioning that the work of Blanchard et al. has led to the work of Dolev et al. [33], which considers a practically-self-stabilizing
emulation of state-machine replication. I.e., it has the same task of the state-machine replication in Fig. 1. However, Dolev et al.’s
solution is based on virtual synchrony by Birman and Joseph [34], where the one in Fig. 1 considers consensus. We also note that
earlier self-stabilizing algorithms for state-machine replications were based on group communication systems and assumed execution
fairness [35–37].

There are self-stabilizing algorithms that are the result of transformations of non-self-stabilizing yet solutions, such as for atomic
snapshots [38], uniform reliable broadcast [39], set-constraint delivery broadcast [40], multivalued consensus [41], total-order
reliable broadcast, and state-machine replication [7], as well as coded atomic storage [42]. Our work focuses on the considerations
and techniques for transferring the studied algorithm, see Section 9. A stronger design criterion is self-stabilizing Byzantine fault
tolerance systems [43,44]. Recent advances in that area includes reliable broadcast [45,46], (Binary and multivalued) consensus [47,

48] consensus object recycling [49], state-machine replication [50,51], and topology discovery [52].

1.6. Our contribution

We present a fundamental module for dependable distributed systems: a self-stabilizing algorithm for indulgent zero-degrading
binary consensus for time-free message-passing systems that are prone to detectable node fail-stop failures.

The design criteria of indulgence and zero-degradation are essential for facilitating efficient distributed replication systems and
self-stabilization is imperative for significantly advancing the fault-tolerance degree of future replication systems. Indulgence means
that the safety properties, e.g., agreement, are never compromised even if the underlying model assumptions are never satisfied. Zero-

degrading means that the process failures that occurred before the algorithm starts have no impact on its efficiency, which depends
only on the failure pattern that occurs during the system run. To the best of our knowledge, we are the first to provide a solution for
binary consensus that is indulgent, zero-degrading, and can tolerate a fault model as broad as ours. Our model includes detectable
fail-stop failures, communication failures, such as packet omission, duplication, and reordering as well as arbitrary transient faults.
The latter can model any temporary violation of the assumptions according to which the system was designed to operate (as long as
the algorithm code stays intact).

In the absence of transient faults, our solution achieves consensus within an optimal number of communication rounds (and
without requiring execution fairness). After the occurrence of any finite number of arbitrary transient faults, the system recovers
within a finite time. As in Guerraoui and Raynal [15], each node uses a bounded amount of memory. Moreover, the communication
costs of our algorithm are similar to the non-self-stabilizing one by Guerraoui and Raynal [15]. The main difference is in the period
after a node has decided. Then, it has to broadcast the decided value. At that time, the non-self-stabilizing solution in [15] terminates
whereas our self-stabilizing solution repeats the broadcast until the consensus object is deactivated by the invoking algorithm. This
is along the lines of a well-known impossibility [22, Chapter 2.3] stating that self-stabilizing systems cannot terminate. Also, it is
easy to trade the broadcast repetition rate with the speed of recovery from transient faults.

We also propose the first, to the best of our knowledge, self-stabilizing asynchronous Ω failure detector, which is a variation
on Mostéfaoui, Mourgaya, and Raynal [11]. We show transient fault recovery within the time it takes all non-crashed processes to
exchange messages among themselves. The use of local memory and communication costs are asymptotically the same as the one
of [11]. The key difference is that we deal with the “counting to infinity” scenario, which transient faults can introduce. The proposed
self-stabilizing solution uses a trade-off parameter, 𝛿, that can balance between the solution’s vulnerability (to elect a crashed node
as a leader even in the absence of transient faults) and the time it takes to elect a non-faulty leader (after the occurrence of the last
transient fault). Note that 𝛿 ∈ℤ+ is a predefined constant.

1.7. Organization

We state our system settings in Section 2. Section 3 presents our self-stabilizing asynchronous Ω failure detector. Section 4
4

includes a brief overview of the earlier algorithm that has led to the proposed solution. An unbounded self-stabilizing algorithm is

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

proposed in Section 5. The correctness proof appears in Section 6. Our bounded self-stabilizing solution appears in Section 7 and
correctness proof follows in Section 8. We draw our concludes in Section 9.

2. System settings

We consider a time-free message-passing system that has no guarantees on the communication delay. Moreover, there is no notion
of global (or universal) clocks and the algorithm cannot explicitly access the local clock (or timeout mechanisms). The system consists
of a set,  , of 𝑛 fail-prone nodes (or processes) with unique identifiers. Any pair of nodes 𝑝𝑖, 𝑝𝑗 ∈  have access to a bidirectional
communication channel, channel𝑗,𝑖, that, at any time, has at most 𝖼𝗁𝖺𝗇𝗇𝖾𝗅𝖢𝖺𝗉𝖺𝖼𝗂𝗍𝗒∈ℕ packets on transit from 𝑝𝑗 to 𝑝𝑖 (this assumption
is due to a well-known impossibility [22, Chapter 3.2]).

In the interleaving model [22], the node’s program is a sequence of (atomic) steps. Each step starts with an internal computation
and finishes with a single communication operation, i.e., a message 𝑠𝑒𝑛𝑑 or 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. The state, 𝑠𝑖, of node 𝑝𝑖 ∈  includes all of 𝑝𝑖’s
variables and channel𝑗,𝑖. The term system state (or configuration) refers to the tuple 𝑐 = (𝑠1, 𝑠2, ⋯ , 𝑠𝑛). We define an execution (or run)

𝑅 = 𝑐[0], 𝑎[0], 𝑐[1], 𝑎[1],… as an alternating sequence of system states 𝑐[𝑥] and steps 𝑎[𝑥], such that each 𝑐[𝑥 + 1], except for the
starting one, 𝑐[0], is obtained from 𝑐[𝑥] via the execution of 𝑎[𝑥].

We clarify that the above interleaving model [22,23] allows reasoning about the system state in a way that is somewhat simpler
than event-based models [53,54].

2.1. Task specification

The set of legal executions (𝐿𝐸) refers to all the executions in which the requirements of task 𝑇 hold. In this work, 𝑇binCon denotes
the task of binary consensus, which Definition 1.1 specifies, and 𝐿𝐸binCon denotes the set of executions in which the system fulfills
𝑇binCon’s requirements.

The proposed solution is tailored for the protocol suite presented in Fig. 1. Thus, we consider multivalued consensus objects that
use an array, 𝐵𝐶[], of 𝑛 binary consensus objects, such as the one by [2, Chapter 17] and [41], where 𝑛 = || is the number of
nodes in the system. Also, we organize these multivalued consensus objects in an array, 𝐶𝑆[], of 𝑀 elements, where 𝑀 ∈ ℤ+ is a
predefined constant. In [55], we explain how to use a global restart procedure to bound the number of sequence numbers used for
the multivalued objects.

We clarify the importance, the context of self-stabilizing systems, of using only bounded variables. Specifically, the implementa-

tion of algorithms that were designed to use unbounded counters in systems that have only bounded memory may violate correctness
invariants in the presence of transient faults. The reason is that, in practice, computer systems use only a bounded amount of mem-

ory. Thus, a single transient fault can cause an integer counter to overflow. From that point in time, basic correctness invariants can
be lost. For example, counters are used for ordering events and once they wrap to zero, the ordering logic is broken.

Also, we specify how the decided value is retrieved. We clarify that it can be either via the returned value of the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾()
operation (as in the studied algorithm [15]) or via the returned value of the 𝗋𝖾𝗌𝗎𝗅𝗍() operation (as in the proposed solution).

2.2. The fault model and self-stabilization

A failure occurrence is a step that the environment takes rather than the algorithm.

2.2.1. Benign failures

When the occurrence of a failure cannot cause the system execution to lose legality, i.e., to leave 𝐿𝐸, we refer to that failure as a
benign one.

Node failures. The studied consensus algorithms are prone to fail-stop failures, in which nodes stop taking steps. We assume that
at most 𝑡 < |𝑃 |∕2 node may fail and that unreliable failure detectors [4] can detect these failures.

The studied failure detector constructions consider crash failures that are undetectable without explicit access to timers (as in
Aguilera et al. [13]) or other synchrony assumptions (as Mostéfaoui, Mourgaya, and Raynal [11] do, see our review Section 3.3).

Communication failures. We consider solutions for the problem of consensus that are oriented towards time-free message-passing
systems and thus they are oblivious to the time in which the packets arrive and depart. We assume that any message can reside in
a communication channel only for a finite period. Also, the communication channels are prone to packet failures, such as omission,
duplication, reordering. However, if 𝑝𝑖 sends a message infinitely often to 𝑝𝑗 , node 𝑝𝑗 receives that message infinitely often. We refer
to the latter as the fair communication assumption.

2.2.2. Arbitrary transient faults

We consider any temporary violation of the assumptions according to which the system was designed to operate. We refer to these
violations and deviations as arbitrary transient faults and assume that they can corrupt the system state arbitrarily (while keeping the
program code intact). The occurrence of an arbitrary transient fault is rare. Thus, our model assumes that the last arbitrary transient
5

fault occurs before the system execution starts [22]. Also, it leaves the system to start in an arbitrary state.

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

2.2.3. Dijkstra’s self-stabilization criterion

An algorithm is self-stabilizing with respect to the task of 𝐿𝐸, if every (unbounded) execution 𝑅 of the algorithm reaches within
a finite period a suffix 𝑅𝑙𝑒𝑔𝑎𝑙 ∈𝐿𝐸 that is legal. Namely, Dijkstra [21] requires ∀𝑅 ∶ ∃𝑅′ ∶𝑅 =𝑅′◦𝑅𝑙𝑒𝑔𝑎𝑙 ∧𝑅𝑙𝑒𝑔𝑎𝑙 ∈𝐿𝐸 ∧ |𝑅′| ∈ℤ+,
where the operator ◦ denotes that 𝑅 =𝑅′◦𝑅′′ concatenates 𝑅′ with 𝑅′′.

2.2.4. Complexity measures

The complexity measure of self-stabilizing systems, called stabilization time, is the time it takes the system to recover after the
occurrence of the last transient fault. Next, we provide the assumptions needed for defining this period.

We do not assume execution fairness in the absence of transient faults. We say that a system execution is fair when every step that
is applicable infinitely often is executed infinitely often and fair communication is kept. After the occurrence of the last transient
fault, we assume the system execution is temporarily fair until the system reaches a legal execution, as in Georgiou et al. [38].

As mentioned, our solution for the problem of consensus does not consider the notion of time. We do, however, use the term
complete iteration (of the do-forever loop). It is well-known that self-stabilizing algorithms cannot terminate and stop sending
messages [22, Chapter 2.3]. Moreover, their code includes a do-forever loop. Let 𝑁𝑖 be the set of nodes with whom 𝑝𝑖 completes
a message round trip infinitely often in 𝑅. Suppose that immediately after the state 𝑐𝑏𝑒𝑔𝑖𝑛, node 𝑝𝑖 takes a step that includes the
execution of the first line of the do-forever loop, and immediately after the system state 𝑐𝑒𝑛𝑑 , it holds that: (i) 𝑝𝑖 has completed the
iteration of 𝑐𝑏𝑒𝑔𝑖𝑛 and (ii) every request message 𝑚 (and its reply) that 𝑝𝑖 has sent to any non-failing node 𝑝𝑗 ∈  during the iteration
(of the do-forever loop) has completed its round trip. In this case, we say that 𝑝𝑖 ’s complete iteration starts at 𝑐𝑏𝑒𝑔𝑖𝑛 and ends at 𝑐𝑒𝑛𝑑 .

3. 𝛀 -class failure detectors

We study a non-self-stabilizing construction of an Ω failure detector (Section 3.1.2) and propose its self-stabilizing variant.

3.1. Unreliable failure detectors

Chandra and Toueg [4] introduced the concepts of failure patterns and unreliable failure detectors. Chandra, Hadzilacos, and
Toueg [10] proposed the class Ω of eventual leader failure detectors. It is known to be the weakest failure detector class to solve
consensus. A pedagogical presentation of these failure detectors is given in Raynal [2].

3.1.1. Failure patterns

Any execution 𝑅 ∶= (𝑐[0], 𝑎[0], 𝑐[1], 𝑎[1], …) can have any number of failures during its run. 𝑅’s failure pattern is a function
𝐹 ∶ ℤ+ → 2 , where ℤ+ refers to an index of a system state in 𝑅, which in some sense represents (progress over) time, and 2 is
the power-set of  , which represents the set of failing nodes in a given system state. 𝐹 (𝜏) denotes the set of failing nodes in system
state 𝑐𝜏 ∈ 𝑅. Since we consider fail-stop failures, 𝐹 (𝜏) ⊆ 𝐹 (𝜏 + 1) holds for any 𝜏 ∈ ℤ+. Denote by Faulty(𝐹) ⊆  the set of nodes
that eventually fail-stop in the (unbounded) execution 𝑅, which has the failure pattern 𝐹 . Moreover, Correct(𝐹) =  ⧵ Faulty(𝐹). For
brevity, we sometimes notate these sets as Correct and Faulty.

3.1.2. Eventual leader failure detectors

This class allows 𝑝𝑖 ∈  to access a read-only local variable 𝑙𝑒𝑎𝑑𝑒𝑟𝑖, such that {𝑙𝑒𝑎𝑑𝑒𝑟𝑖}1≤𝑖≤𝑛 satisfy the Ω-validity and Ω-eventual
leadership requirements, where 𝑙𝑒𝑎𝑑𝑒𝑟𝜏

𝑖
denotes 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 ’s value in system state 𝑐𝜏 ∈𝑅 of system execution 𝑅. Ω-validity requires that

∀𝑖 ∶ ∀𝜏 ∶ 𝑙𝑒𝑎𝑑𝑒𝑟𝜏
𝑖

contains a node identity. Ω-eventual leadership requires that ∃𝓁 ∈ Correct(𝐹), ∃𝑐𝜏 ∈𝑅 ∶ ∀𝜏′ ≥ 𝜏 ∶ ∀𝑖 ∈ Correct(𝐹) ∶
𝑙𝑒𝑎𝑑𝑒𝑟𝜏

′
𝑖
= 𝓁. These requirements imply that a unique and non-faulty leader is eventually elected, however, they do not specify when

this occurs and how many leaders might co-exist during an arbitrarily long (yet finite) anarchy period. Moreover, no node can detect
the ending of this period of anarchy.

3.1.3. Stable runs

We refine the definition of stable runs (by Dutta and Guerraoui [6]) in order to clarify its application in the context of the studied
problem, fault model, and design criteria. Let 𝑅 be an execution in which the Ω failure detector always (and at all non-faulty nodes)
outputs the same non-faulty node, 𝑝𝓁 . In this case, we say that 𝑅 is a stable run with respect to the studied problem, fault model,
and design criteria. We note that stable runs are relevant only in the context of legal executions since during the period of recovery
from transient faults there are no guarantees regarding the output correctness of the failure detector.

3.2. Non-self-stabilizing Ω failure detector

Algorithm 1 presents the non-self-stabilizing Ω failure detector by Mostéfaoui, Mourgaya, and Raynal [11]; the boxed code lines
are irrelevant to [11] since we use them to present our self-stabilizing solution. Note that, in addition to the assumptions described in
Section 2.1, Mostéfaoui, Mourgaya, and Raynal make the following operational assumptions (Section 3.3), which are asynchronous
6

by nature.

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Algorithm 1: An Ω construction; code for 𝑝𝑖. (Only the self-stabilizing version includes the boxed code lines.)

1 local constants, variables, and their initialization: (Initialization is optional in the context of self-stabilization.)

2 const 𝛿 ; /* max gap between the extrema of count values */

3 𝑟 ∶= 0 ; /* current round number */
4 𝑟𝑒𝑐𝐹 𝑟𝑜𝑚 ∶=  ; /* set of identities of the nodes that replied to the most recent query */
5 𝑐𝑜𝑢𝑛𝑡[0..𝑛-1] ∶= [0, … , 0] ; /* the number of times each node was suspected */

6 operation 𝗅𝖾𝖺𝖽𝖾𝗋() {let (−, 𝑥) ∶= min{(𝑐𝑜𝑢𝑛𝑡[𝑘], 𝑘)}𝑝𝑘∈ ; return (𝑥)}

7 macro 𝖼𝗈𝗎𝗇𝗍𝗌() ∶= {𝑐𝑜𝑢𝑛𝑡[𝑘] ∶ 𝑝𝑘 ∈ } ;

8 macro 𝖼𝗁𝖾𝖼𝗄() ∶= if max 𝖼𝗈𝗎𝗇𝗍𝗌() − min 𝖼𝗈𝗎𝗇𝗍𝗌() > 𝛿 then foreach 𝑝𝑘 ∈  do 𝑐𝑜𝑢𝑛𝑡[𝑘]←max{𝑐𝑜𝑢𝑛𝑡[𝑘], (max 𝖼𝗈𝗎𝗇𝗍𝗌() − 𝛿)};

9 do-forever begin
10 𝑟 ← 𝑟 + 1;
11 repeat
12 foreach 𝑗 ≠ 𝑖 do send 𝖠𝖫𝖨𝖵𝖤(𝑟, 𝑐𝑜𝑢𝑛𝑡) to 𝑝𝑗 ;

13 until 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ = 𝑟, −, recFromJ) received from (𝑛 − 𝑡) nodes;

14 let 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚 ∶= ∪ sets of recFromJ received in line 13;

15 foreach 𝑗 ∉ 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚 ∶ 𝑐𝑜𝑢𝑛𝑡[𝑗] < 𝛿 +min𝖼𝗈𝗎𝗇𝗍𝗌() do 𝑐𝑜𝑢𝑛𝑡[𝑗] ← 𝑐𝑜𝑢𝑛𝑡[𝑗] + 1;

16 𝑟𝑒𝑐𝐹 𝑟𝑜𝑚 ← {nodes from which 𝑝𝑖 has received 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ, ∙) in line 13};

17 𝖼𝗁𝖾𝖼𝗄() ;

18 upon 𝖠𝖫𝖨𝖵𝖤(rJ, countJ) arrival from 𝑝𝑗 begin
19 foreach 𝑝𝑘 ∈  do 𝑐𝑜𝑢𝑛𝑡[𝑘] ←max(𝑐𝑜𝑢𝑛𝑡[𝑘], countJ[𝑘]);
20 𝖼𝗁𝖾𝖼𝗄() ;

21 send 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ, count, recFrom) to 𝑝𝑗

22 upon 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ, countJ, recFromJ) arrival from 𝑝𝑗 begin

23 foreach 𝑝𝑘 ∈  do 𝑐𝑜𝑢𝑛𝑡[𝑘]←max(𝑐𝑜𝑢𝑛𝑡[𝑘], countJ[𝑘]);

24 𝖼𝗁𝖾𝖼𝗄() ;

3.3. Operational assumptions

Algorithm 1 follows Assumption 3.1. Let us observe Algorithm 1’s communication pattern of queries and responses. Node 𝑝𝑖
broadcasts 𝖠𝖫𝖨𝖵𝖤() queries repeatedly until the arrival of the corresponding 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤() messages from (𝑛 − 𝑡) receivers (the
maximum number of messages from distinct nodes it can wait for without risking being blocked forever). For the sake of a simple
presentation (and without loss of generality), it is assumed that nodes always receive their own responses. We refer to the first (𝑛 − 𝑡)
replies to a query that 𝑝𝑖 receives as the winning responses. The others are referred to as the losing since, after a crash, the failing
nodes cannot reply.

Assumption 3.1 (Eventual Message Pattern). In any execution 𝑅, there is a system state 𝑐𝜏 ∈ 𝑅, a non-faulty 𝑝𝑖 ∈  , and a set 𝑄 of
(𝑡 +1) nodes, such that, after 𝑐𝜏 , each node 𝑝𝑗 ∈𝑄 always receives a winning response from 𝑝𝑖 to each of its queries (until 𝑝𝑗 possibly
crashes). (Note that the time until the system reaches 𝑐𝜏 , the identity of 𝑝𝑖, and the set 𝑄 need not be explicitly known by the nodes.)

3.4. Variables

The local state includes 𝑟𝑖 (initialized to 0) and is used for indexing 𝑝𝑖’s current round of alive queries and responses. Moreover,
the array 𝑐𝑜𝑢𝑛𝑡[] counts the number of suspicions, e.g., 𝑐𝑜𝑢𝑛𝑡𝑖[𝑗] counts from zero the number of times 𝑝𝑖 suspected 𝑝𝑗 . Also, the
𝑟𝑒𝑐𝐹 𝑟𝑜𝑚 set (initialized to ) has the identities of the nodes that responded to the most recent alive query. When the application
layer accesses the variable 𝑙𝑒𝑎𝑑𝑒𝑟, Algorithm 1 returns the identity of the least suspected node (line 6).

3.5. Algorithm description

Algorithm 1 repeatedly executes a do-forever loop (lines 9 to 16), which broadcasts 𝖠𝖫𝖨𝖵𝖤(𝑟, ∙) messages (line 12) and collects
their replies, which are the 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ, ∙) messages (lines 13 and 21). In this message exchange, every 𝑝𝑖 ∈  uses a round number,
𝑟𝑖, to facilitate asynchronous rounds without any coordination linking the rounds of different nodes. Moreover, there is no limit on
the number of steps any node takes to complete an asynchronous round.

3.5.1. The do-forever loop

Each iteration of the loop includes actions (1) to (3).

1. Node 𝑝𝑖 broadcasts 𝖠𝖫𝖨𝖵𝖤(𝑟𝑖, 𝑐𝑜𝑢𝑛𝑡𝑖) queries (line 12), and waits for (𝑛 − 𝑡) replies, i.e., 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ, recFromJ) messages from
𝑝𝑗 ∈  (line 21), where 𝑟𝑖 and rJ are matching round numbers. Moreover, 𝑐𝑜𝑢𝑛𝑡𝑖 is an array in which, as said before, 𝑐𝑜𝑢𝑛𝑡𝑖[𝑘]
stores the number of times 𝑝𝑖 suspected 𝑝𝑘 ∈  . Also, recFromJ is a set of the identities of the responders to 𝑝𝑗 ’s most recent
7

query (lines 16 and 21).

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

2. By aggregating into 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚𝑖 all the arriving recFromJ sets (line 13), 𝑝𝑖 can estimate that any 𝑝𝑗 ∶ 𝑗 ∉ 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚𝑖 that
does not appear in any of these sets is faulty. Thus, 𝑝𝑖 increment 𝑐𝑜𝑢𝑛𝑡𝑖[𝑗] (line 15).

3. The iteration of the do-forever loop ends with a local update to 𝑝𝑖 ’s 𝑟𝑒𝑐𝐹 𝑟𝑜𝑚𝑖 (line 16).

3.5.2. Processing of arriving queries

Upon 𝖠𝖫𝖨𝖵𝖤(rJ, countJ) arrival from 𝑝𝑗 , node 𝑝𝑖 merges the arriving data with its own (line 19), and replies with
𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(rJ, 𝑟𝑒𝑐𝐹 𝑟𝑜𝑚𝑖) (line 21). This reply includes 𝑝𝑗 ’s round number, rJ, which is not linked to 𝑝𝑖 ’s round number, 𝑟𝑖.

3.6. Self-stabilizing Ω failure detector

When including the boxed code lines, Algorithm 1 presents an unbounded self-stabilizing variation of the Ω failure detector
in [11]. (As mentioned before, Section 5 in [38] explains how to convert such unbounded self-stabilizing algorithms to bounded
ones.) Note that in [11], all non-crashed nodes converge to a constant value that is known to all correct nodes whereas the counters
of crashed nodes increase forever, see claims C2 and C3 of Theorem 97 in [2]. Thus, the proposed algorithm includes the following
differences from [11].

3.6.1. Sharing all 𝑐𝑜𝑢𝑛𝑡[]’s values

Algorithm 1 makes sure that any non-failing node does not “hide” a value that is too high in 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] without sharing it with all
correct nodes. In the context of self-stabilization, such a value can appear due to a transient fault. To that end, Algorithm 1 includes
the field 𝑐𝑜𝑢𝑛𝑡 in the 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤() message (line 21) so that the receiver can merge the arriving data with the local one (line 23).

3.6.2. No counting to infinity

Algorithm 1 also avoids “counting to infinity” since, in the context of self-stabilization, a transient fault can set the counters to
arbitrary values. For example, suppose that the counter values that non-faulty nodes associate with all crashed nodes are zero. Then
suppose that the counters associated with any non-faulty node store an extremely high value, say, 𝑀 = 262. We must not require the
system to count from zero to 𝑀 before it is guaranteed that a non-crashed leader is elected, because it would take more than 146
years to do (if we assume the rate of one nanosecond per communication round).

Thus, the proposed solution limits the difference between the extrema counter values in any local array to be less than 𝛿, where
𝛿 ∈ℤ+ is a predefined constant. One can view 𝛿 as a trade-off parameter between the solution vulnerability (to elect a crashed node
as a leader even in the absence of transient faults) and the time it takes to elect a non-faulty leader (after the occurrence of the last
transient fault and after the system has reached 𝑐𝜏 that satisfies the eventual message pattern assumption, see Assumption 3.1). I.e.,
on the one hand, if the value of 𝛿 is set too low, nodes that sporadically slow down might be elected, while on the other hand, for
very large values of 𝛿, say, 𝑀 = 262, the time it takes to recover after the occurrence of the last transient faults can be extremely
long.

3.7. Correctness of the self-stabilizing version of Algorithm 1

Definitions 3.1 and 3.2 are needed for showing that Algorithm 1 brings the system to a legal execution (Theorem 3.2).

Definition 3.1 (Algorithm 1’s consistent state). Suppose max 𝖼𝗈𝗎𝗇𝗍𝗌𝑖() −min 𝖼𝗈𝗎𝗇𝗍𝗌𝑖() ≤ 𝛿 holds in 𝑐 ∈𝑅 for any non-failing 𝑝𝑖 ∈  . In
this case, we say 𝑐 is consistent.

Definition 3.2 (Complete execution of Algorithm 1). Let 𝑅 be an execution of Algorithm 1. Let 𝑐, 𝑐′′ ∈𝑅 =𝑅′◦𝑅′′ denote the starting
system states of 𝑅, and respectively, 𝑅′′, for some suffix 𝑅′′ of 𝑅. We say that message 𝑚 is completely delivered in 𝑐 if the com-

munication channels do not include 𝖠𝖫𝖨𝖵𝖤(𝑟, ∙) nor 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(𝑟, ∙) messages (in system state 𝑐). Suppose that 𝑅 = 𝑅′◦𝑅′′ has a
suffix 𝑅′′, such that for any 𝖠𝖫𝖨𝖵𝖤(𝑟, ∙) or 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤(𝑟, ∙) message 𝑚 that is not completely delivered in 𝑐′′, it holds that 𝑚 does not
appear in 𝑐. In this case, we say that 𝑅′′ is complete with respect to 𝑅.

Theorem 3.2 (Convergence). (i) Once every non-failing node completes at least one iteration of the do-forever loop (lines 9 to 17) or receives
at least one message (lines 18 or 22), the system reaches a consistent state. (ii) Every infinite execution 𝑅 =𝑅′◦𝑅′′ of Algorithm 1 reaches
within a finite number of steps a suffix 𝑅′′, such that 𝑅′′ is complete with respect to 𝑅 (Definition 3.2).

Proof of Theorem 3.2. Lines 17, 20, and 24 imply invariant (i). Invariant (ii) is implied by the assumption that any message that
appears in the starting system state can reside in a communication channel only for a finite time (Section 2.2.1). □Theorem 3.2

Theorem 3.3 (Closure). Let 𝑅 be an execution of Algorithm 1 that starts in a consistent system state. Suppose that 𝑅 has an eventual
message pattern (Assumption 3.1). Algorithm 1 demonstrates in 𝑅 a construction of the eventual leader failure detector, Ω.

Proof of Theorem 3.3. In the context of Algorithm 1, we say that 𝑝𝑖 ∈  inhibits the increment of 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] in line 15 when
8

𝑥 ∉ 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚 holds but 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] < 𝛿 + min 𝖼𝗈𝗎𝗇𝗍𝗌𝑖() does not. Suppose that, for a given 𝑝𝑥 ∈  , there is 𝑝𝑘 ∈  that, during

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

𝑅, either increments 𝑐𝑜𝑢𝑛𝑡𝑘[𝑥] in line 15 or in inhibits such increments for a finite number of times. In this case, we say that
𝑐𝑜𝑢𝑛𝑡𝑘[𝑥] is eventually constant. In all other cases, we say that 𝑐𝑜𝑢𝑛𝑡𝑘[𝑥] is unbounded. Given a failure pattern 𝐹 (), we define:
𝑃𝐿 = {𝑥 ∶ ∃𝑖 ∈ Correct(𝐹) ∶ 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] is eventually constant}, and ∀𝑖 ∈ Correct(𝐹) ∶ 𝑃𝐿𝑖 = {𝑥 ∶ 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] is eventually constant},
where the set of node identities, 𝑃𝐿, stands for “potential leaders”. These definitions imply ∀𝑖 ∈ Correct(𝐹) ∶ 𝑃𝐿𝑖 ⊆ 𝑃𝐿.

The rest of the proof shows that correct nodes share identical sets of potential leaders (𝑃𝐿), which are non-empty (Lemma 3.4),
and include only correct nodes (Lemmas 3.5 and 3.6). The proof ends by showing that the nodes in 𝑃𝐿 can only be suspected, i.e.,
their counters are incremented (or inhibited from being incremented), a finite number of times, and this number is eventually the
same at each non-faulty node (Lemma 3.7). Thus, all correct nodes eventually elect the node that was suspected for the smallest
number of times.

Lemma 3.4. 𝑃𝐿 ≠ ∅

Proof of Lemma 3.4. Since Assumption 3.1 holds, there must be a system state 𝑐𝜏0 ∈ 𝑅, a node 𝑝𝑖 and a set 𝑄 of (𝑡 + 1) nodes
for which at any state after 𝑐𝜏0 , any non-failing node 𝑝𝑗 ∈𝑄 receives winning responses from 𝑝𝑖 for any of 𝑝𝑗 ’s queries. Due to the
assumptions that |𝑄| > 𝑡 and that there are at most 𝑡 faulty nodes, 𝑄 includes at least one non-faulty node. Let 𝜏 ≥ 𝜏0 be a time after
which no more nodes fail.

Node 𝑝𝑘 ∈  ∶ 𝑘 ∈ Correct(𝐹) does not stop sending its query (line 12) until it receives 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤() messages from (𝑛 − 𝑡)
nodes. Moreover, after 𝑐𝜏 , at least (𝑡 + 1) nodes get winning responses from 𝑝𝑖. Therefore, the system eventually reaches a state
𝑐𝜏𝑘

∈𝑅 ∶ 𝜏 ≤ 𝜏𝑘 after which 𝑖 ∈ 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚𝑘 holds (line 21). Thus, 𝑝𝑘 stops incrementing (or inhibiting the increment) of 𝑐𝑜𝑢𝑛𝑡𝑘[𝑖]
at line 15.

Since 𝑝𝑘 is any correct nodes, the system reaches 𝑐max{𝜏𝑥}𝑥∈Correct(𝐹)
∈ 𝑅 eventually, it holds that ∀𝑥, 𝑦 ∈ Correct(𝐹) ∶ 𝑐𝑜𝑢𝑛𝑡𝑥[𝑖] =

𝑐𝑜𝑢𝑛𝑡𝑦[𝑖] =𝑀𝑖 ∈ ℤ+. I.e., due to the repeated exchange of messages between any pair of non-faulty nodes, these nodes have a
constant value for 𝑐𝑜𝑢𝑛𝑡[𝑖] eventually. □Lemma 3.4

Lemma 3.5. 𝑃𝐿 ⊆ Correct(𝐹).

Proof of Lemma 3.5. We show that for every 𝑥 ∉ Correct(𝐹), it holds that 𝑝𝑖 ∶ 𝑖 ∈ Correct(𝐹) increments (or inhibits the increment)
of 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] for an unbounded number of times during 𝑅. The rest of the proof is implied by the fact that non-faulty nodes never stop
exchanging messages among themselves and merge the arriving information upon message arrival (lines 19 and 23).

Suppose that all the faulty nodes have crashed (and their 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤() messages have been received) before 𝑐𝜏 ∈𝑅. Let 𝑝𝑖 and 𝑝𝑗
be two non-faulty nodes, and 𝑝𝑥 a faulty one. We observe invariants (i) to (iv), which imply the proof. (i) Since 𝑝𝑥 cannot respond
to any of 𝑝𝑗 ’s queries, it holds that 𝑥 ∉ rF𝑗 , where rF𝑗 is the value of 𝑟𝑒𝑐𝐹 𝑟𝑜𝑚𝑗 (which is assigned in line 16) in any system state,
𝑐′
𝜏
, that appears in 𝑅 after 𝑐𝜏 . (ii) Due to invariant (i), it holds that 𝑥 ∉ pRF𝑗 , where pRF𝑗 is the value of 𝑝𝑟𝑒𝑣𝑅𝑒𝑐𝐹 𝑟𝑜𝑚𝑖 (which is

assigned in line 13) in any system state, 𝑐′′
𝜏

, that appears in 𝑅 after 𝑐′
𝜏
. (iii) Due to invariant (ii), after 𝑐′′

𝜏
, every execution of line 15

implies an increment of 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] (or the inhibition of an increment). (iv) Since 𝑝𝑖 sends an unbounded number of queries, invariant
(iii) implies that 𝑐𝑜𝑢𝑛𝑡𝑖[𝑥] is incremented (or inhibited from incrementing) for an unbounded number of times during 𝑅. □Lemma 3.5

Lemma 3.6. (𝑖 ∈ Correct(𝐹)) ⇒ (𝑃𝐿𝑖 = 𝑃𝐿)

Proof of Lemma 3.6. Recall that 𝑃𝐿𝑖 ⊆ 𝑃𝐿 (by the definitions of 𝑃𝐿 and 𝑃𝐿𝑖). Thus, 𝑃𝐿𝑖 ⊆ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝐹) (Lemma 3.5). Also, by
showing that 𝑃𝐿 ⊆ 𝑃𝐿𝑖 we have the proof.

Let us assume that 𝑘 ∈ 𝑃𝐿 and show that 𝑘 ∈ 𝑃𝐿𝑖. That is, we assume that there are 𝑘, 𝑗 ∈ Correct(𝐹) for which the constant 𝑀𝑘

is the highest value stored in 𝑐𝑜𝑢𝑛𝑡𝑗 [𝑘] throughout 𝑅. In order to prove that 𝑘 ∈ 𝑃𝐿𝑖, we need to show that 𝑐𝑜𝑢𝑛𝑡𝑖[𝑘] convergences
to a constant eventually. Since 𝑐𝑜𝑢𝑛𝑡𝑗 [𝑘] ≤𝑀𝑘 throughout 𝑅, the repeated exchange of 𝖠𝖫𝖨𝖵𝖤() and 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤() messages between
the correct nodes 𝑝𝑖 and 𝑝𝑗 (line 12, lines 18 to 19, and lines 22 to 23), implies 𝑐𝑜𝑢𝑛𝑡𝑖[𝑘] ≤𝑀𝑘 throughout 𝑅. □Lemma 3.6

Lemma 3.7. Let 𝑖, 𝑗 ∈ Correct(𝐹). Suppose that 𝑅 has a suffix 𝑅′′ during which 𝑐𝑜𝑢𝑛𝑡𝑖[𝑘] =𝑀𝑘 always hold, where 𝑀𝑘 is a constant.
Then, 𝑐𝑜𝑢𝑛𝑡𝑗 [𝑘] =𝑀𝑘 also holds throughout 𝑅′′.

Proof of Lemma 3.7. This is due to the repeated exchange of 𝖠𝖫𝖨𝖵𝖤() and 𝖱𝖤𝖲𝖯𝖮𝖭𝖲𝖤() messages between 𝑝𝑖 and 𝑝𝑗 (lines 12, 18

to 19 and 22 to 23). □Lemma 3.7 □Theorem 3.3

4. Background: non-self-stabilizing binary consensus

Algorithm 2 is a non-self-stabilizing Ω-based binary consensus algorithm that is indulging and zero-degrading. For the sake of a
9

simpler presentation of the correctness proofs, Algorithm 2’s line enumeration continues the one of Algorithm 1.

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Algorithm 2: Guerraoui-Raynal [15]’s non-self-stabilizing indulgent zero-degrading binary consensus; code for 𝑝𝑖.

25 local variables and their initialization:
26 𝑟 ∶= 0 ; /* current round number */
27 𝖾𝗌𝗍[0..1] ∶= [⊥, ⊥] ; /* decision estimates at the start of phases 0 & 1 */

28 operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) begin
29 (𝖾𝗌𝗍[], 𝑟) ← ([𝑣, ⊥], 0) ; /* ⊥ denotes no value */
30 while 𝖳𝗋𝗎𝖾 do
31 𝑟 ← 𝑟 + 1;

/* Phase 0: select a value with the help of Ω */
32 let 𝑚𝑦𝐿𝑒𝑎𝑑𝑒𝑟 ∶= 𝗅𝖾𝖺𝖽𝖾𝗋 ; /* read Ω */
33 repeat
34 broadcast PHASE(0, 𝑟, 𝖾𝗌𝗍[0], 𝑚𝑦𝐿𝑒𝑎𝑑𝑒𝑟)
35 until [PHASE(0, 𝑟, ∙) received from 𝑛 − 𝑡 nodes] ∧ [PHASE(0, 𝑟, ∙) received from 𝑝𝑚𝑦𝐿𝑒𝑎𝑑𝑒𝑟 ∨𝑚𝑦𝐿𝑒𝑎𝑑𝑒𝑟 ≠ 𝗅𝖾𝖺𝖽𝖾𝗋];
36 if [PHASE(0, 𝑟, ∙, 𝓁) received from more than 𝑛∕2 nodes] ∧ [PHASE(0, 𝑟, 𝑣, ∙) received from 𝑝𝓁] then 𝖾𝗌𝗍[1] ← 𝑣 else 𝖾𝗌𝗍[1] ← ⊥;

/* Here ((𝖾𝗌𝗍𝑖[1] ≠ ⊥) ∧ (𝖾𝗌𝗍𝑗 [1] ≠ ⊥)) ⟹ (𝖾𝗌𝗍𝑖[1] = 𝖾𝗌𝗍𝑗 [1] = 𝑣) */

/* Phase 1: try to decide on an 𝖾𝗌𝗍[1] value */
37 repeat broadcast PHASE(1, 𝑟, 𝖾𝗌𝗍[1]) until [PHASE(1, 𝑟, ∙) received from 𝑛 − 𝑡 nodes];
38 switch {𝑟𝑒𝑐 ∶ PHASE(1, 𝑟, 𝑟𝑒𝑐) has been received} do
39 case {𝑣} do {broadcast DECIDE(𝑣); return(𝑣)};

40 case {𝑣, ⊥} do 𝖾𝗌𝗍[0] ← 𝑣;

41 case {⊥} do continue;

42 upon 𝖣𝖤𝖢𝖨𝖣𝖤(𝑣) arrival from 𝑝𝑗 do {broadcast DECIDE(𝑣); return(𝑣);}

4.1. Algorithm structure

Algorithm 2 proceeds in asynchronous rounds that include two phases. The algorithm aims to have, by the end of phase zero,
the same value, which is named the estimated value. This selection is done by a leader, whose election is facilitated by the Ω
failure detector. Next, during phase one, the algorithm tests the success of phase zero. The challenging scenario occurs when, due
to asynchrony, not all nodes run the same round simultaneously. Therefore, the test considers the agreement on the round num-

ber, the leader identity, and the proposed value. Moreover, just before deciding on any value, say 𝑣, the deciding node broadcasts
a DECIDE(𝑣) message. Upon DECIDE(𝑣) arrival, the receiver repeats the broadcast of the arriving message before deciding. Al-

gorithm 2 executes the “decide” action by returning with 𝑣 from 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣)’s invocation. This technique of ‘broadcast repetition’
basically lets Algorithm 2 invoke a reliable broadcast of the decided value.

4.1.1. The system behavior during phase zero

The objective of phase zero of round 𝑟 is to let all nodes store in 𝖾𝗌𝗍[1] the same value. Once that happens, a decision can be taken
during phase one of round 𝑟. As we are about to explain, that objective is guaranteed to be achieved once a single leader is elected.

Phase zero aims at the provision of the safety property, i.e., no two different decisions are made during Ω’s anarchy period (in
which there is no single non-faulty elected leader). To that end, phase zero makes sure that the quasi-agreement property always holds
before anyone enters phase one of round 𝑟, where ((𝖾𝗌𝗍𝑖[1] ≠ ⊥) ∧ (𝖾𝗌𝗍𝑗 [1] ≠ ⊥)) ⟹ (𝖾𝗌𝗍𝑖[1] = 𝖾𝗌𝗍𝑗 [1] = 𝑣) (line 36) is the property
definition. This means that, if 𝖾𝗌𝗍𝑖[1] = 𝑣 ≠ ⊥ holds, from the perspective of 𝑝𝑖, it can decide 𝑣. Moreover, if 𝖾𝗌𝗍𝑖[1] = ⊥ holds, then
from the perspective of 𝑝𝑖, it is not ready to decide any value. Therefore, a system state that satisfies the quasi-agreement property
allows the individual nodes to decide during phase one on the same value (when 𝖾𝗌𝗍𝑖[1] = 𝖾𝗌𝗍𝑗 [1] = 𝑣) or defer the decision to the next
round (when 𝖾𝗌𝗍𝑖[1] = ⊥). In order to satisfy the quasi-agreement property by the end of phase zero, each 𝑝𝑖 ∈  performs actions (1)
and (2), which imply Corollary 4.1.

Corollary 4.1. The quasi-agreement property holds immediately before 𝑝𝑖 ∈  enters phase one of any round.

Action (1): node 𝑝𝑖 stores in 𝑚𝑦𝐿𝑒𝑎𝑑𝑒𝑟𝑖 the value of 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 (line 32), which is the interface to the Ω failure detector, before
broadcasting the message PHASE(0, 𝑟, 𝖾𝗌𝗍𝑖[0], 𝑚𝑦𝐿𝑒𝑎𝑑𝑒𝑟𝑖) (line 34). It then waits until it hears from 𝑛 − 𝑡 nodes on the same round
(line 35). Since there are at most 𝑡 failed nodes, waiting for more than 𝑛 − 𝑡 nodes jeopardizes the system’s liveness. Moreover, 𝑡 < 𝑛∕2
and thus any set of 𝑛 − 𝑡 nodes is a majority set, which contains at least one correct node. Node 𝑝𝑖 may stop broadcasting when it
receives a PHASE(0, 𝑟, ∙) message from its leader, i.e., 𝑝myLeader𝑖 , or when a new leader is elected, i.e., myLeader𝑖 ≠ 𝑙𝑒𝑎𝑑𝑒𝑟𝑖.

Action (2): after the above broadcast, 𝑝𝑖’s assignment to 𝖾𝗌𝗍𝑖[1] (line 36) satisfies the quasi-agreement property by making sure
that (i) a majority of nodes consider 𝑝𝓁 as their leader when they broadcast the PHASE(0, 𝑟, ∙, 𝓁), and (ii) 𝑝𝑖 received PHASE(0, 𝑟, 𝑣, ∙)
from 𝑝𝓁 . In other words, if (i) and (ii) hold, 𝑝𝑖 can assign 𝑣 to 𝖾𝗌𝗍𝑖[1], which is 𝑝𝓁 ’s value in 𝖾𝗌𝗍𝓁[0] at the start of round 𝑟. Otherwise,
𝖾𝗌𝗍𝑖[1] gets ⊥. Due to the majority intersection property, no two majority sets can have two different unique leaders. Therefore, it
cannot be that 𝑒𝑠𝑡1𝑖[𝑟] = 𝑣 ≠ ⊥ and 𝑒𝑠𝑡1𝑗 [𝑟] = 𝑣′ ≠ ⊥ without having 𝑣 = 𝑣′.

Corollary 4.1 is implied by the above two actions.

4.1.2. The system behavior during phase one

During this phase, 𝑝𝑖 broadcasts PHASE(1, 𝑟, 𝖾𝗌𝗍𝑖[1]) until it hears from 𝑛 − 𝑡 nodes. By the quasi-agreement property, ∃𝑣 ∈ 𝑉 ∶
10

∀𝑝𝑗 ∈  ∶ 𝖾𝗌𝗍𝑗 [1] = ⊥ ∨𝖾𝗌𝗍𝑗 [1] = 𝑣 ≠ ⊥ holds during round 𝑟. Thus, for the set of all received estimated values, 𝑟𝑒𝑐𝑖 ∈ {{𝑣}, {𝑣, ⊥}, {⊥}}

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Figure 2: Constants, variables, and operations for Algorithm 3.

43 constants: 𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒: the initial value (a vector) of a binary consensus object;

44 variables: 𝑟𝑛𝑑[0, .., 𝑛−1] = [−1, … , −1] round numbers arriving from all nodes;

45 𝗉𝗁𝗌[0, ..][0, .., 𝑛−1] = [[0, … , 0], …] phase numbers (per round) arriving from all nodes;

46 𝖾𝗌𝗍[0, ..][0, .., 𝑛−1][0, 1] = [[[⊥, ⊥], …], …] estimated values (per round) arriving from all nodes;

47 𝗅𝖾𝖺𝖽[0, ..][0, .., 𝑛−1] = [⊥, … , ⊥] leader identity (per round) arriving from all nodes;

48 𝖽𝖾𝖼[0, .., 𝑛−1] = [⊥, … , ⊥] decide value arriving from all nodes (if does not exist, then ⊥);

49 operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣 ≠ ⊥) do {(𝑂, 𝗋𝗇𝖽[𝑖], 𝖾𝗌𝗍[0][𝑖][0]) ← (𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒, 0, 𝑣)}
50 operation 𝗋𝖾𝗌𝗎𝗅𝗍() if (𝑂 ≠ ⊥ ∧ |{𝑝𝑘 ∈  ∶𝑂.𝖽𝖾𝖼[𝑘] ≠ ⊥}| ≥ 𝑡+1) then return (𝑂.𝖽𝖾𝖼[𝑖]) else return ⊥;

Algorithm 3: Unbounded self-stabilizing algorithm for indulgent zero-degrading binary consensus; code for 𝑝𝑖 and binary
object 𝑂.

51 Constants, variables, and operation appear in Fig. 2.

52 do-forever {foreach 𝑂 ≠ ⊥ 𝐰𝐢𝐭𝐡 𝑂′𝑠 fields 𝑟, 𝗉𝗁𝗌, 𝑒𝑠𝑡, 𝗅𝖾𝖺𝖽, and 𝖽𝖾𝖼 do

53 if (∃𝑥>𝗋𝗇𝖽[𝑖]∅ ≠ ({𝖾𝗌𝗍[𝑥+1][𝑖][0], 𝖾𝗌𝗍[𝑥][𝑖][1]} ⧵ {⊥})) then {𝑂← ⊥; continue;};

54 if ∄𝑝𝑘 ∈  ∶ 𝖽𝖾𝖼[𝑘] ≠ ⊥ then (𝗋𝗇𝖽[𝑖], 𝗅𝖾𝖺𝖽[𝗋𝗇𝖽[𝑖]][𝑖], 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖]) ← (𝗋𝗇𝖽[𝑖] + 1, 𝗅𝖾𝖺𝖽𝖾𝗋, 0);
55 else if 𝖽𝖾𝖼[𝑖] = ⊥ then 𝖽𝖾𝖼[𝑖] ←𝖽𝖾𝖼[𝑘];
56 if (∃𝑥∈{0,…,𝗋𝗇𝖽[𝑖]}⊥ ∈ {𝖾𝗌𝗍[𝑥][𝑖][0], 𝗅𝖾𝖺𝖽[𝑥][𝑖]}) then {𝑂← ⊥; continue;};

57 repeat

58 if 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖] = 0 then

59 if (∃𝑝𝓁∈ 𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝓁][0] ≠ ⊥ ∧ ∃𝑆⊆ |𝑆| ≥ 𝑛 − 𝑡 ∧ ∀𝑝𝑘∈𝑆 𝗅𝖾𝖺𝖽[𝗋𝗇𝖽[𝑖]][𝑘] = 𝓁) then (𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝑖][1], 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖]) ← (𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝓁][0], 1) ;

60 else if (∃𝑝𝑘∈ 𝗋𝗇𝖽[𝑘] > 𝗋𝗇𝖽[𝑖] ∨ (𝗋𝗇𝖽[𝑘] = 𝗋𝗇𝖽[𝑖] ∧ 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑘] = 1)) then

61 (𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝑖][1], 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖]) ← (𝖾𝗌𝗍[𝗋𝗇𝖽[𝑘]][𝑘][1], 1) /* look ahead */

62 else if 𝗅𝖾𝖺𝖽[𝗋𝗇𝖽[𝑖]][𝑖] ≠ 𝗅𝖾𝖺𝖽𝖾𝗋 then (𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝑖][1], 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖]) ← (⊥, 1);
63 broadcast PHASE(True, 𝗋𝗇𝖽[𝑖], 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖], 𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝑖], 𝗅𝖾𝖺𝖽[𝗋𝗇𝖽[𝑖]][𝑖], 𝖽𝖾𝖼[𝑖]);
64 until (∃𝑝𝑘∈𝖽𝖾𝖼[𝑘] ≠ ⊥) ∨ (|{𝑝𝑘 ∈  ∶ 𝗋𝗇𝖽[𝑘] ≥ 𝗋𝗇𝖽[𝑖] ∧ 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑘] ≥ 1}| ≥ 𝑛−𝑡);
65 let 𝑟𝑒𝑐 = {𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][𝑘][1] ∶ 𝑝𝑘 ∈  ∧ 𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑘] ≥ 1};

66 switch 𝑟𝑒𝑐 do

67 case {𝑣 ≠ ⊥} do {𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖] + 1][0] ← 𝑣; if 𝖽𝖾𝖼[𝑖] = ⊥ then 𝖽𝖾𝖼[𝑖] ← 𝑣};

68 case {⊥, 𝑣 ≠ ⊥} do 𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖] + 1][0] ← 𝑣;

69 case {⊥} do 𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖] + 1][0] ← 𝖾𝗌𝗍[𝗋𝗇𝖽[𝑖]][0];

70 upon 𝖯𝖧𝖠𝖲𝖤(aJ, rJ, pJ, eJ, 𝓁J, dJ) arrival from 𝑝𝑗 do begin

71 if ⊥ ∈ {eJ[0], 𝓁J} then return;

72 if 𝑂 = ⊥ then (𝑂, 𝗋𝗇𝖽[𝑖], 𝖾𝗌𝗍[0][𝑖][0]) ← (𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒, 0, eJ[0]);
73 𝑂.𝗉𝗁𝗌[rJ][𝑗] ←max{𝑂.𝗉𝗁𝗌[rJ][𝑗], pJ};

74 foreach 𝑥 ∈ {0, 1} ∶𝑂.𝖾𝗌𝗍[rJ][𝑗][𝑥] = ⊥ do 𝑂.𝖾𝗌𝗍[rJ][𝑗][𝑥] ← eJ[𝑥];
75 if 𝑂.𝖽𝖾𝖼[𝑗] = ⊥ then 𝑂.𝖽𝖾𝖼[𝑗] ← dJ;

76 if 𝓁J ≠ ⊥ then 𝑂.𝗅𝖾𝖺𝖽[rJ][𝑗] ← 𝓁J;

77 if aJ then 𝐬𝐞𝐧𝐝 PHASE(𝖥𝖺𝗅𝗌𝖾, rJ, 𝑂.𝗉𝗁𝗌[rJ][𝑖], 𝑂.𝖾𝗌𝗍[rJ][𝑖], 𝑂.𝗅𝖾𝖺𝖽[rJ][𝑖], 𝑂.𝖽𝖾𝖼[𝑖]) 𝐭𝐨 𝑝𝑗 ;

(line 38) holds. For the 𝑟𝑒𝑐𝑖 = {𝑣} case, 𝑝𝑖 broadcasts DECIDE(𝑣) and then decide 𝑣 (line 39). For the 𝑟𝑒𝑐𝑖 = {𝑣, ⊥} case, 𝑝𝑖 uses 𝑣
during round 𝑟 +1 as the new estimated value 𝖾𝗌𝗍𝑖[0] since some other node might have decided 𝑣 (line 40). For the 𝑟𝑒𝑐𝑖 = {⊥} case,
𝑝𝑖 continues to round 𝑟 + 1 without modifying 𝖾𝗌𝗍𝑖[0] (line 41). Note that, at any round 𝑟, it cannot be the case that both 𝑟𝑒𝑐𝑖 = {𝑣}
and 𝑟𝑒𝑐𝑗 = {⊥} hold, since 𝑝𝑖’s broadcast of DECIDE(𝑣) implies that it had received PHASE(1, 𝑟𝑖, 𝑣) from a majority of nodes. Due
to the majority intersection property, there is at least one PHASE(1, 𝑟𝑖, 𝑣) arrival to any 𝑝𝑗 ∈  that executes line 38 since it also
received PHASE(1, 𝑟𝑖, ∙) messages from a majority. Thus, 𝑟𝑒𝑐𝑗 = {⊥} cannot hold.

4.1.3. The necessity of broadcasting 𝑣 before deciding on it
Algorithm 2 has to take into consideration the case in which not all nodes decide during round 𝑟. E.g., a majority of nodes might

decide on round 𝑟, while a minority of them continues to round 𝑟 + 1 during which it must not wait in vain to hear from a majority.
By broadcasting DECIDE(𝑣) before deciding 𝑣, Algorithm 2 allows the system to avoid such bad situations since once 𝑝𝑖 decides, it
is guaranteed that eventually, all correct nodes decide (because Guerraoui Raynal [15] assumes reliable communication channels).

5. Unbounded self-stabilizing binary consensus

In this section, we present our self-stabilizing variation on Guerraoui and Raynal [15]. Before presenting our solution, we re-

view the challenges that one faces when transforming the solution by Guerraoui and Raynal into a self-stabilizing one. As a first
transformation step, we present Algorithm 3, which uses arrays with an unbounded number of entries that grows linearly in the
number of communication rounds. After demonstrating the correctness of Algorithm 3 (Section 6), we transform Algorithm 3 into
a solution (Section 7) that uses only bounded size arrays and unbounded round numbers. But, using existing techniques [55], the
11

round counters can be bounded as well.

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

5.1. Challenges and approaches

Wu et al. [19] observed situations in which, due to asynchrony, one node, say, 𝑝𝑖, runs phase zero, while another, say, 𝑝𝑗 runs
phase one of the same round as of 𝑝𝑖. Wu et al. also note that asynchrony can lead for 𝑝𝑗 to execute a round number that is (much)
higher than the ones of 𝑝𝑖. In both cases, once 𝑝𝑖 receives information about 𝑝𝑗 ’s round and phase, it can proceed to the next phase
of its round since the estimated value for phase one of its round is already given via 𝑝𝑗 ’s message.

Wu et al. proposed a “look-ahead” technique for helping to reduce the number of rounds required for reaching consensus. Note
that the “look-ahead” technique by Wu et al., as well as the one used by the proposed self-stabilizing solution, still requires 𝑝𝑖 to
execute phase one. In other words, 𝑝𝑖 cannot skip rounds when it sees that 𝑝𝑗 is running a higher round number.

Our main motivation for using a “look-ahead” technique (that is different than the one by Wu et al.) is not for the sake of reducing
the number of rounds but rather to avoid the need to demonstrate the absence of live-lock situations in the presence of transient-

faults. E.g., if 𝑝𝑖 ignores the fact that 𝑝𝑗 is running another round number, it might wait in vain for 𝑝𝑗 ’s message. Specifically, when
exactly half of the nodes execute round 𝑟 and another half executes round 𝑟′ > 𝑟, a self-stabilizing solution needs to guarantee that
no live-lock situations can occur. (Note that we are not claiming that Guerraoui and Raynal [15] might run into live-lock situations
in the presence of transient faults. We rather wish to simplify the proof that no live-lock can occur.)

Our “look-ahead” technique merges 𝖯𝖧𝖠𝖲𝖤() messages (of both phases) and the 𝖣𝖤𝖢𝖨𝖣𝖤() messages into a single message that
includes all of the fields of Algorithm 2’s messages. Also, we replace the two repeat-until loops of Algorithm 2 with a single repeat-

until loop and cascading if-statements that implement our “look-ahead” technique.

Another challenge that our self-stabilizing solution needs to deal with is the fact that Guerraoui and Raynal [15] assume reliable
communications between any two nodes. This work does not assume reliable communications, due to reasons explained in [42,
Section 2.2]. Thus, the proposed solution needs to store all sent information (in arrays that have one entry per communication
round) in order to provide such reliability.

5.2. Variables

Algorithm 3 considers a single binary consensus object, which is denoted by 𝑂, which Section 2.1 details how this object can fit in
the protocol suite presented in Fig. 1. The object 𝑂 is composed of 𝗋𝗇𝖽[0, … , 𝑛−1], 𝗉𝗁𝗌[0, …][0, … , 𝑛−1], 𝖾𝗌𝗍[0, …][0, … , 𝑛−1][0, 1],
𝗅𝖾𝖺𝖽[0, …][0, … , 𝑛−1], and 𝖽𝖾𝖼[0, … , 𝑛−1], where 𝗉𝗁𝗌[0, …][], 𝖾𝗌𝗍[0, …][], and 𝗅𝖾𝖺𝖽[0, …][] are unbounded since they grow linearly
in the number of communication rounds.

• The array 𝗋𝗇𝖽[] (round numbers) is initialized by [−1, … , −1]. For a given node 𝑝𝑖 ∈  , the entry 𝗋𝗇𝖽𝑖[𝑖] holds 𝑝𝑖’s round number.
For node 𝑝𝑗 ∈  ⧵ {𝑝𝑖}, the entry 𝗋𝗇𝖽𝑖[𝑗] holds the highest round number that 𝑝𝑖 ever received from 𝑝𝑗 , where −1 represents the
case in which no value was ever received.

• The array 𝗉𝗁𝗌[][] (phase numbers) is initialized to an unbounded sequence of the element [0, … , 0]. For a given round number 𝑟,
the entry 𝗉𝗁𝗌𝑖[𝑟][𝑖] holds 𝑝𝑖 ’s phase. For the case of 𝑟′ ≤ 𝗋𝗇𝖽𝑖[𝑗], the entry 𝗉𝗁𝗌𝑖[𝑟′][𝑗] holds the highest phase that 𝑝𝑖 ever received
from 𝑝𝑗 for round 𝑟′.

• The array 𝖾𝗌𝗍[][][] (estimated values) is initialized to an unbounded sequence of the element [[⊥, ⊥], … , [⊥, ⊥]]. For a given round
number 𝑟 and phase 𝑥 ∈ {0, 1}, the entry 𝖾𝗌𝗍𝑖[𝑟][𝑖][𝑥] holds 𝑝𝑖 ’s estimate for phase 𝑥. For the case of 𝑟′ ≤ 𝗋𝗇𝖽𝑖[𝑗] ∧𝑥′ ≤ 𝗉𝗁𝗌𝑖[𝑟′][𝑗],
the entry 𝖾𝗌𝗍𝑖[𝑟′][𝑗][𝑥′] holds 𝑝𝑗 ’s (last received) estimate for round 𝑟′ and phase 𝑥′.

• The array 𝗅𝖾𝖺𝖽[][] (leaders) is initialized to an unbounded sequence of the element [⊥, … , ⊥]. For a given round number 𝑟, the
entry 𝗅𝖾𝖺𝖽𝑖[𝑟][𝑖] holds 𝑝𝑖 ’s leader for round 𝑟. For the case of 𝑟′ ≤ 𝗋𝗇𝖽𝑖[𝑗], the entry 𝗅𝖾𝖺𝖽𝑖[𝑟′][𝑗] holds 𝑝𝑗 ’s leader for round 𝑟′.

• The array 𝖽𝖾𝖼[] (decided values) is initialized by [⊥, … , ⊥]. For a given node 𝑝𝑖 ∈  , the entry 𝖽𝖾𝖼𝑖[𝑖] holds 𝑝𝑖 ’s decided value.
For node 𝑝𝑗 ∈  ⧵ {𝑝𝑖} and the case of 𝖽𝖾𝖼𝑖[𝑗] ≠ ⊥, the entry 𝖽𝖾𝖼𝑖[𝑗] holds 𝑝𝑗 ’s decided value.

5.3. Message structure

Algorithm 3 uses the 𝖯𝖧𝖠𝖲𝖤(ackNeed, round, phase, estimate, leader, decide) message (lines 63 and 70), where the field ackNeed
(Boolean) indicates whether a reply message is needed (line 77), the field round holds the sender’s round number, the field phase
holds the sender’s phase, the field estimate holds the current estimates for the respective round (for both phases), the field leader holds
the sender’s leader (for the current round), and the field decide holds the sender’s decide value, if there is such value (otherwise, ⊥).

5.4. Interface operations

The operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) (Section 2.1) allows the invoking node to propose value 𝑣 (line 49). The operation 𝗋𝖾𝗌𝗎𝗅𝗍() returns
eventually the decided value, if such a decision occurred (line 50). Otherwise, ⊥ is returned.

5.5. The do-forever loop (lines 52 to 69)

The loop starts by asserting consistency and managing a new round (Section 5.5.1), iterative communication via a repeat-until
12

loop (Section 5.5.2), and ending the round by attempting to reach a decision (Section 5.5.3).

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

5.5.1. Starting a new round (lines 53 to 56)

Line 53 asserts that 𝖾𝗌𝗍[][][] does not store information about rounds that 𝑝𝑖 has yet to reach. Since this can only occur due to a
transient fault, the presence of such stale information results in the deactivation of object 𝑂𝑖 (line 54).

Line 54 considers the case in which no node, 𝑝𝑘 ∈  , has informed 𝑝𝑖 about any decision. In this case, line 54 starts a new round
by incrementing 𝑝𝑖’s round number, queries the Ω failure detector, and asserts that the phase is zero. Otherwise, 𝑝𝑖 can simply adopt
𝑝𝑘 ’s decided value (line 55).

Line 56 is another consistency assertion in which 𝑝𝑖 makes sure that there is no round number (earlier than the current one) that
does not store an estimated value or a leader. As in line 54, the failure of this assertion results in the deactivation of object 𝑂𝑖.

5.5.2. The repeat-until loop (line 58 to 64)

This loop embeds the processing of phase zero messages in lines 58 to 62. Line 59 tests whether a PHASE() message was received
from at least 𝑛 − 𝑡 nodes such that their leader field points to the same leader, 𝑝𝓁 , and 𝑝𝑖 also received a PHASE() message from 𝑝𝓁 .
In this case, line 62 lets 𝑝𝑖 use 𝑝𝓁 ’s estimated value (in phase zero) as its phase one estimated value.

Line 60 tests the “look-ahead” conditions. That is, whether 𝑝𝑖 is aware of node 𝑝𝑘 that has a higher round or phase numbers. In
this case, line 60 lets 𝑝𝑖 use 𝑝𝑘’s estimated value (in phase one) as its phase one estimated value.

Line 62 deals with the case in which the Ω failure detector changes its value while 𝑝𝑖 is in phase zero. In this case, the ⊥-value is
used as 𝑝𝑖’s phase one estimation since there is no guarantee that this round can succeed.

The repeat-until loop ends with a broadcast of the PHASE() message (line 63). It exits (line 64) when 𝑝𝑖 discovers that a decision
has already been reached or when at least a majority of nodes have sent PHASE() message for 𝑝𝑖’s current round and phase (or a
later round number).

5.5.3. Attempting to reach a decision (line 65 to 69)

Line 65 defines the set 𝑟𝑒𝑐 that includes all the phase-one estimated values (of 𝑝𝑖 ’s round number) that have arrived from nodes
that have reached phase one of 𝑝𝑖 ’s round number (or a later round number). According to 𝑟𝑒𝑐’s value, 𝑝𝑖 attempts to decide in
lines 67 to 69. As Theorem 6.13 shows, it is safe for 𝑝𝑖 to decide when ⊥ ∉ 𝑟𝑒𝑐 (line 67). The decided value is then disseminated via
lines 55, 63, and 74 until 𝑝𝑖 received a decided value from at least 𝑡 other nodes (line 50). Then, 𝑝𝑖 is ready to return the decided
value since it knows that it was received by at least one correct node. For the cases in which ⊥ ∈ 𝑟𝑒𝑐, node 𝑝𝑖 tries to see whether it
can use any non-⊥ value from 𝑟𝑒𝑐 for estimating the decided value for the next round (line 68). Otherwise, the current estimation is
used (line 69).

5.6. The arrival of 𝖯𝖧𝖠𝖲𝖤() messages

This arrival updates (and even initializes) the local state of the binary consensus, 𝑂𝑖. Prior to this update, 𝑝𝑖 runs a consistency
test (line 72) and makes sure that 𝑂𝑖 is an active object (line 72). Lines 73 to 76 update 𝑂𝑖 according to the arriving information.
The procedure ends by acknowledging the sender, if needed (line 77).

6. Algorithm 3’s correctness

Theorems 6.2, 6.3 and 6.13 show the recovery (from transient faults), termination (when starting from an arbitrary system state),
and respectively, the satisfaction of the task requirements (Definition 1.1). Theorem 6.2 uses Definition 6.1, which uses Condition 6.1.

Condition 6.1 (Consistency condition for Algorithm 3). ∀𝑖 ∈ Correct ∶ (∄𝑥 > 𝗋𝗇𝖽𝑖[𝑖] ∶ ∅ ≠ ({𝖾𝗌𝗍𝑖[𝑥+1][𝑖][0], 𝖾𝗌𝗍𝑖[𝑥][𝑖][1]} ⧵ {⊥})) ∧ (∄𝑥 ∈
{0, … , 𝗋𝗇𝖽𝑖[𝑖]} ∶ ⊥ ∈ {𝖾𝗌𝗍𝑖[𝑥][𝑖][0], 𝗅𝖾𝖺𝖽𝑖[𝑥][𝑖]}).

Definition 6.1. Let 𝑅 be an execution of Algorithm 3, 𝑐 ∈ 𝑅 be a system state, and 𝑝𝑖 ∶ 𝑖 ∈ Correct be a correct node. Suppose
either 𝑂𝑖 = ⊥ holds in 𝑐 or Condition 6.1 holds in 𝑐. In this case, we say that 𝑝𝑖 is consistent in 𝑐. Suppose all non-failing nodes are
consistent in 𝑐 and there is no message 𝖯𝖧𝖠𝖲𝖤(ack, rnd, 𝗉𝗁𝗌 = 𝑝, est = 𝑒, 𝑙𝑑𝑟 = 𝓁, 𝑑𝑐𝑠) in transient between two non-failing nodes such
that ⊥ ∈ {𝑒[0], 𝓁}. In this case, we say that 𝑐 is consistent. Suppose every system state in 𝑅 is consistent. In this case, we say that 𝑅
is consistent.

As explained in Section 2.2.4, only Theorem 6.2 requires the execution to be fair. All the other parts of the proof of Algorithm 3,
do not make this assumption, see Section 2.2.4 for details.

Theorem 6.2 (Algorithm 3’s Convergence). Let 𝑅 be a fair execution of Algorithm 3. Within finite time, the system reaches a state 𝑐 ∈ 𝑅

that starts a consistent execution (Definition 6.1).

Proof of Theorem 6.2. Suppose that 𝑅’s starting state is not consistent, specifically, with respect to node 𝑝𝑖 ∶ 𝑖 ∈ Correct. In other
words, the if-statement condition in line 53 or 56 holds. Within a single complete iteration of the do forever loop, every correct node
𝑝𝑖 takes a step that includes the execution of lines 53 to 56, which assures that 𝑝𝑖 becomes consistent.

We observe from the code of Algorithm 3 that once 𝑝𝑖 is consistent in 𝑐, node 𝑝𝑖 is also consistent in any state 𝑐′ ∈𝑅 that follows
13

𝑐, cf. lines 49, 71, and 72 as well as the assignments to 𝑂𝑖.𝗉𝗁𝗌[𝑟′][𝑖] (lines 59 to 62) and 𝑂𝑖.𝖾𝗌𝗍[𝑟′][𝑖][0] (lines 67 to 69), for some

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

𝑟′ ∈ ℤ+. Due to the above, the rest of the proof assumes, without the loss of generality, that all non-failing nodes are consistent in
any state of 𝑅.

Let 𝑚 be a message that in 𝑅’s starting system state resides in the communication channels between any pair of correct
nodes. Recall that any message that appears in the starting system state can reside in a communication channel only for a finite
time (Section 2.2.1). Thus, by the definition of complete iterations, within a finite time, the system reaches a state in which
𝑚 does not appear in the communication channels. Therefore, without the loss of generality, we can consider only messages,
𝖯𝖧𝖠𝖲𝖤(ackNeed, round, phase = 𝑝, estimate = 𝑒, leader = 𝓁, decide), that were sent during 𝑅 by (non-failing and) consistent nodes. Thus,
the invariant ⊥ ∈ {𝑒[0], 𝓁} holds. □Theorem 6.2

Theorem 6.3 (Algorithm 3’s Termination). Let 𝑅 be a consistent execution of Algorithm 3. Suppose ∃𝑥 ∈ Correct ∶ 𝑂𝑥 ≠ ⊥ holds in the
starting system state of 𝑅. Eventually, the system reaches a state, 𝑐 ∈𝑅 after which ∀𝑥 ∈ Correct ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑥() ≠ ⊥ always hold.

Proof of Theorem 6.3. Claims 6.4 to 6.12 imply the proof.

Claim 6.4. Eventually, the system reaches a state in 𝑅 after which ∀𝑥 ∈ Correct ∶𝑂𝑥 ≠ ⊥ ∧𝑂𝑥.eJ[0] ≠ ⊥ holds in every system state.

Proof of Claim 6.4. Since 𝑅 is consistent, the if-statement conditions in lines 53 and 56 cannot hold (Theorem 3) for any node in
the system and throughout 𝑅. Therefore, no node 𝑝𝑗 ∈  assigns ⊥ to 𝑂𝑗 . The fact that 𝑅 is consistent also means that 𝑂𝑗 ≠ ⊥ ⟹
𝑂𝑗.eJ[0] ≠ ⊥. By the theorem assumption, ∃𝑦 ∈ Correct ∶𝑂𝑦 ≠ ⊥ holds in the starting system state of 𝑅. Thus, 𝑂𝑦 ≠ ⊥ and 𝑂𝑦.eJ[0] ≠ ⊥
hold throughout 𝑅 (Theorem 6.2). Thus, by lines 63 and 72, ∀𝑥 ∈ Correct ∶𝑂𝑥 ≠ ⊥ ∧𝑂𝑥.eJ[0] ≠ ⊥ holds eventually. □Claim 6.4

Claim 6.5. Suppose either (i) ∃𝑖 ∈ Correct ∶𝑂𝑖 ≠ ⊥ ∧𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥, or (ii) ∃𝑆 ⊆ 𝑃 ∶ |𝑆| ≥ 𝑡 + 1 ∧ ∀𝑝𝑖 ∈ 𝑆 ∶𝑂𝑖 ≠ ⊥ ∧𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥ hold
in 𝑅’s starting state. Eventually ∀𝑥 ∈ Correct ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑥() ≠ ⊥ holds.

Proof of Claim 6.5. In every iteration of the do-forever loop (lines 52 to 69), node 𝑝𝑖 ∈ 𝑃 ∶ 𝑖 ∈ Correct accesses the binary consensus
object 𝑂𝑖 (line 52) since 𝑂𝑖 ≠ ⊥. Note that 𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥ in the starting system state of 𝑅 implies that 𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥ holds throughout
𝑅 due to the theorem assumptions that 𝑅 is consistent and the fact that Algorithm 3 never assigns ⊥ to 𝑂𝑖 (lines 53 and 56) or to
𝑂𝑖.𝖽𝖾𝖼[𝑖]. Thus, the rest of the proof assumes, without loss of generality, that 𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥ holds throughout 𝑅.

The following two cases show that ∀𝑖, 𝑗 ∈ Correct ∶ 𝑂𝑗.𝖽𝖾𝖼[𝑖] ≠ ⊥ holds eventually. Note that in both cases imply that, for any
𝑥 ∈ Correct ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑥() ≠ ⊥ holds eventually, and thus, the claim is correct.

The case of ∃𝑖 ∈ Correct ∶ 𝑂𝑖 ≠ ⊥ ∧ 𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥. Since 𝑝𝑖 does not crash throughout 𝑅, node 𝑝𝑖 broadcasts PHASE(∙, decide =
𝖽𝖾𝖼[𝑖]) (line 63) infinitely often. Due to the communication fairness assumption, every correct node, 𝑝𝑗 ∈  , receives PHASE(∙, decide
= 𝖽𝖾𝖼[𝑖]) (line 70) eventually. Thus, 𝑂𝑗.𝖽𝖾𝖼[𝑖] ≠ ⊥ holds eventually (line 75). Moreover, eventually 𝑂𝑗.𝖽𝖾𝖼[𝑗] ≠ ⊥ holds due to line 55.
This means that ∀𝑖, 𝑗 ∈ Correct ∶𝑂𝑗.𝖽𝖾𝖼[𝑖] ≠ ⊥ holds eventually (including the 𝑖 = 𝑗 case).

The case of ∃𝑆 ⊆ 𝑃 ∶ |𝑆| ≥ 𝑡 + 1 ∧ ∀𝑝𝑖 ∈ 𝑆 ∶ 𝑂𝑖 ≠ ⊥ ∧ 𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥. By the assumption that there are at most 𝑡 faulty nodes
(Section 2.2.1), we know that any set of at least 𝑡 + 1 nodes, includes at least one correct node. Thus, by the case above, ∀𝑖, 𝑗 ∈
Correct ∶𝑂𝑗.𝖽𝖾𝖼[𝑖] ≠ ⊥ holds eventually. □Claim 6.5

Claim 6.6. During consistent executions, only non-⊥ values can be assigned to 𝖾𝗌𝗍𝑖[0][0] (line 49) and 𝖾𝗌𝗍𝑖[𝗋𝗇𝖽𝑖[𝑖] + 1][0] (lines 67 to 69).

Proof of Claim 6.6. The assignments in lines 49, 67 and 68 cannot assign the ⊥ value by the definition of the parameter 𝑣. The
assignment in line 69 cannot assign the ⊥ value due to the assumption that 𝑅 is a consistent execution. In detail, every any system
state either 𝑂𝑖 = ⊥ holds or ∄𝑥 ∈ {0, … , 𝗋𝗇𝖽𝑖[𝑖]} ∶ 𝖾𝗌𝗍𝑖[𝑥][𝑖][0] ≠ ⊥ holds. □Claim 6.6

Lemma 6.7. Let 𝑟 ≥ 0 be a round number and 𝑝𝑘 ∈  ∶ 𝑘 ∈ Correct be a correct node. Suppose 𝑝𝑘 does not decide before round 𝑟, i.e.,
∃𝑐 ∈ 𝑅 ∶ 𝑝𝑟𝑒𝑑𝑘(𝑟) ∶= (𝗋𝖾𝗌𝗎𝗅𝗍𝑘() = ⊥ ∧ 𝗋𝗇𝖽𝑘[𝑘] = 𝑟) holds. Then, any correct node either decides or continues to round 𝑟 + 1 eventually. In
other words, eventually after 𝑐, 𝑝𝑟𝑒𝑑(𝑟) does not hold.

Proof of Lemma 6.7. Without loss of generality, let us assume that 𝑝𝑖 ∶ 𝑖 ∈ Correct does not decide during round 𝑟, i.e., (𝗋𝖾𝗌𝗎𝗅𝗍𝑘() ≠
⊥ ∧ 𝗋𝗇𝖽𝑘[𝑘] = 𝑟) does not hold throughout 𝑅. Generality is not lost due to the proof of Claim 6.5 since the case in which 𝑂𝑘.𝖽𝖾𝖼[𝑘] ≠ ⊥
holds, implies that eventually ∀𝑝𝑥 ∈  ∶ 𝑥 ∈ Correct ∶𝑂𝑘.𝖽𝖾𝖼[𝑘] ≠ ⊥ holds (Claim 6.5). In other words, the termination property holds
since 𝗋𝖾𝗌𝗎𝗅𝗍𝑘() ≠ ⊥.

Towards a contradiction, suppose that 𝑟 is the smallest round in which a correct node 𝑝𝑖 for which 𝑝𝑟𝑒𝑑𝑖(𝑟) holds indefinitely. By
the choice of 𝑟, no correct node can continue to execute forever in round 𝑟′ < 𝑟, i.e., ∀𝑟′ ∈ {0, … , 𝑟 − 1} ∶ ∀𝑖 ∈ Correct ∶ ∃𝑐𝑟′,𝑖 ∈ 𝑅 ∶
𝑝𝑟𝑒𝑑𝑖(𝑟′) does not hold in any system state the follow 𝑐𝑟′ ,𝑖. The proof is implied by Claim 6.10, which uses Claims 6.8 and 6.9.

Claim 6.8. Eventually 𝑝𝑖 receives 𝖯𝖧𝖠𝖲𝖤(ackNeed, round = 𝑟, phase = 𝑝 ≥ 0, ∙) from at least (𝑛 − 𝑡) different nodes.

Proof of Claim 6.8. Since 𝑝𝑟𝑒𝑑𝑖(𝑟) holds indefinitely, node 𝑝𝑖 broadcasts PHASE(ackNeed = True, round = 𝑟, phase = 𝑝 ≥ 0, ∙) repeat-
14

edly (line 63). Thus, PHASE(ackNeed = True, round = 𝑟, phase = 𝑝 ≥ 0, ∙) is repeatedly received from 𝑝𝑖 by at least (𝑛 − 𝑡) nodes,

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

𝑝𝑗 ∶ 𝑗 ∈ Correct (line 70 to 77). By line 73 and 77, 𝑝𝑗 sends PHASE(ackNeed = False, round = 𝑟, phase = 𝑝 ≥ 0, ∙) repeatedly. Thus, 𝑝𝑖
receives PHASE(ackNeed = False, round = 𝑟, phase = 𝑝 ≥ 0, ∙) from at least (𝑛 − 𝑡) different nodes eventually. □Claim 6.8

Claim 6.9. Eventually ∀𝑖 ∈ Correct ∶𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽𝑖[𝑖]] = 1 holds.

Proof of Claim 6.9. The proof of the claim considers the case in which ∃𝑖 ∈ Correct ∶𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖] = 0 holds in the starting system
state of 𝑅, i.e., the if-statement condition in line 58 holds. (Note that the case in which ∃𝑖 ∈ Correct ∶ 𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽[𝑖]][𝑖] = 0 does not
hold implies that the proof is done.) We prove the claim by showing that, eventually, at least one of the if-statement conditions in
lines 59 to 62 holds. This demonstrates the claim since any consequent clause of lines 59 to 62 assigns 1 to 𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽𝑖[𝑖]].

• Suppose 𝑂𝑖.𝗅𝖾𝖺𝖽[𝗋𝗇𝖽𝑖[𝑖]][𝑖] ≠ 𝗅𝖾𝖺𝖽𝖾𝗋𝑖 holds eventually. Thus, the if-statement condition in line 62 holds eventually, which means
that the proof of the argument is done. For the rest of the proof of the claim, we assume 𝑂𝑖.𝗅𝖾𝖺𝖽[𝗋𝗇𝖽𝑖[𝑖]][𝑖] ≠ 𝗅𝖾𝖺𝖽𝖾𝗋𝑖 never holds
with respect to 𝑝𝑖 and round 𝗋𝗇𝖽𝑖[𝑖].

• Suppose ∃𝑝𝑘 ∈  ∶ 𝑝𝑟𝑑𝑖,𝑘 holds eventually, where 𝑝𝑟𝑑𝑖,𝑘 = 𝗋𝗇𝖽𝑖[𝑘] > 𝗋𝗇𝖽𝑖[𝑖] ∨ (𝗋𝗇𝖽𝑖[𝑘] = 𝗋𝗇𝖽[𝑖] ∧𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽𝑖[𝑖]][𝑘] = 1). Thus, the
if-statement condition in line 60 holds eventually and the proof of the claim is done. For the rest of the proof of the claim, we
assume that if 𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽𝑖[𝑖]][𝑖] = 0 holds, ∀𝑝𝑘 ∈  ∶ ¬𝑝𝑟𝑑𝑖,𝑘 holds.

• By the Ω-eventual leadership property, the assumption that 𝑝𝑟𝑒𝑑𝑖(𝑟) holds indefinitely and line 54, for any correct node 𝑝𝑖 ∈
Correct, we know that 𝑂𝑖.𝗅𝖾𝖺𝖽[𝗋𝗇𝖽𝑖[𝑖]][𝑖] eventually refers to a single node, 𝑝𝗅𝖾𝖺𝖽𝖾𝗋𝑖 , that is a correct node. Thus, eventually, 𝑝𝑖
receives PHASE(−, round = 𝑟, phase = 𝑝, estimate = 𝑒, ∙) from 𝑝𝗅𝖾𝖺𝖽𝖾𝗋𝑖 , such that 𝑒[0] ≠ ⊥ (Claim 6.6). Also, |{𝑝𝑘 ∈  ∶ 𝗋𝗇𝖽𝑖[𝑘] =
𝗋𝗇𝖽𝑖[𝑖] ∧𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽[𝑘]][𝑘] ≥ 0}| ≥ 𝑛−𝑡 holds eventually (Claim 6.8). Thus, the if-statement condition in line 59 holds eventually.
Thus, the proof is done. □Claim 6.9

Claim 6.10. Eventually the repeat-until condition in line 64 holds

Proof of Claim 6.10. We show (|{𝑝𝑘 ∈  ∶ 𝗋𝗇𝖽𝑖[𝑘] ≥ 𝗋𝗇𝖽𝑖[𝑖] ∧𝑂𝑖.𝗉𝗁𝗌[𝗋𝗇𝖽𝑖[𝑖]][𝑘] ≥ 1}| ≥ 𝑛−𝑡) eventually holds. By Claim 6.9, the phase
of all correct nodes is 1 eventually. Then, Claim 6.8 says that 𝑝𝑖 eventually receives 𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, phase = 1, ∙) from at least
(𝑛 − 𝑡) different nodes. The rest of the proof is implied by line 73. We clarify that the if-statement condition in line 71 holds. This is
true since 𝑂𝑗.𝖾𝗌𝗍[𝗋𝗇𝖽𝑗 [𝑗]][0] ≠ ⊥ (Claim 6.6), lines 54 and 56 as well as the fact that 𝑝𝑗 executes line 63 infinitely often. □Claim 6.10

□Lemma 6.7

Lemma 6.11. (i) Eventually there is a correct node 𝑝𝑖 ∈  for which the if-statement condition in line 59 holds. (ii) Eventually the if-
statement conditions in lines 59 or 60 hold with respect to any correct nodes 𝑝𝑖 ∈  (but the if-statement condition in line 62, eventually,
cannot hold).

Proof of Lemma 6.11. Arguments (1) and (2) show invariant (i) and Argument (3) shows invariant (ii).

Argument 1: It is sufficient to show that no node changes its round number before 𝑝𝑖 receives a message from 𝑝𝓁 . Recall Ω’s eventual
leadership (Section 3) and the fact that faulty nodes eventually crash (Section 2.2.1). Thus, using Lemma 6.7, we can state that, as
long as no non-failing node ever decides, there existence of a finite round number 𝑟′ ∈ℤ+ from which (a) only the correct nodes are
alive and connected, and (b) all correct nodes, 𝑝𝑖, 𝑝𝑗 ∈  , store in 𝑂𝑖.𝗅𝖾𝖺𝖽[𝑟′][𝑗] the same correct leader, say, 𝑝𝓁 (due to lines 54, 63,
and 76). Since there are at most 𝑡 faulty nodes, there is always a set 𝑆 ⊆ 𝑃 ∶ |𝑆| ≥ 𝑛 − 𝑡 for which ∀𝑝𝑘 ∈ 𝑆 ∶ 𝗅𝖾𝖺𝖽[𝗋𝗇𝖽[𝑖]][𝑘] = 𝓁
holds. Thus, in order to show that the if-statement condition in line 59 holds eventually for some 𝑟′ ∈ ℤ+, it is sufficient to show
that no (correct) node changes its round number from 𝑟′ to 𝑟′ + 1 before at least one correct node 𝑝𝑖 ∈  receives a message
𝑚 = PHASE(𝑎𝑐𝑘, 𝑟𝑛𝑑 = 𝑟′, 𝗉𝗁𝗌 = 0, 𝑒𝑠𝑡 = 𝑒, ∙) from 𝑝𝓁 , i.e., 𝑂𝑖.𝖾𝗌𝗍[𝑟′][𝓁][0] ≠ ⊥ Claim 6.6 and line 74) while 𝗋𝗇𝖽[𝑖] = 𝑟′ is the largest
round number in the system.

Argument 2: Showing that the if-statement condition in line 59 holds eventually. Suppose, towards a contradiction, that no node 𝑝𝑖 ∈ 

(for which 𝗋𝗇𝖽𝑖[𝑖] = 𝑟′) ever receives the message 𝑚 from 𝑝𝓁 before changing its round number to 𝑟′ + 1. We know that change occurs
due to Lemma 6.7. Among all the choices of 𝑝𝑖 from  , let us assume, without the loss of generality, that 𝑝𝑖 is the first to change
its round number. We note that such changes cannot be due to lines 60 and 62. This is because 𝑝𝑖 is the first to increment its round
number (i.e., the condition in line 60 cannot hold). Also, all nodes share the same leader, which does not change (i.e., the condition
in line 62 cannot hold).

The proof has reached the needed contradiction since 𝑝𝑖 must exist and increment its round number (Lemma 6.7). The only way
to do so is by executing line 59. I.e., the system has to reach a state in which the if-statement condition in line 59 holds.

Argument 3: Invariant (ii) holds eventually. We note that the if-statement condition in line 62 cannot hold since all nodes share
the same leader. The if-statement condition in line 59 can hold due to Argument 2. Once that happens, say, with respect to node
𝑝𝑖 ∈  , other nodes, say 𝑝𝑗 ∈  , might receive message PHASE(ackNeed = −, round = 𝑟, phase = 𝑝, ∙) from 𝑝𝑖, such that 𝑟 > 𝗋𝗇𝖽𝑗 [𝑗] or
𝑟 = 𝗋𝗇𝖽𝑗 [𝑗] ∧ 𝑝 >𝑂𝑗.𝗉𝗁𝗌[𝑟], i.e., the if-statement condition in line 60 holds. □Lemma 6.11
15

Claim 6.12. Eventually ∀𝑥 ∈ Correct ∶𝑂𝑥.𝖽𝖾𝖼 ≠ ⊥.

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Proof of Claim 6.12. Recall that ∃𝑝𝑘 ∈  ∶ 𝑂𝑖 ≠ ⊥ ∧ 𝑂𝑖.𝖽𝖾𝖼[𝑘] ≠ ⊥ implies a decision due to invariant (i) of Claim 6.5. Assume,
toward a contradiction, that no non-failing node 𝑝𝑘 ∈  ever decides with respect to any value 𝑣 ∈ 𝑉 (and that ∄𝑝𝑘 ∈  ∶ 𝑂𝑖 ≠
⊥ ∧ 𝑂𝑖.𝖽𝖾𝖼[𝑘] ≠ ⊥). We demonstrate a contradiction by showing that eventually there is a round number, 𝑟′, and a correct node,
𝑝𝑖 ∈  , for which (𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ ∧ 𝗋𝗇𝖽𝑖[𝑖] = 𝑟′) holds since the switch-case condition in line 67 holds, see the following Argument (1).

Argument 1: Eventually the system reaches a state for which it holds that ∃𝑟𝑒𝑐𝑖 = {𝑂𝑖.𝖾𝗌𝗍[𝑟′][𝑘][1] ∶ 𝑝𝑘 ∈  ∧𝑂𝑖.𝗉𝗁𝗌[𝑟′][𝑘] ≥ 1} = {𝑣 ∶
𝑣 ≠ ⊥} (cf. lines 65 and 67) holds. By Claim 6.10, the repeat-until condition in line 64 holds for any round eventually. By Invariant
(ii) of Lemma 6.11, eventually, there is a round number 𝑟′, in which the if-statement conditions in lines 59 or 60 hold (but not the
if-statement conditions in lines 62) with respect to any non-failing node 𝑝𝑗 ∈  . Thus, during round 𝑟′ and before any non-failing
node 𝑝𝑗 ∈  tests whether repeat-until condition in line 64 holds, 𝑝𝑗 assigns a non-⊥ value to 𝖾𝗌𝗍𝑖[𝑟′][𝑖][1] (due to lines 59 and 60 as
well as Claim 6.6). By Claims 6.6 and 6.8, 𝑟𝑒𝑐𝑖 = {𝑣 ∶ 𝑣 ≠ ⊥} holds for any non-failing node 𝑝𝑖 ∈  during 𝑟′ (before the repeat-until
condition in line 64 is tested and 𝑟𝑒𝑐𝑖 is defined in line 65). □Claim 6.12 □Theorem 6.3

We say that the system state 𝑐 is well-initialized if ∀𝑝𝑖 ∈ Correct ∶𝑂𝑖 ∶= ⊥ holds and no communication channel between two non-

failing nodes includes PHASE() messages. Note that a well-initialized system state is also a consistent one (Definition 6.1). Suppose
that during execution 𝑅, there is a correct node 𝑝𝑖 ∈  that invokes 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑖(), and any node 𝑝𝑗 ∈  that invokes 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑗 () does so
exactly once. In this case, we say that 𝑅 includes a complete invocation of binary consensus. Theorem 6.13 shows that Algorithm 3

satisfies the requirements of Definition 1.1 during legal executions that start from a well-initialized system state and have a complete
invocation of Algorithm 3.

Theorem 6.13. Let 𝑅 be a well-initialized consistent execution of Algorithm 3 that has a complete invocation of binary consensus, 𝗉𝗋𝗈𝗉𝗈𝗌𝖾().
The system demonstrates in 𝑅 a construction of a binary consensus object (Definition 1.1).

Proof of Theorem 6.3. Termination holds due to Theorem 6.3.

Integrity. Recall that 𝑝𝑖 ∈  decides when 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ holds. We show that once 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ holds, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() cannot change. By
line 50, for 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ to hold (i) 𝑂𝑖 ≠ ⊥, (ii) (|{𝑝𝑘 ∈  ∶ 𝑂𝑖.𝖽𝖾𝖼[𝑘] ≠ ⊥}| ≥ 𝑡+1), and (iii) 𝑂𝑖.𝖽𝖾𝖼[𝑖] ≠ ⊥ need to hold as well. By
the code of Algorithm 3, we observe that ⊥ is never assigned to 𝑂𝑖 during consistent executions due to lines 53 and 56 as well
as Definition 6.1 and Theorem 6.2. This covers case (i) above. For cases (ii) and (iii), we note that 𝑝𝑖 can assign a non-⊥ value
to 𝑂𝑖.𝖽𝖾𝖼[𝑘] ∶ 𝑝𝑘 ∈  at most once, cf. lines 55, 67, and 75. Specifically, once 𝑥 = |{𝑝𝑘 ∈  ∶ 𝑂.𝖽𝖾𝖼[𝑘] ≠ ⊥}| holds in system state
𝑐′ ∈𝑅, it must be that 𝑥 ≤ |{𝑝𝑘 ∈  ∶𝑂.𝖽𝖾𝖼[𝑘] ≠ ⊥}| in any system state that follows 𝑐′.

Validity. The variable 𝑂𝑖.𝖽𝖾𝖼[𝑖] can only be assigned with a non-⊥ value (Claim 6.6). Thus, when 𝑝𝑖 receives a 𝖯𝖧𝖠𝖲𝖤(∙, decide = 𝑣)
message, line 75 never assigns to 𝑂𝑖.𝖽𝖾𝖼 a ⊥-value. That is, 𝑝𝑖 decides on a non-⊥ value that comes from 𝖾𝗌𝗍[1] of some 𝑂𝑗 , which in
turn comes from 𝖾𝗌𝗍[0] of some entry 𝑂𝑥, where 𝑝𝑗 , 𝑝𝑥 ∈  . Since 𝑅 is a well-initialized and consistent execution, 𝖾𝗌𝗍[0] can contain
only proposed values that Algorithm 3 assigns in line 49. Moreover, 𝖾𝗌𝗍[1] can contain only values that Algorithm 3 copied from
𝖾𝗌𝗍[0] in lines 59 and 75. Thus, the validity property holds.

Agreement. Claim 6.14 implies agreement since it shows that only a single value can be decided in consistent executions.

Claim 6.14. Let 𝑟 be the smallest round during which any 𝑝𝑖 ∈  broadcasts 𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, −, estimate = [𝑣, −], ∙) (line 63) and then
the switch-case condition in line 67 holds. Suppose that 𝑝𝑗 ∈  also broadcasts 𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, −, estimate = [𝑣′, −], ∙) and then the
switch-case condition in line 67 holds. (i) It is true that 𝑣′ = 𝑣 holds. Let 𝑣′′ be the local estimate 𝑂𝑥.𝖾𝗌𝗍[0] of any 𝑝𝑥 ∈  that proceeds to
round 𝑟 + 1. (ii) It holds that 𝑣 = 𝑣′′.

Proof of Claim 6.14. Invariant (i). By the code of Algorithm 3 and Claim 6.8, 𝑝𝑖 receives during 𝑟 the message 𝑚 =
𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, phase = 𝑝 ≥ 0, estimate = [𝑣, −], ∙) from at least (𝑛 − 𝑡) different nodes. Moreover, 𝑝𝑗 has received during round 𝑟
the message 𝑚′ = 𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, phase = 𝑝 ≥ 0, estimate = [𝑣′, −], ∙) from at least 𝑛 − 𝑡 different nodes. During consistent execu-

tions, 𝑝𝑥 ∈  can only transmit (and perhaps retransmit) one kind of 𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, phase = 𝑝 ≥ 0, estimate = [𝑣, −], ∙) message
per round 𝑟. Due to the property of majority intersection, 𝑝𝑖 and 𝑝𝑗 receive during round 𝑟 the same message 𝖯𝖧𝖠𝖲𝖤(−, round =
𝑟, phase = 𝑝 ≥ 0, estimate = [𝑤, −], ∙) from some 𝑝𝑥 ∈  . Since both 𝑝𝑖 and 𝑝𝑗 executes line 67 during round 𝑟, it must be the case that
𝑤 = 𝑣 = 𝑣′.

Invariant (ii). Suppose that some correct node 𝑝𝑖 ∈  assigns 𝑣 to 𝑂𝑖.𝖽𝖾𝖼[𝑖] during a round 𝑟 (line 67). Also, 𝑝𝑗 ∈  continues
to round 𝑟 + 1 (without evaluating to true the switch-case condition in line 67). We have to prove that 𝑂𝑗.𝖾𝗌𝗍[𝑟+1][0] = 𝑣 when 𝑝𝑗
starts round 𝑟+1.

Since 𝑝𝑖 decided 𝑣 during round 𝑟, lines 64 and 67 implies that there were at least (𝑛 − 𝑡) nodes that have sent 𝖯𝖧𝖠𝖲𝖤(−, round =
𝑟, phase ≥ 1, estimate = [𝑣, −], ∙) to 𝑝𝑖 during round 𝑟. By the fact that 𝑛 − 𝑡 > 𝑛∕2 and the majority intersection property, we know that
𝑝𝑗 also had to receive during round 𝑟 at least one of these 𝖯𝖧𝖠𝖲𝖤(−, round = 𝑟, phase ≥ 1, estimate = [𝑣, −], ∙) messages. Also, it follows
from the quasi-agreement property (Corollary 4.1) that 𝑝𝑗 receives both 𝑣 and ⊥ (and no other value) in the phase 1 of round 𝑟, i.e.,
𝑟𝑒𝑐𝑗 = {𝑣, ⊥}, because 𝑟𝑒𝑐𝑗 = {𝑣} cannot hold since this implies that 𝑝𝑗 decides 𝑣 during 𝑟. Thus, 𝑝𝑗 assigns 𝑣 to 𝑂𝑗.𝖾𝗌𝗍[𝑟+1][0] before
16

the next iteration of the do-forever loop (lines 9 to 16), which starts round 𝑟+1. □Claim 6.14 □Theorem 6.3

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Figure 3: Constants, variables, operation and macros for Algorithm 3.

78 constants: 𝑀 > 2 number of rounds until first memory recycling; 𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒 is a vector that holds the initial value of object 𝑂;

79 variables: 𝗋𝗇𝖽[0, .., 𝑛−1], 𝗉𝗁𝗌[0, .., 𝑀−1][0, .., 𝑛−1], 𝖾𝗌𝗍[0, .., 𝑀−1][0, .., 𝑛−1], 𝗅𝖾𝖺𝖽[0, .., 𝑀−1][0, .., 𝑛−1], and 𝖽𝖾𝖼[0, .., 𝑛−1] are as defined by Algorithm 3;

80 operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣 ≠ ⊥) do {(𝑂, 𝑟𝑛𝑑[𝑖], 𝖾𝗌𝗍[0][𝑖][0]) ← (𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒, 0, 𝑣)}
81 operation 𝗋𝖾𝗌𝗎𝗅𝗍() do {if (𝑂 ≠ ⊥ ∧ |{𝑝𝑘 ∈  ∶𝑂.𝖽𝖾𝖼[𝑘] ≠ ⊥}| ≥ 𝑡+1) then return 𝑂.𝖽𝖾𝖼[𝑖] else return ⊥};

82 macro 𝗋() do return max{𝑟𝑛𝑑[𝑘] < 0 ∶ 𝑘 ∈ 𝗍𝗋𝗎𝗌𝗍𝖾𝖽};

83 macro 𝗑() do return 𝗋() mod𝑀 ;

84 macro 𝗀𝖼() do return max{0, min{𝑟𝑛𝑑[𝑘] < 0 ∶ 𝑘 ∈ 𝗍𝗋𝗎𝗌𝗍𝖾𝖽}, (𝑟𝑛𝑑[𝑖]−(𝑀−2))};

Algorithm 4: Bounded self-stabilizing algorithm for indulgent zero-degrading binary consensus; code for 𝑝𝑖 and binary
object 𝑂.

85 Constants, variables, operation and macros appear in Fig. 3.

86 do-forever {foreach 𝑂 ≠ ⊥ 𝐰𝐢𝐭𝐡 𝑂′𝑠 fields 𝑟𝑛𝑑, 𝗉𝗁𝗌, 𝑒𝑠𝑡, 𝗅𝖾𝖺𝖽, and 𝖽𝖾𝖼 do

87 if 𝗋𝗇𝖽[𝑖] < 0 then {𝑂← ⊥; continue;};

88 if ∄𝑝𝑘 ∈  ∶ 𝖽𝖾𝖼[𝑘] ≠ ⊥ then

89 if ¬(𝗋() − 𝗀𝖼() ≥ (𝑀−2) ∧ 𝗋() = 𝗋𝗇𝖽[𝑖]) then

90 (𝗋𝗇𝖽[𝑖], 𝗉𝗁𝗌[𝗑()], 𝗅𝖾𝖺𝖽[𝗑()][𝑖]) ← (max{𝗋𝗇𝖽[𝑖] + 1,𝗀𝖼()}, 0, 𝗅𝖾𝖺𝖽𝖾𝗋)

91 else if 𝖽𝖾𝖼[𝑖] = ⊥ then 𝖽𝖾𝖼[𝑖] ←𝖽𝖾𝖼[𝑘];
92 if ¬(∃𝑦∈{𝗀𝖼(),…,𝗋()}⊥ ∈ {𝖾𝗌𝗍[𝑧][𝑖][0], 𝗅𝖾𝖺𝖽[𝑧][𝑖]} ∧ 𝑧 = 𝑦 mod𝑀) then

93 {𝑂← ⊥; continue;}

94 foreach 𝑦 ∈ ({0,… ,𝑀−1} ⧵ {𝑧 mod𝑀 ∶ 𝑧 ∈ {𝗀𝖼(),… , 𝗋()}}) do

95 (𝗉𝗁𝗌[𝑦], 𝖾𝗌𝗍[𝑦], 𝗅𝖾𝖺𝖽[𝑦])← ([⊥,… ,⊥], [[⊥,⊥],… , [⊥,⊥]], [⊥,… ,⊥])

96 repeat

97 if 𝗉𝗁𝗌[𝗑()][𝑖] = 0 then

98 if (∃𝑝𝓁∈ 𝖾𝗌𝗍[𝗑()][𝓁][0] ≠ ⊥ ∧ ∃𝑆 ⊆  ∶ |𝑆| ≥ 𝑛 − 𝑡 ∧ ∀𝑝𝑘∈𝑆 𝗅𝖾𝖺𝖽[𝗑()][𝑘] = 𝓁) then (𝖾𝗌𝗍[𝗑()][𝑖][1], 𝗉𝗁𝗌[𝗑()][𝑖]) ← (𝖾𝗌𝗍[𝗑()][𝓁][0], 1) ;

99 else if (∃𝑝𝑘∈ 𝗋𝗇𝖽[𝑘] > 𝗋𝗇𝖽[𝑖] ∨ (𝗋𝗇𝖽[𝑘] = 𝗋𝗇𝖽[𝑖] ∧ 𝗉𝗁𝗌[𝗑()][𝑘] = 1)) then

100 (𝖾𝗌𝗍[𝗑()][𝑖][1], 𝗉𝗁𝗌[𝗑()][𝑖]) ← (𝖾𝗌𝗍[𝗋𝗇𝖽[𝑘]][𝑘][1], 1) /* a look ahead step */

101 else if 𝗅𝖾𝖺𝖽[𝗑()][𝑖] ≠ 𝗅𝖾𝖺𝖽𝖾𝗋 then (𝖾𝗌𝗍[𝗑()][𝑖][1], 𝗉𝗁𝗌[𝗑()][𝑖]) ← (⊥, 1);
102 broadcast PHASE(True, 𝗋𝗇𝖽[𝑖], 𝗉𝗁𝗌[𝗑()][𝑖], 𝖾𝗌𝗍[𝗑()][𝑖], 𝗅𝖾𝖺𝖽[𝗑()][𝑖], 𝖽𝖾𝖼[𝑖])
103 until (∃𝑝𝑘∈𝖽𝖾𝖼[𝑘] ≠ ⊥) ∨ (|{𝑝𝑘 ∈  ∶ 𝗋𝗇𝖽[𝑘] ≥ 𝑟) ∧ 𝗉𝗁𝗌[𝗑()][𝑘] ≥ 1}| ≥ 𝑛−𝑡);
104 let 𝑟𝑒𝑐 = {𝖾𝗌𝗍[𝗑()][𝑘][1] ∶ 𝑝𝑘 ∈  ∧ 𝗉𝗁𝗌[𝗑()][𝑘] ≥ 1};

105 switch 𝑟𝑒𝑐 do

106 case {𝑣 ≠ ⊥} do {𝖾𝗌𝗍[𝗑()+1 mod𝑀][0] ← 𝑣; if 𝖽𝖾𝖼[𝑖] = ⊥ then 𝖽𝖾𝖼[𝑖] ← 𝑣};

107 case {⊥, 𝑣 ≠ ⊥} do 𝖾𝗌𝗍[𝗑()+1 mod𝑀][0] ← 𝑣;

108 case {⊥} do 𝖾𝗌𝗍[𝗑()+1 mod𝑀][0] ← 𝖾𝗌𝗍[𝗑()][0];

109 upon 𝖯𝖧𝖠𝖲𝖤(aJ, rJ, pJ, eJ, 𝓁J, dJ) arrival from 𝑝𝑗 do begin

110 if ⊥ ∈ {eJ[0], 𝓁J} then return;

111 if 𝑂 = ⊥ ∧ eJ[0] ≠ ⊥ then (𝑂, 𝗋𝗇𝖽[𝑖], 𝖾𝗌𝗍[0][𝑖][0]) ← (𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒, 0, eJ[0]);
112 𝗋𝗇𝖽[rJ mod𝑀][𝑗]←max{𝗋𝗇𝖽[rJ mod𝑀][𝑗], rJ} ;

113 𝑂.𝗉𝗁𝗌[rJ mod𝑀][𝑗] ←max{𝑂.𝗉𝗁𝗌[rJ mod𝑀][𝑗], pJ};

114 foreach 𝑦 ∈ {0, 1} ∶𝑂.𝖾𝗌𝗍[rJ mod𝑀][𝑗][𝑦] = ⊥ do 𝑂.𝖾𝗌𝗍[rJ mod𝑀][𝑗][𝑦] ← eJ[𝑦];
115 if 𝑂.𝖽𝖾𝖼[𝑗] = ⊥ then 𝑂.𝖽𝖾𝖼[𝑗] ← dJ;

116 if 𝓁J ≠ ⊥ then 𝑂.𝗅𝖾𝖺𝖽[rJ mod𝑀][𝑗] ← 𝓁J;

117 if aJ then 𝐬𝐞𝐧𝐝 PHASE(𝖥𝖺𝗅𝗌𝖾, rJ, 𝑂.𝗉𝗁𝗌[rJ mod𝑀][𝑖], 𝑂.𝖾𝗌𝗍[rJ mod𝑀][𝑖], 𝑂.𝗅𝖾𝖺𝖽[rJ mod𝑀][𝑖], 𝑂.𝖽𝖾𝖼) 𝐭𝐨 𝑝𝑗 ;

The indulgence criterion states that even when the Ω failure detector always outputs incorrect values, the safety properties of
consensus (validity and agreement) remain unviolated. In other words, if an algorithm 𝐴𝑙𝑔 utilizes Ω and terminates while Ω is
misbehaving, the output of 𝐴𝑙𝑔 remains correct. Algorithm 2 satisfies the indulgence criterion due to the proof of Theorem 6.13.
Also, zero-degradation requires the number of communication rounds until a decision is achieved to be the same in every stable
run (Section 3.1.3). It is easy to see that, during legal execution that are also stable runs, Algorithm 2 satisfies the zero-degradation
criterion since exactly two phases are required until a decision is achieved.

7. Bounded version of Algorithm 3

Algorithm 3 uses three unbounded arrays. These are 𝗉𝗁𝗌[0, …][0, .., 𝑛−1], 𝖾𝗌𝗍[0, …][0, .., 𝑛−1], and 𝗅𝖾𝖺𝖽[0, …][0, .., 𝑛−1]. This limits
the applicability of the algorithm since real-world systems have bounded amount of memory. Therefore, we present Algorithm 4 that
uses bounded versions of 𝗉𝗁𝗌[], 𝖾𝗌𝗍[], and 𝗅𝖾𝖺𝖽[]. To that end, Algorithm 4 uses a predefined constant 𝑀 ∈ℤ+ ∶𝑀 > 2 that allows us
to redefine Algorithm 3’s key variables, so that 𝗉𝗁𝗌[0, .., 𝑀−1][0, .., 𝑛−1], 𝖾𝗌𝗍[0, .., 𝑀−1][0, .., 𝑛−1], and 𝗅𝖾𝖺𝖽[0, .., 𝑀−1][0, .., 𝑛−1] are
defined as bounded arrays in Algorithm 4. Recall that the unbounded counters in all of these arrays can be bounded in the way that
17

is explained in [55].

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

7.1. The challenge

Recall that Algorithm 3 is an Ω-class consensus algorithm. As such, it cannot decide before a leader is elected by at least a majority
of the nodes. However, there is no bound on the time that it takes to elect the leader. Therefore, there is no bound on the number
of rounds that are required for reaching consensus. Specifically, when the majority of the nodes are in round 𝑟max, there could be
a minority of nodes that are still in round 𝑟min, where (𝑟max − 𝑟min) can be any finite number. In other words, memory-bounded
variations on Algorithm 3 need to deal with the possible situation in which there are no more available entries in the arrays 𝗉𝗁𝗌[][],
𝖾𝗌𝗍[][], and 𝗅𝖾𝖺𝖽[][].

7.2. Our approach

We address the above challenge by recycling array entries that store outdated information. To that end, Algorithm 4 detects
such situations (by letting each node locally monitor the latest round number received by any node in the system) and temporarily
blocking until (𝑟max − 𝑟min) becomes sufficiently small, i.e., smaller than 𝑀 − 2. Since we consider node failures, we choose to use a
self-stabilizing class-𝑃 unreliable failure detector [25,24] so that the system will not block indefinitely. Specifically, a class-𝑃 failure
detector guarantees the completeness and strong accuracy. Completeness requires that if 𝑝𝑗 ∈  crashes, it eventually does not appear
permanently in the set 𝑖 ∈ Correct ∶ 𝗍𝗋𝗎𝗌𝗍𝖾𝖽𝑖. Strong accuracy requires that no 𝑝𝑗 ∈  stops appearing in a set 𝗍𝗋𝗎𝗌𝗍𝖾𝖽𝑖 before crashing.

7.3. Accessing 𝗋𝗇𝖽[], 𝗉𝗁𝗌[][], 𝖾𝗌𝗍[][], and 𝗅𝖾𝖺𝖽[][]

Algorithm 4 stores round numbers in the array 𝗋𝗇𝖽[] and in the arrays 𝗉𝗁𝗌[][], 𝖾𝗌𝗍[][], and 𝗅𝖾𝖺𝖽[][] it maintains a bounded version
of the information that Algorithm 3 stores in them. For a given node 𝑝𝑖 ∈  , the array 𝗋𝗇𝖽𝑖[] stores the most recent rounds numbers
received from any (non-failing) node in the system. The access to (and maintains of) 𝗉𝗁𝗌[][], 𝖾𝗌𝗍[][], and 𝗅𝖾𝖺𝖽[][] is facilitated by
the following macros. The macro 𝗋𝑖() returns the largest round number received by node 𝑝𝑖 ∈  from any node and the macro 𝗑𝑖(𝑘)
returns the module 𝑀 value of 𝗋𝑖(). Node 𝑝𝑖 uses 𝗑𝑖(𝑘) for indicating which entry in 𝗉𝗁𝗌𝑖[][𝑖], 𝖾𝗌𝗍𝑖[][𝑖], and 𝗅𝖾𝖺𝖽𝑖[][𝑖] it should use
according to its round number, which is 𝗋𝑖(), cf. lines 90, 97 to 99, 101 to 103, 104, and 106 to 108.

7.4. Entry recycling for 𝗉𝗁𝗌[][], 𝖾𝗌𝗍[][], and 𝗅𝖾𝖺𝖽[][]

As mentioned above, no node 𝑝𝑖 ∈  progresses to the next round if 𝗋𝑖() − 𝗀𝖼𝑖() is more than 𝑀 − 2, where 𝗋𝑖() − 𝗀𝖼𝑖() refers to
the difference between the extrema of round numbers held in {𝗋𝗇𝖽𝑖[𝑘] ∶ 𝑘 ∈ 𝗍𝗋𝗎𝗌𝗍𝖾𝖽} node that 𝑝𝑖 does not suspect to be faulty. Node
𝑝𝑖 also makes sure that its round number, 𝗋𝗇𝖽𝑖[𝑖], is not smaller by more than 𝑀 − 2 than the highest round number, 𝗋𝑖(), that 𝑝𝑖
is aware of. In other words, if a transient fault causes 𝑝𝑖’s round value to be smaller by more than 𝑀 − 2 than 𝗋𝑖(), the recovery
process would need to “catch up” by raising its round number to be not smaller than 𝗋𝑖() − (𝑀 − 2). This is done via a macro, 𝗀𝖼𝑖()
(which marks the garbage collection line), that returns the largest among the following two values: (i) the smallest round number
in {𝗋𝗇𝖽𝑖[𝑘] ∶ 𝑘 ∈ 𝗍𝗋𝗎𝗌𝗍𝖾𝖽}, and (ii) ((max{𝗋𝗇𝖽𝑖[𝑘] ∶ 𝑘 ∈ 𝗍𝗋𝗎𝗌𝗍𝖾𝖽})−(𝑀−2)). This way, 𝑝𝑖 can recycle any entry in 𝗉𝗁𝗌[][], 𝖾𝗌𝗍[][], and
𝗅𝖾𝖺𝖽[][] that refers to a round number smaller than 𝗀𝖼𝑖().

7.5. Detailed description

We highlight the main differences between Algorithms 3 and 4 in boxed lines codes, cf. lines 87 to 90, 93 to 95, and 112.

Line 87 tests the consistency of the local state of the initialized consensus object, 𝑂𝑖. That is, 𝑝𝑖’s round number is at least zero.
Line 90 advances 𝑝𝑖’s round number while making sure that the round number is not behind the garbage collection line, which is
marked by 𝗀𝖼𝑖(). Note that this is done only if the if-statement condition in line 89 holds. In detail, 𝑝𝑖 cannot advance its round
number if the difference between the extrema of round numbers that 𝑝𝑖 stores in 𝗋𝗇𝖽𝑖[] is at least (𝑀 −2), and 𝑝𝑖 holds the maximum
round number. (Theorem 6.2 shows that, eventually, 𝑝𝑖 either decides or the if-statement condition in line 89 cannot hold.)

Line 93 performs another consistency test for the local state of the initialized consensus object, 𝑂𝑖. That is, 𝑝𝑖 has to store non-⊥

values as the estimated decision values and leaders. Lines 94 to 95 remove stale information from the arrays 𝗉𝗁𝗌[][], 𝖾𝗌𝗍[][], and
𝗅𝖾𝖺𝖽[][]. That is, the entries that their round numbers are behind the garbage collection line (marked by 𝗀𝖼𝑖()).

Upon the arrival of a PHASE() message (line 109), node 𝑝𝑖 updates the 𝗋𝗇𝖽𝑖[] array with the arriving round number from 𝑝𝑗
(line 112).

8. Correctness of Algorithm 4

The correctness proof for Algorithm 4 is based on the one for Algorithm 3. Specifically, we rewrite Condition 6.1, Definition 6.1,
Theorem 6.2, and respectively, Theorem 6.3 as Condition 8.1, Definition 8.1, Theorem 8.2, and Theorem 8.3. We note that Theo-

rem 6.13 holds as is also for Algorithm 4, and thus, not repeated here.

Condition 8.1 (Consistency condition for Algorithm 4). ∀𝑖 ∈ Correct ∶ 𝗋𝗇𝖽𝑖[𝑖] ≥ 0 ∧(∄𝑦 ∈ {𝗀𝖼𝑖(), … , 𝗋𝑖()}} ∶ ⊥ ∈ {𝖾𝗌𝗍𝑖[𝑧][𝑖][0], 𝗅𝖾𝖺𝖽𝑖[𝑧][𝑖]}
18

∧ 𝑧 = 𝑦 mod𝑀).

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Definition 8.1 rewrites Definition 6.1 by replacing Condition 6.1 with Condition 8.1.

Definition 8.1. Let 𝑅 be an execution of Algorithm 4, 𝑐 ∈ 𝑅 be a system state, and 𝑝𝑖 ∈  ∶ 𝑖 ∈ Correct be a correct node. Suppose
that in 𝑐 either 𝑂𝑖 = ⊥ holds or Condition 8.1 holds. In this case, we say that 𝑝𝑖 is consistent in 𝑐. The definitions of consistent system
states and executions are the same as in Definition 6.1.

Theorem 8.2 (Algorithm 3’s convergence). Let 𝑅 be an execution of Algorithm 4. Within finite time, the system reaches a state 𝑐 ∈𝑅 that
starts a consistent execution (Definition 8.1).

Proof of Theorem 8.2. Suppose that 𝑅’s starting state is not consistent, specifically, with respect to node 𝑖 ∈ Correct. I.e., the if-
statement condition in line 87 or 92 holds or the for-each condition in line 94 holds with respect to at least one element. Within
a complete iteration of the do forever loop, every correct node 𝑝𝑖 takes a step that includes the execution of lines 87 to 95, which
assures that 𝑝𝑖 becomes consistent. We observe from the code of Algorithm 4 that once 𝑝𝑖 is consistent in 𝑐, node 𝑝𝑖 is also consistent
in any state 𝑐′ ∈𝑅 that follows 𝑐, cf. lines 87 to 95 as well as lines 104 to 108. The rest of the proof is followed by the same reasons
given in the proof of Theorem 6.2. □Theorem 8.2

Theorem 8.3 (Algorithm 3’s termination). Let 𝑅 be a consistent execution of Algorithm 4. Suppose ∃𝑥 ∈ Correct ∶ 𝑂𝑥 ≠ ⊥ holds in the
starting system state of 𝑅. Eventually the system reaches a state, 𝑐 ∈𝑅 after which ∀𝑥 ∈ Correct ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑥() ≠ ⊥ always hold.

Proof of Theorem 8.3. The proof of Theorem 6.3 addresses a number of concerns that are related to the plausibility that Algorithm 3

cannot terminate, say, by not exiting the repeat-until loop in lines 58 to 64. We observe from the code of Algorithm 4 that, in addition
to the concerns addressed by the proof of Theorem 6.3, Algorithm 4 has one more concern that is related to termination. Specifically,
if, eventually, the if-statement condition in line 89 always holds with respect to all non-failing nodes. Because then, none of these
nodes can ever increase its round number. Therefore, the rest of the proof focuses on showing that at least one correct node, 𝑝𝑖,
decides or the if-statement condition in line 89 does not hold, infinitely often, with respect to at least one non-failing node.

Suppose, toward a contradiction, that no non-failing node decides during 𝑅 and the if-statement condition in line 89 eventually
does not hold for any non-failing node.

Argument 1: eventually, there is 𝑧 ∈ ℤ+, such that for any non-failing node 𝑝𝑖, it holds that 𝑧 = 𝗋𝗇𝖽𝑖[𝑖] = 𝗋𝑖(). By the assumption that
there is a system state 𝑐 ∈ 𝑅 for which the if-statement condition in line 89 forever does not hold with respect to any non-failing
node, we know that no node 𝑝𝑖 increments its round number 𝗋𝗇𝖽𝑖[𝑖] after 𝑐. Also, by line 102 for every non-failing node 𝑝𝑗 ∈  it
holds that 𝗋𝗇𝖽𝑗 [𝑖] stores the value of 𝗋𝗇𝖽𝑖[𝑖] eventually. The rest of the argument proof is by the definition of 𝗋().

Argument 2: for any non-failing node 𝑝𝑖, eventually 𝗋𝑖() −𝗀𝖼𝑖() ≥ (𝑀−2) cannot hold. For Argument (1), all non-failing nodes 𝑝𝑖 share
the same value, 𝑧, in 𝗋𝗇𝖽𝑖[𝑖] and 𝗋𝑖(). Since eventually all faulty nodes are suspected, then 𝗋() − 𝗀𝖼() = 0. By the assumption that
𝑀 > 2, we know that 𝗋𝑖() − 𝗀𝖼𝑖() ≥ (𝑀−2) cannot hold. □Theorem 8.3

As mentioned, the indulgence criterion requires that even if the Ω failure detector always outputs an incorrect value, the safety
properties of consensus (validity and agreement) are never violated. Also, the criterion of zero-degradation requires the number of
communication rounds until a decision is achieved to be the same in every stable run (Section 3.1.3). We note that the proposed
solution satisfies indulgence and zero-degradation criteria, as they are inherited from Algorithm 2. For details, please see the end of
Section 6.

9. Conclusions

We showed how a non-self-stabilizing algorithm for indulgent zero-degrading binary consensus by Guerraoui and Raynal [15] can
be transformed into one that can recover after the occurrence of transient faults. We also obtained a self-stabilizing asynchronous Ω
failure detector from the non-self-stabilizing construction by Mostéfaoui, Mourgaya, and Raynal [11]. Our transformation techniques
are based on a number of considerations, such as (i) avoiding lengthy periods of recovery from transient faults (due to counting to
infinity), (ii) circumventing the need to demonstrate the absence of live-locks after the occurrence of transient faults (by unifying
messages and repeat-until loops), and (iii) bounding the size of variables via (iii.a) recycling of entries in arrays using failure
detection, and (iii.b) recycling of round numbers using a global restart procedure. We encourage the reader to take these techniques
into account when designing distributed systems that can recover from transient faults.

CRediT authorship contribution statement

Oskar Lundström: Conceptualization, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. Michel
Raynal: Conceptualization, Formal analysis, Methodology, Writing – review & editing. Elad M. Schiller: Conceptualization, Formal
19

analysis, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing.

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant
financial support for this work that could have influenced its outcome.

Acknowledgements

We thank Daniel Kem, Daniel Karlberg, and Amanda Sjöö for useful discussions.

References

[1] M.J. Fischer, N.A. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.

[2] M. Raynal, Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach, Springer, 2018.

[3] V. Hadzilacos, S. Toueg, A modular approach to fault-tolerant broadcasts and related problems, Tech. rep., Cornell Univ., Ithaca, NY, 1994.

[4] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, J. ACM 43 (2) (1996) 225–267.

[5] R. Guerraoui, Indulgent algorithms, in: Principles of Distributed Computing, PODC, ACM, 2000, pp. 289–297.

[6] P. Dutta, R. Guerraoui, Fast indulgent consensus with zero degradation, in: Dependable Computing EDCC, in: LNCS, vol. 2485, Springer, 2002, pp. 191–208.

[7] O. Lundström, M. Raynal, E.M. Schiller, Brief announcement: self-stabilizing total-order broadcast, in: SSS, in: Lecture Notes in Computer Science, vol. 13751,
Springer, 2022, pp. 358–363.

[8] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998) 133–169.

[9] R. van Renesse, D. Altinbuken, Paxos made moderately complex, ACM Comput. Surv. 47 (3) (2015) 42.

[10] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus, J. ACM 43 (4) (1996) 685–722.

[11] A. Mostéfaoui, E. Mourgaya, M. Raynal, Asynchronous implementation of failure detectors, in: Dependable Systems and Networks DSN, IEEE Computer Society,
2003, pp. 351–360.

[12] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, On implementing omega with weak reliability and synchrony assumptions, in: PODC, ACM, 2003,
pp. 306–314.

[13] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Communication-efficient leader election and consensus with limited link synchrony, in: Principles of
Distributed Computing, PODC, ACM, 2004, pp. 328–337.

[14] R. Guerraoui, N.A. Lynch, A general characterization of indulgence, in: Stabilization, Safety, and Security of Distributed Systems, SSS, in: LNCS, vol. 4280,
Springer, 2006, pp. 16–34.

[15] R. Guerraoui, M. Raynal, The information structure of indulgent consensus, IEEE Trans. Comput. 53 (4) (2004) 453–466.

[16] R. Guerraoui, M. Raynal, The alpha of indulgent consensus, Comput. J. 50 (1) (2007) 53–67.

[17] I. Keidar, S. Rajsbaum, A simple proof of the uniform consensus synchronous lower bound, Inf. Process. Lett. 85 (1) (2003) 47–52.

[18] M. Hurfin, A. Mostéfaoui, M. Raynal, A versatile family of consensus protocols based on Chandra-Toueg’s unreliable failure detectors, IEEE Trans. Comput.
51 (4) (2002) 395–408.

[19] W. Wu, J. Cao, J. Yang, M. Raynal, Using asynchrony and zero degradation to speed up indulgent consensus protocols, J. Parallel Distrib. Comput. 68 (7) (2008)
984–996.

[20] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing indulgent zero-degrading binary consensus, in: 22nd Distributed Computing and Networking, ICDCN,
ACM, 2021, pp. 106–115.

[21] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (11) (1974) 643–644.

[22] S. Dolev, Self-Stabilization, MIT Press, 2000.

[23] K. Altisen, S. Devismes, S. Dubois, F. Petit, Introduction to Distributed Self-Stabilizing Algorithms, Synthesis Lectures on Distributed Computing Theory, Morgan
& Claypool Publishers, 2019.

[24] P. Blanchard, S. Dolev, J. Beauquier, S. Delaët, Practically self-stabilizing Paxos replicated state-machine, in: 2nd Networked Systems (NETYS’14), in: LNCS,
vol. 8593, Springer, 2014, pp. 99–121.

[25] J. Beauquier, S. Kekkonen-Moneta, Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabilizing failure detectors, Int. J. Syst.
Sci. 28 (11) (1997) 1177–1187.

[26] C. Delporte-Gallet, S. Devismes, H. Fauconnier, Robust stabilizing leader election, in: Stabilization, Safety, and Security of Distributed Systems, SSS, in: LNCS,
vol. 4838, Springer, 2007, pp. 219–233.

[27] M. Hutle, J. Widder, On the possibility and the impossibility of message-driven self-stabilizing failure detection, in: Self-Stabilizing Systems, SSS, in: LNCS,
vol. 3764, Springer, 2005, pp. 153–170.

[28] M. Hutle, J. Widder, Self-stabilizing failure detector algorithms, in: T. Fahringer, M.H. Hamza (Eds.), Parallel and Distributed Computing and Networks, IASTED,
IASTED/ACTA Press, 2005, pp. 485–490.

[29] M. Biely, M. Hutle, L.D. Penso, J. Widder, Relating stabilizing timing assumptions to stabilizing failure detectors regarding solvability and efficiency, in:
Stabilization, Safety, and Security of Distributed Systems, SSS, in: LNCS, vol. 4838, Springer, 2007, pp. 4–20.

[30] S. Dolev, R.I. Kat, E.M. Schiller, When consensus meets self-stabilization, J. Comput. Syst. Sci. 76 (8) (2010) 884–900.

[31] N. Alon, H. Attiya, S. Dolev, S. Dubois, M. Potop-Butucaru, S. Tixeuil, Practically stabilizing SWMR atomic memory in message-passing systems, J. Comput. Syst.
Sci. 81 (4) (2015) 692–701.

[32] I. Salem, E.M. Schiller, Practically-self-stabilizing vector clocks in the absence of execution fairness, in: 6th Networked Systems NETYS, in: LNCS, vol. 11028,
Springer, 2018, pp. 318–333.

[33] S. Dolev, C. Georgiou, I. Marcoullis, E.M. Schiller, Practically-self-stabilizing virtual synchrony, J. Comput. Syst. Sci. 96 (2018) 50–73.

[34] K.P. Birman, T.A. Joseph, Reliable communication in the presence of failures, ACM Trans. Comput. Syst. 5 (1) (1987) 47–76.

[35] S. Dolev, E. Schiller, Communication adaptive self-stabilizing group membership service, IEEE Trans. Parallel Distrib. Syst. 14 (7) (2003) 709–720.

[36] S. Dolev, E. Schiller, Self-stabilizing group communication in directed networks, Acta Inform. 40 (9) (2004) 609–636.

[37] S. Dolev, E. Schiller, J.L. Welch, Random walk for self-stabilizing group communication in ad hoc networks, IEEE Trans. Mob. Comput. 5 (7) (2006) 893–905.

[38] C. Georgiou, O. Lundström, E.M. Schiller, Self-stabilizing snapshot objects for asynchronous failure-prone networked systems, in: 7th Networked Systems NETYS,
in: LNCS, vol. 11704, Springer, 2019, pp. 113–130.

[39] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing uniform reliable broadcast, in: 8th Networked Systems NETYS, in: Lecture Notes in Computer Science,
vol. 12129, Springer, 2020, pp. 296–313, CoRR, arXiv :2001 .03244 [abs].

[40] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing set-constrained delivery broadcast, in: IEEE 40th International Conference on Distributed Computing
Systems (ICDCS), IEEE, 2020, pp. 617–627.
20

[41] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing multivalued consensus in asynchronous crash-prone systems, in: EDCC, IEEE, 2021, pp. 111–118.

http://refhub.elsevier.com/S0304-3975(24)00002-1/bib4687EAE2ED36D3EEF6BC6136C8C2F7C6s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib2E72BEB856D343E81897CD26A34C9901s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibBF32A31F5E923793EA6C18F3C8ADF129s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib7DD58D1F99AB7B8D9F0E2AA5EB083BD2s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib7E7DE7A4A9AFEF638687BFEB9055F46Cs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibFE72787E8C1CFF23ED1CF87DFC351460s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib275BB7ED5ACB156C66F6633C795D0C64s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib275BB7ED5ACB156C66F6633C795D0C64s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibDC45D06692712332BCA7B59D4BA43548s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib2FD9CF7E1E25A2CB323EEBA6F26D9426s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib82F3A298B643452AD584DF9C241C4635s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5C43335704E4F75EF5E1BC36B4EC1FA6s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5C43335704E4F75EF5E1BC36B4EC1FA6s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibF157E740C18835DAA7CA17FDB0362DA4s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibF157E740C18835DAA7CA17FDB0362DA4s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib0408182B7852C7B9CA8D87931693A3E7s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib0408182B7852C7B9CA8D87931693A3E7s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib52F05B716AB21A4D5E345281B0E4B94As1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib52F05B716AB21A4D5E345281B0E4B94As1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5E45B2A4621B75D74F0786816179C7B8s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib47EBD9D7DCF24A6B3E2161044D48B4EBs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib0DB761FFD8D8B1AA838B29E3A42C1F86s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibA915E5E78B85B7840ECFC43A5CB52908s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibA915E5E78B85B7840ECFC43A5CB52908s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibB44E56F13505ADC2A11363310DCA2EEFs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibB44E56F13505ADC2A11363310DCA2EEFs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib6FB7DE602A52AB46C61F19807DFAD13Ds1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib6FB7DE602A52AB46C61F19807DFAD13Ds1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib6CD6ABB5D9B57779B2D5AD5EFDE74E7Cs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibF817CDF301DD69E8DED8B7D451EE484Fs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib16395657EF81BD35824FC84A7638C49As1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib16395657EF81BD35824FC84A7638C49As1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib83C829257F39C53262AFA250E735F220s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib83C829257F39C53262AFA250E735F220s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibAF9DAC46585B8ED59DE673910356F35As1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibAF9DAC46585B8ED59DE673910356F35As1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib46E00B3992CAD7A8D250CEEC98223A6Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib46E00B3992CAD7A8D250CEEC98223A6Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5C7786543E572AE85470EF1EA7B1B672s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5C7786543E572AE85470EF1EA7B1B672s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib73BE64751C8286DE524F1D3226267B18s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib73BE64751C8286DE524F1D3226267B18s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib175CC1DA212F2B5C930D90D31D28E82Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib175CC1DA212F2B5C930D90D31D28E82Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5ED71C8279BB998AF711BEDD7D58C2C5s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib36A9DCF59EE9099B1F90E547D7E69493s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib36A9DCF59EE9099B1F90E547D7E69493s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibE5FC3F5ACB3589029146B25714370246s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibE5FC3F5ACB3589029146B25714370246s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibFAEEF2D06441BE04472640D099CD3956s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib080B40762C2F548B1D4D9200A34002A0s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibAA09E8E8984ECAB51419A8525EB7C8FFs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib058E25B10B343E90A606C488F5B13926s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibE44257575068C709D19BB51E4A01FDF4s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib4E8E6B943FF7FD8A0EDA82CF118C3429s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib4E8E6B943FF7FD8A0EDA82CF118C3429s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib32CE7A73729FF01EAC20AC04A328A4DFs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib32CE7A73729FF01EAC20AC04A328A4DFs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibA5F94C32C2CE09BD7B4866E7CB40C79Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibA5F94C32C2CE09BD7B4866E7CB40C79Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5A9B84C30A6DD3991064CA0D4C66F36Bs1

Theoretical Computer Science 989 (2024) 114387O. Lundström, M. Raynal and E.M. Schiller

[42] S. Dolev, T. Petig, E.M. Schiller, Self-stabilizing and private distributed shared atomic memory in seldomly fair message passing networks, CoRR, arXiv :1806 .
03498 [abs], 2018.

[43] S. Dolev, J.L. Welch, Self-stabilizing clock synchronization in the presence of byzantine faults, J. ACM 51 (5) (2004) 780–799.

[44] M. Ben-Or, D. Dolev, E.N. Hoch, Fast self-stabilizing byzantine tolerant digital clock synchronization, in: PODC, ACM, 2008, pp. 385–394.

[45] A. Maurer, S. Tixeuil, Self-stabilizing byzantine broadcast, in: 33rd IEEE International Symposium on Reliable Distributed Systems, SRDS, 2014, pp. 152–160.

[46] R. Duvignau, M. Raynal, E.M. Schiller, Self-stabilizing byzantine fault-tolerant repeated reliable broadcast, Theor. Comput. Sci. 972 (2023) 114070.

[47] C. Georgiou, I. Marcoullis, M. Raynal, E.M. Schiller, Loosely-self-stabilizing byzantine-tolerant binary consensus for signature-free message-passing systems, in:
NETYS, in: Lecture Notes in Computer Science, vol. 12754, Springer, 2021, pp. 36–53.

[48] R. Duvignau, M. Raynal, E.M. Schiller, Self-stabilizing byzantine multivalued consensus, ICDCN 2024 and CoRR, arXiv :2311 .09075 [abs], 2023.

[49] C. Georgiou, M. Raynal, E.M. Schiller, Self-stabilizing byzantine-tolerant recycling, in: SSS, in: Lecture Notes in Computer Science, vol. 14310, Springer, 2023,
pp. 518–535.

[50] A. Binun, T. Coupaye, S. Dolev, M. Kassi-Lahlou, M. Lacoste, A. Palesandro, R. Yagel, L. Yankulin, Self-stabilizing byzantine-tolerant distributed replicated state
machine, in: SSS, in: Lecture Notes in Computer Science, vol. 10083, 2016, pp. 36–53.

[51] S. Dolev, C. Georgiou, I. Marcoullis, E.M. Schiller, Self-stabilizing byzantine tolerant replicated state machine based on failure detectors, in: CSCML, in: Lecture
Notes in Computer Science, vol. 10879, Springer, 2018, pp. 84–100.

[52] S. Dolev, O. Liba, E.M. Schiller, Self-stabilizing byzantine resilient topology discovery and message delivery, in: NETYS, in: Lecture Notes in Computer Science,
vol. 7853, Springer, 2013, pp. 42–57.

[53] G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, 2000.

[54] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[55] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing total-order broadcast, in: SSS, in: Lecture Notes in Computer Science, vol. 13751, Springer, 2022,
21

pp. 358–363.

http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9E903AD35C68CB795D19F4E4186E54E7s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9E903AD35C68CB795D19F4E4186E54E7s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9C87D8B5438AD6D4627CD15433C21A97s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5561C9767601315C1FF84840B44D027Ds1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibA0D277A71DC3510F3162B3CBB3E2A5B1s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib72ED64A499FF97AE1DAFAA2775965990s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9197BB6A011AE2FDA84BD4FF08AF1B7Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9197BB6A011AE2FDA84BD4FF08AF1B7Bs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib8D9AFA323DF889D62D50F7F75D95BED3s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibC498C8A0E82B4F413FE9DA584AEC9C39s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bibC498C8A0E82B4F413FE9DA584AEC9C39s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9AE8061A0B3343C9877B84BB362CA039s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib9AE8061A0B3343C9877B84BB362CA039s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5161B024975E3D9CB186F754E3E6CC69s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib5161B024975E3D9CB186F754E3E6CC69s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib953F95294AC107CD6036DADB287F7594s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib953F95294AC107CD6036DADB287F7594s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib2EBF03DD3129542A4143CFD8BF560136s1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib4ADC41BFCBEBC1948CE9F13662D1B45Fs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib2CE84BC6DA7A1919258D1C24DB7FEA2Fs1
http://refhub.elsevier.com/S0304-3975(24)00002-1/bib2CE84BC6DA7A1919258D1C24DB7FEA2Fs1

	Self-stabilizing indulgent zero-degrading binary consensus
	1 Introduction
	1.1 Background and motivation
	1.2 Problem definition and scope
	1.3 Fault model
	1.4 Repeated consensus in the context of self-stabilizing systems
	1.5 Related work
	1.5.1 Non-self-stabilizing solutions
	1.5.2 Self-stabilizing solutions

	1.6 Our contribution
	1.7 Organization

	2 System settings
	2.1 Task specification
	2.2 The fault model and self-stabilization
	2.2.1 Benign failures
	2.2.2 Arbitrary transient faults
	2.2.3 Dijkstra’s self-stabilization criterion
	2.2.4 Complexity measures

	3 Ω -class failure detectors
	3.1 Unreliable failure detectors
	3.1.1 Failure patterns
	3.1.2 Eventual leader failure detectors
	3.1.3 Stable runs

	3.2 Non-self-stabilizing Ω failure detector
	3.3 Operational assumptions
	3.4 Variables
	3.5 Algorithm description
	3.5.1 The do-forever loop
	3.5.2 Processing of arriving queries

	3.6 Self-stabilizing Ω failure detector
	3.6.1 Sharing all count[]’s values
	3.6.2 No counting to infinity

	3.7 Correctness of the self-stabilizing version of Algorithm 1

	4 Background: non-self-stabilizing binary consensus
	4.1 Algorithm structure
	4.1.1 The system behavior during phase zero
	4.1.2 The system behavior during phase one
	4.1.3 The necessity of broadcasting v before deciding on it

	5 Unbounded self-stabilizing binary consensus
	5.1 Challenges and approaches
	5.2 Variables
	5.3 Message structure
	5.4 Interface operations
	5.5 The do-forever loop (lines 52 to 69)
	5.5.1 Starting a new round (lines 53 to 56)
	5.5.2 The repeat-until loop (line 58 to 64)
	5.5.3 Attempting to reach a decision (line 65 to 69)

	5.6 The arrival of PHASE() messages

	6 Algorithm 3’s correctness
	7 Bounded version of Algorithm 3
	7.1 The challenge
	7.2 Our approach
	7.3 Accessing rnd[], phs[][], est[][], and lead[][]
	7.4 Entry recycling for phs[][], est[][], and lead[][]
	7.5 Detailed description

	8 Correctness of Algorithm 4
	9 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

